% \iffalse meta-comment % %% File: l3fp-trig.dtx % % Copyright (C) 2011-2019 The LaTeX3 Project % % It may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this % license or (at your option) any later version. The latest version % of this license is in the file % % https://www.latex-project.org/lppl.txt % % This file is part of the "l3kernel bundle" (The Work in LPPL) % and all files in that bundle must be distributed together. % % ----------------------------------------------------------------------- % % The development version of the bundle can be found at % % https://github.com/latex3/latex3 % % for those people who are interested. % %<*driver> \documentclass[full,kernel]{l3doc} \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \title{The \textsf{l3fp-trig} package\\ % Floating point trigonometric functions} % \author{^^A % The \LaTeX3 Project\thanks % {^^A % E-mail: % \href{mailto:latex-team@latex-project.org} % {latex-team@latex-project.org}^^A % }^^A % } % \date{Released 2019-01-28} % % \maketitle % % \begin{documentation} % % \end{documentation} % % \begin{implementation} % % \section{\pkg{l3fp-trig} Implementation} % % \begin{macrocode} %<*initex|package> % \end{macrocode} % % \begin{macrocode} %<@@=fp> % \end{macrocode} % % \begin{macro}[EXP] % { % \@@_parse_word_acos:N , % \@@_parse_word_acosd:N , % \@@_parse_word_acsc:N , % \@@_parse_word_acscd:N , % \@@_parse_word_asec:N , % \@@_parse_word_asecd:N , % \@@_parse_word_asin:N , % \@@_parse_word_asind:N , % \@@_parse_word_cos:N , % \@@_parse_word_cosd:N , % \@@_parse_word_cot:N , % \@@_parse_word_cotd:N , % \@@_parse_word_csc:N , % \@@_parse_word_cscd:N , % \@@_parse_word_sec:N , % \@@_parse_word_secd:N , % \@@_parse_word_sin:N , % \@@_parse_word_sind:N , % \@@_parse_word_tan:N , % \@@_parse_word_tand:N , % } % Unary functions. % \begin{macrocode} \tl_map_inline:nn { {acos} {acsc} {asec} {asin} {cos} {cot} {csc} {sec} {sin} {tan} } { \cs_new:cpx { @@_parse_word_#1:N } { \exp_not:N \@@_parse_unary_function:NNN \exp_not:c { @@_#1_o:w } \exp_not:N \use_i:nn } \cs_new:cpx { @@_parse_word_#1d:N } { \exp_not:N \@@_parse_unary_function:NNN \exp_not:c { @@_#1_o:w } \exp_not:N \use_ii:nn } } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP] % { % \@@_parse_word_acot:N , \@@_parse_word_acotd:N, % \@@_parse_word_atan:N , \@@_parse_word_atand:N, % } % Those functions may receive a variable number of arguments. % \begin{macrocode} \cs_new:Npn \@@_parse_word_acot:N { \@@_parse_function:NNN \@@_acot_o:Nw \use_i:nn } \cs_new:Npn \@@_parse_word_acotd:N { \@@_parse_function:NNN \@@_acot_o:Nw \use_ii:nn } \cs_new:Npn \@@_parse_word_atan:N { \@@_parse_function:NNN \@@_atan_o:Nw \use_i:nn } \cs_new:Npn \@@_parse_word_atand:N { \@@_parse_function:NNN \@@_atan_o:Nw \use_ii:nn } % \end{macrocode} % \end{macro} % % \subsection{Direct trigonometric functions} % % The approach for all trigonometric functions (sine, cosine, tangent, % cotangent, cosecant, and secant), with arguments given in radians or % in degrees, is the same. % \begin{itemize} % \item Filter out special cases ($\pm 0$, $\pm\inf$ and \nan{}). % \item Keep the sign for later, and work with the absolute value % $\lvert x\rvert$ of the argument. % \item Small numbers ($\lvert x\rvert<1$ in radians, $\lvert % x\rvert<10$ in degrees) are converted to fixed point numbers (and % to radians if $\lvert x\rvert$ is in degrees). % \item For larger numbers, we need argument reduction. Subtract a % multiple of $\pi/2$ (in degrees,~$90$) to bring the number to the % range to $[0, \pi/2)$ (in degrees, $[0,90)$). % \item Reduce further to $[0, \pi/4]$ (in degrees, $[0,45]$) using % $\sin x = \cos (\pi/2-x)$, and when working in degrees, convert to % radians. % \item Use the appropriate power series depending on the octant % $\lfloor\frac{|x|}{\pi/4}\rfloor \mod 8$ (in degrees, the same % formula with $\pi/4\to 45$), the sign, and the function to % compute. % \end{itemize} % % \subsubsection{Filtering special cases} % % \begin{macro}[EXP]{\@@_sin_o:w} % This function, and its analogs for \texttt{cos}, \texttt{csc}, % \texttt{sec}, \texttt{tan}, and \texttt{cot} instead of % \texttt{sin}, are followed either by \cs{use_i:nn} and a float in % radians or by \cs{use_ii:nn} and a float in degrees. The sine of % $\pm 0$ or \nan{} is the same float. The sine of $\pm\infty$ raises % an invalid operation exception with the appropriate function name. % Otherwise, call the \texttt{trig} function to perform argument % reduction and if necessary convert the reduced argument to radians. % Then, \cs{@@_sin_series_o:NNwwww} is called to compute the % Taylor series: this function receives a sign~|#3|, an initial octant % of~$0$, and the function \cs{@@_ep_to_float_o:wwN} which converts the % result of the series to a floating point directly rather than taking % its inverse, since $\sin(x) = \#3 \sin\lvert x\rvert$. % \begin{macrocode} \cs_new:Npn \@@_sin_o:w #1 \s_@@ \@@_chk:w #2#3#4; @ { \if_case:w #2 \exp_stop_f: \@@_case_return_same_o:w \or: \@@_case_use:nw { \@@_trig:NNNNNwn #1 \@@_sin_series_o:NNwwww \@@_ep_to_float_o:wwN #3 0 } \or: \@@_case_use:nw { \@@_invalid_operation_o:fw { #1 { sin } { sind } } } \else: \@@_case_return_same_o:w \fi: \s_@@ \@@_chk:w #2 #3 #4; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_cos_o:w} % The cosine of $\pm 0$ is $1$. The cosine of $\pm\infty$ raises an % invalid operation exception. The cosine of \nan{} is itself. % Otherwise, the \texttt{trig} function reduces the argument to at % most half a right-angle and converts if necessary to radians. We % then call the same series as for sine, but using a positive % sign~|0| regardless of the sign of~$x$, and with an initial octant % of~$2$, because $\cos(x) = + \sin(\pi/2 + \lvert x\rvert)$. % \begin{macrocode} \cs_new:Npn \@@_cos_o:w #1 \s_@@ \@@_chk:w #2#3; @ { \if_case:w #2 \exp_stop_f: \@@_case_return_o:Nw \c_one_fp \or: \@@_case_use:nw { \@@_trig:NNNNNwn #1 \@@_sin_series_o:NNwwww \@@_ep_to_float_o:wwN 0 2 } \or: \@@_case_use:nw { \@@_invalid_operation_o:fw { #1 { cos } { cosd } } } \else: \@@_case_return_same_o:w \fi: \s_@@ \@@_chk:w #2 #3; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_csc_o:w} % The cosecant of $\pm 0$ is $\pm \infty$ with the same sign, with a % division by zero exception (see \cs{@@_cot_zero_o:Nfw} defined % below), which requires the function name. The cosecant of % $\pm\infty$ raises an invalid operation exception. The cosecant of % \nan{} is itself. Otherwise, the \texttt{trig} function performs % the argument reduction, and converts if necessary to radians before % calling the same series as for sine, using the sign~|#3|, a starting % octant of~$0$, and inverting during the conversion from the fixed % point sine to the floating point result, because $\csc(x) = \#3 % \big( \sin\lvert x\rvert\big)^{-1}$. % \begin{macrocode} \cs_new:Npn \@@_csc_o:w #1 \s_@@ \@@_chk:w #2#3#4; @ { \if_case:w #2 \exp_stop_f: \@@_cot_zero_o:Nfw #3 { #1 { csc } { cscd } } \or: \@@_case_use:nw { \@@_trig:NNNNNwn #1 \@@_sin_series_o:NNwwww \@@_ep_inv_to_float_o:wwN #3 0 } \or: \@@_case_use:nw { \@@_invalid_operation_o:fw { #1 { csc } { cscd } } } \else: \@@_case_return_same_o:w \fi: \s_@@ \@@_chk:w #2 #3 #4; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_sec_o:w} % The secant of $\pm 0$ is $1$. The secant of $\pm \infty$ raises an % invalid operation exception. The secant of \nan{} is itself. % Otherwise, the \texttt{trig} function reduces the argument and turns % it to radians before calling the same series as for sine, using a % positive sign~$0$, a starting octant of~$2$, and inverting upon % conversion, because $\sec(x) = + 1 / \sin(\pi/2 + \lvert x\rvert)$. % \begin{macrocode} \cs_new:Npn \@@_sec_o:w #1 \s_@@ \@@_chk:w #2#3; @ { \if_case:w #2 \exp_stop_f: \@@_case_return_o:Nw \c_one_fp \or: \@@_case_use:nw { \@@_trig:NNNNNwn #1 \@@_sin_series_o:NNwwww \@@_ep_inv_to_float_o:wwN 0 2 } \or: \@@_case_use:nw { \@@_invalid_operation_o:fw { #1 { sec } { secd } } } \else: \@@_case_return_same_o:w \fi: \s_@@ \@@_chk:w #2 #3; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_tan_o:w} % The tangent of $\pm 0$ or \nan{} is the same floating point number. % The tangent of $\pm\infty$ raises an invalid operation exception. % Once more, the \texttt{trig} function does the argument reduction % step and conversion to radians before calling % \cs{@@_tan_series_o:NNwwww}, with a sign~|#3| and an initial octant % of~$1$ (this shift is somewhat arbitrary). See \cs{@@_cot_o:w} for % an explanation of the $0$~argument. % \begin{macrocode} \cs_new:Npn \@@_tan_o:w #1 \s_@@ \@@_chk:w #2#3#4; @ { \if_case:w #2 \exp_stop_f: \@@_case_return_same_o:w \or: \@@_case_use:nw { \@@_trig:NNNNNwn #1 \@@_tan_series_o:NNwwww 0 #3 1 } \or: \@@_case_use:nw { \@@_invalid_operation_o:fw { #1 { tan } { tand } } } \else: \@@_case_return_same_o:w \fi: \s_@@ \@@_chk:w #2 #3 #4; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_cot_o:w} % \begin{macro}[EXP]{\@@_cot_zero_o:Nfw} % The cotangent of $\pm 0$ is $\pm \infty$ with the same sign, with a % division by zero exception (see \cs{@@_cot_zero_o:Nfw}. The % cotangent of $\pm\infty$ raises an invalid operation exception. The % cotangent of \nan{} is itself. We use $\cot x = - \tan (\pi/2 + % x)$, and the initial octant for the tangent was chosen to be $1$, so % the octant here starts at $3$. The change in sign is obtained by % feeding \cs{@@_tan_series_o:NNwwww} two signs rather than just the % sign of the argument: the first of those indicates whether we % compute tangent or cotangent. Those signs are eventually combined. % \begin{macrocode} \cs_new:Npn \@@_cot_o:w #1 \s_@@ \@@_chk:w #2#3#4; @ { \if_case:w #2 \exp_stop_f: \@@_cot_zero_o:Nfw #3 { #1 { cot } { cotd } } \or: \@@_case_use:nw { \@@_trig:NNNNNwn #1 \@@_tan_series_o:NNwwww 2 #3 3 } \or: \@@_case_use:nw { \@@_invalid_operation_o:fw { #1 { cot } { cotd } } } \else: \@@_case_return_same_o:w \fi: \s_@@ \@@_chk:w #2 #3 #4; } \cs_new:Npn \@@_cot_zero_o:Nfw #1#2#3 \fi: { \fi: \token_if_eq_meaning:NNTF 0 #1 { \exp_args:NNf \@@_division_by_zero_o:Nnw \c_inf_fp } { \exp_args:NNf \@@_division_by_zero_o:Nnw \c_minus_inf_fp } {#2} } % \end{macrocode} % \end{macro} % \end{macro} % % \subsubsection{Distinguishing small and large arguments} % % \begin{macro}[EXP]{\@@_trig:NNNNNwn} % The first argument is \cs{use_i:nn} if the operand is in radians and % \cs{use_ii:nn} if it is in degrees. Arguments |#2| to~|#5| control % what trigonometric function we compute, and |#6| to~|#8| are pieces % of a normal floating point number. Call the \texttt{_series} % function~|#2|, with arguments |#3|, either a conversion function % (\cs{@@_ep_to_float_o:wN} or \cs{@@_ep_inv_to_float_o:wN}) or a sign $0$ % or~$2$ when computing tangent or cotangent; |#4|, a sign $0$ or~$2$; % the octant, computed in an integer expression starting with~|#5| and % stopped by a period; and a fixed point number obtained from the % floating point number by argument reduction (if necessary) and % conversion to radians (if necessary). Any argument reduction % adjusts the octant accordingly by leaving a (positive) shift into % its integer expression. Let us explain the integer comparison. Two % of the four \cs{exp_after:wN} are expanded, the expansion hits the % test, which is true if the float is at least~$1$ when working in % radians, and at least $10$ when working in degrees. Then one of the % remaining \cs{exp_after:wN} hits |#1|, which picks the \texttt{trig} % or \texttt{trigd} function in whichever branch of the conditional % was taken. The final \cs{exp_after:wN} closes the conditional. At % the end of the day, a number is \texttt{large} if it is $\geq 1$ in % radians or $\geq 10$ in degrees, and \texttt{small} otherwise. All % four \texttt{trig}/\texttt{trigd} auxiliaries receive the operand as % an extended-precision number. % \begin{macrocode} \cs_new:Npn \@@_trig:NNNNNwn #1#2#3#4#5 \s_@@ \@@_chk:w 1#6#7#8; { \exp_after:wN #2 \exp_after:wN #3 \exp_after:wN #4 \int_value:w \@@_int_eval:w #5 \exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN \if_int_compare:w #7 > #1 0 1 \exp_stop_f: #1 \@@_trig_large:ww \@@_trigd_large:ww \else: #1 \@@_trig_small:ww \@@_trigd_small:ww \fi: #7,#8{0000}{0000}; } % \end{macrocode} % \end{macro} % % \subsubsection{Small arguments} % % \begin{macro}[EXP]{\@@_trig_small:ww} % This receives a small extended-precision number in radians and % converts it to a fixed point number. Some trailing digits may be % lost in the conversion, so we keep the original floating point % number around: when computing sine or tangent (or their inverses), % the last step is to multiply by the floating point number (as % an extended-precision number) rather than the fixed point number. % The period serves to end the integer expression for the octant. % \begin{macrocode} \cs_new:Npn \@@_trig_small:ww #1,#2; { \@@_ep_to_fixed:wwn #1,#2; . #1,#2; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_trigd_small:ww} % Convert the extended-precision number to radians, then call % \cs{@@_trig_small:ww} to massage it in the form appropriate for the % \texttt{_series} auxiliary. % \begin{macrocode} \cs_new:Npn \@@_trigd_small:ww #1,#2; { \@@_ep_mul_raw:wwwwN -1,{1745}{3292}{5199}{4329}{5769}{2369}; #1,#2; \@@_trig_small:ww } % \end{macrocode} % \end{macro} % % \subsubsection{Argument reduction in degrees} % % \begin{macro}[rEXP] % { % \@@_trigd_large:ww, \@@_trigd_large_auxi:nnnnwNNNN, % \@@_trigd_large_auxii:wNw, \@@_trigd_large_auxiii:www % } % Note that $25\times 360 = 9000$, so $10^{k+1} \equiv 10^{k} % \pmod{360}$ for $k\geq 3$. When the exponent~|#1| is very large, we % can thus safely replace it by~$22$ (or even~$19$). We turn the % floating point number into a fixed point number with two blocks of % $8$~digits followed by five blocks of $4$~digits. The original % float is $100\times\meta{block_1}\cdots\meta{block_3}. % \meta{block_4}\cdots\meta{block_7}$, or is equal to it modulo~$360$ % if the exponent~|#1| is very large. The first auxiliary finds % $\meta{block_1} + \meta{block_2} \pmod{9}$, a single digit, and % prepends it to the $4$~digits of \meta{block_3}. It also unpacks % \meta{block_4} and grabs the $4$~digits of \meta{block_7}. The % second auxiliary grabs the \meta{block_3} plus any contribution from % the first two blocks as~|#1|, the first digit of \meta{block_4} % (just after the decimal point in hundreds of degrees) as~|#2|, and % the three other digits as~|#3|. It finds the quotient and remainder % of |#1#2| modulo~$9$, adds twice the quotient to the integer % expression for the octant, and places the remainder (between $0$ % and~$8$) before |#3| to form a new \meta{block_4}. The resulting % fixed point number is $x\in [0, 0.9]$. If $x\geq 0.45$, we add~$1$ % to the octant and feed $0.9-x$ with an exponent of~$2$ (to % compensate the fact that we are working in units of hundreds of % degrees rather than degrees) to \cs{@@_trigd_small:ww}. Otherwise, % we feed it~$x$ with an exponent of~$2$. The third auxiliary also % discards digits which were not packed into the various % \meta{blocks}. Since the original exponent~|#1| is at least~$2$, % those are all~$0$ and no precision is lost (|#6| and~|#7| are % four~$0$ each). % \begin{macrocode} \cs_new:Npn \@@_trigd_large:ww #1, #2#3#4#5#6#7; { \exp_after:wN \@@_pack_eight:wNNNNNNNN \exp_after:wN \@@_pack_eight:wNNNNNNNN \exp_after:wN \@@_pack_twice_four:wNNNNNNNN \exp_after:wN \@@_pack_twice_four:wNNNNNNNN \exp_after:wN \@@_trigd_large_auxi:nnnnwNNNN \exp_after:wN ; \exp:w \exp_end_continue_f:w \prg_replicate:nn { \int_max:nn { 22 - #1 } { 0 } } { 0 } #2#3#4#5#6#7 0000 0000 0000 ! } \cs_new:Npn \@@_trigd_large_auxi:nnnnwNNNN #1#2#3#4#5; #6#7#8#9 { \exp_after:wN \@@_trigd_large_auxii:wNw \int_value:w \@@_int_eval:w #1 + #2 - (#1 + #2 - 4) / 9 * 9 \@@_int_eval_end: #3; #4; #5{#6#7#8#9}; } \cs_new:Npn \@@_trigd_large_auxii:wNw #1; #2#3; { + (#1#2 - 4) / 9 * 2 \exp_after:wN \@@_trigd_large_auxiii:www \int_value:w \@@_int_eval:w #1#2 - (#1#2 - 4) / 9 * 9 \@@_int_eval_end: #3 ; } \cs_new:Npn \@@_trigd_large_auxiii:www #1; #2; #3! { \if_int_compare:w #1 < 4500 \exp_stop_f: \exp_after:wN \@@_use_i_until_s:nw \exp_after:wN \@@_fixed_continue:wn \else: + 1 \fi: \@@_fixed_sub:wwn {9000}{0000}{0000}{0000}{0000}{0000}; {#1}#2{0000}{0000}; { \@@_trigd_small:ww 2, } } % \end{macrocode} % \end{macro} % % \subsubsection{Argument reduction in radians} % % Arguments greater or equal to~$1$ need to be reduced to a range where % we only need a few terms of the Taylor series. We reduce to the range % $[0,2\pi]$ by subtracting multiples of~$2\pi$, then to the smaller % range $[0,\pi/2]$ by subtracting multiples of~$\pi/2$ (keeping track % of how many times~$\pi/2$ is subtracted), then to $[0,\pi/4]$ by % mapping $x\to \pi/2 - x$ if appropriate. When the argument is very % large, say, $10^{100}$, an equally large multiple of~$2\pi$ must be % subtracted, hence we must work with a very good approximation % of~$2\pi$ in order to get a sensible remainder modulo~$2\pi$. % % Specifically, we multiply the argument by an approximation % of~$1/(2\pi)$ with $\ExplSyntaxOn\int_eval:n { \c__fp_max_exponent_int % + 48 }\ExplSyntaxOff$~digits, then discard the integer part of the % result, keeping $52$~digits of the fractional part. From the % fractional part of $x/(2\pi)$ we deduce the octant (quotient of the % first three digits by~$125$). We then multiply by $8$ or~$-8$ (the % latter when the octant is odd), ignore any integer part (related to % the octant), and convert the fractional part to an extended precision % number, before multiplying by~$\pi/4$ to convert back to a value in % radians in $[0,\pi/4]$. % % It is possible to prove that given the precision of floating points % and their range of exponents, the $52$~digits may start at most with % $24$~zeros. The $5$~last digits are affected by carries from % computations which are not done, hence we are left with at least $52 - % 24 - 5 = 23$ significant digits, enough to round correctly up to % $0.6\cdot\text{ulp}$ in all cases. % % \begin{variable}[EXP]{\c_@@_trig_intarray} % This integer array stores blocks of $8$~decimals of % $10^{-16}/(2\pi)$. Each entry is $10^8$ plus an $8$~digit number % storing $8$ decimals. In total we store $10112$~decimals of % $10^{-16}/(2\pi)$. The number of decimals we really need is the % maximum exponent plus the number of digits we later need,~$52$, % plus~$12$ ($4-1$~groups of $4$~digits). The memory footprint ($1/2$ % byte per digit) is the same as an earlier method of storing the data % as a control sequence name, but the major advantage is that we can % unpack specific subsets of the digits without unpacking the $10112$ % decimals. % \begin{macrocode} \intarray_const_from_clist:Nn \c_@@_trig_intarray { 100000000, 100000000, 115915494, 130918953, 135768883, 176337251, 143620344, 159645740, 145644874, 176673440, 158896797, 163422653, 150901138, 102766253, 108595607, 128427267, 157958036, 189291184, 161145786, 152877967, 141073169, 198392292, 139966937, 140907757, 130777463, 196925307, 168871739, 128962173, 197661693, 136239024, 117236290, 111832380, 111422269, 197557159, 140461890, 108690267, 139561204, 189410936, 193784408, 155287230, 199946443, 140024867, 123477394, 159610898, 132309678, 130749061, 166986462, 180469944, 186521878, 181574786, 156696424, 110389958, 174139348, 160998386, 180991999, 162442875, 158517117, 188584311, 117518767, 116054654, 175369880, 109739460, 136475933, 137680593, 102494496, 163530532, 171567755, 103220324, 177781639, 171660229, 146748119, 159816584, 106060168, 103035998, 113391198, 174988327, 186654435, 127975507, 100162406, 177564388, 184957131, 108801221, 199376147, 168137776, 147378906, 133068046, 145797848, 117613124, 127314069, 196077502, 145002977, 159857089, 105690279, 167851315, 125210016, 131774602, 109248116, 106240561, 145620314, 164840892, 148459191, 143521157, 154075562, 100871526, 160680221, 171591407, 157474582, 172259774, 162853998, 175155329, 139081398, 117724093, 158254797, 107332871, 190406999, 175907657, 170784934, 170393589, 182808717, 134256403, 166895116, 162545705, 194332763, 112686500, 126122717, 197115321, 112599504, 138667945, 103762556, 108363171, 116952597, 158128224, 194162333, 143145106, 112353687, 185631136, 136692167, 114206974, 169601292, 150578336, 105311960, 185945098, 139556718, 170995474, 165104316, 123815517, 158083944, 129799709, 199505254, 138756612, 194458833, 106846050, 178529151, 151410404, 189298850, 163881607, 176196993, 107341038, 199957869, 118905980, 193737772, 106187543, 122271893, 101366255, 126123878, 103875388, 181106814, 106765434, 108282785, 126933426, 179955607, 107903860, 160352738, 199624512, 159957492, 176297023, 159409558, 143011648, 129641185, 157771240, 157544494, 157021789, 176979240, 194903272, 194770216, 164960356, 153181535, 144003840, 168987471, 176915887, 163190966, 150696440, 147769706, 187683656, 177810477, 197954503, 153395758, 130188183, 186879377, 166124814, 195305996, 155802190, 183598751, 103512712, 190432315, 180498719, 168687775, 194656634, 162210342, 104440855, 149785037, 192738694, 129353661, 193778292, 187359378, 143470323, 102371458, 137923557, 111863634, 119294601, 183182291, 196416500, 187830793, 131353497, 179099745, 186492902, 167450609, 189368909, 145883050, 133703053, 180547312, 132158094, 131976760, 132283131, 141898097, 149822438, 133517435, 169898475, 101039500, 168388003, 197867235, 199608024, 100273901, 108749548, 154787923, 156826113, 199489032, 168997427, 108349611, 149208289, 103776784, 174303550, 145684560, 183671479, 130845672, 133270354, 185392556, 120208683, 193240995, 162211753, 131839402, 109707935, 170774965, 149880868, 160663609, 168661967, 103747454, 121028312, 119251846, 122483499, 111611495, 166556037, 196967613, 199312829, 196077608, 127799010, 107830360, 102338272, 198790854, 102387615, 157445430, 192601191, 100543379, 198389046, 154921248, 129516070, 172853005, 122721023, 160175233, 113173179, 175931105, 103281551, 109373913, 163964530, 157926071, 180083617, 195487672, 146459804, 173977292, 144810920, 109371257, 186918332, 189588628, 139904358, 168666639, 175673445, 114095036, 137327191, 174311388, 106638307, 125923027, 159734506, 105482127, 178037065, 133778303, 121709877, 134966568, 149080032, 169885067, 141791464, 168350828, 116168533, 114336160, 173099514, 198531198, 119733758, 144420984, 116559541, 152250643, 139431286, 144403838, 183561508, 179771645, 101706470, 167518774, 156059160, 187168578, 157939226, 123475633, 117111329, 198655941, 159689071, 198506887, 144230057, 151919770, 156900382, 118392562, 120338742, 135362568, 108354156, 151729710, 188117217, 195936832, 156488518, 174997487, 108553116, 159830610, 113921445, 144601614, 188452770, 125114110, 170248521, 173974510, 138667364, 103872860, 109967489, 131735618, 112071174, 104788993, 168886556, 192307848, 150230570, 157144063, 163863202, 136852010, 174100574, 185922811, 115721968, 100397824, 175953001, 166958522, 112303464, 118773650, 143546764, 164565659, 171901123, 108476709, 193097085, 191283646, 166919177, 169387914, 133315566, 150669813, 121641521, 100895711, 172862384, 126070678, 145176011, 113450800, 169947684, 122356989, 162488051, 157759809, 153397080, 185475059, 175362656, 149034394, 145420581, 178864356, 183042000, 131509559, 147434392, 152544850, 167491429, 108647514, 142303321, 133245695, 111634945, 167753939, 142403609, 105438335, 152829243, 142203494, 184366151, 146632286, 102477666, 166049531, 140657343, 157553014, 109082798, 180914786, 169343492, 127376026, 134997829, 195701816, 119643212, 133140475, 176289748, 140828911, 174097478, 126378991, 181699939, 148749771, 151989818, 172666294, 160183053, 195832752, 109236350, 168538892, 128468247, 125997252, 183007668, 156937583, 165972291, 198244297, 147406163, 181831139, 158306744, 134851692, 185973832, 137392662, 140243450, 119978099, 140402189, 161348342, 173613676, 144991382, 171541660, 163424829, 136374185, 106122610, 186132119, 198633462, 184709941, 183994274, 129559156, 128333990, 148038211, 175011612, 111667205, 119125793, 103552929, 124113440, 131161341, 112495318, 138592695, 184904438, 146807849, 109739828, 108855297, 104515305, 139914009, 188698840, 188365483, 166522246, 168624087, 125401404, 100911787, 142122045, 123075334, 173972538, 114940388, 141905868, 142311594, 163227443, 139066125, 116239310, 162831953, 123883392, 113153455, 163815117, 152035108, 174595582, 101123754, 135976815, 153401874, 107394340, 136339780, 138817210, 104531691, 182951948, 179591767, 139541778, 179243527, 161740724, 160593916, 102732282, 187946819, 136491289, 149714953, 143255272, 135916592, 198072479, 198580612, 169007332, 118844526, 179433504, 155801952, 149256630, 162048766, 116134365, 133992028, 175452085, 155344144, 109905129, 182727454, 165911813, 122232840, 151166615, 165070983, 175574337, 129548631, 120411217, 116380915, 160616116, 157320000, 183306114, 160618128, 103262586, 195951602, 146321661, 138576614, 180471993, 127077713, 116441201, 159496011, 106328305, 120759583, 148503050, 179095584, 198298218, 167402898, 138551383, 123957020, 180763975, 150429225, 198476470, 171016426, 197438450, 143091658, 164528360, 132493360, 143546572, 137557916, 113663241, 120457809, 196971566, 134022158, 180545794, 131328278, 100552461, 132088901, 187421210, 192448910, 141005215, 149680971, 113720754, 100571096, 134066431, 135745439, 191597694, 135788920, 179342561, 177830222, 137011486, 142492523, 192487287, 113132021, 176673607, 156645598, 127260957, 141566023, 143787436, 129132109, 174858971, 150713073, 191040726, 143541417, 197057222, 165479803, 181512759, 157912400, 125344680, 148220261, 173422990, 101020483, 106246303, 137964746, 178190501, 181183037, 151538028, 179523433, 141955021, 135689770, 191290561, 143178787, 192086205, 174499925, 178975690, 118492103, 124206471, 138519113, 188147564, 102097605, 154895793, 178514140, 141453051, 151583964, 128232654, 106020603, 131189158, 165702720, 186250269, 191639375, 115278873, 160608114, 155694842, 110322407, 177272742, 116513642, 134366992, 171634030, 194053074, 180652685, 109301658, 192136921, 141431293, 171341061, 157153714, 106203978, 147618426, 150297807, 186062669, 169960809, 118422347, 163350477, 146719017, 145045144, 161663828, 146208240, 186735951, 102371302, 190444377, 194085350, 134454426, 133413062, 163074595, 113830310, 122931469, 134466832, 185176632, 182415152, 110179422, 164439571, 181217170, 121756492, 119644493, 196532222, 118765848, 182445119, 109401340, 150443213, 198586286, 121083179, 139396084, 143898019, 114787389, 177233102, 186310131, 148695521, 126205182, 178063494, 157118662, 177825659, 188310053, 151552316, 165984394, 109022180, 163144545, 121212978, 197344714, 188741258, 126822386, 102360271, 109981191, 152056882, 134723983, 158013366, 106837863, 128867928, 161973236, 172536066, 185216856, 132011948, 197807339, 158419190, 166595838, 167852941, 124187182, 117279875, 106103946, 106481958, 157456200, 160892122, 184163943, 173846549, 158993202, 184812364, 133466119, 170732430, 195458590, 173361878, 162906318, 150165106, 126757685, 112163575, 188696307, 145199922, 100107766, 176830946, 198149756, 122682434, 179367131, 108412102, 119520899, 148191244, 140487511, 171059184, 141399078, 189455775, 118462161, 190415309, 134543802, 180893862, 180732375, 178615267, 179711433, 123241969, 185780563, 176301808, 184386640, 160717536, 183213626, 129671224, 126094285, 140110963, 121826276, 151201170, 122552929, 128965559, 146082049, 138409069, 107606920, 103954646, 119164002, 115673360, 117909631, 187289199, 186343410, 186903200, 157966371, 103128612, 135698881, 176403642, 152540837, 109810814, 183519031, 121318624, 172281810, 150845123, 169019064, 166322359, 138872454, 163073727, 128087898, 130041018, 194859136, 173742589, 141812405, 167291912, 138003306, 134499821, 196315803, 186381054, 124578934, 150084553, 128031351, 118843410, 107373060, 159565443, 173624887, 171292628, 198074235, 139074061, 178690578, 144431052, 174262641, 176783005, 182214864, 162289361, 192966929, 192033046, 169332843, 181580535, 164864073, 118444059, 195496893, 153773183, 167266131, 130108623, 158802128, 180432893, 144562140, 147978945, 142337360, 158506327, 104399819, 132635916, 168734194, 136567839, 101281912, 120281622, 195003330, 112236091, 185875592, 101959081, 122415367, 194990954, 148881099, 175891989, 108115811, 163538891, 163394029, 123722049, 184837522, 142362091, 100834097, 156679171, 100841679, 157022331, 178971071, 102928884, 189701309, 195339954, 124415335, 106062584, 139214524, 133864640, 134324406, 157317477, 155340540, 144810061, 177612569, 108474646, 114329765, 143900008, 138265211, 145210162, 136643111, 197987319, 102751191, 144121361, 169620456, 193602633, 161023559, 162140467, 102901215, 167964187, 135746835, 187317233, 110047459, 163339773, 124770449, 118885134, 141536376, 100915375, 164267438, 145016622, 113937193, 106748706, 128815954, 164819775, 119220771, 102367432, 189062690, 170911791, 194127762, 112245117, 123546771, 115640433, 135772061, 166615646, 174474627, 130562291, 133320309, 153340551, 138417181, 194605321, 150142632, 180008795, 151813296, 175497284, 167018836, 157425342, 150169942, 131069156, 134310662, 160434122, 105213831, 158797111, 150754540, 163290657, 102484886, 148697402, 187203725, 198692811, 149360627, 140384233, 128749423, 132178578, 177507355, 171857043, 178737969, 134023369, 102911446, 196144864, 197697194, 134527467, 144296030, 189437192, 154052665, 188907106, 162062575, 150993037, 199766583, 167936112, 181374511, 104971506, 115378374, 135795558, 167972129, 135876446, 130937572, 103221320, 124605656, 161129971, 131027586, 191128460, 143251843, 143269155, 129284585, 173495971, 150425653, 199302112, 118494723, 121323805, 116549802, 190991967, 168151180, 122483192, 151273721, 199792134, 133106764, 121874844, 126215985, 112167639, 167793529, 182985195, 185453921, 106957880, 158685312, 132775454, 133229161, 198905318, 190537253, 191582222, 192325972, 178133427, 181825606, 148823337, 160719681, 101448145, 131983362, 137910767, 112550175, 128826351, 183649210, 135725874, 110356573, 189469487, 154446940, 118175923, 106093708, 128146501, 185742532, 149692127, 164624247, 183221076, 154737505, 168198834, 156410354, 158027261, 125228550, 131543250, 139591848, 191898263, 104987591, 115406321, 103542638, 190012837, 142615518, 178773183, 175862355, 117537850, 169565995, 170028011, 158412588, 170150030, 117025916, 174630208, 142412449, 112839238, 105257725, 114737141, 123102301, 172563968, 130555358, 132628403, 183638157, 168682846, 143304568, 105994018, 170010719, 152092970, 117799058, 132164175, 179868116, 158654714, 177489647, 116547948, 183121404, 131836079, 184431405, 157311793, 149677763, 173989893, 102277656, 107058530, 140837477, 152640947, 143507039, 152145247, 101683884, 107090870, 161471944, 137225650, 128231458, 172995869, 173831689, 171268519, 139042297, 111072135, 107569780, 137262545, 181410950, 138270388, 198736451, 162848201, 180468288, 120582913, 153390138, 135649144, 130040157, 106509887, 192671541, 174507066, 186888783, 143805558, 135011967, 145862340, 180595327, 124727843, 182925939, 157715840, 136885940, 198993925, 152416883, 178793572, 179679516, 154076673, 192703125, 164187609, 162190243, 104699348, 159891990, 160012977, 174692145, 132970421, 167781726, 115178506, 153008552, 155999794, 102099694, 155431545, 127458567, 104403686, 168042864, 184045128, 181182309, 179349696, 127218364, 192935516, 120298724, 169583299, 148193297, 183358034, 159023227, 105261254, 121144370, 184359584, 194433836, 138388317, 175184116, 108817112, 151279233, 137457721, 193398208, 119005406, 132929377, 175306906, 160741530, 149976826, 147124407, 176881724, 186734216, 185881509, 191334220, 175930947, 117385515, 193408089, 157124410, 163472089, 131949128, 180783576, 131158294, 100549708, 191802336, 165960770, 170927599, 101052702, 181508688, 197828549, 143403726, 142729262, 110348701, 139928688, 153550062, 106151434, 130786653, 196085995, 100587149, 139141652, 106530207, 100852656, 124074703, 166073660, 153338052, 163766757, 120188394, 197277047, 122215363, 138511354, 183463624, 161985542, 159938719, 133367482, 104220974, 149956672, 170250544, 164232439, 157506869, 159133019, 137469191, 142980999, 134242305, 150172665, 121209241, 145596259, 160554427, 159095199, 168243130, 184279693, 171132070, 121049823, 123819574, 171759855, 119501864, 163094029, 175943631, 194450091, 191506160, 149228764, 132319212, 197034460, 193584259, 126727638, 168143633, 109856853, 127860243, 132141052, 133076065, 188414958, 158718197, 107124299, 159592267, 181172796, 144388537, 196763139, 127431422, 179531145, 100064922, 112650013, 132686230, 121550837, } % \end{macrocode} % \end{variable} % % \begin{macro}[rEXP] % { % \@@_trig_large:ww, % \@@_trig_large_auxi:w, % \@@_trig_large_auxii:w, % \@@_trig_large_auxiii:w, % } % The exponent~|#1| is between $1$ and~$\ExplSyntaxOn \int_use:N % \c__fp_max_exponent_int$. We wish to look up decimals % $10^{\text{\texttt{\#1}}-16}/(2\pi)$ starting from the digit % $|#1|+1$. Since they are stored in batches of~$8$, compute % $\lfloor|#1|/8\rfloor$ and fetch blocks of $8$ digits starting % there. The numbering of items in \cs{c_@@_trig_intarray} starts % at~$1$, so the block $\lfloor|#1|/8\rfloor+1$ contains the digit we % want, at one of the eight positions. Each call to \cs{int_value:w} % \cs{__kernel_intarray_item:Nn} expands the next, until being stopped % by \cs{@@_trig_large_auxiii:w} using \cs{exp_stop_f:}. Once all % these blocks are unpacked, the \cs{exp_stop_f:} and $0$ to $7$ % digits are removed by \cs[no-index]{use_none:n\ldots{}n}. % Finally, \cs{@@_trig_large_auxii:w} packs $64$ digits (there are % between $65$ and $72$ at this point) into groups of~$4$ and the % \texttt{auxv} auxiliary is called. % \begin{macrocode} \cs_new:Npn \@@_trig_large:ww #1, #2#3#4#5#6; { \exp_after:wN \@@_trig_large_auxi:w \int_value:w \@@_int_eval:w (#1 - 4) / 8 \exp_after:wN , \int_value:w #1 , ; {#2}{#3}{#4}{#5} ; } \cs_new:Npn \@@_trig_large_auxi:w #1, #2, { \exp_after:wN \exp_after:wN \exp_after:wN \@@_trig_large_auxii:w \cs:w use_none:n \prg_replicate:nn { #2 - #1 * 8 } { n } \exp_after:wN \cs_end: \int_value:w \__kernel_intarray_item:Nn \c_@@_trig_intarray { \@@_int_eval:w #1 + 1 \scan_stop: } \exp_after:wN \@@_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c_@@_trig_intarray { \@@_int_eval:w #1 + 2 \scan_stop: } \exp_after:wN \@@_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c_@@_trig_intarray { \@@_int_eval:w #1 + 3 \scan_stop: } \exp_after:wN \@@_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c_@@_trig_intarray { \@@_int_eval:w #1 + 4 \scan_stop: } \exp_after:wN \@@_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c_@@_trig_intarray { \@@_int_eval:w #1 + 5 \scan_stop: } \exp_after:wN \@@_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c_@@_trig_intarray { \@@_int_eval:w #1 + 6 \scan_stop: } \exp_after:wN \@@_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c_@@_trig_intarray { \@@_int_eval:w #1 + 7 \scan_stop: } \exp_after:wN \@@_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c_@@_trig_intarray { \@@_int_eval:w #1 + 8 \scan_stop: } \exp_after:wN \@@_trig_large_auxiii:w \int_value:w \__kernel_intarray_item:Nn \c_@@_trig_intarray { \@@_int_eval:w #1 + 9 \scan_stop: } \exp_stop_f: } \cs_new:Npn \@@_trig_large_auxii:w { \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_trig_large_auxv:www ; } \cs_new:Npn \@@_trig_large_auxiii:w 1 { \exp_stop_f: } % \end{macrocode} % \end{macro} % % \begin{macro}[rEXP] % { % \@@_trig_large_auxv:www, % \@@_trig_large_auxvi:wnnnnnnnn, % \@@_trig_large_pack:NNNNNw % } % First come the first $64$~digits of the fractional part of % $10^{\text{\texttt{\#1}}-16}/(2\pi)$, arranged in $16$~blocks % of~$4$, and ending with a semicolon. Then a few more digits of the % same fractional part, ending with a semicolon, then $4$~blocks of % $4$~digits holding the significand of the original argument. % Multiply the $16$-digit significand with the $64$-digit fractional % part: the \texttt{auxvi} auxiliary receives the significand % as~|#2#3#4#5| and $16$~digits of the fractional part as~|#6#7#8#9|, % and computes one step of the usual ladder of \texttt{pack} functions % we use for multiplication (see \emph{e.g.,} \cs{@@_fixed_mul:wwn}), % then discards one block of the fractional part to set things up for % the next step of the ladder. We perform $13$~such steps, replacing % the last \texttt{middle} shift by the appropriate \texttt{trailing} % shift, then discard the significand and remaining $3$~blocks from % the fractional part, as there are not enough digits to compute any % more step in the ladder. The last semicolon closes the ladder, and % we return control to the \texttt{auxvii} auxiliary. % \begin{macrocode} \cs_new:Npn \@@_trig_large_auxv:www #1; #2; #3; { \exp_after:wN \@@_use_i_until_s:nw \exp_after:wN \@@_trig_large_auxvii:w \int_value:w \@@_int_eval:w \c_@@_leading_shift_int \prg_replicate:nn { 13 } { \@@_trig_large_auxvi:wnnnnnnnn } + \c_@@_trailing_shift_int - \c_@@_middle_shift_int \@@_use_i_until_s:nw ; #3 #1 ; ; } \cs_new:Npn \@@_trig_large_auxvi:wnnnnnnnn #1; #2#3#4#5#6#7#8#9 { \exp_after:wN \@@_trig_large_pack:NNNNNw \int_value:w \@@_int_eval:w \c_@@_middle_shift_int + #2*#9 + #3*#8 + #4*#7 + #5*#6 #1; {#2}{#3}{#4}{#5} {#7}{#8}{#9} } \cs_new:Npn \@@_trig_large_pack:NNNNNw #1#2#3#4#5#6; { + #1#2#3#4#5 ; #6 } % \end{macrocode} % \end{macro} % % \begin{macro}[rEXP] % { % \@@_trig_large_auxvii:w, % \@@_trig_large_auxviii:w, % } % \begin{macro}[EXP] % { % \@@_trig_large_auxix:Nw, % \@@_trig_large_auxx:wNNNNN, % \@@_trig_large_auxxi:w % } % The \texttt{auxvii} auxiliary is followed by $52$~digits and a % semicolon. We find the octant as the integer part of $8$~times what % follows, or equivalently as the integer part of $|#1#2#3|/125$, and % add it to the surrounding integer expression for the octant. We % then compute $8$~times the $52$-digit number, with a minus sign if % the octant is odd. Again, the last \texttt{middle} shift is % converted to a \texttt{trailing} shift. Any integer part (including % negative values which come up when the octant is odd) is discarded % by \cs{@@_use_i_until_s:nw}. The resulting fractional part should % then be converted to radians by multiplying by~$2\pi/8$, but first, % build an extended precision number by abusing % \cs{@@_ep_to_ep_loop:N} with the appropriate trailing markers. % Finally, \cs{@@_trig_small:ww} sets up the argument for the % functions which compute the Taylor series. % \begin{macrocode} \cs_new:Npn \@@_trig_large_auxvii:w #1#2#3 { \exp_after:wN \@@_trig_large_auxviii:ww \int_value:w \@@_int_eval:w (#1#2#3 - 62) / 125 ; #1#2#3 } \cs_new:Npn \@@_trig_large_auxviii:ww #1; { + #1 \if_int_odd:w #1 \exp_stop_f: \exp_after:wN \@@_trig_large_auxix:Nw \exp_after:wN - \else: \exp_after:wN \@@_trig_large_auxix:Nw \exp_after:wN + \fi: } \cs_new:Npn \@@_trig_large_auxix:Nw { \exp_after:wN \@@_use_i_until_s:nw \exp_after:wN \@@_trig_large_auxxi:w \int_value:w \@@_int_eval:w \c_@@_leading_shift_int \prg_replicate:nn { 13 } { \@@_trig_large_auxx:wNNNNN } + \c_@@_trailing_shift_int - \c_@@_middle_shift_int ; } \cs_new:Npn \@@_trig_large_auxx:wNNNNN #1; #2 #3#4#5#6 { \exp_after:wN \@@_trig_large_pack:NNNNNw \int_value:w \@@_int_eval:w \c_@@_middle_shift_int #2 8 * #3#4#5#6 #1; #2 } \cs_new:Npn \@@_trig_large_auxxi:w #1; { \exp_after:wN \@@_ep_mul_raw:wwwwN \int_value:w \@@_int_eval:w 0 \@@_ep_to_ep_loop:N #1 ; ; ! 0,{7853}{9816}{3397}{4483}{0961}{5661}; \@@_trig_small:ww } % \end{macrocode} % \end{macro} % \end{macro} % % \subsubsection{Computing the power series} % % \begin{macro}[EXP] % {\@@_sin_series_o:NNwwww, \@@_sin_series_aux_o:NNnwww} % Here we receive a conversion function \cs{@@_ep_to_float_o:wwN} or % \cs{@@_ep_inv_to_float_o:wwN}, a \meta{sign} ($0$ or~$2$), a % (non-negative) \meta{octant} delimited by a dot, a \meta{fixed % point} number delimited by a semicolon, and an extended-precision % number. The auxiliary receives: % \begin{itemize} % \item the conversion function~|#1|; % \item the final sign, which depends on the octant~|#3| and the % sign~|#2|; % \item the octant~|#3|, which controls the series we use; % \item the square |#4 * #4| of the argument as a fixed point number, % computed with \cs{@@_fixed_mul:wwn}; % \item the number itself as an extended-precision number. % \end{itemize} % If the octant is in $\{1,2,5,6,\ldots{}\}$, we are near an extremum % of the function and we use the series % \[ % \cos(x) = 1 - x^2 \bigg( \frac{1}{2!} - x^2 \bigg( \frac{1}{4!} % - x^2 \bigg( \cdots \bigg) \bigg) \bigg) . % \] % Otherwise, the series % \[ % \sin(x) = x \bigg( 1 - x^2 \bigg( \frac{1}{3!} - x^2 \bigg( % \frac{1}{5!} - x^2 \bigg( \cdots \bigg) \bigg) \bigg) \bigg) % \] % is used. Finally, the extended-precision number is converted to a % floating point number with the given sign, and \cs{@@_sanitize:Nw} % checks for overflow and underflow. % \begin{macrocode} \cs_new:Npn \@@_sin_series_o:NNwwww #1#2#3. #4; { \@@_fixed_mul:wwn #4; #4; { \exp_after:wN \@@_sin_series_aux_o:NNnwww \exp_after:wN #1 \int_value:w \if_int_odd:w \@@_int_eval:w (#3 + 2) / 4 \@@_int_eval_end: #2 \else: \if_meaning:w #2 0 2 \else: 0 \fi: \fi: {#3} } } \cs_new:Npn \@@_sin_series_aux_o:NNnwww #1#2#3 #4; #5,#6; { \if_int_odd:w \@@_int_eval:w #3 / 2 \@@_int_eval_end: \exp_after:wN \use_i:nn \else: \exp_after:wN \use_ii:nn \fi: { % 1/18! \@@_fixed_mul_sub_back:wwwn {0000}{0000}{0000}{0001}{5619}{2070}; #4;{0000}{0000}{0000}{0477}{9477}{3324}; \@@_fixed_mul_sub_back:wwwn #4;{0000}{0000}{0011}{4707}{4559}{7730}; \@@_fixed_mul_sub_back:wwwn #4;{0000}{0000}{2087}{6756}{9878}{6810}; \@@_fixed_mul_sub_back:wwwn #4;{0000}{0027}{5573}{1922}{3985}{8907}; \@@_fixed_mul_sub_back:wwwn #4;{0000}{2480}{1587}{3015}{8730}{1587}; \@@_fixed_mul_sub_back:wwwn #4;{0013}{8888}{8888}{8888}{8888}{8889}; \@@_fixed_mul_sub_back:wwwn #4;{0416}{6666}{6666}{6666}{6666}{6667}; \@@_fixed_mul_sub_back:wwwn #4;{5000}{0000}{0000}{0000}{0000}{0000}; \@@_fixed_mul_sub_back:wwwn#4;{10000}{0000}{0000}{0000}{0000}{0000}; { \@@_fixed_continue:wn 0, } } { % 1/17! \@@_fixed_mul_sub_back:wwwn {0000}{0000}{0000}{0028}{1145}{7254}; #4;{0000}{0000}{0000}{7647}{1637}{3182}; \@@_fixed_mul_sub_back:wwwn #4;{0000}{0000}{0160}{5904}{3836}{8216}; \@@_fixed_mul_sub_back:wwwn #4;{0000}{0002}{5052}{1083}{8544}{1719}; \@@_fixed_mul_sub_back:wwwn #4;{0000}{0275}{5731}{9223}{9858}{9065}; \@@_fixed_mul_sub_back:wwwn #4;{0001}{9841}{2698}{4126}{9841}{2698}; \@@_fixed_mul_sub_back:wwwn #4;{0083}{3333}{3333}{3333}{3333}{3333}; \@@_fixed_mul_sub_back:wwwn #4;{1666}{6666}{6666}{6666}{6666}{6667}; \@@_fixed_mul_sub_back:wwwn#4;{10000}{0000}{0000}{0000}{0000}{0000}; { \@@_ep_mul:wwwwn 0, } #5,#6; } { \exp_after:wN \@@_sanitize:Nw \exp_after:wN #2 \int_value:w \@@_int_eval:w #1 } #2 } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP] % {\@@_tan_series_o:NNwwww, \@@_tan_series_aux_o:Nnwww} % Contrarily to \cs{@@_sin_series_o:NNwwww} which received a % conversion auxiliary as~|#1|, here, |#1| is $0$ for tangent % and $2$ for % cotangent. Consider first the case of the tangent. The octant |#3| % starts at $1$, which means that it is $1$ or $2$ for $\lvert % x\rvert\in[0,\pi/2]$, it is $3$ or $4$ for $\lvert % x\rvert\in[\pi/2,\pi]$, and so on: the intervals on which % $\tan\lvert x\rvert\geq 0$ coincide with those for which $\lfloor % (|#3| + 1) / 2\rfloor$ is odd. We also have to take into account % the original sign of $x$ to get the sign of the final result; it is % straightforward to check that the first \cs{int_value:w} expansion % produces $0$ for a positive final result, and $2$ otherwise. A % similar story holds for $\cot(x)$. % % The auxiliary receives the sign, the octant, the square of the % (reduced) input, and the (reduced) input (an extended-precision % number) as arguments. It then % computes the numerator and denominator of % \[ % \tan(x) \simeq % \frac{x (1 - x^2 (a_1 - x^2 (a_2 - x^2 (a_3 - x^2 (a_4 - x^2 a_5)))))} % {1 - x^2 (b_1 - x^2 (b_2 - x^2 (b_3 - x^2 (b_4 - x^2 b_5))))} . % \] % The ratio is computed by \cs{@@_ep_div:wwwwn}, then converted to a % floating point number. For octants~|#3| (really, quadrants) next to % a pole of the % functions, the fixed point numerator and denominator are exchanged % before computing the ratio. Note that this \cs{if_int_odd:w} test % relies on the fact that the octant is at least~$1$. % \begin{macrocode} \cs_new:Npn \@@_tan_series_o:NNwwww #1#2#3. #4; { \@@_fixed_mul:wwn #4; #4; { \exp_after:wN \@@_tan_series_aux_o:Nnwww \int_value:w \if_int_odd:w \@@_int_eval:w #3 / 2 \@@_int_eval_end: \exp_after:wN \reverse_if:N \fi: \if_meaning:w #1#2 2 \else: 0 \fi: {#3} } } \cs_new:Npn \@@_tan_series_aux_o:Nnwww #1 #2 #3; #4,#5; { \@@_fixed_mul_sub_back:wwwn {0000}{0000}{1527}{3493}{0856}{7059}; #3; {0000}{0159}{6080}{0274}{5257}{6472}; \@@_fixed_mul_sub_back:wwwn #3; {0002}{4571}{2320}{0157}{2558}{8481}; \@@_fixed_mul_sub_back:wwwn #3; {0115}{5830}{7533}{5397}{3168}{2147}; \@@_fixed_mul_sub_back:wwwn #3; {1929}{8245}{6140}{3508}{7719}{2982}; \@@_fixed_mul_sub_back:wwwn #3;{10000}{0000}{0000}{0000}{0000}{0000}; { \@@_ep_mul:wwwwn 0, } #4,#5; { \@@_fixed_mul_sub_back:wwwn {0000}{0007}{0258}{0681}{9408}{4706}; #3;{0000}{2343}{7175}{1399}{6151}{7670}; \@@_fixed_mul_sub_back:wwwn #3;{0019}{2638}{4588}{9232}{8861}{3691}; \@@_fixed_mul_sub_back:wwwn #3;{0536}{6357}{0691}{4344}{6852}{4252}; \@@_fixed_mul_sub_back:wwwn #3;{5263}{1578}{9473}{6842}{1052}{6315}; \@@_fixed_mul_sub_back:wwwn#3;{10000}{0000}{0000}{0000}{0000}{0000}; { \reverse_if:N \if_int_odd:w \@@_int_eval:w (#2 - 1) / 2 \@@_int_eval_end: \exp_after:wN \@@_reverse_args:Nww \fi: \@@_ep_div:wwwwn 0, } } { \exp_after:wN \@@_sanitize:Nw \exp_after:wN #1 \int_value:w \@@_int_eval:w \@@_ep_to_float_o:wwN } #1 } % \end{macrocode} % \end{macro} % % \subsection{Inverse trigonometric functions} % % All inverse trigonometric functions (arcsine, arccosine, arctangent, % arccotangent, arccosecant, and arcsecant) are based on a function % often denoted \texttt{atan2}. This function is accessed directly by % feeding two arguments to arctangent, and is defined by \(\operatorname{atan}(y, x) = % \operatorname{atan}(y/x)\) for generic \(y\) and~\(x\). Its advantages over the % conventional arctangent is that it takes values in $[-\pi,\pi]$ rather % than $[-\pi/2,\pi/2]$, and that it is better behaved in boundary % cases. Other inverse trigonometric functions are expressed in terms % of \(\operatorname{atan}\) as % \begin{align} % \operatorname{acos} x & = \operatorname{atan}(\sqrt{1-x^2}, x) \\ % \operatorname{asin} x & = \operatorname{atan}(x, \sqrt{1-x^2}) \\ % \operatorname{asec} x & = \operatorname{atan}(\sqrt{x^2-1}, 1) \\ % \operatorname{acsc} x & = \operatorname{atan}(1, \sqrt{x^2-1}) \\ % \operatorname{atan} x & = \operatorname{atan}(x, 1) \\ % \operatorname{acot} x & = \operatorname{atan}(1, x) . % \end{align} % Rather than introducing a new function, \texttt{atan2}, the arctangent % function \texttt{atan} is overloaded: it can take one or two % arguments. In the comments below, following many texts, we call the % first argument~$y$ and the second~$x$, because $\operatorname{atan}(y, x) = \operatorname{atan}(y % / x)$ is the angular coordinate of the point $(x, y)$. % % As for direct trigonometric functions, the first step in computing % $\operatorname{atan}(y, x)$ is argument reduction. The sign of~$y$ gives that % of the result. We distinguish eight regions where the point $(x, % \lvert y\rvert)$ can lie, of angular size roughly $\pi/8$, % characterized by their \enquote{octant}, between $0$ and~$7$ included. In % each region, we compute an arctangent as a Taylor series, then shift % this arctangent by the appropriate multiple of $\pi/4$ and sign to get % the result. Here is a list of octants, and how we compute the % arctangent (we assume $y>0$: otherwise replace $y$ by~$-y$ below): % \begin{itemize} % \item[0] $0 < \lvert y\rvert < 0.41421 x$, then % $\operatorname{atan}\frac{\lvert y\rvert}{x}$ % is given by a nicely convergent Taylor series; % \item[1] $0 < 0.41421 x < \lvert y\rvert < x$, then % $\operatorname{atan}\frac{\lvert y\rvert}{x} % = \frac{\pi}{4}-\operatorname{atan}\frac{x-\lvert y\rvert}{x+\lvert y\rvert}$; % \item[2] $0 < 0.41421 \lvert y\rvert < x < \lvert y\rvert$, then % $\operatorname{atan}\frac{\lvert y\rvert}{x} % = \frac{\pi}{4}+\operatorname{atan}\frac{-x+\lvert y\rvert}{x+\lvert y\rvert}$; % \item[3] $0 < x < 0.41421 \lvert y\rvert$, then % $\operatorname{atan}\frac{\lvert y\rvert}{x} % = \frac{\pi}{2}-\operatorname{atan}\frac{x}{\lvert y\rvert}$; % \item[4] $0 < -x < 0.41421 \lvert y\rvert$, then % $\operatorname{atan}\frac{\lvert y\rvert}{x} % = \frac{\pi}{2}+\operatorname{atan}\frac{-x}{\lvert y\rvert}$; % \item[5] $0 < 0.41421 \lvert y\rvert < -x < \lvert y\rvert$, then % $\operatorname{atan}\frac{\lvert y\rvert}{x} % =\frac{3\pi}{4}-\operatorname{atan}\frac{x+\lvert y\rvert}{-x+\lvert y\rvert}$; % \item[6] $0 < -0.41421 x < \lvert y\rvert < -x$, then % $\operatorname{atan}\frac{\lvert y\rvert}{x} % =\frac{3\pi}{4}+\operatorname{atan}\frac{-x-\lvert y\rvert}{-x+\lvert y\rvert}$; % \item[7] $0 < \lvert y\rvert < -0.41421 x$, then % $\operatorname{atan}\frac{\lvert y\rvert}{x} % = \pi-\operatorname{atan}\frac{\lvert y\rvert}{-x}$. % \end{itemize} % In the following, we denote by~$z$ the ratio among % $\lvert\frac{y}{x}\rvert$, $\lvert\frac{x}{y}\rvert$, % $\lvert\frac{x+y}{x-y}\rvert$, $\lvert\frac{x-y}{x+y}\rvert$ which % appears in the right-hand side above. % % \subsubsection{Arctangent and arccotangent} % % \begin{macro}[EXP]{\@@_atan_o:Nw, \@@_acot_o:Nw, \@@_atan_default:w} % The parsing step manipulates \texttt{atan} and \texttt{acot} like % \texttt{min} and \texttt{max}, reading in an array of operands, but % also leaves \cs{use_i:nn} or \cs{use_ii:nn} depending on whether the % result should be given in radians or in degrees. The helper % \cs{@@_parse_function_one_two:nnw} checks that the operand is one or % two floating point numbers (not tuples) and leaves its second % argument or its tail accordingly (its first argument is used for % error messages). More precisely if we are given a single floating % point number \cs{@@_atan_default:w} places \cs{c_one_fp} (expanded) % after it; otherwise \cs{@@_atan_default:w} is omitted by % \cs{@@_parse_function_one_two:nnw}. % \begin{macrocode} \cs_new:Npn \@@_atan_o:Nw #1 { \@@_parse_function_one_two:nnw { #1 { atan } { atand } } { \@@_atan_default:w \@@_atanii_o:Nww #1 } } \cs_new:Npn \@@_acot_o:Nw #1 { \@@_parse_function_one_two:nnw { #1 { acot } { acotd } } { \@@_atan_default:w \@@_acotii_o:Nww #1 } } \cs_new:Npx \@@_atan_default:w #1#2#3 @ { #1 #2 #3 \c_one_fp @ } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_atanii_o:Nww, \@@_acotii_o:Nww} % If either operand is \texttt{nan}, we return it. If both are % normal, we call \cs{@@_atan_normal_o:NNnwNnw}. If both are zero or % both infinity, we call \cs{@@_atan_inf_o:NNNw} with argument~$2$, % leading to a result among $\{\pm\pi/4, \pm 3\pi/4\}$ (in degrees, % $\{\pm 45, \pm 135\}$). Otherwise, one is much bigger than the % other, and we call \cs{@@_atan_inf_o:NNNw} with either an argument % of~$4$, leading to the values $\pm\pi/2$ (in degrees,~$\pm 90$), % or~$0$, leading to $\{\pm 0, \pm\pi\}$ (in degrees, $\{\pm 0,\pm % 180\}$). Since $\operatorname{acot}(x, y) = \operatorname{atan}(y, x)$, % \cs{@@_acotii_o:ww} simply reverses its two arguments. % \begin{macrocode} \cs_new:Npn \@@_atanii_o:Nww #1 \s_@@ \@@_chk:w #2#3#4; \s_@@ \@@_chk:w #5 #6 @ { \if_meaning:w 3 #2 \@@_case_return_i_o:ww \fi: \if_meaning:w 3 #5 \@@_case_return_ii_o:ww \fi: \if_case:w \if_meaning:w #2 #5 \if_meaning:w 1 #2 10 \else: 0 \fi: \else: \if_int_compare:w #2 > #5 \exp_stop_f: 1 \else: 2 \fi: \fi: \exp_stop_f: \@@_case_return:nw { \@@_atan_inf_o:NNNw #1 #3 2 } \or: \@@_case_return:nw { \@@_atan_inf_o:NNNw #1 #3 4 } \or: \@@_case_return:nw { \@@_atan_inf_o:NNNw #1 #3 0 } \fi: \@@_atan_normal_o:NNnwNnw #1 \s_@@ \@@_chk:w #2#3#4; \s_@@ \@@_chk:w #5 #6 } \cs_new:Npn \@@_acotii_o:Nww #1#2; #3; { \@@_atanii_o:Nww #1#3; #2; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_atan_inf_o:NNNw} % This auxiliary is called whenever one number is $\pm 0$ or % $\pm\infty$ (and neither is \nan{}). Then the result only depends % on the signs, and its value is a multiple of $\pi/4$. We use the % same auxiliary as for normal numbers, % \cs{@@_atan_combine_o:NwwwwwN}, with arguments the final sign~|#2|; % the octant~|#3|; $\operatorname{atan} z/z=1$ as a fixed point number; $z=0$~as a % fixed point number; and $z=0$~as an extended-precision number. % Given the values we provide, $\operatorname{atan} z$ is computed to be~$0$, % and the result is $[|#3|/2]\cdot\pi/4$ if the sign~|#5| of~$x$ % is positive, and $[(7-|#3|)/2]\cdot\pi/4$ for negative~$x$, where % the divisions are rounded up. % \begin{macrocode} \cs_new:Npn \@@_atan_inf_o:NNNw #1#2#3 \s_@@ \@@_chk:w #4#5#6; { \exp_after:wN \@@_atan_combine_o:NwwwwwN \exp_after:wN #2 \int_value:w \@@_int_eval:w \if_meaning:w 2 #5 7 - \fi: #3 \exp_after:wN ; \c_@@_one_fixed_tl {0000}{0000}{0000}{0000}{0000}{0000}; 0,{0000}{0000}{0000}{0000}{0000}{0000}; #1 } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_atan_normal_o:NNnwNnw} % Here we simply reorder the floating point data into a pair of signed % extended-precision numbers, that is, a sign, an exponent ending with % a comma, and a six-block mantissa ending with a semi-colon. This % extended precision is required by other inverse trigonometric % functions, to compute things like $\operatorname{atan}(x,\sqrt{1-x^2})$ without % intermediate rounding errors. % \begin{macrocode} \cs_new_protected:Npn \@@_atan_normal_o:NNnwNnw #1 \s_@@ \@@_chk:w 1#2#3#4; \s_@@ \@@_chk:w 1#5#6#7; { \@@_atan_test_o:NwwNwwN #2 #3, #4{0000}{0000}; #5 #6, #7{0000}{0000}; #1 } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_atan_test_o:NwwNwwN} % This receives: the sign~|#1| of~$y$, its exponent~|#2|, its $24$ % digits~|#3| in groups of~$4$, and similarly for~$x$. We prepare to % call \cs{@@_atan_combine_o:NwwwwwN} which expects the sign~|#1|, the % octant, the ratio $(\operatorname{atan} z)/z = 1 - \cdots$, and the value of~$z$, % both as a fixed point number and as an extended-precision floating % point number with a mantissa in $[0.01,1)$. For now, we place |#1| % as a first argument, and start an integer expression for the octant. % The sign of $x$ does not affect~$z$, so we simply leave % a contribution to the octant: $\meta{octant} \to 7 - \meta{octant}$ % for negative~$x$. Then we order $\lvert y\rvert$ and $\lvert % x\rvert$ in a non-decreasing order: if $\lvert y\rvert > \lvert % x\rvert$, insert $3-$ in the expression for the octant, and swap the % two numbers. The finer test with $0.41421$ is done by % \cs{@@_atan_div:wnwwnw} after the operands have been ordered. % \begin{macrocode} \cs_new:Npn \@@_atan_test_o:NwwNwwN #1#2,#3; #4#5,#6; { \exp_after:wN \@@_atan_combine_o:NwwwwwN \exp_after:wN #1 \int_value:w \@@_int_eval:w \if_meaning:w 2 #4 7 - \@@_int_eval:w \fi: \if_int_compare:w \@@_ep_compare:wwww #2,#3; #5,#6; > 0 \exp_stop_f: 3 - \exp_after:wN \@@_reverse_args:Nww \fi: \@@_atan_div:wnwwnw #2,#3; #5,#6; } % \end{macrocode} % \end{macro} % % \begin{macro}[rEXP]{\@@_atan_div:wnwwnw, \@@_atan_near:wwwn} % \begin{macro}[EXP]{\@@_atan_near_aux:wwn} % This receives two positive numbers $a$ and~$b$ (equal to $\lvert % x\rvert$ and~$\lvert y\rvert$ in some order), each as an exponent % and $6$~blocks of $4$~digits, such that $0 % \end{macrocode} % % \end{implementation} % % \PrintChanges % % \PrintIndex