% \iffalse meta-comment % %% File: l3fp-logic.dtx % % Copyright (C) 2011-2019 The LaTeX3 Project % % It may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this % license or (at your option) any later version. The latest version % of this license is in the file % % https://www.latex-project.org/lppl.txt % % This file is part of the "l3kernel bundle" (The Work in LPPL) % and all files in that bundle must be distributed together. % % ----------------------------------------------------------------------- % % The development version of the bundle can be found at % % https://github.com/latex3/latex3 % % for those people who are interested. % %<*driver> \documentclass[full,kernel]{l3doc} \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \title{The \textsf{l3fp-logic} package\\ % Floating point conditionals} % \author{^^A % The \LaTeX3 Project\thanks % {^^A % E-mail: % \href{mailto:latex-team@latex-project.org} % {latex-team@latex-project.org}^^A % }^^A % } % \date{Released 2019-01-28} % % \maketitle % % \begin{documentation} % % \end{documentation} % % \begin{implementation} % % \section{\pkg{l3fp-logic} Implementation} % % \begin{macrocode} %<*initex|package> % \end{macrocode} % % \begin{macrocode} %<@@=fp> % \end{macrocode} % % \begin{macro}[EXP]{\@@_parse_word_max:N , \@@_parse_word_min:N} % Those functions may receive a variable number of arguments. % \begin{macrocode} \cs_new:Npn \@@_parse_word_max:N { \@@_parse_function:NNN \@@_minmax_o:Nw 2 } \cs_new:Npn \@@_parse_word_min:N { \@@_parse_function:NNN \@@_minmax_o:Nw 0 } % \end{macrocode} % \end{macro} % % \subsection{Syntax of internal functions} % % \begin{itemize} % \item \cs{@@_compare_npos:nwnw} \Arg{expo_1} \meta{body_1} |;| % \Arg{expo_2} \meta{body_2} |;| % \item \cs{@@_minmax_o:Nw} \meta{sign} \meta{floating point array} % \item \cs{@@_not_o:w} |?| \meta{floating point array} (with one floating point number only) % \item \cs{@@_&_o:ww} \meta{floating point} \meta{floating point} % \item \cs{@@_|_o:ww} \meta{floating point} \meta{floating point} % \item \cs{@@_ternary:NwwN}, \cs{@@_ternary_auxi:NwwN}, % \cs{@@_ternary_auxii:NwwN} have to be understood. % \end{itemize} % % \subsection{Existence test} % % \begin{macro}[pTF]{\fp_if_exist:N, \fp_if_exist:c} % Copies of the \texttt{cs} functions defined in \pkg{l3basics}. % \begin{macrocode} \prg_new_eq_conditional:NNn \fp_if_exist:N \cs_if_exist:N { TF , T , F , p } \prg_new_eq_conditional:NNn \fp_if_exist:c \cs_if_exist:c { TF , T , F , p } % \end{macrocode} % \end{macro} % % \subsection{Comparison} % % \begin{macro}[pTF, EXP]{\fp_compare:n} % \begin{macro}[EXP]{\@@_compare_return:w} % Within floating point expressions, comparison operators are treated % as operations, so we evaluate |#1|, then compare with $\pm 0$. % Tuples are \texttt{true}. % \begin{macrocode} \prg_new_conditional:Npnn \fp_compare:n #1 { p , T , F , TF } { \exp_after:wN \@@_compare_return:w \exp:w \exp_end_continue_f:w \@@_parse:n {#1} } \cs_new:Npn \@@_compare_return:w #1#2#3; { \if_charcode:w 0 \@@_if_type_fp:NTwFw #1 { \use_i_delimit_by_q_stop:nw #3 \q_stop } \s_@@ 1 \q_stop \prg_return_false: \else: \prg_return_true: \fi: } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[pTF, EXP]{\fp_compare:nNn} % \begin{macro}[EXP]{\@@_compare_aux:wn} % Evaluate |#1| and |#3|, using an auxiliary to expand both, and feed % the two floating point numbers swapped to \cs{@@_compare_back_any:ww}, % defined below. Compare the result with |`#2-`=|, which is $-1$ for % |<|, $0$ for |=|, $1$ for |>| and $2$ for |?|. % \begin{macrocode} \prg_new_conditional:Npnn \fp_compare:nNn #1#2#3 { p , T , F , TF } { \if_int_compare:w \exp_after:wN \@@_compare_aux:wn \exp:w \exp_end_continue_f:w \@@_parse:n {#1} {#3} = \@@_int_eval:w `#2 - `= \@@_int_eval_end: \prg_return_true: \else: \prg_return_false: \fi: } \cs_new:Npn \@@_compare_aux:wn #1; #2 { \exp_after:wN \@@_compare_back_any:ww \exp:w \exp_end_continue_f:w \@@_parse:n {#2} #1; } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_compare_back_any:ww, \@@_compare_back:ww, \@@_compare_nan:w} % \begin{quote} % \cs{@@_compare_back_any:ww} \meta{y} |;| \meta{x} |;| % \end{quote} % Expands (in the same way as \cs{int_eval:n}) to $-1$ if $xy$, and $2$ otherwise (denoted as $x?y$). If % either operand is \texttt{nan}, stop the comparison with % \cs{@@_compare_nan:w} returning $2$. If $x$ is negative, swap the % outputs $1$ and $-1$ (\emph{i.e.}, $>$ and $<$); we can henceforth % assume that $x\geq 0$. If $y\geq 0$, and they have the same type, % either they are normal and we compare them with % \cs{@@_compare_npos:nwnw}, or they are equal. If $y\geq 0$, but of % a different type, the highest type is a larger number. Finally, if % $y\leq 0$, then $x>y$, unless both are zero. % \begin{macrocode} \cs_new:Npn \@@_compare_back_any:ww #1#2; #3 { \@@_if_type_fp:NTwFw #1 { \@@_if_type_fp:NTwFw #3 \use_i:nn \s_@@ \use_ii:nn \q_stop } \s_@@ \use_ii:nn \q_stop \@@_compare_back:ww { \cs:w @@ \@@_type_from_scan:N #1 _compare_back \@@_type_from_scan:N #3 :ww \cs_end: } #1#2 ; #3 } \cs_new:Npn \@@_compare_back:ww \s_@@ \@@_chk:w #1 #2 #3; \s_@@ \@@_chk:w #4 #5 #6; { \int_value:w \if_meaning:w 3 #1 \exp_after:wN \@@_compare_nan:w \fi: \if_meaning:w 3 #4 \exp_after:wN \@@_compare_nan:w \fi: \if_meaning:w 2 #5 - \fi: \if_meaning:w #2 #5 \if_meaning:w #1 #4 \if_meaning:w 1 #1 \@@_compare_npos:nwnw #6; #3; \else: 0 \fi: \else: \if_int_compare:w #4 < #1 - \fi: 1 \fi: \else: \if_int_compare:w #1#4 = 0 \exp_stop_f: 0 \else: 1 \fi: \fi: \exp_stop_f: } \cs_new:Npn \@@_compare_nan:w #1 \fi: \exp_stop_f: { 2 \exp_stop_f: } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_compare_back_tuple:ww, \@@_tuple_compare_back:ww, \@@_tuple_compare_back_tuple:ww} % \begin{macro}[EXP]{\@@_tuple_compare_back_loop:w} % Tuple and floating point numbers are not comparable so return $2$ in % mixed cases or when tuples have a different number of items. % Otherwise compare pairs of items with \cs{@@_compare_back_any:ww} % and if any don't match return~$2$ (as \cs{int_value:w} |02| % \cs{exp_stop_f:}). % \begin{macrocode} \cs_new:Npn \@@_compare_back_tuple:ww #1; #2; { 2 } \cs_new:Npn \@@_tuple_compare_back:ww #1; #2; { 2 } \cs_new:Npn \@@_tuple_compare_back_tuple:ww \s_@@_tuple \@@_tuple_chk:w #1; \s_@@_tuple \@@_tuple_chk:w #2; { \int_compare:nNnTF { \@@_array_count:n {#1} } = { \@@_array_count:n {#2} } { \int_value:w 0 \@@_tuple_compare_back_loop:w #1 { \s_@@ \prg_break: } ; @ #2 { \s_@@ \prg_break: } ; \prg_break_point: \exp_stop_f: } { 2 } } \cs_new:Npn \@@_tuple_compare_back_loop:w #1#2 ; #3 @ #4#5 ; { \use_none:n #1 \use_none:n #4 \if_int_compare:w \@@_compare_back_any:ww #1 #2 ; #4 #5 ; = 0 \exp_stop_f: \else: 2 \exp_after:wN \prg_break: \fi: \@@_tuple_compare_back_loop:w #3 @ } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_compare_npos:nwnw} % \begin{macro}[EXP]{\@@_compare_significand:nnnnnnnn} % \begin{quote} % \cs{@@_compare_npos:nwnw} % \Arg{expo_1} \meta{body_1} |;| % \Arg{expo_2} \meta{body_2} |;| % \end{quote} % Within an \cs{int_value:w} \ldots{} \cs{exp_stop_f:} construction, % this expands to $0$ if the two numbers are equal, $-1$ if the first % is smaller, and $1$ if the first is bigger. First compare the % exponents: the larger one denotes the larger number. If they are % equal, we must compare significands. If both the first $8$ digits and % the next $8$ digits coincide, the numbers are equal. If only the % first $8$ digits coincide, the next $8$ decide. Otherwise, the % first $8$ digits are compared. % \begin{macrocode} \cs_new:Npn \@@_compare_npos:nwnw #1#2; #3#4; { \if_int_compare:w #1 = #3 \exp_stop_f: \@@_compare_significand:nnnnnnnn #2 #4 \else: \if_int_compare:w #1 < #3 - \fi: 1 \fi: } \cs_new:Npn \@@_compare_significand:nnnnnnnn #1#2#3#4#5#6#7#8 { \if_int_compare:w #1#2 = #5#6 \exp_stop_f: \if_int_compare:w #3#4 = #7#8 \exp_stop_f: 0 \else: \if_int_compare:w #3#4 < #7#8 - \fi: 1 \fi: \else: \if_int_compare:w #1#2 < #5#6 - \fi: 1 \fi: } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Floating point expression loops} % % \begin{macro}[rEXP] % { % \fp_do_until:nn, \fp_do_while:nn, % \fp_until_do:nn, \fp_while_do:nn % } % These are quite easy given the above functions. The |do_until| and % |do_while| versions execute the body, then test. The |until_do| and % |while_do| do it the other way round. % \begin{macrocode} \cs_new:Npn \fp_do_until:nn #1#2 { #2 \fp_compare:nF {#1} { \fp_do_until:nn {#1} {#2} } } \cs_new:Npn \fp_do_while:nn #1#2 { #2 \fp_compare:nT {#1} { \fp_do_while:nn {#1} {#2} } } \cs_new:Npn \fp_until_do:nn #1#2 { \fp_compare:nF {#1} { #2 \fp_until_do:nn {#1} {#2} } } \cs_new:Npn \fp_while_do:nn #1#2 { \fp_compare:nT {#1} { #2 \fp_while_do:nn {#1} {#2} } } % \end{macrocode} % \end{macro} % % \begin{macro}[rEXP] % { % \fp_do_until:nNnn, \fp_do_while:nNnn, % \fp_until_do:nNnn, \fp_while_do:nNnn % } % As above but not using the |nNn| syntax. % \begin{macrocode} \cs_new:Npn \fp_do_until:nNnn #1#2#3#4 { #4 \fp_compare:nNnF {#1} #2 {#3} { \fp_do_until:nNnn {#1} #2 {#3} {#4} } } \cs_new:Npn \fp_do_while:nNnn #1#2#3#4 { #4 \fp_compare:nNnT {#1} #2 {#3} { \fp_do_while:nNnn {#1} #2 {#3} {#4} } } \cs_new:Npn \fp_until_do:nNnn #1#2#3#4 { \fp_compare:nNnF {#1} #2 {#3} { #4 \fp_until_do:nNnn {#1} #2 {#3} {#4} } } \cs_new:Npn \fp_while_do:nNnn #1#2#3#4 { \fp_compare:nNnT {#1} #2 {#3} { #4 \fp_while_do:nNnn {#1} #2 {#3} {#4} } } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\fp_step_function:nnnN, \fp_step_function:nnnc} % \begin{macro}[EXP]{\@@_step:wwwN, \@@_step_fp:wwwN} % \begin{macro}[EXP]{\@@_step:NnnnnN, \@@_step:NfnnnN} % The approach here is somewhat similar to % \cs{int_step_function:nnnN}. There are two subtleties: we use the % internal parser \cs{@@_parse:n} to avoid converting back and forth % from the internal representation; and (due to rounding) even a % non-zero step does not guarantee that the loop counter increases. % \begin{macrocode} \cs_new:Npn \fp_step_function:nnnN #1#2#3 { \exp_after:wN \@@_step:wwwN \exp:w \exp_end_continue_f:w \@@_parse_o:n {#1} \exp:w \exp_end_continue_f:w \@@_parse_o:n {#2} \exp:w \exp_end_continue_f:w \@@_parse:n {#3} } \cs_generate_variant:Nn \fp_step_function:nnnN { nnnc } % \end{macrocode} % Only floating point numbers (not tuples) are allowed arguments. % Only \enquote{normal} floating points (not $\pm 0$, % $\pm\texttt{inf}$, \texttt{nan}) can be used as step; if positive, % call \cs{@@_step:NnnnnN} with argument |>| otherwise~|<|. This % function has one more argument than its integer counterpart, namely % the previous value, to catch the case where the loop has made no % progress. Conversion to decimal is done just before calling the % user's function. % \begin{macrocode} \cs_new:Npn \@@_step:wwwN #1#2; #3#4; #5#6; #7 { \@@_if_type_fp:NTwFw #1 { } \s_@@ \prg_break: \q_stop \@@_if_type_fp:NTwFw #3 { } \s_@@ \prg_break: \q_stop \@@_if_type_fp:NTwFw #5 { } \s_@@ \prg_break: \q_stop \use_i:nnnn { \@@_step_fp:wwwN #1#2; #3#4; #5#6; #7 } \prg_break_point: \use:n { \@@_error:nfff { fp-step-tuple } { \fp_to_tl:n { #1#2 ; } } { \fp_to_tl:n { #3#4 ; } } { \fp_to_tl:n { #5#6 ; } } } } \cs_new:Npn \@@_step_fp:wwwN #1 ; \s_@@ \@@_chk:w #2#3#4 ; #5; #6 { \token_if_eq_meaning:NNTF #2 1 { \token_if_eq_meaning:NNTF #3 0 { \@@_step:NnnnnN > } { \@@_step:NnnnnN < } } { \token_if_eq_meaning:NNTF #2 0 { \__kernel_msg_expandable_error:nnn { kernel } { zero-step } {#6} } { \@@_error:nnfn { fp-bad-step } { } { \fp_to_tl:n { \s_@@ \@@_chk:w #2#3#4 ; } } {#6} } \use_none:nnnnn } { #1 ; } { \c_nan_fp } { \s_@@ \@@_chk:w #2#3#4 ; } { #5 ; } #6 } \cs_new:Npn \@@_step:NnnnnN #1#2#3#4#5#6 { \fp_compare:nNnTF {#2} = {#3} { \@@_error:nffn { fp-tiny-step } { \fp_to_tl:n {#3} } { \fp_to_tl:n {#4} } {#6} } { \fp_compare:nNnF {#2} #1 {#5} { \exp_args:Nf #6 { \@@_to_decimal_dispatch:w #2 } \@@_step:NfnnnN #1 { \@@_parse:n { #2 + #4 } } {#2} {#4} {#5} #6 } } } \cs_generate_variant:Nn \@@_step:NnnnnN { Nf } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\fp_step_inline:nnnn, \fp_step_variable:nnnNn} % \begin{macro}{\@@_step:NNnnnn} % As for \cs{int_step_inline:nnnn}, create a global function and apply it, % following up with a break point. % \begin{macrocode} \cs_new_protected:Npn \fp_step_inline:nnnn { \int_gincr:N \g__kernel_prg_map_int \exp_args:NNc \@@_step:NNnnnn \cs_gset_protected:Npn { @@_map_ \int_use:N \g__kernel_prg_map_int :w } } \cs_new_protected:Npn \fp_step_variable:nnnNn #1#2#3#4#5 { \int_gincr:N \g__kernel_prg_map_int \exp_args:NNc \@@_step:NNnnnn \cs_gset_protected:Npx { @@_map_ \int_use:N \g__kernel_prg_map_int :w } {#1} {#2} {#3} { \tl_set:Nn \exp_not:N #4 {##1} \exp_not:n {#5} } } \cs_new_protected:Npn \@@_step:NNnnnn #1#2#3#4#5#6 { #1 #2 ##1 {#6} \fp_step_function:nnnN {#3} {#4} {#5} #2 \prg_break_point:Nn \scan_stop: { \int_gdecr:N \g__kernel_prg_map_int } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macrocode} \__kernel_msg_new:nnn { kernel } { fp-step-tuple } { Tuple~argument~in~fp_step_...~{#1}{#2}{#3}. } \__kernel_msg_new:nnn { kernel } { fp-bad-step } { Invalid~step~size~#2~in~step~function~#3. } \__kernel_msg_new:nnn { kernel } { fp-tiny-step } { Tiny~step~size~(#1+#2=#1)~in~step~function~#3. } % \end{macrocode} % % \subsection{Extrema} % % \begin{macro}[EXP]{\@@_minmax_o:Nw, \@@_minmax_aux_o:Nw} % First check all operands are floating point numbers. % The argument~|#1| is $2$~to find the maximum of an array~|#2| of % floating point numbers, and $0$~to find the minimum. We read % numbers sequentially, keeping track of the largest (smallest) number % found so far. If numbers are equal (for instance~$\pm0$), the first % is kept. We append $-\infty$ ($\infty$), for the case of an empty % array. Since no number is smaller (larger) than that, this % additional item only affects the maximum (minimum) in the case of % |max()| and |min()| with no argument. The weird % fp-like trailing marker breaks the loop correctly: see the precise % definition of \cs{@@_minmax_loop:Nww}. % \begin{macrocode} \cs_new:Npn \@@_minmax_o:Nw #1 { \@@_parse_function_all_fp_o:fnw { \token_if_eq_meaning:NNTF 0 #1 { min } { max } } { \@@_minmax_aux_o:Nw #1 } } \cs_new:Npn \@@_minmax_aux_o:Nw #1#2 @ { \if_meaning:w 0 #1 \exp_after:wN \@@_minmax_loop:Nww \exp_after:wN + \else: \exp_after:wN \@@_minmax_loop:Nww \exp_after:wN - \fi: #2 \s_@@ \@@_chk:w 2 #1 \s_@@_exact ; \s_@@ \@@_chk:w { 3 \@@_minmax_break_o:w } ; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_minmax_loop:Nww} % The first argument is $-$ or $+$ to denote the case where the % currently largest (smallest) number found (first floating point % argument) should be replaced by the new number (second floating % point argument). If the new number is \texttt{nan}, keep that as % the extremum, unless that extremum is already a \texttt{nan}. % Otherwise, compare the two numbers. If the new number is larger (in % the case of |max|) or smaller (in the case of |min|), the test % yields \texttt{true}, and we keep the second number as a new % maximum; otherwise we keep the first number. Then loop. % \begin{macrocode} \cs_new:Npn \@@_minmax_loop:Nww #1 \s_@@ \@@_chk:w #2#3; \s_@@ \@@_chk:w #4#5; { \if_meaning:w 3 #4 \if_meaning:w 3 #2 \@@_minmax_auxi:ww \else: \@@_minmax_auxii:ww \fi: \else: \if_int_compare:w \@@_compare_back:ww \s_@@ \@@_chk:w #4#5; \s_@@ \@@_chk:w #2#3; = #1 1 \exp_stop_f: \@@_minmax_auxii:ww \else: \@@_minmax_auxi:ww \fi: \fi: \@@_minmax_loop:Nww #1 \s_@@ \@@_chk:w #2#3; \s_@@ \@@_chk:w #4#5; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_minmax_auxi:ww, \@@_minmax_auxii:ww} % Keep the first/second number, and remove the other. % \begin{macrocode} \cs_new:Npn \@@_minmax_auxi:ww #1 \fi: \fi: #2 \s_@@ #3 ; \s_@@ #4; { \fi: \fi: #2 \s_@@ #3 ; } \cs_new:Npn \@@_minmax_auxii:ww #1 \fi: \fi: #2 \s_@@ #3 ; { \fi: \fi: #2 } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_minmax_break_o:w} % This function is called from within an \cs{if_meaning:w} test. Skip % to the end of the tests, close the current test with \cs{fi:}, clean % up, and return the appropriate number with one post-expansion. % \begin{macrocode} \cs_new:Npn \@@_minmax_break_o:w #1 \fi: \fi: #2 \s_@@ #3; #4; { \fi: \@@_exp_after_o:w \s_@@ #3; } % \end{macrocode} % \end{macro} % % \subsection{Boolean operations} % % \begin{macro}[EXP]{\@@_not_o:w, \@@_tuple_not_o:w} % Return \texttt{true} or \texttt{false}, with two expansions, one to % exit the conditional, and one to please \pkg{l3fp-parse}. The first % argument is provided by \pkg{l3fp-parse} and is ignored. % \begin{macrocode} \cs_new:Npn \@@_not_o:w #1 \s_@@ \@@_chk:w #2#3; @ { \if_meaning:w 0 #2 \exp_after:wN \exp_after:wN \exp_after:wN \c_one_fp \else: \exp_after:wN \exp_after:wN \exp_after:wN \c_zero_fp \fi: } \cs_new:Npn \@@_tuple_not_o:w #1 @ { \exp_after:wN \c_zero_fp } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_&_o:ww, \@@_tuple_&_o:ww, \@@_&_tuple_o:ww, \@@_tuple_&_tuple_o:ww} % \begin{macro}[EXP]{\@@_|_o:ww, \@@_tuple_|_o:ww, \@@_|_tuple_o:ww, \@@_tuple_|_tuple_o:ww} % \begin{macro}[EXP]{\@@_and_return:wNw} % For \texttt{and}, if the first number is zero, return it (with the % same sign). Otherwise, return the second one. For \texttt{or}, the % logic is reversed: if the first number is non-zero, return it, % otherwise return the second number: we achieve that by hi-jacking % \cs{@@_&_o:ww}, inserting an extra argument, \cs{else:}, before % \cs{s_@@}. In all cases, expand after the floating point number. % \begin{macrocode} \group_begin: \char_set_catcode_letter:N & \char_set_catcode_letter:N | \cs_new:Npn \@@_&_o:ww #1 \s_@@ \@@_chk:w #2#3; { \if_meaning:w 0 #2 #1 \@@_and_return:wNw \s_@@ \@@_chk:w #2#3; \fi: \@@_exp_after_o:w } \cs_new:Npn \@@_&_tuple_o:ww #1 \s_@@ \@@_chk:w #2#3; { \if_meaning:w 0 #2 #1 \@@_and_return:wNw \s_@@ \@@_chk:w #2#3; \fi: \@@_exp_after_tuple_o:w } \cs_new:Npn \@@_tuple_&_o:ww #1; { \@@_exp_after_o:w } \cs_new:Npn \@@_tuple_&_tuple_o:ww #1; { \@@_exp_after_tuple_o:w } \cs_new:Npn \@@_|_o:ww { \@@_&_o:ww \else: } \cs_new:Npn \@@_|_tuple_o:ww { \@@_&_tuple_o:ww \else: } \cs_new:Npn \@@_tuple_|_o:ww #1; #2; { \@@_exp_after_tuple_o:w #1; } \cs_new:Npn \@@_tuple_|_tuple_o:ww #1; #2; { \@@_exp_after_tuple_o:w #1; } \group_end: \cs_new:Npn \@@_and_return:wNw #1; \fi: #2; { \fi: \@@_exp_after_o:w #1; } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Ternary operator} % % \begin{macro}[EXP] % {\@@_ternary:NwwN, \@@_ternary_auxi:NwwN, \@@_ternary_auxii:NwwN} % The first function receives the test and the true branch of the |?:| % ternary operator. It calls \cs{@@_ternary_auxii:NwwN} if the test % branch is a floating point number $\pm 0$, and otherwise calls % \cs{@@_ternary_auxi:NwwN}. These functions select one of their two % arguments. % \begin{macrocode} \cs_new:Npn \@@_ternary:NwwN #1 #2#3@ #4@ #5 { \if_meaning:w \@@_parse_infix_::N #5 \if_charcode:w 0 \@@_if_type_fp:NTwFw #2 { \use_i:nn \use_i_delimit_by_q_stop:nw #3 \q_stop } \s_@@ 1 \q_stop \exp_after:wN \exp_after:wN \exp_after:wN \@@_ternary_auxii:NwwN \else: \exp_after:wN \exp_after:wN \exp_after:wN \@@_ternary_auxi:NwwN \fi: \exp_after:wN #1 \exp:w \exp_end_continue_f:w \@@_exp_after_array_f:w #4 \s_@@_stop \exp_after:wN @ \exp:w \@@_parse_operand:Nw \c_@@_prec_colon_int \@@_parse_expand:w \else: \__kernel_msg_expandable_error:nnnn { kernel } { fp-missing } { : } { ~for~?: } \exp_after:wN \@@_parse_continue:NwN \exp_after:wN #1 \exp:w \exp_end_continue_f:w \@@_exp_after_array_f:w #4 \s_@@_stop \exp_after:wN #5 \exp_after:wN #1 \fi: } \cs_new:Npn \@@_ternary_auxi:NwwN #1#2@#3@#4 { \exp_after:wN \@@_parse_continue:NwN \exp_after:wN #1 \exp:w \exp_end_continue_f:w \@@_exp_after_array_f:w #2 \s_@@_stop #4 #1 } \cs_new:Npn \@@_ternary_auxii:NwwN #1#2@#3@#4 { \exp_after:wN \@@_parse_continue:NwN \exp_after:wN #1 \exp:w \exp_end_continue_f:w \@@_exp_after_array_f:w #3 \s_@@_stop #4 #1 } % \end{macrocode} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \end{implementation} % % \PrintChanges % % \PrintIndex