% \iffalse meta-comment % %% File: l3fp-extended.dtx % % Copyright (C) 2011-2019 The LaTeX3 Project % % It may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this % license or (at your option) any later version. The latest version % of this license is in the file % % https://www.latex-project.org/lppl.txt % % This file is part of the "l3kernel bundle" (The Work in LPPL) % and all files in that bundle must be distributed together. % % ----------------------------------------------------------------------- % % The development version of the bundle can be found at % % https://github.com/latex3/latex3 % % for those people who are interested. % %<*driver> \documentclass[full,kernel]{l3doc} \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \title{The \textsf{l3fp-extended} package\\ % Manipulating numbers with extended precision, for internal use} % \author{^^A % The \LaTeX3 Project\thanks % {^^A % E-mail: % \href{mailto:latex-team@latex-project.org} % {latex-team@latex-project.org}^^A % }^^A % } % \date{Released 2019-05-09} % % \maketitle % % \begin{documentation} % % \end{documentation} % % \begin{implementation} % % \section{\pkg{l3fp-extended} implementation} % % \begin{macrocode} %<*initex|package> % \end{macrocode} % % \begin{macrocode} %<@@=fp> % \end{macrocode} % % \subsection{Description of fixed point numbers} % % This module provides a few functions to manipulate positive floating % point numbers with extended precision ($24$ digits), but mostly % provides functions for fixed-point numbers with this precision ($24$ % digits). Those are used in the computation of % Taylor series for the logarithm, exponential, and trigonometric % functions. Since we eventually only care about the $16$ first digits % of the final result, some of the calculations are not performed with % the full $24$-digit precision. In other words, the last two blocks of % each fixed point number may be wrong as long as the error is small % enough to be rounded away when converting back to a floating point % number. The fixed point numbers are expressed as % \begin{quote} % \Arg{a_1} \Arg{a_2} \Arg{a_3} \Arg{a_4} \Arg{a_5} \Arg{a_6} |;| % \end{quote} % where each \meta{a_i} is exactly $4$ digits (ranging from |0000| to % |9999|), except \meta{a_1}, which may be any \enquote{not-too-large} % non-negative integer, with or without leading zeros. Here, % \enquote{not-too-large} depends on the specific function (see the % corresponding comments for details). Checking for overflow is the % responsibility of the code calling those functions. The fixed point % number $a$ corresponding to the representation above is $a = % \sum_{i=1}^{6} \meta{a_i} \cdot 10^{-4i}$. % % Most functions we define here have the form % \begin{syntax} % \cs{@@_fixed_\meta{calculation}:wwn} \meta{operand_1} |;| \meta{operand_2} |;| \Arg{continuation} % \end{syntax} % They perform the \meta{calculation} on the two \meta{operands}, then % feed the result ($6$ brace groups followed by a semicolon) to the % \meta{continuation}, responsible for the next step of the calculation. % Some functions only accept an \texttt{N}-type \meta{continuation}. % This allows constructions such as % \begin{quote} % \cs{@@_fixed_add:wwn} \meta{X_1} |;| \meta{X_2} |;| \\ % \cs{@@_fixed_mul:wwn} \meta{X_3} |;| \\ % \cs{@@_fixed_add:wwn} \meta{X_4} |;| \\ % \end{quote} % to compute $(X_1+X_2)\cdot X_3 + X_4$. This turns out to be very % appropriate for computing continued fractions and Taylor series. % % At the end of the calculation, the result is turned back to a floating % point number using \cs{@@_fixed_to_float_o:wN}. This function has to % change the exponent of the floating point number: it must be used % after starting an integer expression for the overall exponent of the % result. % % \subsection{Helpers for numbers with extended precision} % % \begin{variable}{\c_@@_one_fixed_tl} % The fixed-point number~$1$, used in \pkg{l3fp-expo}. % \begin{macrocode} \tl_const:Nn \c_@@_one_fixed_tl { {10000} {0000} {0000} {0000} {0000} {0000} ; } % \end{macrocode} % \end{variable} % % \begin{macro}[EXP]{\@@_fixed_continue:wn} % This function simply calls the next function. % \begin{macrocode} \cs_new:Npn \@@_fixed_continue:wn #1; #2 { #2 #1; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_fixed_add_one:wN} % \begin{syntax} % \cs{@@_fixed_add_one:wN} \meta{a} |;| \meta{continuation} % \end{syntax} % This function adds $1$ to the fixed point \meta{a}, by changing % $a_1$ to $10000+a_1$, then calls the \meta{continuation}. This % requires $a_1 + 10000 < 2^{31}$. % \begin{macrocode} \cs_new:Npn \@@_fixed_add_one:wN #1#2; #3 { \exp_after:wN #3 \exp_after:wN { \int_value:w \@@_int_eval:w \c_@@_myriad_int + #1 } #2 ; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_fixed_div_myriad:wn} % Divide a fixed point number by $10000$. This is a little bit more % subtle than just removing the last group and adding a leading group % of zeros: the first group~|#1| may have any number of digits, and we % must split~|#1| into the new first group and a second group of % exactly $4$~digits. The choice of shifts allows~|#1| to be in the % range $[0, 5\cdot 10^{8}-1]$. % \begin{macrocode} \cs_new:Npn \@@_fixed_div_myriad:wn #1#2#3#4#5#6; { \exp_after:wN \@@_fixed_mul_after:wwn \int_value:w \@@_int_eval:w \c_@@_leading_shift_int \exp_after:wN \@@_pack:NNNNNw \int_value:w \@@_int_eval:w \c_@@_trailing_shift_int + #1 ; {#2}{#3}{#4}{#5}; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_fixed_mul_after:wwn} % The fixed point operations which involve multiplication end by % calling this auxiliary. It braces the last block of digits, and % places the \meta{continuation} |#3| in front. % \begin{macrocode} \cs_new:Npn \@@_fixed_mul_after:wwn #1; #2; #3 { #3 {#1} #2; } % \end{macrocode} % \end{macro} % % \subsection{Multiplying a fixed point number by a short one} % % \begin{macro}[EXP]{\@@_fixed_mul_short:wwn} % \begin{syntax} % \cs{@@_fixed_mul_short:wwn} % \ \ \Arg{a_1} \Arg{a_2} \Arg{a_3} \Arg{a_4} \Arg{a_5} \Arg{a_6} |;| % \ \ \Arg{b_0} \Arg{b_1} \Arg{b_2} |;| \Arg{continuation} % \end{syntax} % Computes the product $c=ab$ of $a=\sum_i \meta{a_i} 10^{-4i}$ and % $b=\sum_i \meta{b_i} 10^{-4i}$, rounds it to the closest multiple of % $10^{-24}$, and leaves \meta{continuation} \Arg{c_1} \ldots{} % \Arg{c_6} |;| in the input stream, where each of the \meta{c_i} are % blocks of $4$~digits, except \meta{c_1}, which is any \TeX{} % integer. Note that indices for \meta{b} start at~$0$: for instance % a second operand of |{0001}{0000}{0000}| leaves the first operand % unchanged (rather than dividing it by $10^{4}$, as % \cs{@@_fixed_mul:wwn} would). % \begin{macrocode} \cs_new:Npn \@@_fixed_mul_short:wwn #1#2#3#4#5#6; #7#8#9; { \exp_after:wN \@@_fixed_mul_after:wwn \int_value:w \@@_int_eval:w \c_@@_leading_shift_int + #1*#7 \exp_after:wN \@@_pack:NNNNNw \int_value:w \@@_int_eval:w \c_@@_middle_shift_int + #1*#8 + #2*#7 \exp_after:wN \@@_pack:NNNNNw \int_value:w \@@_int_eval:w \c_@@_middle_shift_int + #1*#9 + #2*#8 + #3*#7 \exp_after:wN \@@_pack:NNNNNw \int_value:w \@@_int_eval:w \c_@@_middle_shift_int + #2*#9 + #3*#8 + #4*#7 \exp_after:wN \@@_pack:NNNNNw \int_value:w \@@_int_eval:w \c_@@_middle_shift_int + #3*#9 + #4*#8 + #5*#7 \exp_after:wN \@@_pack:NNNNNw \int_value:w \@@_int_eval:w \c_@@_trailing_shift_int + #4*#9 + #5*#8 + #6*#7 + ( #5*#9 + #6*#8 + #6*#9 / \c_@@_myriad_int ) / \c_@@_myriad_int ; ; } % \end{macrocode} % \end{macro} % % \subsection{Dividing a fixed point number by a small integer} % % \begin{macro}[EXP]{\@@_fixed_div_int:wwN} % \begin{macro}[EXP] % { % \@@_fixed_div_int:wnN, \@@_fixed_div_int_auxi:wnn, % \@@_fixed_div_int_auxii:wnn, \@@_fixed_div_int_pack:Nw, % \@@_fixed_div_int_after:Nw % } % \begin{syntax} % \cs{@@_fixed_div_int:wwN} \meta{a} |;| \meta{n} |;| \meta{continuation} % \end{syntax} % Divides the fixed point number \meta{a} by the (small) integer % $0<\meta{n}<10^4$ and feeds the result to the \meta{continuation}. % There is no bound on $a_1$. % % The arguments of the \texttt{i} auxiliary are 1: one of the $a_{i}$, % 2: $n$, 3: the \texttt{ii} or the \texttt{iii} auxiliary. It % computes a (somewhat tight) lower bound $Q_{i}$ for the ratio % $a_{i}/n$. % % The \texttt{ii} auxiliary receives $Q_{i}$, $n$, and $a_{i}$ as % arguments. It adds $Q_{i}$ to a surrounding integer expression, and % starts a new one with the initial value $9999$, which ensures that % the result of this expression has $5$ digits. The auxiliary % also computes $a_{i}-n\cdot Q_{i}$, placing the result in front of % the $4$ digits of $a_{i+1}$. The resulting $a'_{i+1} = 10^{4} % (a_{i} - n \cdot Q_{i}) + a_{i+1}$ serves as the first argument for % a new call to the \texttt{i} auxiliary. % % When the \texttt{iii} auxiliary is called, the situation looks like % this: % \begin{quote} % \cs{@@_fixed_div_int_after:Nw} \meta{continuation} \\ % $-1 + Q_{1}$ \\ % \cs{@@_fixed_div_int_pack:Nw} $9999 + Q_{2}$ \\ % \cs{@@_fixed_div_int_pack:Nw} $9999 + Q_{3}$ \\ % \cs{@@_fixed_div_int_pack:Nw} $9999 + Q_{4}$ \\ % \cs{@@_fixed_div_int_pack:Nw} $9999 + Q_{5}$ \\ % \cs{@@_fixed_div_int_pack:Nw} $9999$ \\ % \cs{@@_fixed_div_int_auxii:wnn} $Q_{6}$ |;| \Arg{n} \Arg{a_{6}} % \end{quote} % where expansion is happening from the last line up. The % \texttt{iii} auxiliary adds $Q_{6} + 2 \simeq a_{6}/n + 1$ to the % last $9999$, giving the integer closest to $10000 + a_{6}/n$. % % Each \texttt{pack} auxiliary receives $5$ digits followed by a % semicolon. The first digit is added as a carry to the integer % expression above, and the $4$ other digits are braced. Each call to % the \texttt{pack} auxiliary thus produces one brace group. The last % brace group is produced by the \texttt{after} auxiliary, which % places the \meta{continuation} as appropriate. % \begin{macrocode} \cs_new:Npn \@@_fixed_div_int:wwN #1#2#3#4#5#6 ; #7 ; #8 { \exp_after:wN \@@_fixed_div_int_after:Nw \exp_after:wN #8 \int_value:w \@@_int_eval:w - 1 \@@_fixed_div_int:wnN #1; {#7} \@@_fixed_div_int_auxi:wnn #2; {#7} \@@_fixed_div_int_auxi:wnn #3; {#7} \@@_fixed_div_int_auxi:wnn #4; {#7} \@@_fixed_div_int_auxi:wnn #5; {#7} \@@_fixed_div_int_auxi:wnn #6; {#7} \@@_fixed_div_int_auxii:wnn ; } \cs_new:Npn \@@_fixed_div_int:wnN #1; #2 #3 { \exp_after:wN #3 \int_value:w \@@_int_eval:w #1 / #2 - 1 ; {#2} {#1} } \cs_new:Npn \@@_fixed_div_int_auxi:wnn #1; #2 #3 { + #1 \exp_after:wN \@@_fixed_div_int_pack:Nw \int_value:w \@@_int_eval:w 9999 \exp_after:wN \@@_fixed_div_int:wnN \int_value:w \@@_int_eval:w #3 - #1*#2 \@@_int_eval_end: } \cs_new:Npn \@@_fixed_div_int_auxii:wnn #1; #2 #3 { + #1 + 2 ; } \cs_new:Npn \@@_fixed_div_int_pack:Nw #1 #2; { + #1; {#2} } \cs_new:Npn \@@_fixed_div_int_after:Nw #1 #2; { #1 {#2} } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Adding and subtracting fixed points} % % \begin{macro}[EXP]{\@@_fixed_add:wwn, \@@_fixed_sub:wwn} % \begin{macro}[EXP] % { % \@@_fixed_add:Nnnnnwnn, % \@@_fixed_add:nnNnnnwn, % \@@_fixed_add_pack:NNNNNwn, % \@@_fixed_add_after:NNNNNwn % } % \begin{syntax} % \cs{@@_fixed_add:wwn} \meta{a} |;| \meta{b} |;| \Arg{continuation} % \end{syntax} % Computes $a+b$ (resp.\ $a-b$) and feeds the result to the % \meta{continuation}. This function requires $0\leq a_{1},b_{1}\leq % 114748$, its result must be positive (this happens automatically for % addition) and its first group must have at most~$5$ digits: $(a\pm % b)_{1}<100000$. The two functions only differ by % a sign, hence use a common auxiliary. It would be nice to grab the % $12$ brace groups in one go; only $9$ parameters are allowed. Start % by grabbing the sign, $a_{1}, \ldots, a_{4}$, the rest of $a$, % and $b_{1}$ and $b_{2}$. The second auxiliary receives the rest of % $a$, the sign multiplying $b$, the rest of $b$, and the % \meta{continuation} as arguments. After going down through the % various level, we go back up, packing digits and bringing the % \meta{continuation} (|#8|, then |#7|) from the end of the argument % list to its start. % \begin{macrocode} \cs_new:Npn \@@_fixed_add:wwn { \@@_fixed_add:Nnnnnwnn + } \cs_new:Npn \@@_fixed_sub:wwn { \@@_fixed_add:Nnnnnwnn - } \cs_new:Npn \@@_fixed_add:Nnnnnwnn #1 #2#3#4#5 #6; #7#8 { \exp_after:wN \@@_fixed_add_after:NNNNNwn \int_value:w \@@_int_eval:w 9 9999 9998 + #2#3 #1 #7#8 \exp_after:wN \@@_fixed_add_pack:NNNNNwn \int_value:w \@@_int_eval:w 1 9999 9998 + #4#5 \@@_fixed_add:nnNnnnwn #6 #1 } \cs_new:Npn \@@_fixed_add:nnNnnnwn #1#2 #3 #4#5 #6#7 ; #8 { #3 #4#5 \exp_after:wN \@@_fixed_add_pack:NNNNNwn \int_value:w \@@_int_eval:w 2 0000 0000 #3 #6#7 + #1#2 ; {#8} ; } \cs_new:Npn \@@_fixed_add_pack:NNNNNwn #1 #2#3#4#5 #6; #7 { + #1 ; {#7} {#2#3#4#5} {#6} } \cs_new:Npn \@@_fixed_add_after:NNNNNwn 1 #1 #2#3#4#5 #6; #7 { #7 {#1#2#3#4#5} {#6} } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Multiplying fixed points} % % ^^A todo: may a_1 or b_1 be = 10000? Used in ediv_epsi later. % \begin{macro}[EXP]{\@@_fixed_mul:wwn} % \begin{macro}[EXP]{\@@_fixed_mul:nnnnnnnw} % \begin{syntax} % \cs{@@_fixed_mul:wwn} \meta{a} |;| \meta{b} |;| \Arg{continuation} % \end{syntax} % Computes $a\times b$ and feeds the result to \meta{continuation}. % This function requires $0\leq a_{1}, b_{1} < 10000$. Once more, we % need to play around the limit of $9$ arguments for \TeX{} macros. % Note that we don't need to obtain an exact rounding, contrarily to % the |*| operator, so things could be harder. We wish to perform % carries in % \begin{align*} % a \times b = % & a_{1} \cdot b_{1} \cdot 10^{-8} \\ % & + (a_{1} \cdot b_{2} + a_{2} \cdot b_{1}) \cdot 10^{-12} \\ % & + (a_{1} \cdot b_{3} + a_{2} \cdot b_{2} % + a_{3} \cdot b_{1}) \cdot 10^{-16} \\ % & + (a_{1} \cdot b_{4} + a_{2} \cdot b_{3} % + a_{3} \cdot b_{2} + a_{4} \cdot b_{1}) \cdot 10^{-20} \\ % & + \Bigl(a_{2} \cdot b_{4} + a_{3} \cdot b_{3} + a_{4} \cdot b_{2} % \\ & \qquad % + \frac{a_{3} \cdot b_{4} + a_{4} \cdot b_{3} % + a_{1} \cdot b_{6} + a_{2} \cdot b_{5} % + a_{5} \cdot b_{2} + a_{6} \cdot b_{1}}{10^{4}} % \\ & \qquad % + a_{1} \cdot b_{5} + a_{5} \cdot b_{1}\Bigr) \cdot 10^{-24} % + O(10^{-24}), % \end{align*} % where the $O(10^{-24})$ stands for terms which are at most $5\cdot % 10^{-24}$; ignoring those leads to an error of at most % $5$~\texttt{ulp}. Note how the first $15$~terms only depend on % $a_{1},\ldots{},a_{4}$ and $b_{1},\ldots,b_{4}$, while the last % $6$~terms only depend on $a_{1},a_{2},a_{5},a_{6}$, and the % corresponding parts of~$b$. Hence, the first function grabs % $a_{1},\ldots,a_{4}$, the rest of $a$, and $b_{1},\ldots,b_{4}$, and % writes the $15$ first terms of the expression, including a left % parenthesis for the fraction. The \texttt{i} auxiliary receives % $a_{5}$, $a_{6}$, $b_{1}$, $b_{2}$, $a_{1}$, $a_{2}$, $b_{5}$, % $b_{6}$ and finally the \meta{continuation} as arguments. It writes % the end of the expression, including the right parenthesis and the % denominator of the fraction. The \meta{continuation} % is finally placed in front of the $6$ brace groups by % \cs{@@_fixed_mul_after:wwn}. % \begin{macrocode} \cs_new:Npn \@@_fixed_mul:wwn #1#2#3#4 #5; #6#7#8#9 { \exp_after:wN \@@_fixed_mul_after:wwn \int_value:w \@@_int_eval:w \c_@@_leading_shift_int \exp_after:wN \@@_pack:NNNNNw \int_value:w \@@_int_eval:w \c_@@_middle_shift_int + #1*#6 \exp_after:wN \@@_pack:NNNNNw \int_value:w \@@_int_eval:w \c_@@_middle_shift_int + #1*#7 + #2*#6 \exp_after:wN \@@_pack:NNNNNw \int_value:w \@@_int_eval:w \c_@@_middle_shift_int + #1*#8 + #2*#7 + #3*#6 \exp_after:wN \@@_pack:NNNNNw \int_value:w \@@_int_eval:w \c_@@_middle_shift_int + #1*#9 + #2*#8 + #3*#7 + #4*#6 \exp_after:wN \@@_pack:NNNNNw \int_value:w \@@_int_eval:w \c_@@_trailing_shift_int + #2*#9 + #3*#8 + #4*#7 + ( #3*#9 + #4*#8 + \@@_fixed_mul:nnnnnnnw #5 {#6}{#7} {#1}{#2} } \cs_new:Npn \@@_fixed_mul:nnnnnnnw #1#2 #3#4 #5#6 #7#8 ; { #1*#4 + #2*#3 + #5*#8 + #6*#7 ) / \c_@@_myriad_int + #1*#3 + #5*#7 ; ; } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Combining product and sum of fixed points} % % \begin{macro}[EXP] % { % \@@_fixed_mul_add:wwwn, % \@@_fixed_mul_sub_back:wwwn, % \@@_fixed_mul_one_minus_mul:wwn, % } % \begin{syntax} % \cs{@@_fixed_mul_add:wwwn} \meta{a} |;| \meta{b} |;| \meta{c} |;| \Arg{continuation} % \cs{@@_fixed_mul_sub_back:wwwn} \meta{a} |;| \meta{b} |;| \meta{c} |;| \Arg{continuation} % \cs{@@_fixed_one_minus_mul:wwn} \meta{a} |;| \meta{b} |;| \Arg{continuation} % \end{syntax} % Sometimes called |FMA| (fused multiply-add), these functions % compute $a\times b + c$, $c - a\times b$, and $1 - a\times b$ and % feed the result to the \meta{continuation}. Those functions require % $0\leq a_{1}, b_{1}, c_{1} \leq 10000$. Since those functions are % at the heart of the computation of Taylor expansions, we % over-optimize them a bit, and in particular we do not factor out the % common parts of the three functions. % % For definiteness, consider the task of computing $a\times b + c$. % We perform carries in % \begin{align*} % a \times b + c = % & (a_{1} \cdot b_{1} + c_{1} c_{2})\cdot 10^{-8} \\ % & + (a_{1} \cdot b_{2} + a_{2} \cdot b_{1}) \cdot 10^{-12} \\ % & + (a_{1} \cdot b_{3} + a_{2} \cdot b_{2} + a_{3} \cdot b_{1} % + c_{3} c_{4}) \cdot 10^{-16} \\ % & + (a_{1} \cdot b_{4} + a_{2} \cdot b_{3} + a_{3} \cdot b_{2} % + a_{4} \cdot b_{1}) \cdot 10^{-20} \\ % & + \Big(a_{2} \cdot b_{4} + a_{3} \cdot b_{3} + a_{4} \cdot b_{2} % \\ & \qquad % + \frac{a_{3} \cdot b_{4} + a_{4} \cdot b_{3} % + a_{1} \cdot b_{6} + a_{2} \cdot b_{5} % + a_{5} \cdot b_{2} + a_{6} \cdot b_{1}}{10^{4}} % \\ & \qquad % + a_{1} \cdot b_{5} + a_{5} \cdot b_{1} % + c_{5} c_{6} \Big) \cdot 10^{-24} % + O(10^{-24}), % \end{align*} % where $c_{1} c_{2}$, $c_{3} c_{4}$, $c_{5} c_{6}$ denote the % $8$-digit number obtained by juxtaposing the two blocks of digits of % $c$, and $\cdot$ denotes multiplication. The task is obviously % tough because we have $18$ brace groups in front of us. % % Each of the three function starts the first two levels (the first, % corresponding to $10^{-4}$, is empty), with $c_{1} c_{2}$ in the % first level, calls the \texttt{i} auxiliary with arguments described % later, and adds a trailing ${} + c_{5}c_{6}$ |;| % \Arg{continuation}~|;|. The ${} + c_{5}c_{6}$ piece, which is % omitted for \cs{@@_fixed_one_minus_mul:wwn}, is taken in the % integer expression for the $10^{-24}$ level. % \begin{macrocode} \cs_new:Npn \@@_fixed_mul_add:wwwn #1; #2; #3#4#5#6#7#8; { \exp_after:wN \@@_fixed_mul_after:wwn \int_value:w \@@_int_eval:w \c_@@_big_leading_shift_int \exp_after:wN \@@_pack_big:NNNNNNw \int_value:w \@@_int_eval:w \c_@@_big_middle_shift_int + #3 #4 \@@_fixed_mul_add:Nwnnnwnnn + + #5 #6 ; #2 ; #1 ; #2 ; + + #7 #8 ; ; } \cs_new:Npn \@@_fixed_mul_sub_back:wwwn #1; #2; #3#4#5#6#7#8; { \exp_after:wN \@@_fixed_mul_after:wwn \int_value:w \@@_int_eval:w \c_@@_big_leading_shift_int \exp_after:wN \@@_pack_big:NNNNNNw \int_value:w \@@_int_eval:w \c_@@_big_middle_shift_int + #3 #4 \@@_fixed_mul_add:Nwnnnwnnn - + #5 #6 ; #2 ; #1 ; #2 ; - + #7 #8 ; ; } \cs_new:Npn \@@_fixed_one_minus_mul:wwn #1; #2; { \exp_after:wN \@@_fixed_mul_after:wwn \int_value:w \@@_int_eval:w \c_@@_big_leading_shift_int \exp_after:wN \@@_pack_big:NNNNNNw \int_value:w \@@_int_eval:w \c_@@_big_middle_shift_int + 1 0000 0000 \@@_fixed_mul_add:Nwnnnwnnn - ; #2 ; #1 ; #2 ; - ; ; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_fixed_mul_add:Nwnnnwnnn} % \begin{syntax} % \cs{@@_fixed_mul_add:Nwnnnwnnn} \meta{op} |+| \meta{c_3} \meta{c_4} |;| % ~~\meta{b} |;| \meta{a} |;| \meta{b} |;| \meta{op} % ~~|+| \meta{c_5} \meta{c_6} |;| % \end{syntax} % Here, \meta{op} is either |+| or |-|. Arguments |#3|, |#4|, |#5| % are \meta{b_1}, \meta{b_2}, \meta{b_3}; arguments |#7|, |#8|, |#9| % are \meta{a_1}, \meta{a_2}, \meta{a_3}. We can build three levels: % $a_{1} \cdot b_{1}$ for $10^{-8}$, $(a_{1} \cdot b_{2} + a_{2} \cdot % b_{1})$ for $10^{-12}$, and $(a_{1} \cdot b_{3} + a_{2} \cdot b_{2} % + a_{3} \cdot b_{1} + c_{3} c_{4})$ for $10^{-16}$. The $a$--$b$ % products use the sign |#1|. Note that |#2| is empty for % \cs{@@_fixed_one_minus_mul:wwn}. We call the \texttt{ii} auxiliary % for levels $10^{-20}$ and $10^{-24}$, keeping the pieces of \meta{a} % we've read, but not \meta{b}, since there is another copy later in % the input stream. % \begin{macrocode} \cs_new:Npn \@@_fixed_mul_add:Nwnnnwnnn #1 #2; #3#4#5#6; #7#8#9 { #1 #7*#3 \exp_after:wN \@@_pack_big:NNNNNNw \int_value:w \@@_int_eval:w \c_@@_big_middle_shift_int #1 #7*#4 #1 #8*#3 \exp_after:wN \@@_pack_big:NNNNNNw \int_value:w \@@_int_eval:w \c_@@_big_middle_shift_int #1 #7*#5 #1 #8*#4 #1 #9*#3 #2 \exp_after:wN \@@_pack_big:NNNNNNw \int_value:w \@@_int_eval:w \c_@@_big_middle_shift_int #1 \@@_fixed_mul_add:nnnnwnnnn {#7}{#8}{#9} } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_fixed_mul_add:nnnnwnnnn} % \begin{syntax} % \cs{@@_fixed_mul_add:nnnnwnnnn} \meta{a} |;| \meta{b} |;| \meta{op} % ~~|+| \meta{c_5} \meta{c_6} |;| % \end{syntax} % Level $10^{-20}$ is $(a_{1} \cdot b_{4} + a_{2} \cdot b_{3} + a_{3} % \cdot b_{2} + a_{4} \cdot b_{1})$, multiplied by the sign, which was % inserted by the \texttt{i} auxiliary. Then we prepare level % $10^{-24}$. We don't have access to all parts of \meta{a} and % \meta{b} needed to make all products. Instead, we prepare the % partial expressions % \begin{align*} % & b_{1} + a_{4} \cdot b_{2} + a_{3} \cdot b_{3} + a_{2} \cdot b_{4} + a_{1} \\ % & b_{2} + a_{4} \cdot b_{3} + a_{3} \cdot b_{4} + a_{2} . % \end{align*} % Obviously, those expressions make no mathematical sense: we % complete them with $a_{5} \cdot {}$ and ${} \cdot b_{5}$, and with % $a_{6} \cdot b_{1} + a_{5} \cdot {}$ and ${} \cdot b_{5} + a_{1} % \cdot b_{6}$, and of course with the trailing ${} + c_{5} c_{6}$. % To do all this, we keep $a_{1}$, $a_{5}$, $a_{6}$, and the % corresponding pieces of \meta{b}. % \begin{macrocode} \cs_new:Npn \@@_fixed_mul_add:nnnnwnnnn #1#2#3#4#5; #6#7#8#9 { ( #1*#9 + #2*#8 + #3*#7 + #4*#6 ) \exp_after:wN \@@_pack_big:NNNNNNw \int_value:w \@@_int_eval:w \c_@@_big_trailing_shift_int \@@_fixed_mul_add:nnnnwnnwN { #6 + #4*#7 + #3*#8 + #2*#9 + #1 } { #7 + #4*#8 + #3*#9 + #2 } {#1} #5; {#6} } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_fixed_mul_add:nnnnwnnwN} % \begin{syntax} % \cs{@@_fixed_mul_add:nnnnwnnwN} \Arg{partial_1} \Arg{partial_2} % ~~\Arg{a_1} \Arg{a_5} \Arg{a_6} |;| \Arg{b_1} \Arg{b_5} \Arg{b_6} |;| % ~~\meta{op} |+| \meta{c_5} \meta{c_6} |;| % \end{syntax} % Complete the \meta{partial_1} and \meta{partial_2} expressions as % explained for the \texttt{ii} auxiliary. The second one is divided % by $10000$: this is the carry from level $10^{-28}$. The trailing % ${} + c_{5} c_{6}$ is taken into the expression for level % $10^{-24}$. Note that the total of level $10^{-24}$ is in the % interval $[-5\cdot 10^{8}, 6\cdot 10^{8}$ (give or take a couple of % $10000$), hence adding it to the shift gives a $10$-digit number, as % expected by the packing auxiliaries. See \pkg{l3fp-aux} for the % definition of the shifts and packing auxiliaries. % \begin{macrocode} \cs_new:Npn \@@_fixed_mul_add:nnnnwnnwN #1#2 #3#4#5; #6#7#8; #9 { #9 (#4* #1 *#7) #9 (#5*#6+#4* #2 *#7+#3*#8) / \c_@@_myriad_int } % \end{macrocode} % \end{macro} % % \subsection{Extended-precision floating point numbers} % % In this section we manipulate floating point numbers with roughly $24$ % significant figures (\enquote{extended-precision} numbers, in short, % \enquote{ep}), which take the form of an integer exponent, followed by a % comma, then six groups of digits, ending with a semicolon. The first % group of digit may be any non-negative integer, while other groups of % digits have $4$~digits. In other words, an extended-precision number % is an exponent ending in a comma, then a fixed point number. The % corresponding value is $0.\meta{digits}\cdot 10^{\meta{exponent}}$. % This convention differs from floating points. % % \begin{macro}[EXP]{\@@_ep_to_fixed:wwn} % \begin{macro}[EXP] % {\@@_ep_to_fixed_auxi:www, \@@_ep_to_fixed_auxii:nnnnnnnwn} % Converts an extended-precision number with an exponent at most~$4$ % and a first block less than $10^{8}$ to a fixed point number whose % first block has $12$~digits, hopefully starting with many zeros. % \begin{macrocode} \cs_new:Npn \@@_ep_to_fixed:wwn #1,#2 { \exp_after:wN \@@_ep_to_fixed_auxi:www \int_value:w \@@_int_eval:w 1 0000 0000 + #2 \exp_after:wN ; \exp:w \exp_end_continue_f:w \prg_replicate:nn { 4 - \int_max:nn {#1} { -32 } } { 0 } ; } \cs_new:Npn \@@_ep_to_fixed_auxi:www 1#1; #2; #3#4#5#6#7; { \@@_pack_eight:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_ep_to_fixed_auxii:nnnnnnnwn ; #2 #1#3#4#5#6#7 0000 ! } \cs_new:Npn \@@_ep_to_fixed_auxii:nnnnnnnwn #1#2#3#4#5#6#7; #8! #9 { #9 {#1#2}{#3}{#4}{#5}{#6}{#7}; } % \end{macrocode} % \end{macro} % \end{macro} % % ^^A todo: make it work when the arg is zero. % \begin{macro}[EXP]{\@@_ep_to_ep:wwN} % \begin{macro}[rEXP]{\@@_ep_to_ep_loop:N, \@@_ep_to_ep_end:www} % \begin{macro}[EXP]{\@@_ep_to_ep_zero:ww} % Normalize an extended-precision number. More precisely, leading % zeros are removed from the mantissa of the argument, decreasing its % exponent as appropriate. Then the digits are packed into $6$~groups % of~$4$ (discarding any remaining digit, not rounding). Finally, the % continuation~|#8| is placed before the resulting exponent--mantissa % pair. The input exponent may in fact be given as an integer % expression. The \texttt{loop} auxiliary grabs a digit: if it % is~$0$, decrement the exponent and continue looping, and otherwise % call the \texttt{end} auxiliary, which places all digits in the % right order (the digit that was not~$0$, and any remaining digits), % followed by some~$0$, then packs them up neatly in $3\times2=6$ % blocks of four. At the end of the day, remove with \cs{@@_use_i:ww} % any digit that did not make it in the final mantissa (typically only % zeros, unless the original first block has more than~$4$ digits). % \begin{macrocode} \cs_new:Npn \@@_ep_to_ep:wwN #1,#2#3#4#5#6#7; #8 { \exp_after:wN #8 \int_value:w \@@_int_eval:w #1 + 4 \exp_after:wN \use_i:nn \exp_after:wN \@@_ep_to_ep_loop:N \int_value:w \@@_int_eval:w 1 0000 0000 + #2 \@@_int_eval_end: #3#4#5#6#7 ; ; ! } \cs_new:Npn \@@_ep_to_ep_loop:N #1 { \if_meaning:w 0 #1 - 1 \else: \@@_ep_to_ep_end:www #1 \fi: \@@_ep_to_ep_loop:N } \cs_new:Npn \@@_ep_to_ep_end:www #1 \fi: \@@_ep_to_ep_loop:N #2; #3! { \fi: \if_meaning:w ; #1 - 2 * \c_@@_max_exponent_int \@@_ep_to_ep_zero:ww \fi: \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_use_i:ww , ; #1 #2 0000 0000 0000 0000 0000 0000 ; } \cs_new:Npn \@@_ep_to_ep_zero:ww \fi: #1; #2; #3; { \fi: , {1000}{0000}{0000}{0000}{0000}{0000} ; } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_ep_compare:wwww} % \begin{macro}[EXP]{\@@_ep_compare_aux:wwww} % In \pkg{l3fp-trig} we need to compare two extended-precision % numbers. This is based on the same function for positive floating % point numbers, with an extra test if comparing only $16$ decimals is % not enough to distinguish the numbers. Note that this function only % works if the numbers are normalized so that their first block is % in~$[1000,9999]$. % \begin{macrocode} \cs_new:Npn \@@_ep_compare:wwww #1,#2#3#4#5#6#7; { \@@_ep_compare_aux:wwww {#1}{#2}{#3}{#4}{#5}; #6#7; } \cs_new:Npn \@@_ep_compare_aux:wwww #1;#2;#3,#4#5#6#7#8#9; { \if_case:w \@@_compare_npos:nwnw #1; {#3}{#4}{#5}{#6}{#7}; \exp_stop_f: \if_int_compare:w #2 = #8#9 \exp_stop_f: 0 \else: \if_int_compare:w #2 < #8#9 - \fi: 1 \fi: \or: 1 \else: -1 \fi: } % \end{macrocode} % \end{macro} % \end{macro} % % ^^A todo: doc that neither operand may be zero (or fix ep_to_ep above) % \begin{macro}[EXP]{\@@_ep_mul:wwwwn, \@@_ep_mul_raw:wwwwN} % Multiply two extended-precision numbers: first normalize them to % avoid losing too much precision, then multiply the mantissas |#2| % and~|#4| as fixed point numbers, and sum the exponents |#1| % and~|#3|. The result's first block is in $[100,9999]$. % \begin{macrocode} \cs_new:Npn \@@_ep_mul:wwwwn #1,#2; #3,#4; { \@@_ep_to_ep:wwN #3,#4; \@@_fixed_continue:wn { \@@_ep_to_ep:wwN #1,#2; \@@_ep_mul_raw:wwwwN } \@@_fixed_continue:wn } \cs_new:Npn \@@_ep_mul_raw:wwwwN #1,#2; #3,#4; #5 { \@@_fixed_mul:wwn #2; #4; { \exp_after:wN #5 \int_value:w \@@_int_eval:w #1 + #3 , } } % \end{macrocode} % \end{macro} % % \subsection{Dividing extended-precision numbers} % % \newcommand{\eTeXfrac}[2]{\left[\frac{#1}{#2}\right]} % % Divisions of extended-precision numbers are difficult to perform with % exact rounding: the technique used in \pkg{l3fp-basics} for $16$-digit % floating point numbers does not generalize easily to $24$-digit % numbers. Thankfully, there is no need for exact rounding. % % Let us call \meta{n} the numerator and \meta{d} the denominator. % After a simple normalization step, we can assume that % $\meta{n}\in[0.1,1)$ and $\meta{d}\in[0.1,1)$, and compute % $\meta{n}/(10\meta{d})\in(0.01,1)$. In terms of the $6$~blocks of % digits $\meta{n_1}\cdots\meta{n_6}$ and the $6$~blocks % $\meta{d_1}\cdots\meta{d_6}$, the condition translates to % $\meta{n_1},\meta{d_1}\in[1000,9999]$. % % We first find an integer estimate $a \simeq 10^{8} / \meta{d}$ by % computing % \begin{align*} % \alpha &= \eTeXfrac{10^{9}}{\meta{d_1}+1} \\ % \beta &= \eTeXfrac{10^{9}}{\meta{d_1}} \\ % a &= 10^{3} \alpha + (\beta-\alpha) \cdot % \left(10^{3}-\eTeXfrac{\meta{d_2}}{10}\right) - 1250, % \end{align*} % where $\eTeXfrac{\bullet}{\bullet}$ denotes \eTeX{}'s rounding % division, which rounds ties away from zero. The idea is to % interpolate between $10^{3}\alpha$ and $10^{3}\beta$ with a parameter % $\meta{d_2}/10^{4}$, so that when $\meta{d_2}=0$ one gets $a = % 10^{3}\beta-1250 \simeq 10^{12} / \meta{d_1} \simeq 10^{8} / % \meta{d}$, while when $\meta{d_2}=9999$ one gets $a = % 10^{3}\alpha-1250 \simeq 10^{12} / (\meta{d_1} + 1) \simeq 10^{8} / % \meta{d}$. The shift by $1250$ helps to ensure that $a$ is an % underestimate of the correct value. We shall prove that % \[ % 1 - 1.755\cdot 10^{-5} < \frac{\meta{d}a}{10^{8}} < 1 . % \] % We can then compute the inverse of $\meta{d}a/10^{8} = 1 - \epsilon$ % using the relation $1/(1-\epsilon) \simeq (1+\epsilon)(1+\epsilon^{2}) % + \epsilon^{4}$, which is correct up to a relative error of % $\epsilon^5 < 1.6\cdot 10^{-24}$. This allows us to find the desired % ratio as % \[ % \frac{\meta{n}}{\meta{d}} % = \frac{\meta{n}a}{10^{8}} % \bigl( (1+\epsilon)(1+\epsilon^{2}) + \epsilon^{4}\bigr) . % \] % % Let us prove the upper bound first (multiplied by $10^{15}$). Note % that $10^{7} \meta{d} < 10^{3} \meta{d_1} + 10^{-1} (\meta{d_2} + 1)$, % and that \eTeX{}'s division $\eTeXfrac{\meta{d_2}}{10}$ underestimates % $10^{-1}(\meta{d_2} + 1)$ by $0.5$ at most, as can be checked % for each possible last digit of \meta{d_2}. Then, % \begin{align} % 10^{7} \meta{d}a % & < % \left(10^{3}\meta{d_1} % + \eTeXfrac{\meta{d_2}}{10} + \frac{1}{2}\right) % \left(\left(10^{3}-\eTeXfrac{\meta{d_2}}{10}\right) \beta % + \eTeXfrac{\meta{d_2}}{10} \alpha - 1250\right) % \\ % & < % \left(10^{3}\meta{d_1} % + \eTeXfrac{\meta{d_2}}{10} + \frac{1}{2}\right) % \\ & \qquad % \left( % \left(10^{3}-\eTeXfrac{\meta{d_2}}{10}\right) % \left(\frac{10^{9}}{\meta{d_1}} + \frac{1}{2} \right) % + \eTeXfrac{\meta{d_2}}{10} % \left(\frac{10^{9}}{\meta{d_1}+1} + \frac{1}{2} \right) % - 1250 % \right) % \\ % & < % \left(10^{3} \meta{d_1} % + \eTeXfrac{\meta{d_2}}{10} + \frac{1}{2}\right) % \left(\frac{10^{12}}{\meta{d_1}} % - \eTeXfrac{\meta{d_2}}{10} % \frac{10^{9}}{\meta{d_1}(\meta{d_1}+1)} % - 750\right) % \end{align} % We recognize a quadratic polynomial in $[\meta{d_2}/10]$ with a % negative leading coefficient: this polynomial is bounded above, % according to $([\meta{d_2}/10]+a)(b-c[\meta{d_2}/10]) \leq % (b+ca)^2/(4c)$. Hence, % \[ % 10^{7} \meta{d}a % < \frac{10^{15}}{\meta{d_1}(\meta{d_1}+1)} \left( % \meta{d_1} + \frac{1}{2} + \frac{1}{4} 10^{-3} % - \frac{3}{8} \cdot 10^{-9} \meta{d_1}(\meta{d_1}+1) \right)^2 % \] % Since \meta{d_1} takes integer values within $[1000,9999]$, it is a % simple programming exercise to check that the squared expression is % always less than $\meta{d_1}(\meta{d_1}+1)$, hence $10^{7} \meta{d} a % < 10^{15}$. The upper bound is proven. We also find that % $\frac{3}{8}$ can be replaced by slightly smaller numbers, but nothing % less than $0.374563\ldots$, and going back through the derivation of % the upper bound, we find that $1250$ is as small a shift as we can % obtain without breaking the bound. % % Now, the lower bound. The same computation as for the upper bound % implies % \[ % 10^{7} \meta{d}a % > \left(10^{3} \meta{d_1} + \eTeXfrac{\meta{d_2}}{10} % - \frac{1}{2}\right) % \left(\frac{10^{12}}{\meta{d_1}} % - \eTeXfrac{\meta{d_2}}{10} \frac{10^{9}}{\meta{d_1}(\meta{d_1}+1)} % - 1750\right) % \] % This time, we want to find the minimum of this quadratic polynomial. % Since the leading coefficient is still negative, the minimum is % reached for one of the extreme values $[y/10]=0$ or $[y/10]=100$, and % we easily check the bound for those values. % % We have proven that the algorithm gives us a precise enough % answer. Incidentally, the upper bound that we derived tells us that % $a < 10^{8}/\meta{d} \leq 10^{9}$, hence we can compute $a$ safely as % a \TeX{} integer, and even add $10^{9}$ to it to ease grabbing of all % the digits. The lower bound implies $10^{8} - 1755 < a$, which we do % not care about. % % ^^A todo: provide ep_inv, not ep_div? % ^^A todo: make extra sure that the result's first block cannot be 99 % ^^A todo: doc that neither operand may be zero (or fix ep_to_ep) % \begin{macro}[EXP]{\@@_ep_div:wwwwn} % Compute the ratio of two extended-precision numbers. The result is % an extended-precision number whose first block lies in the range % $[100,9999]$, and is placed after the \meta{continuation} once we % are done. First normalize the inputs so that both first block lie % in $[1000,9999]$, then call \cs{@@_ep_div_esti:wwwwn} % \meta{denominator} \meta{numerator}, responsible for estimating the % inverse of the denominator. % \begin{macrocode} \cs_new:Npn \@@_ep_div:wwwwn #1,#2; #3,#4; { \@@_ep_to_ep:wwN #1,#2; \@@_fixed_continue:wn { \@@_ep_to_ep:wwN #3,#4; \@@_ep_div_esti:wwwwn } } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP] % { % \@@_ep_div_esti:wwwwn, % \@@_ep_div_estii:wwnnwwn, % \@@_ep_div_estiii:NNNNNwwwn % } % The \texttt{esti} function evaluates $\alpha=10^{9} / (\meta{d_1} + % 1)$, which is used twice in the expression for $a$, and combines the % exponents |#1| and~|#4| (with a shift by~$1$ because we later compute % $\meta{n}/(10\meta{d})$. Then the \texttt{estii} function evaluates % $10^{9} + a$, and puts the exponent~|#2| after the % continuation~|#7|: from there on we can forget exponents and focus % on the mantissa. The \texttt{estiii} function multiplies the % denominator~|#7| by $10^{-8}a$ (obtained as $a$ split into the % single digit~|#1| and two blocks of $4$~digits, |#2#3#4#5| % and~|#6|). The result $10^{-8}a\meta{d}=(1-\epsilon)$, and a % partially packed $10^{-9}a$ (as a block of four digits, and five % individual digits, not packed by lack of available macro parameters % here) are passed to \cs{@@_ep_div_epsi:wnNNNNn}, which computes % $10^{-9}a/(1-\epsilon)$, that is, $1/(10\meta{d})$ and we finally % multiply this by the numerator~|#8|. % \begin{macrocode} \cs_new:Npn \@@_ep_div_esti:wwwwn #1,#2#3; #4, { \exp_after:wN \@@_ep_div_estii:wwnnwwn \int_value:w \@@_int_eval:w 10 0000 0000 / ( #2 + 1 ) \exp_after:wN ; \int_value:w \@@_int_eval:w #4 - #1 + 1 , {#2} #3; } \cs_new:Npn \@@_ep_div_estii:wwnnwwn #1; #2,#3#4#5; #6; #7 { \exp_after:wN \@@_ep_div_estiii:NNNNNwwwn \int_value:w \@@_int_eval:w 10 0000 0000 - 1750 + #1 000 + (10 0000 0000 / #3 - #1) * (1000 - #4 / 10) ; {#3}{#4}#5; #6; { #7 #2, } } \cs_new:Npn \@@_ep_div_estiii:NNNNNwwwn 1#1#2#3#4#5#6; #7; { \@@_fixed_mul_short:wwn #7; {#1}{#2#3#4#5}{#6}; \@@_ep_div_epsi:wnNNNNNn {#1#2#3#4}#5#6 \@@_fixed_mul:wwn } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP] % { % \@@_ep_div_epsi:wnNNNNNn, % \@@_ep_div_eps_pack:NNNNNw, % \@@_ep_div_epsii:wwnNNNNNn, % } % The bounds shown above imply that the \texttt{epsi} function's first % operand is $(1-\epsilon)$ with $\epsilon\in[0,1.755\cdot 10^{-5}]$. % The \texttt{epsi} function computes $\epsilon$ as $1-(1-\epsilon)$. % Since $\epsilon<10^{-4}$, its first block vanishes and there is no % need to explicitly use~|#1| (which is $9999$). Then \texttt{epsii} % evaluates $10^{-9}a/(1-\epsilon)$ as % $(1+\epsilon^2)(1+\epsilon)(10^{-9}a \epsilon) + 10^{-9}a$. % Importantly, we compute $10^{-9}a \epsilon$ before multiplying it % with the rest, rather than multiplying by $\epsilon$ and then % $10^{-9}a$, as this second option loses more precision. Also, the % combination of \texttt{short_mul} and \texttt{div_myriad} is both % faster and more precise than a simple \texttt{mul}. % \begin{macrocode} \cs_new:Npn \@@_ep_div_epsi:wnNNNNNn #1#2#3#4#5#6; { \exp_after:wN \@@_ep_div_epsii:wwnNNNNNn \int_value:w \@@_int_eval:w 1 9998 - #2 \exp_after:wN \@@_ep_div_eps_pack:NNNNNw \int_value:w \@@_int_eval:w 1 9999 9998 - #3#4 \exp_after:wN \@@_ep_div_eps_pack:NNNNNw \int_value:w \@@_int_eval:w 2 0000 0000 - #5#6 ; ; } \cs_new:Npn \@@_ep_div_eps_pack:NNNNNw #1#2#3#4#5#6; { + #1 ; {#2#3#4#5} {#6} } \cs_new:Npn \@@_ep_div_epsii:wwnNNNNNn 1#1; #2; #3#4#5#6#7#8 { \@@_fixed_mul:wwn {0000}{#1}#2; {0000}{#1}#2; \@@_fixed_add_one:wN \@@_fixed_mul:wwn {10000} {#1} #2 ; { \@@_fixed_mul_short:wwn {0000}{#1}#2; {#3}{#4#5#6#7}{#8000}; \@@_fixed_div_myriad:wn \@@_fixed_mul:wwn } \@@_fixed_add:wwn {#3}{#4#5#6#7}{#8000}{0000}{0000}{0000}; } % \end{macrocode} % \end{macro} % % \subsection{Inverse square root of extended precision numbers} % % The idea here is similar to division. Normalize the input, % multiplying by powers of $100$ until we have $x\in[0.01,1)$. Then % find an integer approximation $r \in [101, 1003]$ of % $10^{2}/\sqrt{x}$, as the fixed point of iterations of the Newton % method: essentially $r \mapsto (r + 10^{8} / (x_{1} r)) / 2$, starting % from a guess that optimizes the number of steps before convergence. % In fact, just as there is a slight shift when computing divisions to % ensure that some inequalities hold, we replace $10^{8}$ by a % slightly larger number which ensures that $r^2 x \geq 10^{4}$. % This also causes $r \in [101, 1003]$. Another correction to the above % is that the input is actually normalized to $[0.1,1)$, and we use % either $10^{8}$ or $10^{9}$ in the Newton method, depending on the % parity of the exponent. Skipping those technical hurdles, once we % have the approximation~$r$, we set $y = 10^{-4} r^{2} x$ (or rather, % the correct power of~$10$ to get $y\simeq 1$) and compute $y^{-1/2}$ % through another application of Newton's method. This time, the % starting value is $z=1$, each step maps $z \mapsto z(1.5-0.5yz^2)$, % and we perform a fixed number of steps. Our final result combines~$r$ % with $y^{-1/2}$ as $x^{-1/2} = 10^{-2} r y^{-1/2}$. % % ^^A todo: doc that the operand may not be zero (or fix ep_to_ep above) % \begin{macro}[EXP]{\@@_ep_isqrt:wwn} % \begin{macro}[EXP] % {\@@_ep_isqrt_aux:wwn, \@@_ep_isqrt_auxii:wwnnnwn} % First normalize the input, then check the parity of the % exponent~|#1|. If it is even, the result's exponent will be % $-|#1|/2$, otherwise it will be $(|#1|-1)/2$ (except in the case % where the input was an exact power of $100$). The \texttt{auxii} % function receives as~|#1| the result's exponent just computed, as % |#2| the starting value for the iteration giving~$r$ (the % values~$168$ and~$535$ lead to the least number of iterations before % convergence, on average), as |#3| and~|#4| one empty argument and % one~|0|, depending on the parity of the original exponent, as |#5| % and~|#6| the normalized mantissa ($|#5|\in[1000,9999]$), and as |#7| % the continuation. It sets up the iteration giving~$r$: the % \texttt{esti} function thus receives the initial two guesses |#2| % and~$0$, an approximation~|#5| of~$10^{4}x$ (its first block of % digits), and the empty/zero arguments |#3| and~|#4|, followed by the % mantissa and an altered continuation where we have stored the % result's exponent. % \begin{macrocode} \cs_new:Npn \@@_ep_isqrt:wwn #1,#2; { \@@_ep_to_ep:wwN #1,#2; \@@_ep_isqrt_auxi:wwn } \cs_new:Npn \@@_ep_isqrt_auxi:wwn #1, { \exp_after:wN \@@_ep_isqrt_auxii:wwnnnwn \int_value:w \@@_int_eval:w \int_if_odd:nTF {#1} { (1 - #1) / 2 , 535 , { 0 } { } } { 1 - #1 / 2 , 168 , { } { 0 } } } \cs_new:Npn \@@_ep_isqrt_auxii:wwnnnwn #1, #2, #3#4 #5#6; #7 { \@@_ep_isqrt_esti:wwwnnwn #2, 0, #5, {#3} {#4} {#5} #6 ; { #7 #1 , } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[EXP] % { % \@@_ep_isqrt_esti:wwwnnwn, % \@@_ep_isqrt_estii:wwwnnwn, % \@@_ep_isqrt_estiii:NNNNNwwwn % } % If the last two approximations gave the same result, we are done: % call the \texttt{estii} function to clean up. Otherwise, evaluate % $(\meta{prev} + 1.005 \cdot 10^{\text{$8$ or $9$}} / (\meta{prev} % \cdot x)) / 2$, as the next approximation: omitting the $1.005$ % factor, this would be Newton's method. We can check by brute force % that if |#4| is empty (the original exponent was even), the process % computes an integer slightly larger than $100 / \sqrt{x}$, while if % |#4| is~$0$ (the original exponent was odd), the result is an % integer slightly larger than $100 / \sqrt{x/10}$. Once we are done, % we evaluate $100 r^2 / 2$ or $10 r^2 / 2$ (when the exponent is even % or odd, respectively) and feed that to \texttt{estiii}. This third % auxiliary finds $y_{\text{even}} / 2 = 10^{-4} r^2 x / 2$ or % $y_{\text{odd}} / 2 = 10^{-5} r^2 x / 2$ (again, depending on % earlier parity). A simple program shows that $y\in [1, 1.0201]$. % The number $y/2$ is fed to \cs{@@_ep_isqrt_epsi:wN}, which computes % $1/\sqrt{y}$, and we finally multiply the result by~$r$. % \begin{macrocode} \cs_new:Npn \@@_ep_isqrt_esti:wwwnnwn #1, #2, #3, #4 { \if_int_compare:w #1 = #2 \exp_stop_f: \exp_after:wN \@@_ep_isqrt_estii:wwwnnwn \fi: \exp_after:wN \@@_ep_isqrt_esti:wwwnnwn \int_value:w \@@_int_eval:w (#1 + 1 0050 0000 #4 / (#1 * #3)) / 2 , #1, #3, {#4} } \cs_new:Npn \@@_ep_isqrt_estii:wwwnnwn #1, #2, #3, #4#5 { \exp_after:wN \@@_ep_isqrt_estiii:NNNNNwwwn \int_value:w \@@_int_eval:w 1000 0000 + #2 * #2 #5 * 5 \exp_after:wN , \int_value:w \@@_int_eval:w 10000 + #2 ; } \cs_new:Npn \@@_ep_isqrt_estiii:NNNNNwwwn 1#1#2#3#4#5#6, 1#7#8; #9; { \@@_fixed_mul_short:wwn #9; {#1} {#2#3#4#5} {#600} ; \@@_ep_isqrt_epsi:wN \@@_fixed_mul_short:wwn {#7} {#80} {0000} ; } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_ep_isqrt_epsi:wN, \@@_ep_isqrt_epsii:wwN} % Here, we receive a fixed point number $y/2$ with $y\in[1,1.0201]$. % Starting from $z = 1$ we iterate $z \mapsto z(3/2 - z^2 y/2)$. In % fact, we start from the first iteration $z=3/2-y/2$ to avoid useless % multiplications. The \texttt{epsii} auxiliary receives $z$ as~|#1| % and $y$ as~|#2|. % \begin{macrocode} \cs_new:Npn \@@_ep_isqrt_epsi:wN #1; { \@@_fixed_sub:wwn {15000}{0000}{0000}{0000}{0000}{0000}; #1; \@@_ep_isqrt_epsii:wwN #1; \@@_ep_isqrt_epsii:wwN #1; \@@_ep_isqrt_epsii:wwN #1; } \cs_new:Npn \@@_ep_isqrt_epsii:wwN #1; #2; { \@@_fixed_mul:wwn #1; #1; \@@_fixed_mul_sub_back:wwwn #2; {15000}{0000}{0000}{0000}{0000}{0000}; \@@_fixed_mul:wwn #1; } % \end{macrocode} % \end{macro} % % \subsection{Converting from fixed point to floating point} % ^^A todo: doc % % After computing Taylor series, we wish to convert the result from % extended precision (with or without an exponent) to the public % floating point format. The functions here should be called within an % integer expression for the overall exponent of the floating point. % % \begin{macro}[rEXP]{\@@_ep_to_float_o:wwN, \@@_ep_inv_to_float_o:wwN} % An extended-precision number is simply a comma-delimited exponent % followed by a fixed point number. Leave the exponent in the current % integer expression then convert the fixed point number. % \begin{macrocode} \cs_new:Npn \@@_ep_to_float_o:wwN #1, { + \@@_int_eval:w #1 \@@_fixed_to_float_o:wN } \cs_new:Npn \@@_ep_inv_to_float_o:wwN #1,#2; { \@@_ep_div:wwwwn 1,{1000}{0000}{0000}{0000}{0000}{0000}; #1,#2; \@@_ep_to_float_o:wwN } % \end{macrocode} % \end{macro} % % \begin{macro}[rEXP]{\@@_fixed_inv_to_float_o:wN} % Another function which reduces to converting an extended precision % number to a float. % \begin{macrocode} \cs_new:Npn \@@_fixed_inv_to_float_o:wN { \@@_ep_inv_to_float_o:wwN 0, } % \end{macrocode} % \end{macro} % % \begin{macro}[rEXP]{\@@_fixed_to_float_rad_o:wN} % Converts the fixed point number~|#1| from degrees to radians then to % a floating point number. This could perhaps remain in % \pkg{l3fp-trig}. % \begin{macrocode} \cs_new:Npn \@@_fixed_to_float_rad_o:wN #1; { \@@_fixed_mul:wwn #1; {5729}{5779}{5130}{8232}{0876}{7981}; { \@@_ep_to_float_o:wwN 2, } } % \end{macrocode} % \end{macro} % % ^^A todo: make exponents end in ',' consistently throughout l3fp % \begin{macro}[rEXP] % {\@@_fixed_to_float_o:wN, \@@_fixed_to_float_o:Nw} % \begin{syntax} % \ldots{} \cs{@@_int_eval:w} \meta{exponent} \cs{@@_fixed_to_float_o:wN} \Arg{a_1} \Arg{a_2} \Arg{a_3} \Arg{a_4} \Arg{a_5} \Arg{a_6} |;| \meta{sign} % \end{syntax} % yields % \begin{quote} % \meta{exponent'} |;| \Arg{a'_1} \Arg{a'_2} \Arg{a'_3} \Arg{a'_4} |;| % \end{quote} % And the \texttt{to_fixed} version gives six brace groups instead of % $4$, ensuring that $1000\leq\meta{a'_1}\leq 9999$. At this stage, we % know that \meta{a_1} is positive (otherwise, it is sign of an error % before), and we assume that it is less than $10^8$.\footnote{Bruno: % I must double check this assumption.} % %^^A todo: round properly when rounding to infinity: I need the sign. % \begin{macrocode} \cs_new:Npn \@@_fixed_to_float_o:Nw #1#2; { \@@_fixed_to_float_o:wN #2; #1 } \cs_new:Npn \@@_fixed_to_float_o:wN #1#2#3#4#5#6; #7 { % for the 8-digit-at-the-start thing + \@@_int_eval:w \c_@@_block_int \exp_after:wN \exp_after:wN \exp_after:wN \@@_fixed_to_loop:N \exp_after:wN \use_none:n \int_value:w \@@_int_eval:w 1 0000 0000 + #1 \exp_after:wN \@@_use_none_stop_f:n \int_value:w 1#2 \exp_after:wN \@@_use_none_stop_f:n \int_value:w 1#3#4 \exp_after:wN \@@_use_none_stop_f:n \int_value:w 1#5#6 \exp_after:wN ; \exp_after:wN ; } \cs_new:Npn \@@_fixed_to_loop:N #1 { \if_meaning:w 0 #1 - 1 \exp_after:wN \@@_fixed_to_loop:N \else: \exp_after:wN \@@_fixed_to_loop_end:w \exp_after:wN #1 \fi: } \cs_new:Npn \@@_fixed_to_loop_end:w #1 #2 ; { \if_meaning:w ; #1 \exp_after:wN \@@_fixed_to_float_zero:w \else: \exp_after:wN \@@_pack_twice_four:wNNNNNNNN \exp_after:wN \@@_pack_twice_four:wNNNNNNNN \exp_after:wN \@@_fixed_to_float_pack:ww \exp_after:wN ; \fi: #1 #2 0000 0000 0000 0000 ; } \cs_new:Npn \@@_fixed_to_float_zero:w ; 0000 0000 0000 0000 ; { - 2 * \c_@@_max_exponent_int ; {0000} {0000} {0000} {0000} ; } \cs_new:Npn \@@_fixed_to_float_pack:ww #1 ; #2#3 ; ; { \if_int_compare:w #2 > 4 \exp_stop_f: \exp_after:wN \@@_fixed_to_float_round_up:wnnnnw \fi: ; #1 ; } \cs_new:Npn \@@_fixed_to_float_round_up:wnnnnw ; #1#2#3#4 ; { \exp_after:wN \@@_basics_pack_high:NNNNNw \int_value:w \@@_int_eval:w 1 #1#2 \exp_after:wN \@@_basics_pack_low:NNNNNw \int_value:w \@@_int_eval:w 1 #3#4 + 1 ; } % \end{macrocode} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \end{implementation} % % \PrintChanges % % \PrintIndex