% \iffalse meta-comment % %% File: l3fp-expo.dtx Copyright (C) 2011-2014,2016,2017 The LaTeX3 Project % % It may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this % license or (at your option) any later version. The latest version % of this license is in the file % % http://www.latex-project.org/lppl.txt % % This file is part of the "l3kernel bundle" (The Work in LPPL) % and all files in that bundle must be distributed together. % % ----------------------------------------------------------------------- % % The development version of the bundle can be found at % % https://github.com/latex3/latex3 % % for those people who are interested. % %<*driver> \documentclass[full]{l3doc} \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \title{The \textsf{l3fp-expo} package\\ % Floating point exponential-related functions} % \author{^^A % The \LaTeX3 Project\thanks % {^^A % E-mail: % \href{mailto:latex-team@latex-project.org} % {latex-team@latex-project.org}^^A % }^^A % } % \date{Released 2017/04/01} % % \maketitle % % \begin{documentation} % % \end{documentation} % % \begin{implementation} % % \section{\pkg{l3fp-expo} implementation} % % \begin{macrocode} %<*initex|package> % \end{macrocode} % % \begin{macrocode} %<@@=fp> % \end{macrocode} % % \begin{macro}[aux, EXP] % { % \@@_parse_word_exp:N , % \@@_parse_word_ln:N , % } % Unary functions. % \begin{macrocode} \cs_new:Npn \@@_parse_word_exp:N { \@@_parse_unary_function:NNN \@@_exp_o:w ? } \cs_new:Npn \@@_parse_word_ln:N { \@@_parse_unary_function:NNN \@@_ln_o:w ? } % \end{macrocode} % \end{macro} % % \subsection{Logarithm} % % \subsubsection{Work plan} % % As for many other functions, we filter out special cases in % \cs{@@_ln_o:w}. Then \cs{@@_ln_npos_o:w} receives a positive normal % number, which we write in the form $a\cdot 10^{b}$ with $a\in[0.1,1)$. % % \emph{The rest of this section is actually not in sync with the code. % Or is the code not in sync with the section? In the current code, % $c\in [1,10]$ will be such that $0.7\leq ac < 1.4$.} % % We are given a positive normal number, of the form $a\cdot 10^{b}$ % with $a\in[0.1,1)$. To compute its logarithm, we find a small integer % $5\leq c < 50$ such that $0.91 \leq a c / 5 < 1.1$, and use the % relation % \begin{equation*} % \ln (a \cdot 10^b) = b \cdot \ln (10) - \ln (c/5) + \ln (ac/5). % \end{equation*} % The logarithms $\ln(10)$ and $\ln(c/5)$ are looked up in a table. The % last term is computed using the following Taylor series of $\ln$ near % $1$: % \begin{equation*} % \ln\left(\frac{ac}{5}\right) % = \ln\left(\frac{1+t}{1-t}\right) % = 2t\left(1 + t^2 \left(\frac{1}{3} + t^2 \left(\frac{1}{5} % + t^2 \left(\frac{1}{7} + t^2 \left( \frac{1}{9} + \cdots % \right)\right)\right)\right)\right) % \end{equation*} % where $t=1-10/(ac+5)$. We can now see one reason for the choice of % $ac\sim 5$: then $ac+5=10(1-\epsilon)$ with $-0.05<\epsilon\leq % 0.045$, hence % \begin{equation*} % t = \frac{\epsilon}{1-\epsilon} % = \epsilon (1+\epsilon)(1+\epsilon^2)(1+\epsilon^4)\ldots, % \end{equation*} % is not too difficult to compute. % % \subsubsection{Some constants} % % \begin{variable}[aux] % { % \c_@@_ln_i_fixed_tl , % \c_@@_ln_ii_fixed_tl , % \c_@@_ln_iii_fixed_tl , % \c_@@_ln_iv_fixed_tl , % \c_@@_ln_vi_fixed_tl , % \c_@@_ln_vii_fixed_tl , % \c_@@_ln_viii_fixed_tl , % \c_@@_ln_ix_fixed_tl , % \c_@@_ln_x_fixed_tl, % } % A few values of the logarithm as extended fixed point numbers. % Those are needed in the implementation. It turns out that we don't % need the value of $\ln(5)$. % \begin{macrocode} \tl_const:Nn \c_@@_ln_i_fixed_tl { {0000}{0000}{0000}{0000}{0000}{0000};} \tl_const:Nn \c_@@_ln_ii_fixed_tl { {6931}{4718}{0559}{9453}{0941}{7232};} \tl_const:Nn \c_@@_ln_iii_fixed_tl {{10986}{1228}{8668}{1096}{9139}{5245};} \tl_const:Nn \c_@@_ln_iv_fixed_tl {{13862}{9436}{1119}{8906}{1883}{4464};} \tl_const:Nn \c_@@_ln_vi_fixed_tl {{17917}{5946}{9228}{0550}{0081}{2477};} \tl_const:Nn \c_@@_ln_vii_fixed_tl {{19459}{1014}{9055}{3133}{0510}{5353};} \tl_const:Nn \c_@@_ln_viii_fixed_tl{{20794}{4154}{1679}{8359}{2825}{1696};} \tl_const:Nn \c_@@_ln_ix_fixed_tl {{21972}{2457}{7336}{2193}{8279}{0490};} \tl_const:Nn \c_@@_ln_x_fixed_tl {{23025}{8509}{2994}{0456}{8401}{7991};} % \end{macrocode} % \end{variable} % % \subsubsection{Sign, exponent, and special numbers} % % \begin{macro}[EXP, int]{\@@_ln_o:w} % The logarithm of negative numbers (including $-\infty$ and $-0$) % raises the \enquote{invalid} exception. The logarithm of $+0$ is % $-\infty$, raising a division by zero exception. The logarithm of % $+\infty$ or a \texttt{nan} is itself. Positive normal numbers call % \cs{@@_ln_npos_o:w}. % \begin{macrocode} \cs_new:Npn \@@_ln_o:w #1 \s_@@ \@@_chk:w #2#3#4; @ { \if_meaning:w 2 #3 \@@_case_use:nw { \@@_invalid_operation_o:nw { ln } } \fi: \if_case:w #2 \exp_stop_f: \@@_case_use:nw { \@@_division_by_zero_o:Nnw \c_minus_inf_fp { ln } } \or: \else: \@@_case_return_same_o:w \fi: \@@_ln_npos_o:w \s_@@ \@@_chk:w #2#3#4; } % \end{macrocode} % \end{macro} % % \subsubsection{Absolute ln} % % \begin{macro}[aux, EXP]{\@@_ln_npos_o:w} % We catch the case of a significand very close to $0.1$ or to $1$. % In all other cases, the final result is at least $10^{-4}$, and % then an error of $0.5\cdot 10^{-20}$ is acceptable. % \begin{macrocode} \cs_new:Npn \@@_ln_npos_o:w \s_@@ \@@_chk:w 10#1#2#3; { %^^A todo: ln(1) should be "exact zero", not "underflow" \exp_after:wN \@@_sanitize:Nw \__int_value:w % for the overall sign \if_int_compare:w #1 < 1 \exp_stop_f: 2 \else: 0 \fi: \exp_after:wN \exp_stop_f: \__int_value:w \__int_eval:w % for the exponent \@@_ln_significand:NNNNnnnN #2#3 \@@_ln_exponent:wn {#1} } % \end{macrocode} % \end{macro} % % \begin{macro}[aux, EXP]{\@@_ln_significand:NNNNnnnN} % \begin{quote} % \cs{@@_ln_significand:NNNNnnnN} \meta{X_1} \Arg{X_2} \Arg{X_3} % \Arg{X_4} \meta{continuation} % \end{quote} % This function expands to % \begin{quote} % \meta{continuation} \Arg{Y_1} \Arg{Y_2} \Arg{Y_3} \Arg{Y_4} % \Arg{Y_5} \Arg{Y_6} |;| % \end{quote} % where $Y = - \ln(X)$ as an extended fixed point. % \begin{macrocode} \cs_new:Npn \@@_ln_significand:NNNNnnnN #1#2#3#4 { \exp_after:wN \@@_ln_x_ii:wnnnn \__int_value:w \if_case:w #1 \exp_stop_f: \or: \if_int_compare:w #2 < 4 \exp_stop_f: \__int_eval:w 10 - #2 \else: 6 \fi: \or: 4 \or: 3 \or: 2 \or: 2 \or: 2 \else: 1 \fi: ; { #1 #2 #3 #4 } } % \end{macrocode} % \end{macro} % % \begin{macro}[aux, EXP]{\@@_ln_x_ii:wnnnn} % We have thus found $c \in [1,10]$ such that $0.7\leq ac < 1.4$ % in all cases. Compute $ 1 + x = 1 + ac \in [1.7,2.4)$. % \begin{macrocode} \cs_new:Npn \@@_ln_x_ii:wnnnn #1; #2#3#4#5 { \exp_after:wN \@@_ln_div_after:Nw \cs:w c_@@_ln_ \__int_to_roman:w #1 _fixed_tl \exp_after:wN \cs_end: \__int_value:w \exp_after:wN \@@_ln_x_iv:wnnnnnnnn \__int_value:w \__int_eval:w \exp_after:wN \@@_ln_x_iii_var:NNNNNw \__int_value:w \__int_eval:w 9999 9990 + #1*#2#3 + \exp_after:wN \@@_ln_x_iii:NNNNNNw \__int_value:w \__int_eval:w 10 0000 0000 + #1*#4#5 ; {20000} {0000} {0000} {0000} } %^^A todo: reoptimize (a generalization attempt failed). \cs_new:Npn \@@_ln_x_iii:NNNNNNw #1#2 #3#4#5#6 #7; { #1#2; {#3#4#5#6} {#7} } \cs_new:Npn \@@_ln_x_iii_var:NNNNNw #1 #2#3#4#5 #6; { #1#2#3#4#5 + 1 ; {#1#2#3#4#5} {#6} } % \end{macrocode} % The Taylor series will be expressed in terms of % $t = (x-1)/(x+1) = 1 - 2/(x+1)$. We now compute the % quotient with extended precision, reusing some code % from \cs{@@_/_o:ww}. Note that $1+x$ is known exactly. % % To reuse notations from \pkg{l3fp-basics}, we want to % compute $ A / Z $ with $ A = 2 $ and $ Z = x + 1 $. % In \pkg{l3fp-basics}, we considered the case where % both $A$ and $Z$ are arbitrary, in the range $[0.1,1)$, % and we had to monitor the growth of the sequence of % remainders $A$, $B$, $C$, etc. to ensure that no overflow % occurred during the computation of the next quotient. % The main source of risk was our choice to define the % quotient as roughly $10^9 \cdot A / 10^5 \cdot Z$: then % $A$ was bound to be below $2.147\cdots$, and this limit % was never far. % % In our case, we can simply work with $10^8 \cdot A$ and % $10^4 \cdot Z$, because our reason to work with higher % powers has gone: we needed the integer $y \simeq 10^5 \cdot Z$ % to be at least $10^4$, and now, the definition % $y \simeq 10^4 \cdot Z$ suffices. % % Let us thus define $y = \left\lfloor 10^4 \cdot Z \right\rfloor + 1 % \in ( 1.7 \cdot 10^4, 2.4 \cdot 10^4 ] $, and % \[ % Q_{1} % = % \left\lfloor % \frac {\left\lfloor 10^8 \cdot A\right\rfloor} {y} - \frac{1}{2} % \right\rfloor. % \] % (The $1/2$ comes from how e\TeX{} rounds.) As for division, it is % easy to see that $Q_{1} \leq 10^4 A / Z$, \emph{i.e.}, $Q_{1}$ % is an underestimate. % % Exactly as we did for division, we set $B = 10^4 A - Q_{1}Z$. Then % \begin{align*} % 10^4 B % & \leq % A_{1}A_{2}.A_{3}A_{4} % - \left( \frac{A_{1}A_{2}}{y} - \frac{3}{2} \right) 10^4 Z % \\ % & \leq % A_{1}A_{2} \left( 1 - \frac{10^4 Z}{y} \right) + 1 + \frac{3}{2} y % \\ % & \leq % 10^8 \frac{A}{y} + 1 + \frac{3}{2} y % \end{align*} % In the same way, and using $1.7\cdot 10^4\leq y\leq 2.4\cdot 10^4$, % and convexity, we get % \begin{align*} % 10^4 A &= 2\cdot 10^4 \\ % 10^4 B &\leq 10^8 \frac{A}{y} + 1.6 y \leq 4.7\cdot 10^4\\ % 10^4 C &\leq 10^8 \frac{B}{y} + 1.6 y \leq 5.8\cdot 10^4\\ % 10^4 D &\leq 10^8 \frac{C}{y} + 1.6 y \leq 6.3\cdot 10^4\\ % 10^4 E &\leq 10^8 \frac{D}{y} + 1.6 y \leq 6.5\cdot 10^4\\ % 10^4 F &\leq 10^8 \frac{E}{y} + 1.6 y \leq 6.6\cdot 10^4\\ % \end{align*} % Note that we compute more steps than for division: since $t$ is % not the end result, we need to know it with more accuracy % (on the other hand, the ending is much simpler, as we don't % need an exact rounding for transcendental functions, but just % a faithful rounding). % ^^A todo: doc % % \begin{quote} % \cs{@@_ln_x_iv:wnnnnnnnn} % \meta{1 or 2} \meta{8d} |;| \Arg{4d} \Arg{4d} \meta{fixed-tl} % \end{quote} % The number is $x$. Compute $y$ by adding 1 to the five first digits. % \begin{macrocode} \cs_new:Npn \@@_ln_x_iv:wnnnnnnnn #1; #2#3#4#5 #6#7#8#9 { \exp_after:wN \@@_div_significand_pack:NNN \__int_value:w \__int_eval:w \@@_ln_div_i:w #1 ; #6 #7 ; {#8} {#9} {#2} {#3} {#4} {#5} { \exp_after:wN \@@_ln_div_ii:wwn \__int_value:w #1 } { \exp_after:wN \@@_ln_div_ii:wwn \__int_value:w #1 } { \exp_after:wN \@@_ln_div_ii:wwn \__int_value:w #1 } { \exp_after:wN \@@_ln_div_ii:wwn \__int_value:w #1 } { \exp_after:wN \@@_ln_div_vi:wwn \__int_value:w #1 } } \cs_new:Npn \@@_ln_div_i:w #1; { \exp_after:wN \@@_div_significand_calc:wwnnnnnnn \__int_value:w \__int_eval:w 999999 + 2 0000 0000 / #1 ; % Q1 } \cs_new:Npn \@@_ln_div_ii:wwn #1; #2;#3 % y; B1;B2 <- for k=1 { \exp_after:wN \@@_div_significand_pack:NNN \__int_value:w \__int_eval:w \exp_after:wN \@@_div_significand_calc:wwnnnnnnn \__int_value:w \__int_eval:w 999999 + #2 #3 / #1 ; % Q2 #2 #3 ; } \cs_new:Npn \@@_ln_div_vi:wwn #1; #2;#3#4#5 #6#7#8#9 %y;F1;F2F3F4x1x2x3x4 { \exp_after:wN \@@_div_significand_pack:NNN \__int_value:w \__int_eval:w 1000000 + #2 #3 / #1 ; % Q6 } % \end{macrocode} % We now have essentially % ^^A todo: determine error on $Q_{6}$ (probably $6.7$), % ^^A todo: conclude the final result is off by $<10^{-23}$ % \begin{quote} % \cs{@@_ln_div_after:Nw} \meta{fixed tl} % \cs{@@_div_significand_pack:NNN} $10^6 + Q_{1}$ % \cs{@@_div_significand_pack:NNN} $10^6 + Q_{2}$ % \cs{@@_div_significand_pack:NNN} $10^6 + Q_{3}$ % \cs{@@_div_significand_pack:NNN} $10^6 + Q_{4}$ % \cs{@@_div_significand_pack:NNN} $10^6 + Q_{5}$ % \cs{@@_div_significand_pack:NNN} $10^6 + Q_{6}$ |;| % \meta{exponent} |;| \meta{continuation} % \end{quote} % where \meta{fixed tl} holds the logarithm of a number % in $[1,10]$, and \meta{exponent} is % the exponent. Also, the expansion is done backwards. Then % \cs{@@_div_significand_pack:NNN} puts things in the % correct order to add the $Q_{i}$ together and put semicolons % between each piece. Once those have been expanded, we get % \begin{quote} % \cs{@@_ln_div_after:Nw} \meta{fixed-tl} \meta{1d} |;| \meta{4d} |;| \meta{4d} |;| \meta{4d} |;| \meta{4d} |;| \meta{4d} |;| \meta{4d} |;| \meta{exponent} |;| % \end{quote} % ^^A todo: redoc. % Just as with division, we know that the first two digits % are |1| and |0| because of bounds on the final result of % the division $2/(x+1)$, which is between roughly $0.8$ and $1.2$. % We then compute $1-2/(x+1)$, after testing whether $2/(x+1)$ is % greater than or smaller than $1$. % \begin{macrocode} \cs_new:Npn \@@_ln_div_after:Nw #1#2; { \if_meaning:w 0 #2 \exp_after:wN \@@_ln_t_small:Nw \else: \exp_after:wN \@@_ln_t_large:NNw \exp_after:wN - \fi: #1 } \cs_new:Npn \@@_ln_t_small:Nw #1 #2; #3; #4; #5; #6; #7; { \exp_after:wN \@@_ln_t_large:NNw \exp_after:wN + % \exp_after:wN #1 \__int_value:w \__int_eval:w 9999 - #2 \exp_after:wN ; \__int_value:w \__int_eval:w 9999 - #3 \exp_after:wN ; \__int_value:w \__int_eval:w 9999 - #4 \exp_after:wN ; \__int_value:w \__int_eval:w 9999 - #5 \exp_after:wN ; \__int_value:w \__int_eval:w 9999 - #6 \exp_after:wN ; \__int_value:w \__int_eval:w 1 0000 - #7 ; } % \end{macrocode} % % \begin{quote} % \cs{@@_ln_t_large:NNw} \meta{sign}\meta{fixed tl} \meta{t_1}|;| \meta{t_2} |;| \meta{t_3}|;| \meta{t_4}|;| \meta{t_5} |;| \meta{t_6}|;| \meta{exponent} |;| \meta{continuation} % \end{quote} % Compute the square $|t|^2$, and keep $|t|$ at the end with its % sign. We know that $|t|<0.1765$, so every piece has at most $4$ % digits. However, since we were not careful in \cs{@@_ln_t_small:w}, % they can have less than $4$ digits. % \begin{macrocode} \cs_new:Npn \@@_ln_t_large:NNw #1 #2 #3; #4; #5; #6; #7; #8; { \exp_after:wN \@@_ln_square_t_after:w \__int_value:w \__int_eval:w 9999 0000 + #3*#3 \exp_after:wN \@@_ln_square_t_pack:NNNNNw \__int_value:w \__int_eval:w 9999 0000 + 2*#3*#4 \exp_after:wN \@@_ln_square_t_pack:NNNNNw \__int_value:w \__int_eval:w 9999 0000 + 2*#3*#5 + #4*#4 \exp_after:wN \@@_ln_square_t_pack:NNNNNw \__int_value:w \__int_eval:w 9999 0000 + 2*#3*#6 + 2*#4*#5 \exp_after:wN \@@_ln_square_t_pack:NNNNNw \__int_value:w \__int_eval:w 1 0000 0000 + 2*#3*#7 + 2*#4*#6 + #5*#5 + (2*#3*#8 + 2*#4*#7 + 2*#5*#6) / 1 0000 % ; ; ; \exp_after:wN \@@_ln_twice_t_after:w \__int_value:w \__int_eval:w -1 + 2*#3 \exp_after:wN \@@_ln_twice_t_pack:Nw \__int_value:w \__int_eval:w 9999 + 2*#4 \exp_after:wN \@@_ln_twice_t_pack:Nw \__int_value:w \__int_eval:w 9999 + 2*#5 \exp_after:wN \@@_ln_twice_t_pack:Nw \__int_value:w \__int_eval:w 9999 + 2*#6 \exp_after:wN \@@_ln_twice_t_pack:Nw \__int_value:w \__int_eval:w 9999 + 2*#7 \exp_after:wN \@@_ln_twice_t_pack:Nw \__int_value:w \__int_eval:w 10000 + 2*#8 ; ; { \@@_ln_c:NwNw #1 } #2 } \cs_new:Npn \@@_ln_twice_t_pack:Nw #1 #2; { + #1 ; {#2} } \cs_new:Npn \@@_ln_twice_t_after:w #1; { ;;; {#1} } \cs_new:Npn \@@_ln_square_t_pack:NNNNNw #1 #2#3#4#5 #6; { + #1#2#3#4#5 ; {#6} } \cs_new:Npn \@@_ln_square_t_after:w 1 0 #1#2#3 #4; { \@@_ln_Taylor:wwNw {0#1#2#3} {#4} } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_ln_Taylor:wwNw} % Denoting $T=t^2$, we get % \begin{quote} % \cs{@@_ln_Taylor:wwNw} % \Arg{T_1} \Arg{T_2} \Arg{T_3} \Arg{T_4} \Arg{T_5} \Arg{T_6} |;| |;| % \Arg{(2t)_1} \Arg{(2t)_2} \Arg{(2t)_3} \Arg{(2t)_4} \Arg{(2t)_5} \Arg{(2t)_6} |;| % |{| \cs{@@_ln_c:NwNw} \meta{sign} |}| % \meta{fixed tl} \meta{exponent} |;| \meta{continuation} % \end{quote} % And we want to compute % \[ % \ln\left(\frac{1+t}{1-t}\right) % = 2t\left(1 + T \left(\frac{1}{3} + T \left(\frac{1}{5} % + T \left(\frac{1}{7} + T \left( \frac{1}{9} + \cdots % \right)\right)\right)\right)\right) % \] % The process looks as follows % \begin{verbatim} % \loop 5; A; % \div_int 5; 1.0; \add A; \mul T; {\loop \eval 5-2;} % \add 0.2; A; \mul T; {\loop \eval 5-2;} % \mul B; T; {\loop 3;} % \loop 3; C; % \end{verbatim} % ^^A todo: doc % % This uses the routine for dividing a number by a small integer % (${}<10^4$). % \begin{macrocode} \cs_new:Npn \@@_ln_Taylor:wwNw { \@@_ln_Taylor_loop:www 21 ; {0000}{0000}{0000}{0000}{0000}{0000} ; } \cs_new:Npn \@@_ln_Taylor_loop:www #1; #2; #3; { \if_int_compare:w #1 = 1 \exp_stop_f: \@@_ln_Taylor_break:w \fi: \exp_after:wN \@@_fixed_div_int:wwN \c_@@_one_fixed_tl #1; \@@_fixed_add:wwn #2; \@@_fixed_mul:wwn #3; { \exp_after:wN \@@_ln_Taylor_loop:www \__int_value:w \__int_eval:w #1 - 2 ; } #3; } \cs_new:Npn \@@_ln_Taylor_break:w \fi: #1 \@@_fixed_add:wwn #2#3; #4 ;; { \fi: \exp_after:wN \@@_fixed_mul:wwn \exp_after:wN { \__int_value:w \__int_eval:w 10000 + #2 } #3; } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_ln_c:NwNw} % \begin{quote} % \cs{@@_ln_c:NwNw} \meta{sign} % \Arg{r_1} \Arg{r_2} \Arg{r_3} \Arg{r_4} \Arg{r_5} \Arg{r_6} |;| % \meta{fixed tl} \meta{exponent} |;| \meta{continuation} % \end{quote} % We are now reduced to finding $\ln(c)$ and $\meta{exponent}\ln(10)$ % in a table, and adding it to the mixture. The first step is to % get $\ln(c) - \ln(x) = - \ln(a)$, then we get $|b|\ln(10)$ and add % or subtract. % % For now, $\ln(x)$ is given as $\cdot 10^0$. Unless both the exponent % is $1$ and $c=1$, we shift to working in units of $\cdot 10^4$, % since the final result will be at least $\ln(10/7) \simeq % 0.35$. % \begin{macrocode} \cs_new:Npn \@@_ln_c:NwNw #1 #2; #3 { \if_meaning:w + #1 \exp_after:wN \exp_after:wN \exp_after:wN \@@_fixed_sub:wwn \else: \exp_after:wN \exp_after:wN \exp_after:wN \@@_fixed_add:wwn \fi: #3 #2 ; } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_ln_exponent:wn} % \begin{quote}\raggedright % \cs{@@_ln_exponent:wn} % \Arg{s_1} \Arg{s_2} \Arg{s_3} \Arg{s_4} \Arg{s_5} \Arg{s_6} |;| % \Arg{exponent} % \end{quote} % Compute \meta{exponent} times $\ln(10)$. Apart from the cases where % \meta{exponent} is $0$ or $1$, the result will necessarily be at % least $\ln(10) \simeq 2.3$ in magnitude. We can thus drop the least % significant $4$ digits. In the case of a very large (positive or % negative) exponent, we can (and we need to) drop $4$ additional % digits, since the result is of order $10^4$. Naively, one would % think that in both cases we can drop $4$ more digits than we do, % but that would be slightly too tight for rounding to happen correctly. % Besides, we already have addition and subtraction for $24$ digits % fixed point numbers. % \begin{macrocode} \cs_new:Npn \@@_ln_exponent:wn #1; #2 { \if_case:w #2 \exp_stop_f: 0 \@@_case_return:nw { \@@_fixed_to_float_o:Nw 2 } \or: \exp_after:wN \@@_ln_exponent_one:ww \__int_value:w \else: \if_int_compare:w #2 > 0 \exp_stop_f: \exp_after:wN \@@_ln_exponent_small:NNww \exp_after:wN 0 \exp_after:wN \@@_fixed_sub:wwn \__int_value:w \else: \exp_after:wN \@@_ln_exponent_small:NNww \exp_after:wN 2 \exp_after:wN \@@_fixed_add:wwn \__int_value:w - \fi: \fi: #2; #1; } % \end{macrocode} % Now we painfully write all the cases.\footnote{Bruno: do rounding.} % No overflow nor underflow can happen, except when computing \texttt{ln(1)}. % \begin{macrocode} \cs_new:Npn \@@_ln_exponent_one:ww 1; #1; { 0 \exp_after:wN \@@_fixed_sub:wwn \c_@@_ln_x_fixed_tl #1; \@@_fixed_to_float_o:wN 0 } % \end{macrocode} % For small exponents, we just drop one block of digits, and set the % exponent of the log to $4$ (minus any shift coming from leading zeros % in the conversion from fixed point to floating point). Note that here % the exponent has been made positive. % \begin{macrocode} \cs_new:Npn \@@_ln_exponent_small:NNww #1#2#3; #4#5#6#7#8#9; { 4 \exp_after:wN \@@_fixed_mul:wwn \c_@@_ln_x_fixed_tl {#3}{0000}{0000}{0000}{0000}{0000} ; #2 {0000}{#4}{#5}{#6}{#7}{#8}; \@@_fixed_to_float_o:wN #1 } % \end{macrocode} % \end{macro} % % \subsection{Exponential} % % \subsubsection{Sign, exponent, and special numbers} % % \begin{macro}[int, EXP]{\@@_exp_o:w} % \begin{macrocode} \cs_new:Npn \@@_exp_o:w #1 \s_@@ \@@_chk:w #2#3#4; @ { \if_case:w #2 \exp_stop_f: \@@_case_return_o:Nw \c_one_fp \or: \exp_after:wN \@@_exp_normal_o:w \or: \if_meaning:w 0 #3 \exp_after:wN \@@_case_return_o:Nw \exp_after:wN \c_inf_fp \else: \exp_after:wN \@@_case_return_o:Nw \exp_after:wN \c_zero_fp \fi: \or: \@@_case_return_same_o:w \fi: \s_@@ \@@_chk:w #2#3#4; } % \end{macrocode} % \end{macro} % % \begin{macro}[aux, EXP]{\@@_exp_normal_o:w, \@@_exp_pos_o:Nnwnw, \@@_exp_overflow:NN} % \begin{macrocode} \cs_new:Npn \@@_exp_normal_o:w \s_@@ \@@_chk:w 1#1 { \if_meaning:w 0 #1 \@@_exp_pos_o:NNwnw + \@@_fixed_to_float_o:wN \else: \@@_exp_pos_o:NNwnw - \@@_fixed_inv_to_float_o:wN \fi: } \cs_new:Npn \@@_exp_pos_o:NNwnw #1#2#3 \fi: #4#5; { \fi: \if_int_compare:w #4 > \c_@@_max_exp_exponent_int \token_if_eq_charcode:NNTF + #1 { \@@_exp_overflow:NN \@@_overflow:w \c_inf_fp } { \@@_exp_overflow:NN \@@_underflow:w \c_zero_fp } \exp:w \else: \exp_after:wN \@@_sanitize:Nw \exp_after:wN 0 \__int_value:w #1 \__int_eval:w \if_int_compare:w #4 < 0 \exp_stop_f: \exp_after:wN \use_i:nn \else: \exp_after:wN \use_ii:nn \fi: { 0 \@@_decimate:nNnnnn { - #4 } \@@_exp_Taylor:Nnnwn } { \@@_decimate:nNnnnn { \c_@@_prec_int - #4 } \@@_exp_pos_large:NnnNwn } #5 {#4} #1 #2 0 \exp:w \fi: \exp_after:wN \exp_end: } \cs_new:Npn \@@_exp_overflow:NN #1#2 { \exp_after:wN \exp_after:wN \exp_after:wN #1 \exp_after:wN #2 } % \end{macrocode} % \end{macro} % % \begin{macro}[int, EXP]{\@@_exp_Taylor:Nnnwn} % \begin{macro}[aux, EXP]{\@@_exp_Taylor_loop:www, \@@_exp_Taylor_break:Nww} % This function is called for numbers in the range $[10^{-9}, % 10^{-1})$. We compute $10$ terms of the Taylor series. The % first argument is irrelevant (rounding digit used by some other % functions). The next three arguments, at least $16$ digits, % delimited by a semicolon, form a fixed point number, so we pack it % in blocks of $4$ digits. % \begin{macrocode} \cs_new:Npn \@@_exp_Taylor:Nnnwn #1#2#3 #4; #5 #6 { #6 \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_pack_twice_four:wNNNNNNNN \@@_exp_Taylor_ii:ww ; #2#3#4 0000 0000 ; } \cs_new:Npn \@@_exp_Taylor_ii:ww #1; #2; { \@@_exp_Taylor_loop:www 10 ; #1 ; #1 ; \s__stop } \cs_new:Npn \@@_exp_Taylor_loop:www #1; #2; #3; { \if_int_compare:w #1 = 1 \exp_stop_f: \exp_after:wN \@@_exp_Taylor_break:Nww \fi: \@@_fixed_div_int:wwN #3 ; #1 ; \@@_fixed_add_one:wN \@@_fixed_mul:wwn #2 ; { \exp_after:wN \@@_exp_Taylor_loop:www \__int_value:w \__int_eval:w #1 - 1 ; #2 ; } } \cs_new:Npn \@@_exp_Taylor_break:Nww #1 #2; #3 \s__stop { \@@_fixed_add_one:wN #2 ; } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[aux, rEXP] % { % \@@_exp_pos_large:NnnNwn , % \@@_exp_large_after:wwn , % \@@_exp_large:w , % \@@_exp_large_v:wN, % \@@_exp_large_iv:wN, % \@@_exp_large_iii:wN, % \@@_exp_large_ii:wN, % \@@_exp_large_i:wN, % \@@_exp_large_:wN, % } % The first two arguments are irrelevant (a rounding digit, and a % brace group with $8$ zeros). The third argument is the integer part % of our number, then we have the decimal part delimited by a % semicolon, and finally the exponent, in the range $[0,5]$. Remove % leading zeros from the integer part: putting |#4| in there too % ensures that an integer part of $0$ is also removed. Then read % digits one by one, looking up $\exp(\meta{digit}\cdot % 10^{\meta{exponent}})$ in a table, and multiplying that to the % current total. The loop is done by having the auxiliary for one % exponent call the auxiliary for the next exponent. The current % total is expressed by leaving the exponent behind in the input % stream (we are currently within an \cs{__int_eval:w}), and keeping % track of a fixed point number, |#1| for the numbered auxiliaries. % Our usage of \cs{if_case:w} is somewhat dirty for optimization: % \TeX{} jumps to the appropriate case, but we then close the % \cs{if_case:w} \enquote{by hand}, using \cs{or:} and \cs{fi:} as % delimiters. % \begin{macrocode} \cs_new:Npn \@@_exp_pos_large:NnnNwn #1#2#3 #4#5; #6 { \exp_after:wN \exp_after:wN \cs:w @@_exp_large_ \__int_to_roman:w #6 :wN \exp_after:wN \cs_end: \exp_after:wN \c_@@_one_fixed_tl \__int_value:w #3 #4 \exp_stop_f: #5 00000 ; } \cs_new:Npn \@@_exp_large:w #1 \or: #2 \fi: { \fi: \@@_fixed_mul:wwn #1; } \cs_new:Npn \@@_exp_large_v:wN #1; #2 { \if_case:w #2 ~ \exp_after:wN \@@_fixed_continue:wn \or: + 4343 \@@_exp_large:w {8806}{8182}{2566}{2921}{5872}{6150} \or: + 8686 \@@_exp_large:w {7756}{0047}{2598}{6861}{0458}{3204} \or: + 13029 \@@_exp_large:w {6830}{5723}{7791}{4884}{1932}{7351} \or: + 17372 \@@_exp_large:w {6015}{5609}{3095}{3052}{3494}{7574} \or: + 21715 \@@_exp_large:w {5297}{7951}{6443}{0315}{3251}{3576} \or: + 26058 \@@_exp_large:w {4665}{6719}{0099}{3379}{5527}{2929} \or: + 30401 \@@_exp_large:w {4108}{9724}{3326}{3186}{5271}{5665} \or: + 34744 \@@_exp_large:w {3618}{6973}{3140}{0875}{3856}{4102} \or: + 39087 \@@_exp_large:w {3186}{9209}{6113}{3900}{6705}{9685} \or: \fi: #1; \@@_exp_large_iv:wN } \cs_new:Npn \@@_exp_large_iv:wN #1; #2 { \if_case:w #2 ~ \exp_after:wN \@@_fixed_continue:wn \or: + 435 \@@_exp_large:w {1970}{0711}{1401}{7046}{9938}{8888} \or: + 869 \@@_exp_large:w {3881}{1801}{9428}{4368}{5764}{8232} \or: + 1303 \@@_exp_large:w {7646}{2009}{8905}{4704}{8893}{1073} \or: + 1738 \@@_exp_large:w {1506}{3559}{7005}{0524}{9009}{7592} \or: + 2172 \@@_exp_large:w {2967}{6283}{8402}{3667}{0689}{6630} \or: + 2606 \@@_exp_large:w {5846}{4389}{5650}{2114}{7278}{5046} \or: + 3041 \@@_exp_large:w {1151}{7900}{5080}{6878}{2914}{4154} \or: + 3475 \@@_exp_large:w {2269}{1083}{0850}{6857}{8724}{4002} \or: + 3909 \@@_exp_large:w {4470}{3047}{3316}{5442}{6408}{6591} \or: \fi: #1; \@@_exp_large_iii:wN } \cs_new:Npn \@@_exp_large_iii:wN #1; #2 { \if_case:w #2 ~ \exp_after:wN \@@_fixed_continue:wn \or: + 44 \@@_exp_large:w {2688}{1171}{4181}{6135}{4484}{1263} \or: + 87 \@@_exp_large:w {7225}{9737}{6812}{5749}{2581}{7748} \or: + 131 \@@_exp_large:w {1942}{4263}{9524}{1255}{9365}{8421} \or: + 174 \@@_exp_large:w {5221}{4696}{8976}{4143}{9505}{8876} \or: + 218 \@@_exp_large:w {1403}{5922}{1785}{2837}{4107}{3977} \or: + 261 \@@_exp_large:w {3773}{0203}{0092}{9939}{8234}{0143} \or: + 305 \@@_exp_large:w {1014}{2320}{5473}{5004}{5094}{5533} \or: + 348 \@@_exp_large:w {2726}{3745}{7211}{2566}{5673}{6478} \or: + 391 \@@_exp_large:w {7328}{8142}{2230}{7421}{7051}{8866} \or: \fi: #1; \@@_exp_large_ii:wN } \cs_new:Npn \@@_exp_large_ii:wN #1; #2 { \if_case:w #2 ~ \exp_after:wN \@@_fixed_continue:wn \or: + 5 \@@_exp_large:w {2202}{6465}{7948}{0671}{6516}{9579} \or: + 9 \@@_exp_large:w {4851}{6519}{5409}{7902}{7796}{9107} \or: + 14 \@@_exp_large:w {1068}{6474}{5815}{2446}{2146}{9905} \or: + 18 \@@_exp_large:w {2353}{8526}{6837}{0199}{8540}{7900} \or: + 22 \@@_exp_large:w {5184}{7055}{2858}{7072}{4640}{8745} \or: + 27 \@@_exp_large:w {1142}{0073}{8981}{5684}{2836}{6296} \or: + 31 \@@_exp_large:w {2515}{4386}{7091}{9167}{0062}{6578} \or: + 35 \@@_exp_large:w {5540}{6223}{8439}{3510}{0525}{7117} \or: + 40 \@@_exp_large:w {1220}{4032}{9431}{7840}{8020}{0271} \or: \fi: #1; \@@_exp_large_i:wN } \cs_new:Npn \@@_exp_large_i:wN #1; #2 { \if_case:w #2 ~ \exp_after:wN \@@_fixed_continue:wn \or: + 1 \@@_exp_large:w {2718}{2818}{2845}{9045}{2353}{6029} \or: + 1 \@@_exp_large:w {7389}{0560}{9893}{0650}{2272}{3043} \or: + 2 \@@_exp_large:w {2008}{5536}{9231}{8766}{7740}{9285} \or: + 2 \@@_exp_large:w {5459}{8150}{0331}{4423}{9078}{1103} \or: + 3 \@@_exp_large:w {1484}{1315}{9102}{5766}{0342}{1116} \or: + 3 \@@_exp_large:w {4034}{2879}{3492}{7351}{2260}{8387} \or: + 4 \@@_exp_large:w {1096}{6331}{5842}{8458}{5992}{6372} \or: + 4 \@@_exp_large:w {2980}{9579}{8704}{1728}{2747}{4359} \or: + 4 \@@_exp_large:w {8103}{0839}{2757}{5384}{0077}{1000} \or: \fi: #1; \@@_exp_large_:wN } \cs_new:Npn \@@_exp_large_:wN #1; #2 { \if_case:w #2 ~ \exp_after:wN \@@_fixed_continue:wn \or: + 1 \@@_exp_large:w {1105}{1709}{1807}{5647}{6248}{1171} \or: + 1 \@@_exp_large:w {1221}{4027}{5816}{0169}{8339}{2107} \or: + 1 \@@_exp_large:w {1349}{8588}{0757}{6003}{1039}{8374} \or: + 1 \@@_exp_large:w {1491}{8246}{9764}{1270}{3178}{2485} \or: + 1 \@@_exp_large:w {1648}{7212}{7070}{0128}{1468}{4865} \or: + 1 \@@_exp_large:w {1822}{1188}{0039}{0508}{9748}{7537} \or: + 1 \@@_exp_large:w {2013}{7527}{0747}{0476}{5216}{2455} \or: + 1 \@@_exp_large:w {2225}{5409}{2849}{2467}{6045}{7954} \or: + 1 \@@_exp_large:w {2459}{6031}{1115}{6949}{6638}{0013} \or: \fi: #1; \@@_exp_large_after:wwn } \cs_new:Npn \@@_exp_large_after:wwn #1; #2; #3 { \@@_exp_Taylor:Nnnwn ? { } { } 0 #2; {} #3 \@@_fixed_mul:wwn #1; } % \end{macrocode} % \end{macro} % % \subsection{Power} % % Raising a number $a$ to a power $b$ leads to many distinct situations. % \begin{center}\def\abs#1{\lvert #1\rvert} % \begin{tabular}{>{$}c<{$}|*8{>{$}l<{$}}} % a^b &-\infty &(-\infty,-0) &-p/5^k &\pm 0 &+p/5^k &(0,\infty) &+\infty &\nan \\ \hline % +\infty &+0 &\multicolumn{2}{c}{$+0$} &+1 &\multicolumn{2}{c}{$+\infty$} &+\infty &\nan \\ % (1,\infty) &+0 &\multicolumn{2}{c}{$+\abs{a}^{b}$} &+1 &\multicolumn{2}{c}{$+\abs{a}^{b}$} &+\infty &\nan \\ % +1 &+1 &\multicolumn{2}{c}{$+1$} &+1 &\multicolumn{2}{c}{$+1$} &+1 &+1 \\ % (0,1) &+\infty &\multicolumn{2}{c}{$+\abs{a}^{b}$} &+1 &\multicolumn{2}{c}{$+\abs{a}^{b}$} &+0 &\nan \\ % +0 &+\infty &\multicolumn{2}{c}{$+\infty$} &+1 &\multicolumn{2}{c}{$+0$} &+0 &\nan \\ % -0 &+\infty &\nan &(-1)^p\infty &+1 &(-1)^p 0 &+0 &+0 &\nan \\ % (-1,0) &+\infty &\nan &(-1)^p\abs{a}^{b} &+1 &(-1)^p\abs{a}^{b} &\nan &+0 &\nan \\ % -1 &+1 &\nan &(-1)^p &+1 &(-1)^p &\nan &+1 &\nan \\ % (-\infty,-1) &+0 &\nan &(-1)^p\abs{a}^{b} &+1 &(-1)^p\abs{a}^{b} &\nan &+\infty &\nan \\ % -\infty &+0 &+0 &(-1)^p 0 &+1 &(-1)^p\infty &\nan &+\infty &\nan \\ % \nan &\nan &\nan &\nan &+1 &\nan &\nan &\nan &\nan \\ % \end{tabular} % \end{center} % We distinguished in this table the cases of finite (positive or % negative) exponents of the form $b=p/q$ with $q$~odd (hence % necessarily a power of~$5$), as $(-1)^{p/q}=(-1)^p$ is defined in that % case. % One peculiarity of this operation is that $\nan^0 = 1^\nan = 1$, % because this relation is obeyed for any number, even $\pm\infty$. % % \begin{macro}[int, EXP]+\@@_^_o:ww+ % We cram most of the tests into a single function to save csnames. % First treat the case $b=0$: $a^0=1$ for any $a$, even \texttt{nan}. % Then test the sign of $a$. % \begin{itemize} % \item If it is positive, and $a$ is a normal number, call % \cs{@@_pow_normal_o:ww} followed by the two \texttt{fp} $a$ and $b$. % For $a=+0$ or $+\inf$, call \cs{@@_pow_zero_or_inf:ww} instead, to % return either $+0$ or $+\infty$ as appropriate. % \item If $a$ is a \texttt{nan}, then skip to the next semicolon % (which happens to be conveniently the end of $b$) and return % \texttt{nan}. % \item Finally, if $a$ is negative, compute $|a|^b$ % (\cs{@@_pow_normal_o:ww} which ignores the sign of its first % operand), and keep an extra copy of $a$ and $b$ (the second brace % group, containing \{~$b$~$a$~\}, is inserted between $a$ and $b$). % Then do some tests to find the final sign of the result if it % exists. % \end{itemize} % \begin{macrocode} \cs_new:cpn { @@_ \iow_char:N \^ _o:ww } \s_@@ \@@_chk:w #1#2#3; \s_@@ \@@_chk:w #4#5#6; { \if_meaning:w 0 #4 \@@_case_return_o:Nw \c_one_fp \fi: \if_case:w #2 \exp_stop_f: \exp_after:wN \use_i:nn \or: \@@_case_return_o:Nw \c_nan_fp \else: \exp_after:wN \@@_pow_neg:www \exp:w \exp_end_continue_f:w \exp_after:wN \use:nn \fi: { \if_meaning:w 1 #1 \exp_after:wN \@@_pow_normal_o:ww \else: \exp_after:wN \@@_pow_zero_or_inf:ww \fi: \s_@@ \@@_chk:w #1#2#3; } { \s_@@ \@@_chk:w #4#5#6; \s_@@ \@@_chk:w #1#2#3; } \s_@@ \@@_chk:w #4#5#6; } % \end{macrocode} % \end{macro} % % \begin{macro}[aux, EXP]{\@@_pow_zero_or_inf:ww} % Raising $-0$ or $-\infty$ to \texttt{nan} yields \texttt{nan}. For % other powers, the result is $+0$ if $0$ is raised to a positive % power or $\infty$ to a negative power, and $+\infty$ otherwise. % Thus, if the type of $a$ and the sign of $b$ coincide, the result % is~$0$, since those conveniently take the same possible values, $0$ % and~$2$. Otherwise, either $a=\pm\infty$ and $b>0$ and the result % is $+\infty$, or $a=\pm 0$ with $b<0$ and we have a division by zero % unless $b=-\infty$. % \begin{macrocode} \cs_new:Npn \@@_pow_zero_or_inf:ww \s_@@ \@@_chk:w #1#2; \s_@@ \@@_chk:w #3#4 { \if_meaning:w 1 #4 \@@_case_return_same_o:w \fi: \if_meaning:w #1 #4 \@@_case_return_o:Nw \c_zero_fp \fi: \if_meaning:w 2 #1 \@@_case_return_o:Nw \c_inf_fp \fi: \if_meaning:w 2 #3 \@@_case_return_o:Nw \c_inf_fp \else: \@@_case_use:nw { \@@_division_by_zero_o:NNww \c_inf_fp ^ \s_@@ \@@_chk:w #1 #2 ; } \fi: \s_@@ \@@_chk:w #3#4 } % \end{macrocode} % \end{macro} % % \begin{macro}[aux, EXP]{\@@_pow_normal_o:ww} % We have in front of us $a$, and $b\neq 0$, we know that $a$ is a % normal number, and we wish to compute $\lvert a\rvert^{b}$. If % $\lvert a\rvert=1$, we return $1$, unless $a=-1$ and $b$ is % \texttt{nan}. Indeed, returning $1$ at this point would wrongly % raise \enquote{invalid} when the sign is considered. If $\lvert % a\rvert\neq 1$, test the type of $b$: % \begin{itemize} % \item[0] Impossible, we already filtered $b=\pm 0$. % \item[1] Call \cs{@@_pow_npos_o:Nww}. % \item[2] Return $+\infty$ or $+0$ depending on the sign of $b$ and % whether the exponent of $a$ is positive or not. % \item[3] Return $b$. % \end{itemize} % \begin{macrocode} \cs_new:Npn \@@_pow_normal_o:ww \s_@@ \@@_chk:w 1 #1#2#3; \s_@@ \@@_chk:w #4#5 { \if_int_compare:w \__str_if_eq_x:nn { #2 #3 } { 1 {1000} {0000} {0000} {0000} } = 0 \exp_stop_f: \if_int_compare:w #4 #1 = 32 \exp_stop_f: \exp_after:wN \@@_case_return_ii_o:ww \fi: \@@_case_return_o:Nww \c_one_fp \fi: \if_case:w #4 \exp_stop_f: \or: \exp_after:wN \@@_pow_npos_o:Nww \exp_after:wN #5 \or: \if_meaning:w 2 #5 \exp_after:wN \reverse_if:N \fi: \if_int_compare:w #2 > 0 \exp_stop_f: \exp_after:wN \@@_case_return_o:Nww \exp_after:wN \c_inf_fp \else: \exp_after:wN \@@_case_return_o:Nww \exp_after:wN \c_zero_fp \fi: \or: \@@_case_return_ii_o:ww \fi: \s_@@ \@@_chk:w 1 #1 {#2} #3 ; \s_@@ \@@_chk:w #4 #5 } % \end{macrocode} % \end{macro} % % ^^A todo: check that we compute ln to 21 digits! % \begin{macro}[aux, EXP]{\@@_pow_npos_o:Nww} % We now know that $a\neq\pm 1$ is a normal number, and $b$ is a % normal number too. We want to compute $\lvert a\rvert^{b} = (\lvert % x\rvert\cdot 10^{n})^{y\cdot 10^{p}} = \exp((\ln\lvert x\rvert + n % \ln(10))\cdot y \cdot 10^{p}) = \exp(z)$. To compute the % exponential accurately, we need to know the digits of $z$ up to the % $16$-th position. Since the exponential of $10^{5}$ is infinite, we % only need at most $21$ digits, hence the fixed point result of % \cs{@@_ln_o:w} is precise enough for our needs. Start an integer % expression for the decimal exponent of $e^{\lvert z\rvert}$. If $z$ % is negative, negate that decimal exponent, and prepare to take the % inverse when converting from the fixed point to the floating point result. % \begin{macrocode} \cs_new:Npn \@@_pow_npos_o:Nww #1 \s_@@ \@@_chk:w 1#2#3 { \exp_after:wN \@@_sanitize:Nw \exp_after:wN 0 \__int_value:w \if:w #1 \if_int_compare:w #3 > 0 \exp_stop_f: 0 \else: 2 \fi: \exp_after:wN \@@_pow_npos_aux:NNnww \exp_after:wN + \exp_after:wN \@@_fixed_to_float_o:wN \else: \exp_after:wN \@@_pow_npos_aux:NNnww \exp_after:wN - \exp_after:wN \@@_fixed_inv_to_float_o:wN \fi: {#3} } % \end{macrocode} % \end{macro} % %^^A begin[todo] % \begin{macro}[aux, EXP]{\@@_pow_npos_aux:NNnww} % The first argument is the conversion function from fixed point to % float. Then comes an exponent and the $4$ brace groups of $x$, % followed by $b$. Compute $-\ln(x)$. % \begin{macrocode} \cs_new:Npn \@@_pow_npos_aux:NNnww #1#2#3#4#5; \s_@@ \@@_chk:w 1#6#7#8; { #1 \__int_eval:w \@@_ln_significand:NNNNnnnN #4#5 \@@_pow_exponent:wnN {#3} \@@_fixed_mul:wwn #8 {0000}{0000} ; \@@_pow_B:wwN #7; #1 #2 0 % fixed_to_float_o:wN } \cs_new:Npn \@@_pow_exponent:wnN #1; #2 { \if_int_compare:w #2 > 0 \exp_stop_f: \exp_after:wN \@@_pow_exponent:Nwnnnnnw % n\ln(10) - (-\ln(x)) \exp_after:wN + \else: \exp_after:wN \@@_pow_exponent:Nwnnnnnw % -(|n|\ln(10) + (-\ln(x))) \exp_after:wN - \fi: #2; #1; } \cs_new:Npn \@@_pow_exponent:Nwnnnnnw #1#2; #3#4#5#6#7#8; { %^^A todo: use that in ln. \exp_after:wN \@@_fixed_mul_after:wwn \__int_value:w \__int_eval:w \c_@@_leading_shift_int \exp_after:wN \@@_pack:NNNNNw \__int_value:w \__int_eval:w \c_@@_middle_shift_int #1#2*23025 - #1 #3 \exp_after:wN \@@_pack:NNNNNw \__int_value:w \__int_eval:w \c_@@_middle_shift_int #1 #2*8509 - #1 #4 \exp_after:wN \@@_pack:NNNNNw \__int_value:w \__int_eval:w \c_@@_middle_shift_int #1 #2*2994 - #1 #5 \exp_after:wN \@@_pack:NNNNNw \__int_value:w \__int_eval:w \c_@@_middle_shift_int #1 #2*0456 - #1 #6 \exp_after:wN \@@_pack:NNNNNw \__int_value:w \__int_eval:w \c_@@_trailing_shift_int #1 #2*8401 - #1 #7 #1 ( #2*7991 - #8 ) / 1 0000 ; ; } \cs_new:Npn \@@_pow_B:wwN #1#2#3#4#5#6; #7; { \if_int_compare:w #7 < 0 \exp_stop_f: \exp_after:wN \@@_pow_C_neg:w \__int_value:w - \else: \if_int_compare:w #7 < 22 \exp_stop_f: \exp_after:wN \@@_pow_C_pos:w \__int_value:w \else: \exp_after:wN \@@_pow_C_overflow:w \__int_value:w \fi: \fi: #7 \exp_after:wN ; \__int_value:w \__int_eval:w 10 0000 + #1 \__int_eval_end: #2#3#4#5#6 0000 0000 0000 0000 0000 0000 ; %^^A todo: how many 0? } \cs_new:Npn \@@_pow_C_overflow:w #1; #2; #3 { + 2 * \c_@@_max_exponent_int \exp_after:wN \@@_fixed_continue:wn \c_@@_one_fixed_tl } \cs_new:Npn \@@_pow_C_neg:w #1 ; 1 { \exp_after:wN \exp_after:wN \exp_after:wN \@@_pow_C_pack:w \prg_replicate:nn {#1} {0} } \cs_new:Npn \@@_pow_C_pos:w #1; 1 { \@@_pow_C_pos_loop:wN #1; } \cs_new:Npn \@@_pow_C_pos_loop:wN #1; #2 { \if_meaning:w 0 #1 \exp_after:wN \@@_pow_C_pack:w \exp_after:wN #2 \else: \if_meaning:w 0 #2 \exp_after:wN \@@_pow_C_pos_loop:wN \__int_value:w \else: \exp_after:wN \@@_pow_C_overflow:w \__int_value:w \fi: \__int_eval:w #1 - 1 \exp_after:wN ; \fi: } \cs_new:Npn \@@_pow_C_pack:w { \exp_after:wN \@@_exp_large_v:wN \c_@@_one_fixed_tl } % \end{macrocode} % \end{macro} %^^A end[todo] % % \begin{macro}[aux, EXP]{\@@_pow_neg:www, \@@_pow_neg_aux:wNN} % This function is followed by three floating point numbers: $|a|^b$, % $a\in[-\infty,-0]$, and $b$. If $b$ is an even integer (case $-1$), % $a^b=|a|^b$. If $b$ is an odd integer (case $0$), $a^b=-|a|^b$, % obtained by a call to \cs{@@_pow_neg_aux:wNN}. Otherwise, the sign is % undefined. This is invalid, unless $|a|^b$ turns out to be $+0$ or % \texttt{nan}, in which case we return that as $a^b$. In particular, % since the underflow detection occurs before \cs{@@_pow_neg:www} is % called, |(-0.1)**(12345.67)| will give $+0$ rather than complaining % that the sign is not defined. % \begin{macrocode} \cs_new:Npn \@@_pow_neg:www \s_@@ \@@_chk:w #1#2; #3; #4; { \if_case:w \@@_pow_neg_case:w #4 ; \exp_after:wN \@@_pow_neg_aux:wNN \or: \if_int_compare:w \__int_eval:w #1 / 2 = 1 \exp_stop_f: \@@_invalid_operation_o:Nww ^ #3; #4; \exp:w \exp_end_continue_f:w \exp_after:wN \exp_after:wN \exp_after:wN \@@_use_none_until_s:w \fi: \fi: \@@_exp_after_o:w \s_@@ \@@_chk:w #1#2; } \cs_new:Npn \@@_pow_neg_aux:wNN #1 \s_@@ \@@_chk:w #2#3 { \exp_after:wN \@@_exp_after_o:w \exp_after:wN \s_@@ \exp_after:wN \@@_chk:w \exp_after:wN #2 \__int_value:w \__int_eval:w 2 - #3 \__int_eval_end: } % \end{macrocode} % ^^A todo: is this \@@_exp_after_o:w necessary? Appropriate? % \end{macro} % % \begin{macro}[aux, rEXP] % { % \@@_pow_neg_case:w, \@@_pow_neg_case_aux:nnnnn, % \@@_pow_neg_case_aux:w % } % This function expects a floating point number, and determines its % \enquote{parity}. It should be used after \cs{if_case:w} or in an % integer expression. It gives $-1$ if the number is an even integer % divided by some power of~$5$, $0$~if the number is an odd integer % divided by some power of~$5$, and $1$~otherwise. Zeros and % $\pm\infty$ are even (because very large finite floating points are % even), while \texttt{nan} is a non-integer. The sign of normal % numbers is irrelevant to parity. The idea is to repeatedly multiply % the number by~$5$ (by halving the mantissa and shifting the % exponent) until the mantissa is odd (this can only happen at most % $53$ times since $2^{54}>10^{16}$): if the resulting exponent is % larger than $16$ the parity is even, if it is exactly $16$ the % parity is odd, and otherwise we should return~$1$. Of course there % is a shortcut: we stop as soon as the exponent exceeds~$16$. % \begin{macrocode} \cs_new:Npn \@@_pow_neg_case:w \s_@@ \@@_chk:w #1#2#3; { \if_case:w #1 \exp_stop_f: -1 \or: \@@_pow_neg_case_aux:nnnnn #3 \or: -1 \else: 1 \fi: \exp_stop_f: } \cs_new:Npn \@@_pow_neg_case_aux:nnnnn #1#2#3#4#5 { \@@_pow_neg_case_aux:w #1 ; #2 #3 ; #4 #5 ; } \cs_new:Npn \@@_pow_neg_case_aux:w #1 ; #2 ; #3 ; { \if_int_compare:w #1 > \c_@@_prec_int -1 \else: \if_int_odd:w #3 \exp_stop_f: \if_int_compare:w #1 = \c_@@_prec_int 0 \else: 1 \fi: \else: \exp_after:wN \@@_pow_neg_case_aux:w \__int_value:w \__int_eval:w #1 + 1 \exp_after:wN ; \__int_value:w \__int_eval:w (#2 + 1) / 2 - 1 \exp_after:wN ; \__int_value:w \__int_eval:w \if_int_odd:w #2 \exp_stop_f: 5000 0000 + \fi: #3 / 2 ; \fi: \fi: } % \end{macrocode} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \end{implementation} % % \PrintChanges % % \PrintIndex