% \iffalse meta-comment % %% File: l3fp-convert.dtx Copyright(C) 2011-2014 The LaTeX3 Project %% %% It may be distributed and/or modified under the conditions of the %% LaTeX Project Public License (LPPL), either version 1.3c of this %% license or (at your option) any later version. The latest version %% of this license is in the file %% %% http://www.latex-project.org/lppl.txt %% %% This file is part of the "l3kernel bundle" (The Work in LPPL) %% and all files in that bundle must be distributed together. %% %% The released version of this bundle is available from CTAN. %% %% ----------------------------------------------------------------------- %% %% The development version of the bundle can be found at %% %% http://www.latex-project.org/svnroot/experimental/trunk/ %% %% for those people who are interested. %% %%%%%%%%%%% %% NOTE: %% %%%%%%%%%%% %% %% Snapshots taken from the repository represent work in progress and may %% not work or may contain conflicting material! We therefore ask %% people _not_ to put them into distributions, archives, etc. without %% prior consultation with the LaTeX Project Team. %% %% ----------------------------------------------------------------------- %% % %<*driver> \documentclass[full]{l3doc} \GetIdInfo$Id: l3fp-convert.dtx 5983 2015-09-10 18:57:56Z joseph $ {L3 Floating-point conversion} \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \title{^^A % The \textsf{l3fp-convert} package\\ Floating point conversion^^A % \thanks{This file describes v\ExplFileVersion, % last revised \ExplFileDate.}^^A % } % % \author{^^A % The \LaTeX3 Project\thanks % {^^A % E-mail: % \href{mailto:latex-team@latex-project.org} % {latex-team@latex-project.org}^^A % }^^A % } % % \date{Released \ExplFileDate} % % \maketitle % % \begin{documentation} % % \end{documentation} % % \begin{implementation} % % \section{\texttt{l3fp-convert} implementation} % % \begin{macrocode} %<*initex|package> % \end{macrocode} % % \begin{macrocode} %<@@=fp> % \end{macrocode} % % \subsection{Trimming trailing zeros} % % \begin{macro}[aux, EXP]{\@@_trim_zeros:w} % \begin{macro}[aux, EXP] % {\@@_trim_zeros_loop:w, \@@_trim_zeros_dot:w, \@@_trim_zeros_end:w} % If |#1| ends with a $0$, the \texttt{loop} auxiliary takes that zero % as an end-delimiter for its first argument, and the second argument % is the same \texttt{loop} auxiliary. Once the last trailing zero is % reached, the second argument will be the \texttt{dot} auxiliary, % which removes a trailing dot if any. We then clean-up with the % \texttt{end} auxiliary, keeping only the number. % \begin{macrocode} \cs_new:Npn \@@_trim_zeros:w #1 ; { \@@_trim_zeros_loop:w #1 ; \@@_trim_zeros_loop:w 0; \@@_trim_zeros_dot:w .; \s__stop } \cs_new:Npn \@@_trim_zeros_loop:w #1 0; #2 { #2 #1 ; #2 } \cs_new:Npn \@@_trim_zeros_dot:w #1 .; { \@@_trim_zeros_end:w #1 ; } \cs_new:Npn \@@_trim_zeros_end:w #1 ; #2 \s__stop { #1 } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Scientific notation} % % \begin{macro}[EXP] % {\fp_to_scientific:N, \fp_to_scientific:c, \fp_to_scientific:n} % The three public functions evaluate their argument, then pass it to % \cs{@@_to_scientific_dispatch:w}. % \begin{macrocode} \cs_new:Npn \fp_to_scientific:N #1 { \exp_after:wN \@@_to_scientific_dispatch:w #1 } \cs_generate_variant:Nn \fp_to_scientific:N { c } \cs_new_nopar:Npn \fp_to_scientific:n { \exp_after:wN \@@_to_scientific_dispatch:w \exp:w \exp_end_continue_f:w \@@_parse:n } % \end{macrocode} % \end{macro} % % \begin{macro}[aux, EXP] % { % \@@_to_scientific_dispatch:w, % \@@_to_scientific_normal:wnnnnn, % \@@_to_scientific_normal:wNw % } % Expressing an internal floating point number in scientific notation % is quite easy: no rounding, and the format is very well defined. % First cater for the sign: negative numbers ($|#2|=2$) start % with~|-|; we then only need to care about positive numbers and % \texttt{nan}. Then filter the special cases: $\pm0$~are represented % as~|0|; infinities are converted to a number slightly larger than % the largest after an \enquote{invalid_operation} exception; % \texttt{nan} is represented as~|0| after an % \enquote{invalid_operation} exception. In the normal case, % decrement the exponent and unbrace the $4$ brace groups, then in a % second step grab the first digit (previously hidden in braces) to % order the various parts correctly. Finally trim zeros. The whole % construction is within a call to \cs{tl_to_lowercase:n}, responsible % for creating |e| with category \enquote{other}. % \begin{macrocode} \group_begin: \char_set_catcode_other:N E \tl_to_lowercase:n { \group_end: \cs_new:Npn \@@_to_scientific_dispatch:w \s_@@ \@@_chk:w #1#2 { \if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi: \if_case:w #1 \exp_stop_f: \@@_case_return:nw { 0 } \or: \exp_after:wN \@@_to_scientific_normal:wnnnnn \or: \@@_case_use:nw { \@@_invalid_operation:nnw { \exp_after:wN 1 \exp_after:wN E \int_use:N \c_@@_max_exponent_int } { fp_to_scientific } } \or: \@@_case_use:nw { \@@_invalid_operation:nnw { 0 } { fp_to_scientific } } \fi: \s_@@ \@@_chk:w #1 #2 } \cs_new:Npn \@@_to_scientific_normal:wnnnnn \s_@@ \@@_chk:w 1 #1 #2 #3#4#5#6 ; { \if_int_compare:w #2 = \c_one \exp_after:wN \@@_to_scientific_normal:wNw \else: \exp_after:wN \@@_to_scientific_normal:wNw \exp_after:wN E \int_use:N \__int_eval:w #2 - \c_one \fi: ; #3 #4 #5 #6 ; } } \cs_new:Npn \@@_to_scientific_normal:wNw #1 ; #2#3; { \@@_trim_zeros:w #2.#3 ; #1 } % \end{macrocode} % \end{macro} % % \subsection{Decimal representation} % % \begin{macro}[EXP] % {\fp_to_decimal:N, \fp_to_decimal:c, \fp_to_decimal:n} % All three public variants are based on the same % \cs{@@_to_decimal_dispatch:w} % after evaluating their argument to an internal floating point. % \begin{macrocode} \cs_new:Npn \fp_to_decimal:N #1 { \exp_after:wN \@@_to_decimal_dispatch:w #1 } \cs_generate_variant:Nn \fp_to_decimal:N { c } \cs_new_nopar:Npn \fp_to_decimal:n { \exp_after:wN \@@_to_decimal_dispatch:w \exp:w \exp_end_continue_f:w \@@_parse:n } % \end{macrocode} % \end{macro} % % \begin{macro}[aux, EXP] % { % \@@_to_decimal_dispatch:w, % \@@_to_decimal_normal:wnnnnn, % \@@_to_decimal_large:Nnnw, % \@@_to_decimal_huge:wnnnn, % } % The structure is similar to \cs{@@_to_scientific_dispatch:w}. % Insert |-| for % negative numbers. Zero gives $0$, $\pm\infty$ and \nan{} yield an % \enquote{invalid operation} exception; note that $\pm\infty$ % produces a very large output, which we don't expand now since it % most likely won't be needed. Normal numbers with an exponent in the % range $[1,15]$ have that number of digits before the decimal % separator: \enquote{decimate} them, and remove leading zeros with % \cs{__int_value:w}, then trim trailing zeros and dot. Normal % numbers with an exponent $16$ or larger have no decimal separator, % we only need to add trailing zeros. When the exponent is % non-positive, the result should be $0.\meta{zeros}\meta{digits}$, % trimmed. % \begin{macrocode} \cs_new:Npn \@@_to_decimal_dispatch:w \s_@@ \@@_chk:w #1#2 { \if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi: \if_case:w #1 \exp_stop_f: \@@_case_return:nw { 0 } \or: \exp_after:wN \@@_to_decimal_normal:wnnnnn \or: \@@_case_use:nw { \@@_invalid_operation:nnw { \exp_after:wN \exp_after:wN \exp_after:wN 1 \prg_replicate:nn \c_@@_max_exponent_int 0 } { fp_to_decimal } } \or: \@@_case_use:nw { \@@_invalid_operation:nnw { 0 } { fp_to_decimal } } \fi: \s_@@ \@@_chk:w #1 #2 } \cs_new:Npn \@@_to_decimal_normal:wnnnnn \s_@@ \@@_chk:w 1 #1 #2 #3#4#5#6 ; { \int_compare:nNnTF {#2} > \c_zero { \int_compare:nNnTF {#2} < \c_sixteen { \@@_decimate:nNnnnn { \c_sixteen - #2 } \@@_to_decimal_large:Nnnw } { \exp_after:wN \exp_after:wN \exp_after:wN \@@_to_decimal_huge:wnnnn \prg_replicate:nn { #2 - \c_sixteen } { 0 } ; } {#3} {#4} {#5} {#6} } { \exp_after:wN \@@_trim_zeros:w \exp_after:wN 0 \exp_after:wN . \exp:w \exp_end_continue_f:w \prg_replicate:nn { - #2 } { 0 } #3#4#5#6 ; } } \cs_new:Npn \@@_to_decimal_large:Nnnw #1#2#3#4; { \exp_after:wN \@@_trim_zeros:w \__int_value:w \if_int_compare:w #2 > \c_zero #2 \fi: \exp_stop_f: #3.#4 ; } \cs_new:Npn \@@_to_decimal_huge:wnnnn #1; #2#3#4#5 { #2#3#4#5 #1 } % \end{macrocode} % \end{macro} % % \subsection{Token list representation} % % \begin{macro}[EXP]{\fp_to_tl:N, \fp_to_tl:c, \fp_to_tl:n} % These three public functions evaluate their argument, then pass it % to \cs{@@_to_tl_dispatch:w}. % \begin{macrocode} \cs_new:Npn \fp_to_tl:N #1 { \exp_after:wN \@@_to_tl_dispatch:w #1 } \cs_generate_variant:Nn \fp_to_tl:N { c } \cs_new_nopar:Npn \fp_to_tl:n { \exp_after:wN \@@_to_tl_dispatch:w \exp:w \exp_end_continue_f:w \@@_parse:n } % \end{macrocode} % \end{macro} % % \begin{macro}[aux, EXP]{\@@_to_tl_dispatch:w, \@@_to_tl_normal:nnnnn} % A structure similar to \cs{@@_to_scientific_dispatch:w} and % \cs{@@_to_decimal_dispatch:w}, but without the \enquote{invalid operation} % exception. First filter special cases. We express normal numbers % in decimal notation if the exponent is in the range $[-2,16]$, and % otherwise use scientific notation. % \begin{macrocode} \cs_new:Npn \@@_to_tl_dispatch:w \s_@@ \@@_chk:w #1#2 { \if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi: \if_case:w #1 \exp_stop_f: \@@_case_return:nw { 0 } \or: \exp_after:wN \@@_to_tl_normal:nnnnn \or: \@@_case_return:nw { \tl_to_str:n {inf} } \else: \@@_case_return:nw { \tl_to_str:n {nan} } \fi: } \cs_new:Npn \@@_to_tl_normal:nnnnn #1 { \if_int_compare:w #1 > \c_sixteen \exp_after:wN \@@_to_scientific_normal:wnnnnn \else: \if_int_compare:w #1 < - \c_two \exp_after:wN \exp_after:wN \exp_after:wN \@@_to_scientific_normal:wnnnnn \else: \exp_after:wN \exp_after:wN \exp_after:wN \@@_to_decimal_normal:wnnnnn \fi: \fi: \s_@@ \@@_chk:w 1 0 {#1} } % \end{macrocode} % \end{macro} % % \subsection{Formatting} % % This is not implemented yet, as it is not yet clear what a correct % interface would be, for this kind of structured conversion from a % floating point (or other types of variables) to a string. Ideas % welcome. % % \subsection{Convert to dimension or integer} % % \begin{macro}[EXP]{\fp_to_dim:N, \fp_to_dim:c, \fp_to_dim:n} % These three public functions rely on \cs{fp_to_decimal:n} % internally. We make sure to produce |pt| with category other. % \begin{macrocode} \cs_new:Npx \fp_to_dim:N #1 { \exp_not:N \fp_to_decimal:N #1 \tl_to_str:n {pt} } \cs_generate_variant:Nn \fp_to_dim:N { c } \cs_new:Npx \fp_to_dim:n #1 { \exp_not:N \fp_to_decimal:n {#1} \tl_to_str:n {pt} } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\fp_to_int:N, \fp_to_int:c, \fp_to_int:n} % These three public functions evaluate their argument, then pass it % to \cs{fp_to_int_dispatch:w}. % \begin{macrocode} \cs_new:Npn \fp_to_int:N #1 { \exp_after:wN \@@_to_int_dispatch:w #1 } \cs_generate_variant:Nn \fp_to_int:N { c } \cs_new_nopar:Npn \fp_to_int:n { \exp_after:wN \@@_to_int_dispatch:w \exp:w \exp_end_continue_f:w \@@_parse:n } % \end{macrocode} % \end{macro} % % \begin{macro}[aux, EXP]{\@@_to_int_dispatch:w} % To convert to an integer, first round to $0$ places (to the nearest % integer), then express the result as a decimal number: the % definition of \cs{@@_to_decimal_dispatch:w} is such that there will be no % trailing dot nor zero. % \begin{macrocode} \cs_new:Npn \@@_to_int_dispatch:w #1; { \exp_after:wN \@@_to_decimal_dispatch:w \exp:w \exp_end_continue_f:w \@@_round:Nwn \@@_round_to_nearest:NNN #1; { 0 } } % \end{macrocode} % \end{macro} % % \subsection{Convert from a dimension} % % \begin{macro}[EXP]{\dim_to_fp:n} % \begin{macro}[aux, EXP] % { % \@@_from_dim_test:ww, % \@@_from_dim:wNw, % \@@_from_dim:wNNnnnnnn, % \@@_from_dim:wnnnnwNw, % } % The dimension expression (which can in fact be a glue expression) is % evaluated, converted to a number (\emph{i.e.}, expressed in scaled % points), then multiplied by $2^{-16} = 0.0000152587890625$ to give a % value expressed in points. The auxiliary \cs{@@_mul_npos_o:Nww} % expects the desired \meta{final sign} and two floating point % operands (of the form \cs{s_@@} \ldots{} |;|) as arguments. % This set of functions is also used to convert dimension registers to % floating points while parsing expressions: in this context there is % an additional exponent, which is the first argument of % \cs{@@_from_dim_test:ww}, and is combined with the exponent $-4$ % of $2^{-16}$. There is also a need to expand afterwards: this is % performed by \cs{@@_mul_npos_o:Nww}, and cancelled by % \cs{prg_do_nothing:} in \cs{dim_to_fp:n}. % \begin{macrocode} \cs_new:Npn \dim_to_fp:n #1 { \exp_after:wN \@@_from_dim_test:ww \exp_after:wN 0 \exp_after:wN , \__int_value:w \etex_glueexpr:D #1 ; } \cs_new:Npn \@@_from_dim_test:ww #1, #2 { \if_meaning:w 0 #2 \@@_case_return:nw { \exp_after:wN \c_zero_fp } \else: \exp_after:wN \@@_from_dim:wNw \int_use:N \__int_eval:w #1 - \c_four \if_meaning:w - #2 \exp_after:wN , \exp_after:wN 2 \__int_value:w \else: \exp_after:wN , \exp_after:wN 0 \__int_value:w #2 \fi: \fi: } \cs_new:Npn \@@_from_dim:wNw #1,#2#3; { \@@_pack_twice_four:wNNNNNNNN \@@_from_dim:wNNnnnnnn ; #3 000 0000 00 {10}987654321; #2 {#1} } \cs_new:Npn \@@_from_dim:wNNnnnnnn #1; #2#3#4#5#6#7#8#9 { \@@_from_dim:wnnnnwNn #1 {#2#300} {0000} ; } \cs_new:Npn \@@_from_dim:wnnnnwNn #1; #2#3#4#5#6; #7#8 { \@@_mul_npos_o:Nww #7 \s_@@ \@@_chk:w 1 #7 {#5} #1 ; \s_@@ \@@_chk:w 1 0 {#8} {1525} {8789} {0625} {0000} ; \prg_do_nothing: } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Use and eval} % % \begin{macro}[EXP]{\fp_use:N, \fp_use:c, \fp_eval:n} % Those public functions are simple copies of the decimal conversions. % \begin{macrocode} \cs_new_eq:NN \fp_use:N \fp_to_decimal:N \cs_generate_variant:Nn \fp_use:N { c } \cs_new_eq:NN \fp_eval:n \fp_to_decimal:n % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\fp_abs:n} % Trivial but useful. See the implementation of \cs{fp_add:Nn} for an % explanation of why to use \cs{@@_parse:n}, namely, for better error % reporting. % \begin{macrocode} \cs_new:Npn \fp_abs:n #1 { \fp_to_decimal:n { abs \@@_parse:n {#1} } } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\fp_max:nn, \fp_min:nn} % Similar to \cs{fp_abs:n}, for consistency with \cs{int_max:nn}, \emph{etc.} % \begin{macrocode} \cs_new:Npn \fp_max:nn #1#2 { \fp_to_decimal:n { max ( \@@_parse:n {#1} , \@@_parse:n {#2} ) } } \cs_new:Npn \fp_min:nn #1#2 { \fp_to_decimal:n { min ( \@@_parse:n {#1} , \@@_parse:n {#2} ) } } % \end{macrocode} % \end{macro} % % \subsection{Convert an array of floating points to a comma list} % % \begin{macro}[int, EXP]{\@@_array_to_clist:n} % \begin{macro}[aux, EXP]{\@@_array_to_clist_loop:Nw} % Converts an array of floating point numbers to a comma-list. If % speed here ends up irrelevant, we can simplify the code for the % auxiliary to become % \begin{verbatim} % \cs_new:Npn \__fp_array_to_clist_loop:Nw #1#2; % { % \use_none:n #1 % { , ~ } \fp_to_tl:n { #1 #2 ; } % \__fp_array_to_clist_loop:Nw % } % \end{verbatim} % The \cs{use_ii:nn} function is expanded after \cs{@@_expand:n} is % done, and it removes |,~| from the start of the representation. % \begin{macrocode} \cs_new:Npn \@@_array_to_clist:n #1 { \tl_if_empty:nF {#1} { \@@_expand:n { { \use_ii:nn } \@@_array_to_clist_loop:Nw #1 { ? \__prg_break: } ; \__prg_break_point: } } } \cs_new:Npx \@@_array_to_clist_loop:Nw #1#2; { \exp_not:N \use_none:n #1 \exp_not:N \exp_after:wN { \exp_not:N \exp_after:wN , \exp_not:N \exp_after:wN \c_space_tl \exp_not:N \exp:w \exp_not:N \exp_end_continue_f:w \exp_not:N \@@_to_tl_dispatch:w #1 #2 ; } \exp_not:N \@@_array_to_clist_loop:Nw } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \end{implementation} % % \PrintChanges % % \PrintIndex