% \iffalse meta-comment % %% File: l3drivers.dtx Copyright(C) 2011-2017 The LaTeX3 Project % % It may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this % license or (at your option) any later version. The latest version % of this license is in the file % % http://www.latex-project.org/lppl.txt % % This file is part of the "l3kernel bundle" (The Work in LPPL) % and all files in that bundle must be distributed together. % % ----------------------------------------------------------------------- % % The development version of the bundle can be found at % % https://github.com/latex3/latex3 % % for those people who are interested. % %<*driver> \documentclass[full]{l3doc} % %<*driver|package> % %<*driver> \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \title{^^A % The \textsf{l3drivers} package\\ Drivers^^A % } % % \author{^^A % The \LaTeX3 Project\thanks % {^^A % E-mail: % \href{mailto:latex-team@latex-project.org} % {latex-team@latex-project.org}^^A % }^^A % } % % \date{Released 2017/11/14} % % \maketitle % % \begin{documentation} % % \TeX{} relies on drivers in order to carry out a number of tasks, such % as using color, including graphics and setting up hyper-links. The nature % of the code required depends on the exact driver in use. Currently, % \LaTeX3 is aware of the following drivers: % \begin{itemize} % \item \texttt{pdfmode}: The \enquote{driver} for direct PDF output by % \emph{both} \pdfTeX{} and \LuaTeX{} (no separate driver is used in this % case: the engine deals with PDF creation itself). % \item \texttt{dvips}: The \texttt{dvips} program, which works in % conjugation with \pdfTeX{} or \LuaTeX{} in DVI mode. % \item \texttt{dvipdfmx}: The \texttt{dvipdfmx} program, which works in % conjugation with \pdfTeX{} or \LuaTeX{} in DVI mode. % \item \texttt{dvisvgm}: The \texttt{dvisvgm} program, which works in % conjugation with \pdfTeX{} or \LuaTeX{} when run in DVI mode as well % as with (u)p\TeX{} and \XeTeX{}. % \item \texttt{xdvipdfmx}: The driver used by \XeTeX{}. % \end{itemize} % % The code here is all very low-level, and should not in general be used % outside of the kernel. It is also important to note that many of the % functions here are closely tied to the immediate level \enquote{up}, % and they must be used in the correct contexts. % % \section{Box clipping} % % \begin{function}[added = 2011-11-11]{\__driver_box_use_clip:N} % \begin{syntax} % \cs{__driver_box_use_clip:N} \meta{box} % \end{syntax} % Inserts the content of the \meta{box} at the current insertion point % such that any material outside of the bounding box is not displayed % by the driver. The material in the \meta{box} is still placed in the % output stream: the clipping takes place at a driver level. % % This function should only be used within a surrounding horizontal % box construct. % \end{function} % % \section{Box rotation and scaling} % % \begin{function}[added = 2016-05-12]{\__driver_box_use_rotate:Nn} % \begin{syntax} % \cs{__driver_box_use_rotate:Nn} \meta{box} \Arg{angle} % \end{syntax} % Inserts the content of the \meta{box} at the current insertion point % rotated by the \meta{angle} (expressed in degrees). The material is % inserted with no apparent height or width, and is rotated such the % the \TeX{} reference point of the box is the center of rotation and % remains the reference point after rotation. It is the responsibility of % the code using this function to adjust the apparent size of the box to % be correct at the \TeX{} side. % % This function should only be used within a surrounding horizontal % box construct. % \end{function} % % \begin{function}[added = 2016-05-12]{\__driver_box_use_scale:Nnn} % \begin{syntax} % \cs{__driver_box_use_scale:Nnn} \meta{box} \Arg{x-scale} \Arg{y-scale} % \end{syntax} % Inserts the content of the \meta{box} at the current insertion point % scale by the \meta{x-scale} and \meta{y-scale}. The material is % inserted with no apparent height or width. It is the responsibility of % the code using this function to adjust the apparent size of the box to % be correct at the \TeX{} side. % % This function should only be used within a surrounding horizontal % box construct. % \end{function} % % \section{Color support} % % \begin{function}[added = 2017-10-25] % {\__driver_color_select:n, \__driver_color_select:V} % \begin{syntax} % \cs{__driver_color_select:n} \Arg{color} % \end{syntax} % Selects the \meta{color} (which is given in low-level format: a % \meta{model} followed by a space and one or more space-separated % axes). % \end{function} % % \begin{function}[added = 2017-10-25] % {\__driver_color_pickup:N} % \begin{syntax} % \cs{__driver_color_pickup:N} \meta{tl} % \end{syntax} % In \LaTeXe{} package mode, collects data on the current color from % \tn{current@color} and stores it in the low-level format used by \pkg{expl3} % in the \meta{tl}. % \end{function} % % \section{Drawing} % % The drawing functions provided here are \emph{highly} experimental. They % are inspired heavily by the system layer of \pkg{pgf} (most have the % same interface as the same functions in the latter's \cs{pgfsys@\ldots} % namespace). They are intended to form the basis for higher level drawing % interfaces, which themselves are likely to be further abstracted for user % access. Again, this model is heavily inspired by \pkg{pgf} and % Ti\textit{k}z. % % These low level drawing interfaces abstract from the driver raw requirements % but still require an appreciation of the concepts of PostScript/PDF/SVG % graphic creation. % % \begin{function} % { \__driver_draw_begin:, \__driver_draw_end:} % \begin{syntax} % \cs{__driver_draw_begin:} % \meta{content} % \cs{__driver_draw_end:} % \end{syntax} % Defines a drawing environment. This is a scope for the purposes of % the graphics state. Depending on the driver, other set up may or may not % take place here. The natural size of the \meta{content} should be zero % from the \TeX{} perspective: allowance for the size of the content must % be made at a higher level (or indeed this can be skipped if the content is % to overlap other material). % \end{function} % % \begin{function} % {\__driver_draw_scope_begin:, \__driver_draw_scope_end:} % \begin{syntax} % \cs{__driver_draw_scope_begin:} % \meta{content} % \cs{__driver_draw_scope_end:} % \end{syntax} % Defines a scope for drawing settings and so on. Changes to the graphic % state and concepts such as color or linewidth are localised to a scope. % This function pair must never be used if an partial path is under % construction: such paths must be entirely contained at one unbroken % scope level. Note that scopes do not form \TeX{} groups and may not % be aligned with them. % \end{function} % % \subsection{Path construction} % % \begin{function}{\__driver_draw_moveto:nn} % \begin{syntax} % \cs{__driver_draw_move:nn} \Arg{x} \Arg{y} % \end{syntax} % Moves the current drawing reference point to (\meta{x}, \meta{y}); % any active transformation matrix applies. % \end{function} % % \begin{function}{\__driver_draw_lineto:nn} % \begin{syntax} % \cs{__driver_draw_lineto:nn} \Arg{x} \Arg{y} % \end{syntax} % Adds a path from the current drawing reference point to % (\meta{x}, \meta{y}); any active transformation matrix applies. Note % that nothing is drawn until a fill or stroke operation is applied, and that % the path may be discarded or used as a clip without appearing itself. % \end{function} % % \begin{function}{\__driver_draw_curveto:nnnnnn} % \begin{syntax} % \cs{__driver_draw_curveto:nnnnnn} \Arg{x_1} \Arg{y_1} % \Arg{x_2} \Arg{y_2} \Arg{x_3} \Arg{y_3} % \end{syntax} % Adds a Bezier curve path from the current drawing reference point to % (\meta{x_3}, \meta{y_3}), using (\meta{x_1}, \meta{y_1}) and % (\meta{x_2}, \meta{y_2}) as control points; any active transformation % matrix applies. Note that nothing is drawn until a fill or stroke % operation is applied, and that the path may be discarded or used as a clip % without appearing itself. % \end{function} % % \begin{function}{\__driver_draw_rectangle:nnnn} % \begin{syntax} % \cs{__driver_draw_rectangle:nnnn} \Arg{x} \Arg{y} \Arg{width} \Arg{height} % \end{syntax} % Adds rectangular path from (\meta{x_1}, \meta{y_1}) of \meta{height} % and \meta{width}; any active transformation matrix applies. Note that % nothing is drawn until a fill or stroke operation is applied, and that the % path may be discarded or used as a clip without appearing itself. % \end{function} % % \begin{function}{\__driver_draw_closepath:} % \begin{syntax} % \cs{__driver_draw_closepath:} % \end{syntax} % Closes an existing path, adding a line from the current point to the % start of path. Note that nothing is drawn until a fill or stroke % operation is applied, and that the path may be discarded or used as a clip % without appearing itself. % \end{function} % % \subsection{Stroking and filling} % % \begin{function}{\__driver_draw_stroke:, \__driver_draw_closestroke:} % \begin{syntax} % \meta{path construction} % \cs{__driver_draw_stroke:} % \end{syntax} % Draws a line along the current path, which is also closed by % \cs{__driver_draw_closestroke:}. The nature of the line drawn % is influenced by settings for % \begin{itemize} % \item Line thickness % \item Stroke color (or the current color if no specific stroke color % is set) % \item Line capping (how non-closed line ends should look) % \item Join style (how a bend in the path should be rendered) % \item Dash pattern % \end{itemize} % The path may also be used for clipping. % \end{function} % % \begin{function}{\__driver_draw_fill:, \__driver_draw_fillstroke:} % \begin{syntax} % \meta{path construction} % \cs{__driver_draw_fill:} % \end{syntax} % Fills the area surrounded by the current path: this will be closed prior % to filling if it is not already. The \texttt{fillstroke} version also % strokes the path as described for \cs{__driver_draw_stroke:}. The fill is % influenced by the setting for fill color (or the current color if no % specific stroke color is set). The path may also be used for clipping. % For paths which are self-intersecting or comprising multiple parts, the % determination of which areas are inside the path is made using the non-zero % winding number rule unless the even-odd rule is active. % \end{function} % % \begin{function}{\__driver_draw_nonzero_rule:, \__driver_draw_evenodd_rule:} % \begin{syntax} % \cs{__driver_draw_nonzero_rule:} % \end{syntax} % Active either the non-zero winding number or the even-odd rule, % respectively, for determining what is inside a fill or clip area. % For technical reasons, these command are not influenced by scoping % and apply on an ongoing basis. % \end{function} % % \begin{function}{\__driver_draw_clip:} % \begin{syntax} % \meta{path construction} % \cs{__driver_draw_clip:} % \end{syntax} % Indicates that the current path should be used for clipping, such that % any subsequent material outside of the path (but within the current % scope) will not be shown. This command should be given once a path is % complete but before it is stroked or filled (if appropriate). This % command is \emph{not} affected by scoping: it applies to exactly one % path as shown. % \end{function} % % \begin{function}{\__driver_draw_discardpath:} % \begin{syntax} % \meta{path construction} % \cs{__driver_draw_discardpath:} % \end{syntax} % Discards the current path without stroking or filling. This is primarily % useful for paths constructed purely for clipping, as this alone does not % end the paths existence. % \end{function} % % \subsection{Stroke options} % % \begin{function}{\__driver_draw_linewidth:n} % \begin{syntax} % \cs{__driver_draw_linewidth:n} \Arg{dimexpr} % \end{syntax} % Sets the width to be used for stroking to \meta{dimexpr}. % \end{function} % % \begin{function}{\__driver_draw_dash:nn} % \begin{syntax} % \cs{__driver_draw_dash:nn} \Arg{dash pattern} \Arg{phase} % \end{syntax} % Sets the pattern of dashing to be used when stroking a line. The % \meta{dash pattern} should be a comma-separated list of dimension % expressions. This is then interpreted as a series of pairs of line-on % and line-off lengths. For example \texttt{3pt, 4pt} means that $3$\,pt on, % $4$\,pt off, $3$\,pt on, and so on. A more complex pattern will also % repeat: \texttt{3pt, 4pt, 1pt, 2pt} results in $3$\,pt on, $4$\,pt off, % $1$\,pt on, $2$\,pt off, $3$\,pt on, and so on. An odd number of entries % means that the last is repeated, for example \texttt{3pt} is equal to % \texttt{3pt, 3pt}. An empty pattern yields a solid line. % % The \meta{phase} specifies an offset at the start of the cycle. For % example, with a pattern \texttt{3pt} a phase of \texttt{1pt} means % that the output is $2$\,pt on, $3$\,pt off, $3$\,pt on, $3$\,pt on, % \emph{etc.} % \end{function} % % \begin{function} % { % \__driver_draw_cap_butt: , % \__driver_draw_cap_rectangle: , % \__driver_draw_cap_round: % } % \begin{syntax} % \cs{__driver_draw_cap_butt:} % \end{syntax} % Sets the style of terminal stroke position to one of butt, rectangle or % round. % \end{function} % % \begin{function} % { % \__driver_draw_join_bevel: , % \__driver_draw_join_miter: , % \__driver_draw_join_round: % } % \begin{syntax} % \cs{__driver_draw_cap_butt:} % \end{syntax} % Sets the style of stroke joins to one of bevel, miter or round. % \end{function} % % \begin{function}{\__driver_draw_miterlimit:n} % \begin{syntax} % \cs{__driver_draw_miterlimit:n} \Arg{dimexpr} % \end{syntax} % Sets the miter limit of lines joined as a miter, as described in the % PDF and PostScript manuals. % \end{function} % % \subsection{Color} % % \begin{function} % { % \__driver_draw_color_cmyk:nnnn , % \__driver_draw_color_cmyk_fill:nnnn , % \__driver_draw_color_cmyk_stroke:nnnn % } % \begin{syntax} % \cs{__driver_draw_color_cmyk:nnnn} \Arg{cyan} \Arg{magneta} \Arg{yellow} % \Arg{black} % \end{syntax} % Sets the color for drawing to the CMYK values specified, all of which are % fp expressions which should evaluate to between $0$ and $1$. The % \texttt{fill} and \texttt{stroke} versions set only the color for those % operations. Note that the general setting is more efficient with some % drivers so should in most cases be preferred. % \end{function} % % \begin{function} % { % \__driver_draw_color_gray:n , % \__driver_draw_color_gray_fill:n , % \__driver_draw_color_gray_stroke:n % } % \begin{syntax} % \cs{__driver_draw_color_gray:n} \Arg{gray} % \end{syntax} % Sets the color for drawing to the grayscale value specified, which is % fp expressions which should evaluate to between $0$ and $1$. The % \texttt{fill} and \texttt{stroke} versions set only the color for those % operations. Note that the general setting is more efficient with some % drivers so should in most cases be preferred. % \end{function} % % \begin{function} % { % \__driver_draw_color_rgb:nnn , % \__driver_draw_color_rgb_fill:nnn , % \__driver_draw_color_rgb_stroke:nnn % } % \begin{syntax} % \cs{__driver_draw_color_rgb:nnn} \Arg{red} \Arg{green} \Arg{blue} % \end{syntax} % Sets the color for drawing to the RGB values specified, all of which are % fp expressions which should evaluate to between $0$ and $1$. The % \texttt{fill} and \texttt{stroke} versions set only the color for those % operations. Note that the general setting is more efficient with some % drivers so should in most cases be preferred. % \end{function} % % \subsection{Inserting \TeX{} material} % % \begin{function}{\__driver_draw_hbox:Nnnnnnn} % \begin{syntax} % \cs{__driver_draw_hbox:Nnnnnnn} \meta{box} % \Arg{a} \Arg{b} \Arg{c} \Arg{d} \Arg{x} \Arg{y} % \end{syntax} % Inserts the \meta{box} as an hbox with the box reference point placed % at ($x$, $y$). The transformation matrix $[a b c d]$ is applied % to the box, allowing it to be in synchronisation with any scaling, rotation % or skewing applying more generally. Note that \TeX{} material should not % be inserted directly into a drawing as it would not be in the correct % location. Also note that as for other drawing elements the box here % has no size from a \TeX{} perspective. % \end{function} % % \subsection{Coordinate system transformations} % % \begin{function}{\__driver_draw_transformcm:nnnnnn} % \begin{syntax} % \cs{__driver_draw_transformcm:nnnnnn} \Arg{a} \Arg{b} \Arg{c} \Arg{d} % \Arg{x} \Arg{y} % \end{syntax} % Applies the transformation matrix $[a b c d]$ and offset vector % ($x$, $y$) to the current graphic state. This affects any subsequent % items in the same scope but not those already given. % \end{function} % % \end{documentation} % % \begin{implementation} % % \section{\pkg{l3drivers} Implementation} % % \begin{macrocode} %<*initex|package> %<@@=driver> % \end{macrocode} % % Whilst there is a reasonable amount of code overlap between drivers, % it is much clearer to have the blocks more-or-less separated than run % in together and DocStripped out in parts. As such, most of the following % is set up on a per-driver basis, though there is some common code (again % given in blocks not interspersed with other material). % % All the file identifiers are up-front so that they come out in the right % place in the files. % \begin{macrocode} %<*package> \ProvidesExplFile %<*dvipdfmx> {l3dvidpfmx.def}{2017/03/18}{} {L3 Experimental driver: dvipdfmx} % %<*dvips> {l3dvips.def}{2017/03/18}{} {L3 Experimental driver: dvips} % %<*dvisvgm> {l3dvisvgm.def}{2017/03/18}{} {L3 Experimental driver: dvisvgm} % %<*pdfmode> {l3pdfmode.def}{2017/03/18}{} {L3 Experimental driver: PDF mode} % %<*xdvipdfmx> {l3xdvidpfmx.def}{2017/03/18}{} {L3 Experimental driver: xdvipdfmx} % % % \end{macrocode} % % The order of the driver code here is such that we get somewhat logical % outcomes in terms of code sharing whilst keeping things readable. (Trying to % mix all of the code by concept is almost unmanageable.) The key parts which % are shared are % \begin{itemize} % \item Color support is either \texttt{dvips}-like or \texttt{pdfmode}-like. % \item \texttt{pdfmode} and \texttt{(x)dvipdfmx} share drawing routines. % \item \texttt{xdvipdfmx} is largely the same as \texttt{dvipdfmx} so % takes most of the same code. % \end{itemize} % % \subsection{Color support} % % Whilst \texttt{(x)dvipdfmx} does have its own approach to color specials, % it is easier to use \texttt{dvips}-like ones for all cases except direct % PDF output. As such the color code is collected here in two blocks. % % \subsubsection{\texttt{dvips}-style} % % \begin{macrocode} %<*dvisvgm|dvipdfmx|dvips|xdvipdfmx> % \end{macrocode} % % \begin{macro}[int]{\@@_color_pickup:N} % Allow for \LaTeXe{} color. Here, the possible input values are limited: % \texttt{dvips}-style colors can mainly be taken as-is with the exception % spot ones (here we need a model and a tint). % \begin{macrocode} %<*package> \cs_new_protected:Npn \@@_color_pickup:N #1 { } \AtBeginDocument { \@ifpackageloaded { color } { \cs_set_protected:Npn \@@_color_pickup:N #1 { \exp_args:NV \tl_if_head_is_space:nTF \current@color { \tl_set:Nx #1 { spot ~ \exp_after:wN \use:n \current@color \c_space_tl 1 } } { \exp_after:wN \@@_color_pickup_aux:w \current@color \q_stop #1 } } \cs_new_protected:Npn \@@_color_pickup_aux:w #1 ~ #2 \q_stop #3 { \tl_set:Nn #3 { #1 ~ #2 } } } { } } % % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_color_select:n, \@@_color_select:V} % \begin{macro}[aux, EXP]{\@@_convert_model:w} % \begin{macro}[aux, EXP]{\@@_color_convert_spot:} % \begin{macro}[aux, EXP]{\@@_color_convert_spot:w} % \begin{macro}[aux]{\@@_color_reset:} % Mainly no conversation but a little work with \texttt{spot} colors as they % can't have a tint level here! The easy route of just picking up % \texttt{spot} as a model won't work as there could be additional models % created for mixing named colors. (They would not be supported at the moment, % but still need to be handled.) % \begin{macrocode} \cs_new_protected:Npn \@@_color_select:n #1 { \tex_special:D { color~push~ \cs_if_exist_use:cF { @@_color_convert_ \@@_convert_model:w #1 \q_stop :n } { \use:n } {#1} } } \cs_generate_variant:Nn \@@_color_select:n { V } \cs_new:Npn \@@_convert_model:w #1 ~ #2 \q_stop {#1} \cs_new:Npn \@@_color_convert_spot:n #1 { \@@_color_convert_spot:w #1 \q_stop } \cs_new:Npn \@@_color_convert_spot:w #1 ~ #2 ~ #3 \q_stop { \c_space_tl #2 } \cs_new_protected:Npn \@@_color_reset: { \tex_special:D { color~pop } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \subsubsection{\texttt{pdfmode}} % % \begin{macrocode} %<*pdfmode> % \end{macrocode} % % \begin{macro}[aux]{\@@_color_pickup:N} % \begin{macro}[aux]{\@@_color_pickup_aux:w} % The current color in driver-dependent format: pick up the package-mode % data if available. We end up converting back and forward in this route as % we store our color data in \texttt{dvips} format. % The \tn{current@color} needs to be \texttt{x}-expanded before % \cs{@@_color_pickup_aux:w} breaks it apart, because for instance % \pkg{xcolor} sets it to be instructions to generate a colour % \begin{macrocode} %<*package> \cs_new_protected:Npn \@@_color_pickup:N #1 { } \AtBeginDocument { \@ifpackageloaded { color } { \cs_set_protected:Npn \@@_color_pickup:N #1 { \exp_last_unbraced:Nx \@@_color_pickup_aux:w { \current@color } ~ 0 ~ 0 ~ 0 \q_stop #1 } \cs_new_protected:Npn \@@_color_pickup_aux:w #1 ~ #2 ~ #3 ~ #4 ~ #5 ~ #6 \q_stop #7 { \str_if_eq:nnTF {#2} { g } { \tl_set:Nn #7 { gray ~ #1 } } { \str_if_eq:nnTF {#4} { rg } { \tl_set:Nn #7 { rgb ~ #1 ~ #2 ~ #3 } } { \str_if_eq:nnTF {#5} { k } { \tl_set:Nn #7 { cmyk ~ #1 ~ #2 ~ #3 ~ #4 } } { \str_if_eq:nnTF {#2} { cs } { \tl_set:Nx #7 { spot ~ \use_none:n #1 ~ #5 } } { \tl_set:Nn #7 { gray ~ 0 } } } } } } } { } } % % \end{macrocode} % \end{macro} % \end{macro} % % \begin{variable}{\l_@@_color_stack_int} % \pdfTeX{} and \LuaTeX{} have multiple stacks available, and to track % which one is in use a variable is required. % \begin{macrocode} \int_new:N \l_@@_color_stack_int % \end{macrocode} % \end{variable} % % \begin{macro}[int]{\@@_color_select:n, \@@_color_select:V} % \begin{macro}[aux, EXP]{\@@_color_convert:w} % \begin{macro}[aux, EXP] % { % \@@_color_convert_gray:w , % \@@_color_convert_cmyk:w , % \@@_color_convert_rgb:w , % \@@_color_convert_spot:w % } % \begin{macro}[aux]{\@@_color_reset:} % There is a dedicated primitive/primitive interface for setting colors. % As with scoping, this approach is not suitable for cached operations. % Most of the conversions are trivial but the need to cover spot colors % makes life slightly more interesting. % \begin{macrocode} \cs_new_protected:Npx \@@_color_select:n #1 { \cs_if_exist:NTF \luatex_pdfextension:D { \luatex_pdfextension:D colorstack } { \pdftex_pdfcolorstack:D } \exp_not:N \l_@@_color_stack_int push { \exp_not:N \@@_color_convert:w #1 \exp_not:N \q_stop } } \cs_generate_variant:Nn \@@_color_select:n { V } \cs_new:Npn \@@_color_convert:w #1 ~ #2 \q_stop { \use:c { @@_color_convert_ #1 :w } #2 \q_stop } \cs_new:Npn \@@_color_convert_gray:w #1 \q_stop { #1 ~ g ~ #1 ~ G } \cs_new:Npn \@@_color_convert_cmyk:w #1 \q_stop { #1 ~ k ~ #1 ~ K } \cs_new:Npn \@@_color_convert_rgb:w #1 \q_stop { #1 ~ rg ~ #1 ~ RG } \cs_new:Npn \@@_color_convert_spot:w #1 ~ #2 \q_stop { /#1 ~ cs ~ /#1 ~ CS ~ #2 ~ sc ~ #2 ~ SC } \cs_new_protected:Npx \@@_color_reset: { \cs_if_exist:NTF \luatex_pdfextension:D { \luatex_pdfextension:D colorstack } { \pdftex_pdfcolorstack:D } \exp_not:N \l_@@_color_stack_int pop \scan_stop: } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \subsection{\texttt{dvips} driver} % % \begin{macrocode} %<*dvips> % \end{macrocode} % % \subsubsection{Basics} % % \begin{macro}[int]{\@@_literal:n} % In the case of \texttt{dvips} there is no build-in saving of the current % position, and so some additional PostScript is required to set up the % transformation matrix and also to restore it afterwards. Notice the use % of the stack to save the current position \enquote{up front} and to % move back to it at the end of the process. % \begin{macrocode} \cs_new_protected:Npn \@@_literal:n #1 { \tex_special:D { ps: currentpoint~ currentpoint~translate~ #1 ~ neg~exch~neg~exch~translate } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_scope_begin:, \@@_scope_end:} % Scope saving/restoring is done directly with no need to worry about the % transformation matrix. General scoping is only for the graphics stack so % the lower-cost |gsave|/|grestore| pair are used. % \begin{macrocode} \cs_new_protected:Npn \@@_scope_begin: { \tex_special:D { ps:gsave } } \cs_new_protected:Npn \@@_scope_end: { \tex_special:D { ps:grestore } } % \end{macrocode} % \end{macro} % % \subsection{Driver-specific auxiliaries} % % \begin{macro}[int, EXP]{\@@_absolute_lengths:n} % The \texttt{dvips} driver scales all absolute dimensions based % on the output resolution selected and any \TeX{} magnification. Thus % for any operation involving absolute lengths there is a correction to % make. This is based on \texttt{normalscale} from \texttt{special.pro} % but using the stack rather than a definition to save the current matrix. % \begin{macrocode} \cs_new:Npn \@@_absolute_lengths:n #1 { matrix~currentmatrix~ Resolution~72~div~VResolution~72~div~scale~ DVImag~dup~scale~ #1 ~ setmatrix } % \end{macrocode} % \end{macro} % % \subsubsection{Box operations} % % \begin{macro}{\@@_box_use_clip:N} % Much the same idea as for the PDF mode version but with a slightly % different syntax for creating the clip path. To avoid any scaling % issues we need the absolute length auxiliary here. % \begin{macrocode} \cs_new_protected:Npn \@@_box_use_clip:N #1 { \@@_scope_begin: \@@_literal:n { \@@_absolute_lengths:n { 0 ~ \dim_to_decimal_in_bp:n { \box_dp:N #1 } ~ \dim_to_decimal_in_bp:n { \box_wd:N #1 } ~ \dim_to_decimal_in_bp:n { -\box_ht:N #1 - \box_dp:N #1 } ~ rectclip } } \hbox_overlap_right:n { \box_use:N #1 } \@@_scope_end: \skip_horizontal:n { \box_wd:N #1 } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_box_use_rotate:Nn} % Rotating using \texttt{dvips} does not require that the box dimensions % are altered and has a very convenient built-in operation. Zero rotation % must be written as |0| not |-0| so there is a quick test. % \begin{macrocode} \cs_new_protected:Npn \@@_box_use_rotate:Nn #1#2 { \@@_scope_begin: \@@_literal:n { \fp_compare:nNnTF {#2} = \c_zero_fp { 0 } { \fp_eval:n { round ( -#2 , 5 ) } } ~ rotate } \box_use:N #1 \@@_scope_end: } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_box_use_scale:Nnn} % The \texttt{dvips} driver once again has a dedicated operation we can % use here. % \begin{macrocode} \cs_new_protected:Npn \@@_box_use_scale:Nnn #1#2#3 { \@@_scope_begin: \@@_literal:n { \fp_eval:n { round ( #2 , 5 ) } ~ \fp_eval:n { round ( #3 , 5 ) } ~ scale } \hbox_overlap_right:n { \box_use:N #1 } \@@_scope_end: } % \end{macrocode} % \end{macro} % % \subsection{Images} % % \begin{macro}[int]{\@@_image_getbb_eps:n} % Simply use the generic function. % \begin{macrocode} \cs_new_eq:NN \@@_image_getbb_eps:n \__image_read_bb:n % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_image_include_eps:n} % The special syntax is relatively clear here: remember we need PostScript % sizes here. % \begin{macrocode} \cs_new_protected:Npn \@@_image_include_eps:n #1 { \tex_special:D { PSfile = #1 } } % \end{macrocode} % \end{macro} % % \subsection{Drawing} % % \begin{macro}[aux]{\@@_draw_literal:n, \@@_draw_literal:x} % Literals with no positioning (using |ps:| each one is positioned but % cut off from everything else, so no good for the stepwise approach needed % here). % \begin{macrocode} \cs_new_protected:Npn \@@_draw_literal:n #1 { \tex_special:D { ps:: ~ #1 } } \cs_generate_variant:Nn \@@_draw_literal:n { x } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_draw_begin:, \@@_draw_end:} % The |ps::[begin]| special here deals with positioning but allows us to % continue on to a matching |ps::[end]|: contrast with |ps:|, which positions % but where we can't split material between separate calls. The % |@beginspecial|/|@endspecial| pair are from |special.pro| and correct the % scale and $y$-axis direction. The reference point at the start of the box % is saved (as |l3x|/|l3y|) as it is needed when inserting various items. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_begin: { \tex_special:D { ps::[begin] } \tex_special:D { ps::~save } \tex_special:D { ps::~/l3x~currentpoint~/l3y~exch~def~def } \tex_special:D { ps::~@beginspecial } } \cs_new_protected:Npn \@@_draw_end: { \tex_special:D { ps::~@endspecial } \tex_special:D { ps::~restore } \tex_special:D { ps::[end] } } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_draw_scope_begin:, \@@_draw_scope_end:} % Scope here may need to contain saved definitions, so the entire memory % rather than just the graphic state has to be sent to the stack. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_scope_begin: { \@@_draw_literal:n { save } } \cs_new_protected:Npn \@@_draw_scope_end: { \@@_draw_literal:n { restore } } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_draw_moveto:nn, \@@_draw_lineto:nn} % \begin{macro}[int]{\@@_draw_rectangle:nnnn} % \begin{macro}[int]{\@@_draw_curveto:nnnnnn} % Path creation operations mainly resolve directly to PostScript primitive % steps, with only the need to convert to \texttt{bp}. Notice that % \texttt{x}-type expansion is included here to ensure that any variable % values are forced to literals before any possible caching. There is % no native rectangular path command (without also clipping, filling or % stroking), so that task is done using a small amount of PostScript. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_moveto:nn #1#2 { \@@_draw_literal:x { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ moveto } } \cs_new_protected:Npn \@@_draw_lineto:nn #1#2 { \@@_draw_literal:x { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ lineto } } \cs_new_protected:Npn \@@_draw_rectangle:nnnn #1#2#3#4 { \@@_draw_literal:x { \dim_to_decimal_in_bp:n {#4} ~ \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ moveto~dup~0~rlineto~exch~0~exch~rlineto~neg~0~rlineto~closepath } } \cs_new_protected:Npn \@@_draw_curveto:nnnnnn #1#2#3#4#5#6 { \@@_draw_literal:x { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#4} ~ \dim_to_decimal_in_bp:n {#5} ~ \dim_to_decimal_in_bp:n {#6} ~ curveto } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[int]{\@@_draw_evenodd_rule:, \@@_draw_nonzero_rule:} % \begin{variable}[aux]{\g_@@_draw_eor_bool} % The even-odd rule here can be implemented as a simply switch. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_evenodd_rule: { \bool_gset_true:N \g_@@_draw_eor_bool } \cs_new_protected:Npn \@@_draw_nonzero_rule: { \bool_gset_false:N \g_@@_draw_eor_bool } \bool_new:N \g_@@_draw_eor_bool % \end{macrocode} % \end{variable} % \end{macro} % % \begin{macro}[int] % { % \@@_draw_closepath: , % \@@_draw_stroke: , % \@@_draw_closestroke: , % \@@_draw_fill: , % \@@_draw_fillstroke: , % \@@_draw_clip: , % \@@_draw_discardpath: % } % \begin{variable}[aux]{\g_@@_draw_clip_bool} % Unlike PDF, PostScript doesn't track separate colors for strokes and other % elements. It is also desirable to have the |clip| keyword after a stroke or % fill. To achieve those outcomes, there is some work to do. For color, if a % stroke or fill color is defined it is used for the relevant operation, with % a graphic scope inserted as required. That does mean that once such a color % is set all further uses inside the same scope have to use scoping: see also % the color set up functions. For clipping, the required ordering is achieved % using a \TeX{} switch. All of the operations end with a new path instruction % as they do not terminate (again in contrast to PDF). % \begin{macrocode} \cs_new_protected:Npn \@@_draw_closepath: { \@@_draw_literal:n { closepath } } \cs_new_protected:Npn \@@_draw_stroke: { \@@_draw_literal:n { currentdict~/l3sc~known~{gsave~l3sc}~if } \@@_draw_literal:n { stroke } \@@_draw_literal:n { currentdict~/l3sc~known~{grestore}~if } \bool_if:NT \g_@@_draw_clip_bool { \@@_draw_literal:x { \bool_if:NT \g_@@_draw_eor_bool { eo } clip } } \@@_draw_literal:n { newpath } \bool_gset_false:N \g_@@_draw_clip_bool } \cs_new_protected:Npn \@@_draw_closestroke: { \@@_draw_closepath: \@@_draw_stroke: } \cs_new_protected:Npn \@@_draw_fill: { \@@_draw_literal:n { currentdict~/l3fc~known~{gsave~l3fc}~if } \@@_draw_literal:x { \bool_if:NT \g_@@_draw_eor_bool { eo } fill } \@@_draw_literal:n { currentdict~/l3fc~known~{grestore}~if } \bool_if:NT \g_@@_draw_clip_bool { \@@_draw_literal:x { \bool_if:NT \g_@@_draw_eor_bool { eo } clip } } \@@_draw_literal:n { newpath } \bool_gset_false:N \g_@@_draw_clip_bool } \cs_new_protected:Npn \@@_draw_fillstroke: { \@@_draw_literal:n { currentdict~/l3fc~known~{gsave~l3fc}~if } \@@_draw_literal:x { \bool_if:NT \g_@@_draw_eor_bool { eo } fill } \@@_draw_literal:n { currentdict~/l3fc~known~{grestore}~if } \@@_draw_literal:n { currentdict~/l3sc~known~{gsave~l3sc}~if } \@@_draw_literal:n { stroke } \@@_draw_literal:n { currentdict~/l3sc~known~{grestore}~if } \bool_if:NT \g_@@_draw_clip_bool { \@@_draw_literal:x { \bool_if:NT \g_@@_draw_eor_bool { eo } clip } } \@@_draw_literal:n { newpath } \bool_gset_false:N \g_@@_draw_clip_bool } \cs_new_protected:Npn \@@_draw_clip: { \bool_gset_true:N \g_@@_draw_clip_bool } \bool_new:N \g_@@_draw_clip_bool \cs_new_protected:Npn \@@_draw_discardpath: { \bool_if:NT \g_@@_draw_clip_bool { \@@_draw_literal:x { \bool_if:NT \g_@@_draw_eor_bool { eo } clip } } \@@_draw_literal:n { newpath } \bool_gset_false:N \g_@@_draw_clip_bool } % \end{macrocode} % \end{variable} % \end{macro} % % \begin{macro}[int]{\@@_draw_dash:nn} % \begin{macro}[aux]{\@@_draw_dash:n} % \begin{macro}[int]{\@@_draw_linewidth:n} % \begin{macro}[int]{\@@_draw_miterlimit:n} % \begin{macro}[int] % { % \@@_draw_cap_butt:, \@@_draw_cap_round:, \@@_draw_cap_rectangle:, % \@@_draw_join_miter:, \@@_draw_join_round:, \@@_draw_join_bevel: % } % Converting paths to output is again a case of mapping directly to % PostScript operations. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_dash:nn #1#2 { \@@_draw_literal:x { [ ~ \clist_map_function:nN {#1} \@@_draw_dash:n ] ~ \dim_to_decimal_in_bp:n {#2} ~ setdash } } \cs_new:Npn \@@_draw_dash:n #1 { \dim_to_decimal_in_bp:n {#1} ~ } \cs_new_protected:Npn \@@_draw_linewidth:n #1 { \@@_draw_literal:x { \dim_to_decimal_in_bp:n {#1} ~ setlinewidth } } \cs_new_protected:Npn \@@_draw_miterlimit:n #1 { \@@_draw_literal:x { \fp_eval:n {#1} ~ setmiterlimit } } \cs_new_protected:Npn \@@_draw_cap_butt: { \@@_draw_literal:n { 0 ~ setlinecap } } \cs_new_protected:Npn \@@_draw_cap_round: { \@@_draw_literal:n { 1 ~ setlinecap } } \cs_new_protected:Npn \@@_draw_cap_rectangle: { \@@_draw_literal:n { 2 ~ setlinecap } } \cs_new_protected:Npn \@@_draw_join_miter: { \@@_draw_literal:n { 0 ~ setlinejoin } } \cs_new_protected:Npn \@@_draw_join_round: { \@@_draw_literal:n { 1 ~ setlinejoin } } \cs_new_protected:Npn \@@_draw_join_bevel: { \@@_draw_literal:n { 2 ~ setlinejoin } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[aux]{\_@@_draw_color_reset:} % \begin{macro}[int] % { % \@@_draw_color_cmyk:nnnn , % \@@_draw_color_cmyk_fill:nnnn , % \@@_draw_color_cmyk_stroke:nnnn % } % \begin{macro}[int] % { % \@@_draw_color_gray:n , % \@@_draw_color_gray_fill:n , % \@@_draw_color_gray_stroke:n % } % \begin{macro}[int] % { % \@@_draw_color_rgb:nnn , % \@@_draw_color_rgb_fill:nnn , % \@@_draw_color_rgb_stroke:nnn % } % To allow color to be defined for strokes and fills separately and to % respect scoping, the data needs to be stored at the PostScript level. % We cannot undefine (local) fill/stroke colors once set up but we can % set them blank to improve performance slightly. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_color_reset: { \@@_draw_literal:n { currentdic~/l3fc~known~{ /l3fc~ { } ~def }~if } \@@_draw_literal:n { currentdic~/l3sc~known~{ /l3sc~ { } ~def }~if } } \cs_new_protected:Npn \@@_draw_color_cmyk:nnnn #1#2#3#4 { \@@_draw_literal:x { \fp_eval:n {#1} ~ \fp_eval:n {#2} ~ \fp_eval:n {#3} ~ \fp_eval:n {#4} ~ setcmykcolor ~ } \@@_draw_color_reset: } \cs_new_protected:Npn \@@_draw_color_cmyk_fill:nnnn #1#2#3#4 { \@@_draw_literal:x { /l3fc ~ { \fp_eval:n {#1} ~ \fp_eval:n {#2} ~ \fp_eval:n {#3} ~ \fp_eval:n {#4} ~ setcmykcolor } ~ def } } \cs_new_protected:Npn \@@_draw_color_cmyk_stroke:nnnn #1#2#3#4 { \__driver_draw_literal:x { /l3sc ~ { \fp_eval:n {#1} ~ \fp_eval:n {#2} ~ \fp_eval:n {#3} ~ \fp_eval:n {#4} ~ setcmykcolor } ~ def } } \cs_new_protected:Npn \@@_draw_color_gray:n #1 { \@@_draw_literal:x { fp_eval:n {#1} ~ setgray } \@@_draw_color_reset: } \cs_new_protected:Npn \@@_draw_color_gray_fill:n #1 { \@@_draw_literal:x { /l3fc ~ { \fp_eval:n {#1} ~ setgray } ~ def } } \cs_new_protected:Npn \@@_draw_color_gray_stroke:n #1 { \@@_draw_literal:x { /l3sc ~ { \fp_eval:n {#1} ~ setgray } ~ def } } \cs_new_protected:Npn \@@_draw_color_rgb:nnn #1#2#3 { \@@_draw_literal:x { \fp_eval:n {#1} ~ \fp_eval:n {#2} ~ \fp_eval:n {#3} ~ setrgbcolor } \@@_draw_color_reset: } \cs_new_protected:Npn \@@_draw_color_rgb_fill:nnn #1#2#3 { \@@_draw_literal:x { /l3fc ~ { \fp_eval:n {#1} ~ \fp_eval:n {#2} ~ \fp_eval:n {#3} ~ setrgbcolor } ~ def } } \cs_new_protected:Npn \@@_draw_color_rgb_stroke:nnn #1#2#3 { \@@_draw_literal:x { /l3sc ~ { \fp_eval:n {#1} ~ \fp_eval:n {#2} ~ \fp_eval:n {#3} ~ setrgbcolor } ~ def } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[int]{\@@_draw_transformcm:nnnnnn} % The first four arguments here are floats (the affine matrix), the last % two are a displacement vector. Once again, force evaluation to allow for % caching. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_transformcm:nnnnnn #1#2#3#4#5#6 { \@@_draw_literal:x { [ \fp_eval:n {#1} ~ \fp_eval:n {#2} ~ \fp_eval:n {#3} ~ \fp_eval:n {#4} ~ \dim_to_decimal_in_bp:n {#5} ~ \dim_to_decimal_in_bp:n {#6} ~ ] ~ concat } } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_draw_hbox:Nnnnnnn} % Inside a picture |@beginspecial|/|@endspecial| are active, which is % normally a good thing but means that the position and scaling would be off % if the box was inserted directly. Instead, we need to reverse the effect of % the (normally desirable) shift/scaling within the box. That requires % knowing where the reference point for the drawing is: saved as |l3x|/|l3y| % at the start of the picture. Transformation here is relative to the % drawing origin so has to be done purely in driver code not using \TeX{} % offsets. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_hbox:Nnnnnnn #1#2#3#4#5#6#7 { \@@_scope_begin: \tex_special:D { ps::[end] } \@@_draw_transformcm:nnnnnn {#2} {#3} {#4} {#5} {#6} {#7} \tex_special:D { ps::~72~Resolution~div~72~VResolution~div~neg~scale } \tex_special:D { ps::~magscale~{1~DVImag~div~dup~scale}~if } \tex_special:D { ps::~l3x~neg~l3y~neg~translate } \box_set_wd:Nn #1 { 0pt } \box_set_ht:Nn #1 { 0pt } \box_set_dp:Nn #1 { 0pt } \box_use:N #1 \tex_special:D { ps::[begin] } \@@_scope_end: } % \end{macrocode} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \subsection{\texttt{pdfmode} driver} % % \begin{macrocode} %<*pdfmode> % \end{macrocode} % % The direct PDF driver covers both \pdfTeX{} and \LuaTeX{}. The latter % renames/restructures the driver primitives but this can be handled % at one level of abstraction. As such, we avoid using two separate drivers % for this material at the cost of some \texttt{x}-type definitions to get % everything expanded up-front. % % \subsubsection{Basics} % % \begin{macro}[int]{\@@_literal:n} % This is equivalent to \verb|\special{pdf:}| but the engine can % track it. Without the \texttt{direct} keyword everything is kept in % sync: the transformation matrix is set to the current point automatically. % Note that this is still inside the text (\texttt{BT} \dots \texttt{ET} % block). % \begin{macrocode} \cs_new_protected:Npx \@@_literal:n #1 { \cs_if_exist:NTF \luatex_pdfextension:D { \luatex_pdfextension:D literal } { \pdftex_pdfliteral:D } {#1} } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_scope_begin:, \@@_scope_end:} % Higher-level interfaces for saving and restoring the graphic state. % \begin{macrocode} \cs_new_protected:Npx \@@_scope_begin: { \cs_if_exist:NTF \luatex_pdfextension:D { \luatex_pdfextension:D save \scan_stop: } { \pdftex_pdfsave:D } } \cs_new_protected:Npx \@@_scope_end: { \cs_if_exist:NTF \luatex_pdfextension:D { \luatex_pdfextension:D restore \scan_stop: } { \pdftex_pdfrestore:D } } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_matrix:n} % Here the appropriate function is set up to insert an affine matrix % into the PDF. With \pdfTeX{} and \LuaTeX{} in direct PDF output mode there % is a primitive for this, which only needs the rotation/scaling/skew part. % \begin{macrocode} \cs_new_protected:Npx \@@_matrix:n #1 { \cs_if_exist:NTF \luatex_pdfextension:D { \luatex_pdfextension:D setmatrix } { \pdftex_pdfsetmatrix:D } {#1} } % \end{macrocode} % \end{macro} % % \subsubsection{Box operations} % % \begin{macro}{\@@_box_use_clip:N} % The general method is to save the current location, define a clipping path % equivalent to the bounding box, then insert the content at the current % position and in a zero width box. The \enquote{real} width is then made up % using a horizontal skip before tidying up. There are other approaches that % can be taken (for example using XForm objects), but the logic here shares % as much code as possible and uses the same conversions (and so same % rounding errors) in all cases. % \begin{macrocode} \cs_new_protected:Npn \@@_box_use_clip:N #1 { \@@_scope_begin: \@@_literal:n { 0~ \dim_to_decimal_in_bp:n { -\box_dp:N #1 } ~ \dim_to_decimal_in_bp:n { \box_wd:N #1 } ~ \dim_to_decimal_in_bp:n { \box_ht:N #1 + \box_dp:N #1 } ~ re~W~n } \hbox_overlap_right:n { \box_use:N #1 } \@@_scope_end: \skip_horizontal:n { \box_wd:N #1 } } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_box_use_rotate:Nn} % \begin{variable}{\l_@@_cos_fp, \l_@@_sin_fp} % Rotations are set using an affine transformation matrix which therefore % requires sine/cosine values not the angle itself. We store the rounded % values to avoid rounding twice. There are also a couple of comparisons to % ensure that |-0| is not written to the output, as this avoids any issues % with problematic display programs. Note that numbers are compared to~$0$ % after rounding. % \begin{macrocode} \cs_new_protected:Npn \@@_box_use_rotate:Nn #1#2 { \@@_scope_begin: \box_set_wd:Nn #1 { 0pt } \fp_set:Nn \l_@@_cos_fp { round ( cosd ( #2 ) , 5 ) } \fp_compare:nNnT \l_@@_cos_fp = \c_zero_fp { \fp_zero:N \l_@@_cos_fp } \fp_set:Nn \l_@@_sin_fp { round ( sind ( #2 ) , 5 ) } \@@_matrix:n { \fp_use:N \l_@@_cos_fp \c_space_tl \fp_compare:nNnTF \l_@@_sin_fp = \c_zero_fp { 0~0 } { \fp_use:N \l_@@_sin_fp \c_space_tl \fp_eval:n { -\l_@@_sin_fp } } \c_space_tl \fp_use:N \l_@@_cos_fp } \box_use:N #1 \@@_scope_end: } \fp_new:N \l_@@_cos_fp \fp_new:N \l_@@_sin_fp % \end{macrocode} % \end{variable} % \end{macro} % % \begin{macro}{\@@_box_use_scale:Nnn} % The same idea as for rotation but without the complexity of signs and % cosines. % \begin{macrocode} \cs_new_protected:Npn \@@_box_use_scale:Nnn #1#2#3 { \@@_scope_begin: \@@_matrix:n { \fp_eval:n { round ( #2 , 5 ) } ~ 0~0~ \fp_eval:n { round ( #3 , 5 ) } } \hbox_overlap_right:n { \box_use:N #1 } \@@_scope_end: } % \end{macrocode} % \end{macro} % % \subsection{Images} % % \begin{variable}{\l_@@_image_attr_tl} % In PDF mode, additional attributes of an image (such as page number) are % needed both to obtain the bounding box and when inserting the image: this % occurs as the image dictionary approach means they are read as part of % the bounding box operation. As such, it is easier to track additional % attributes using a dedicated |tl| rather than build up the same data % twice. % \begin{macrocode} \tl_new:N \l_@@_image_attr_tl % \end{macrocode} % \end{variable} % % \begin{macro}[int] % {\@@_image_getbb_jpg:n, \@@_image_getbb_pdf:n, \@@_image_getbb_png:n} % \begin{macro}[aux] % {\@@_image_getbb_auxi:n, \@@_image_getbb_auxii:n} % Getting the bounding box here requires us to box up the image and % measure it. To deal with the difference in feature support in bitmap % and vector images but keeping the common parts, there is a little work % to do in terms of auxiliaries. The key here is to notice that we need % two forms of the attributes: a \enquote{short} set to allow us to % track for caching, and the full form to pass to the primitive. % \begin{macrocode} \cs_new_protected:Npn \@@_image_getbb_jpg:n #1 { \int_zero:N \l__image_page_int \tl_clear:N \l__image_pagebox_tl \tl_set:Nx \l_@@_image_attr_tl { \tl_if_empty:NF \l__image_decode_tl { :D \l__image_decode_tl } \bool_if:NT \l__image_interpolate_bool { :I } } \tl_clear:N \l_@@_image_attr_tl \@@_image_getbb_auxi:n {#1} } \cs_new_eq:NN \@@_image_getbb_png:n \@@_image_getbb_jpg:n \cs_new_protected:Npn \@@_image_getbb_pdf:n #1 { \tl_clear:N \l__image_decode_tl \bool_set_false:N \l__image_interpolate_bool \tl_set:Nx \l_@@_image_attr_tl { : \l__image_pagebox_tl \int_compare:nNnT \l__image_page_int > 1 { :P \int_use:N \l__image_page_int } } \@@_image_getbb_auxi:n {#1} } \cs_new_protected:Npn \@@_image_getbb_auxi:n #1 { \dim_zero:N \l__image_llx_dim \dim_zero:N \l__image_lly_dim \dim_if_exist:cTF { c__image_ #1 \l_@@_image_attr_tl _urx_dim } { \dim_set_eq:Nc \l__image_urx_dim { c__image_ #1 \l_@@_image_attr_tl _urx_dim } \dim_set_eq:Nc \l__image_ury_dim { c__image_ #1 \l_@@_image_attr_tl _ury_dim } } { \@@_image_getbb_auxii:n {#1} } } % \begin{macrocode} % Measuring the image is done by boxing up: for PDF images we could % use |\pdftex_pdfximagebbox:D|, but if doesn't work for other types. % As the box always starts at $(0,0)$ there is no need to worry about % the lower-left position. % \begin{macrocode} \cs_new_protected:Npn \@@_image_getbb_auxii:n #1 { \tex_immediate:D \pdftex_pdfximage:D \bool_lazy_or:nnT { \l__image_interpolate_bool } { ! \tl_if_empty_p:N \l__image_decode_tl } { attr ~ { \tl_if_empty:NF \l__image_decode_tl { /Decode~[ \l__image_decode_tl ] } \bool_if:NT \l__image_interpolate_bool { /Interpolate~true } } } \int_compare:nNnT \l__image_page_int > 0 { page ~ \int_use:N \l__image_page_int } \tl_if_empty:NF \l__image_pagebox_tl { \l__image_pagebox_tl } {#1} \hbox_set:Nn \l__image_tmp_box { \pdftex_pdfrefximage:D \pdftex_pdflastximage:D } \dim_set:Nn \l__image_urx_dim { \box_wd:N \l__image_tmp_box } \dim_set:Nn \l__image_ury_dim { \box_ht:N \l__image_tmp_box } \int_const:cn { c__image_ #1 \l_@@_image_attr_tl _int } { \tex_the:D \pdftex_pdflastximage:D } \dim_const:cn { c__image_ #1 \l_@@_image_attr_tl _urx_dim } { \l__image_urx_dim } \dim_const:cn { c__image_ #1 \l_@@_image_attr_tl _ury_dim } { \l__image_ury_dim } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[int] % {\@@_image_include_jpg:n, \@@_image_include_pdf:n, \@@_image_include_png:n} % Images are already loaded for the measurement part of the code, so % inclusion is straight-forward, with only any attributes to worry about. The % latter carry through from determination of the bounding box. % \begin{macrocode} \cs_new_protected:Npn \@@_image_include_jpg:n #1 { \pdftex_pdfrefximage:D \int_use:c { c__image_ #1 \l_@@_image_attr_tl _int } } \cs_new_eq:NN \@@_image_include_pdf:n \@@_image_include_jpg:n \cs_new_eq:NN \@@_image_include_png:n \@@_image_include_jpg:n % \end{macrocode} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \subsection{\texttt{dvipdfmx} driver} % % \begin{macrocode} %<*dvipdfmx|xdvipdfmx> % \end{macrocode} % % The \texttt{dvipdfmx} shares code with the PDF mode one (using the common % section to this file) but also with \texttt{xdvipdfmx}. The latter is close % to identical to \texttt{dvipdfmx} and so all of the code here is extracted % for both drivers, with some \texttt{clean up} for \texttt{xdvipdfmx} as % required. % % \subsubsection{Basics} % % \begin{macro}[int]{\@@_literal:n} % Equivalent to \texttt{pdf:content} but favored as the link to % the \pdfTeX{} primitive approach is clearer. Some higher-level operations % use |\tex_special:D| directly: see the later comments on where this is % useful. % \begin{macrocode} \cs_new_protected:Npn \@@_literal:n #1 { \tex_special:D { pdf:literal~ #1 } } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_scope_begin:, \@@_scope_end:} % Scoping is done using the driver-specific specials. % \begin{macrocode} \cs_new_protected:Npn \@@_scope_begin: { \tex_special:D { x:gsave } } \cs_new_protected:Npn \@@_scope_end: { \tex_special:D { x:grestore } } % \end{macrocode} % \end{macro} % % \subsubsection{Box operations} % % \begin{macro}{\@@_box_use_clip:N} % The code here is idential to that for \texttt{pdfmode}: unlike rotation and % scaling, there is no higher-level support in the driver for clipping. % \begin{macrocode} \cs_new_protected:Npn \@@_box_use_clip:N #1 { \@@_scope_begin: \@@_literal:n { 0~ \dim_to_decimal_in_bp:n { -\box_dp:N #1 } ~ \dim_to_decimal_in_bp:n { \box_wd:N #1 } ~ \dim_to_decimal_in_bp:n { \box_ht:N #1 + \box_dp:N #1 } ~ re~W~n } \hbox_overlap_right:n { \box_use:N #1 } \@@_scope_end: \skip_horizontal:n { \box_wd:N #1 } } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_box_use_rotate:Nn} % Rotating in \texttt{(x)}dvipdmfx can be implemented using either PDF or % driver-specific code. The former approach however is not \enquote{aware} % of the content of boxes: this means that any embedded links would not be % adjusted by the rotation. As such, the driver-native approach is prefered: % the code therefore is similar (though not identical) to the \texttt{dvips} % version (notice the rotation angle here is positive). As for % \texttt{dvips}, zero rotation is written as |0| not |-0|. % \begin{macrocode} \cs_new_protected:Npn \@@_box_use_rotate:Nn #1#2 { \@@_scope_begin: \tex_special:D { x:rotate~ \fp_compare:nNnTF {#2} = \c_zero_fp { 0 } { \fp_eval:n { round ( #2 , 5 ) } } } \box_use:N #1 \@@_scope_end: } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_box_use_scale:Nnn} % Much the same idea for scaling: use the higher-level driver operation to allow % for box content. % \begin{macrocode} \cs_new_protected:Npn \@@_box_use_scale:Nnn #1#2#3 { \@@_scope_begin: \tex_special:D { x:scale~ \fp_eval:n { round ( #2 , 5 ) } ~ \fp_eval:n { round ( #3 , 5 ) } } \hbox_overlap_right:n { \box_use:N #1 } \@@_scope_end: } % \end{macrocode} % \end{macro} % % \subsection{Images} % % \begin{macro}[int] % { % \@@_image_getbb_eps:n, \@@_image_getbb_jpg:n, % \@@_image_getbb_pdf:n, \@@_image_getbb_png:n % } % Simply use the generic functions: only for \texttt{dvipdfmx} in the % extraction cases. % \begin{macrocode} \cs_new_eq:NN \@@_image_getbb_eps:n \__image_read_bb:n %<*dvipdfmx> \cs_new_protected:Npn \@@_image_getbb_jpg:n #1 { \int_zero:N \l__image_page_int \tl_clear:N \l__image_pagebox_tl \__image_extract_bb:n {#1} } \cs_new_eq:NN \@@_image_getbb_png:n \@@_image_getbb_jpg:n \cs_new_protected:Npn \@@_image_getbb_pdf:n #1 { \tl_clear:N \l__image_decode_tl \bool_set_false:N \l__image_interpolate_bool \__image_extract_bb:n {#1} } % % \end{macrocode} % \end{macro} % % \begin{variable}[aux]{\g_@@_image_int} % Used to track the object number associated with each image. % \begin{macrocode} \int_new:N \g_@@_image_int % \end{macrocode} % \end{variable} % % \begin{macro}[int] % { % \@@_image_include_eps:n, \@@_image_include_jpg:n, % \@@_image_include_pdf:n, \@@_image_include_png:n % } % \begin{macro}[aux]{\@@_image_include_auxi:nn} % \begin{macro}[aux]{\@@_image_include_auxii:nnn, \@@_image_include_auxii:xnn} % \begin{macro}[aux]{\@@_image_include_auxiii:nn} % The special syntax depends on the file type. There is a difference in % how PDF images are best handled between |dvipdfmx| and |xdvipdfmx|: for % the latter it is better to use the primitive route. The relevant code for % that is included later in this file. % \begin{macrocode} \cs_new_protected:Npn \@@_image_include_eps:n #1 { \tex_special:D { PSfile = #1 } } \cs_new_protected:Npn \@@_image_include_jpg:n #1 { \@@_image_include_auxi:nn {#1} { image } } \cs_new_eq:NN \@@_image_include_png:n \@@_image_include_jpg:n %<*dvipdfmx> \cs_new_protected:Npn \@@_image_include_pdf:n #1 { \@@_image_include_auxi:nn {#1} { epdf } } % % \end{macrocode} % Image inclusion is set up to use the fact that each image is stored in % the PDF as an XObject. This means that we can include repeated images % only once and refer to them. To allow that, track the nature of each % image: much the same as for the direct PDF mode case. % \begin{macrocode} \cs_new_protected:Npn \@@_image_include_auxi:nn #1#2 { \@@_image_include_auxii:xnn { \tl_if_empty:NF \l__image_pagebox_tl { : \l__image_pagebox_tl } \int_compare:nNnT \l__image_page_int > 1 { :P \int_use:N \l__image_page_int } \tl_if_empty:NF \l__image_decode_tl { :D \l__image_decode_tl } \bool_if:NT \l__image_interpolate_bool { :I } } {#1} {#2} } \cs_new_protected:Npn \@@_image_include_auxii:nnn #1#2#3 { \int_if_exist:cTF { c__image_ #2#1 _int } { \tex_special:D { pdf:usexobj~@image \int_use:c { c__image_ #2#1 _int } } } { \@@_image_include_auxiii:nn {#2} {#1} {#3} } } \cs_generate_variant:Nn \@@_image_include_auxii:nnn { x } % \end{macrocode} % Inclusion using the specials is relatively straight-forward, but there % is one wrinkle. To get the |pagebox| correct for PDF images in all cases, % it is necessary to provide both that information and the |bbox| argument: % odd things happen otherwise! % \begin{macrocode} \cs_new_protected:Npn \@@_image_include_auxiii:nnn #1#2#3 { \int_gincr:N \g_@@_image_int \int_const:cn { c__image_ #1#2 _int } { \g_@@_image_int } \tex_special:D { pdf:#3~ @image \int_use:c { c__image_ #1#2 _int } \int_compare:nNnT \l__image_page_int > 1 { page ~ \int_use:N \l__image_page_int \c_space_tl } \tl_if_empty:NF \l__image_pagebox_tl { pagebox ~ \l__image_pagebox_tl \c_space_tl bbox ~ \dim_to_decimal_in_bp:n \l__image_llx_dim \c_space_tl \dim_to_decimal_in_bp:n \l__image_lly_dim \c_space_tl \dim_to_decimal_in_bp:n \l__image_urx_dim \c_space_tl \dim_to_decimal_in_bp:n \l__image_ury_dim \c_space_tl } (#1) \bool_lazy_or:nnT { \l__image_interpolate_bool } { ! \tl_if_empty_p:N \l__image_decode_tl } { << \tl_if_empty:NF \l__image_decode_tl { /Decode~[ \l__image_decode_tl ] } \bool_if:NT \l__image_interpolate_bool { /Interpolate~true> } >> } } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \subsection{\texttt{xdvipdfmx} driver} % % \begin{macrocode} %<*xdvipdfmx> % \end{macrocode} % % \subsection{Images} % % \begin{macro}[int] % {\@@_image_getbb_jpg:n, \@@_image_getbb_pdf:n, \@@_image_getbb_png:n} % \begin{macro}[aux]{\@@_image_getbb_auxi:nN} % \begin{macro}[aux]{\@@_image_getbb_auxii:nnN, \@@_image_getbb_auxii:VnN} % \begin{macro}[aux]{\@@_image_getbb_auxiii:nNnn} % \begin{macro}[aux]{\@@_image_getbb_auxiv:nnNnn, \@@_image_getbb_auxiv:VnNnn} % \begin{macro}[aux]{\@@_image_getbb_auxv:nNnn, \@@_image_getbb_auxv:nNnn} % \begin{macro}[aux, EXP]{\@@_image_getbb_pagebox:w} % For \texttt{xdvipdfmx}, there are two primitives that allow us to obtain % the bounding box without needing \texttt{extractbb}. The only complexity % is passing the various minor variations to a common core process. The % \XeTeX{} primitive omits the text |box| from the page box specification, % so there is also some \enquote{trimming} to do here. % \begin{macrocode} \cs_new_protected:Npn \@@_image_getbb_jpg:n #1 { \int_zero:N \l__image_page_int \tl_clear:N \l__image_pagebox_tl \@@_image_getbb_auxi:nN {#1} \xetex_picfile:D } \cs_new_eq:NN \@@_image_getbb_png:n \@@_image_getbb_jpg:n \cs_new_protected:Npn \@@_image_getbb_pdf:n #1 { \tl_clear:N \l__image_decode_tl \bool_set_false:N \l__image_interpolate_bool \@@_image_getbb_auxi:nN {#1} \xetex_pdffile:D } \cs_new_protected:Npn \@@_image_getbb_auxi:nN #1#2 { \int_compare:nNnTF \l__image_page_int > 1 { \@@_image_getbb_auxii:VnN \l__image_page_int {#1} #2 } { \@@_image_getbb_auxiii:nNnn {#1} #2 } } \cs_new_protected:Npn \@@_image_getbb_auxii:nnN #1#2#3 { \@@_image_getbb_aux:nNnn {#2} #3 { :P #1 } { page #1 } } \cs_generate_variant:Nn \@@_image_getbb_auxii:nnN { V } \cs_new_protected:Npn \@@_image_getbb_auxiii:nNnn #1#2#3#4 { \tl_if_empty:NTF \l__image_pagebox_tl { \@@_image_getbb_auxiv:VnNnn \l__image_pagebox_tl } { \@@_image_getbb_auxv:nNnn } {#1} #2 {#3} {#4} } \cs_new_protected:Npn \@@_image_getbb_auxiv:nnNnn #1#2#3#4#5 { \use:x { \@@_image_getbb_auxv:nNnn {#2} #3 { : #1 #4 } { #5 ~ \@@_image_getbb_pagebox:w #1 } } } \cs_generate_variant:Nn \@@_image_getbb_auxiv:nnNnn { V } \cs_new_protected:Npn \@@_image_getbb_auxv:nNnn #1#2#3#4 { \dim_zero:N \l__image_llx_dim \dim_zero:N \l__image_lly_dim \dim_if_exist:cTF { c__image_ #1#3 _urx_dim } { \dim_set_eq:Nc \l__image_urx_dim { c__image_ #1#3 _urx_dim } \dim_set_eq:Nc \l__image_ury_dim { c__image_ #1#3 _ury_dim } } { \@@_image_getbb_auxvi:nNnn {#1} #2 {#3} {#4} } } \cs_new_protected:Npn \@@_image_getbb_auxvi:nNnn #1#2#3#4 { \hbox_set:Nn \l__image_tmp_box { #2 #1 ~ #4 } \dim_set:Nn \l__image_utx_dim { \box_wd:N \l__image_tmp_box } \dim_set:Nn \l__image_ury_dim { \box_ht:N \l__image_tmp_box } \dim_const:cn { c__image_ #1#3 _urx_dim } { \l__image_urx_dim } \dim_const:cn { c__image_ #1#3 _ury_dim } { \l__image_ury_dim } } \cs_new:Npn \@@_image_getbb_pagebox:w #1 box {#1} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[int]{\@@_image_include_pdf:n} % For PDF images, properly supporting the |pagebox| concept in \XeTeX{} % is best done using the |\xetex_pdffile:D| primitive. The syntax here % is the same as for the image measurement part, although we know at this % stage that there must be some valid setting for \cs{l__image_pagebox_tl}. % \begin{macrocode} \cs_new_protected:Npn \@@_image_include_pdf:n #1 { \xetex_pdffile:D "#1" ~ \int_compare:nNnT \l__image_page_int > 0 { page~ \int_use:N \l__image_page_int } \@@_image_getbb_auxiv:VnNnn \l__image_pagebox_tl } % \end{macrocode} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \subsection{Drawing commands: \texttt{pdfmode} and \texttt{(x)dvipdfmx}} % % Both \texttt{pdfmode} and \texttt{(x)dvipdfmx} directly produce PDF output % and understand a shared set of specials for drawing commands. % % \begin{macrocode} %<*dvipdfmx|pdfmode|xdvipdfmx> % \end{macrocode} % % \subsection{Drawing} % % \begin{macro}[aux]{\@@_draw_literal:n, \@@_draw_literal:x} % Pass data through using a dedicated interface. % \begin{macrocode} \cs_new_eq:NN \@@_draw_literal:n \@@_literal:n \cs_generate_variant:Nn \@@_draw_literal:n { x } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_draw_begin:, \@@_draw_end:} % No special requirements here, so simply set up a drawing scope. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_begin: { \@@_draw_scope_begin: } \cs_new_protected:Npn \@@_draw_end: { \@@_draw_scope_end: } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_draw_scope_begin:, \@@_draw_scope_end:} % In contrast to a general scope, a drawing scope is always done using % the PDF operators so is the same for all relevant drivers. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_scope_begin: { \@@_draw_literal:n { q } } \cs_new_protected:Npn \@@_draw_scope_end: { \@@_draw_literal:n { Q } } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_draw_moveto:nn, \@@_draw_lineto:nn} % \begin{macro}[int]{\@@_draw_curveto:nnnnnn} % \begin{macro}[int]{\@@_draw_rectangle:nnnn} % Path creation operations all resolve directly to PDF primitive steps, with % only the need to convert to \texttt{bp}. Notice that \texttt{x}-type % expansion is included here to ensure that any variable values are % forced to literals before any possible caching. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_moveto:nn #1#2 { \@@_draw_literal:x { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ m } } \cs_new_protected:Npn \@@_draw_lineto:nn #1#2 { \@@_draw_literal:x { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ l } } \cs_new_protected:Npn \@@_draw_curveto:nnnnnn #1#2#3#4#5#6 { \@@_draw_literal:x { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#4} ~ \dim_to_decimal_in_bp:n {#5} ~ \dim_to_decimal_in_bp:n {#6} ~ c } } \cs_new_protected:Npn \@@_draw_rectangle:nnnn #1#2#3#4 { \@@_draw_literal:x { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#4} ~ re } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[int]{\@@_draw_evenodd_rule:, \@@_draw_nonzero_rule:} % \begin{variable}[int]{\g_@@_draw_eor_bool} % The even-odd rule here can be implemented as a simply switch. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_evenodd_rule: { \bool_gset_true:N \g_@@_draw_eor_bool } \cs_new_protected:Npn \@@_draw_nonzero_rule: { \bool_gset_false:N \g_@@_draw_eor_bool } \bool_new:N \g_@@_draw_eor_bool % \end{macrocode} % \end{variable} % \end{macro} % % \begin{macro}[int] % { % \@@_draw_closepath: , % \@@_draw_stroke: , % \@@_draw_closestroke: , % \@@_draw_fill: , % \@@_draw_fillstroke: , % \@@_draw_clip: , % \@@_draw_discardpath: % } % Converting paths to output is again a case of mapping directly to % PDF operations. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_closepath: { \@@_draw_literal:n { h } } \cs_new_protected:Npn \@@_draw_stroke: { \@@_draw_literal:n { S } } \cs_new_protected:Npn \@@_draw_closestroke: { \@@_draw_literal:n { s } } \cs_new_protected:Npn \@@_draw_fill: { \@@_draw_literal:x { f \bool_if:NT \g_@@_draw_eor_bool * } } \cs_new_protected:Npn \@@_draw_fillstroke: { \@@_draw_literal:x { B \bool_if:NT \g_@@_draw_eor_bool * } } \cs_new_protected:Npn \@@_draw_clip: { \@@_draw_literal:x { W \bool_if:NT \g_@@_draw_eor_bool * } } \cs_new_protected:Npn \@@_draw_discardpath: { \@@_draw_literal:n { n } } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_draw_dash:nn} % \begin{macro}[aux]{\@@_draw_dash:n} % \begin{macro}[int]{\@@_draw_linewidth:n} % \begin{macro}[int]{\@@_draw_miterlimit:n} % \begin{macro}[int] % { % \@@_draw_cap_butt:, \@@_draw_cap_round:, \@@_draw_cap_rectangle:, % \@@_draw_join_miter:, \@@_draw_join_round:, \@@_draw_join_bevel: % } % Converting paths to output is again a case of mapping directly to % PDF operations. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_dash:nn #1#2 { \@@_draw_literal:x { [ ~ \clist_map_function:nN {#1} \@@_draw_dash:n ] ~ \dim_to_decimal_in_bp:n {#2} ~ d } } \cs_new:Npn \@@_draw_dash:n #1 { \dim_to_decimal_in_bp:n {#1} ~ } \cs_new_protected:Npn \@@_draw_linewidth:n #1 { \@@_draw_literal:x { \dim_to_decimal_in_bp:n {#1} ~ w } } \cs_new_protected:Npn \@@_draw_miterlimit:n #1 { \@@_draw_literal:x { \fp_eval:n {#1} ~ M } } \cs_new_protected:Npn \@@_draw_cap_butt: { \@@_draw_literal:n { 0 ~ J } } \cs_new_protected:Npn \@@_draw_cap_round: { \@@_draw_literal:n { 1 ~ J } } \cs_new_protected:Npn \@@_draw_cap_rectangle: { \@@_draw_literal:n { 2 ~ J } } \cs_new_protected:Npn \@@_draw_join_miter: { \@@_draw_literal:n { 0 ~ j } } \cs_new_protected:Npn \@@_draw_join_round: { \@@_draw_literal:n { 1 ~ j } } \cs_new_protected:Npn \@@_draw_join_bevel: { \@@_draw_literal:n { 2 ~ j } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[int] % { % \@@_draw_color_cmyk:nnnn , % \@@_draw_color_cmyk_fill:nnnn , % \@@_draw_color_cmyk_stroke:nnnn % } % \begin{macro}[aux]{\@@_draw_color_cmyk_aux:nnnn} % \begin{macro}[int] % { % \@@_draw_color_gray:n , % \@@_draw_color_gray_fill:n , % \@@_draw_color_gray_stroke:n % } % \begin{macro}[aux]{\@@_draw_color_gray_aux:n} % \begin{macro}[int] % { % \@@_draw_color_rgb:nnn , % \@@_draw_color_rgb_fill:nnn , % \@@_draw_color_rgb_stroke:nnn % } % \begin{macro}[aux]{\@@_draw_color_rgb_aux:nnn} % Yet more fast conversion, all using the FPU to allow for expressions % in numerical input. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_color_cmyk:nnnn #1#2#3#4 { \use:x { \@@_draw_color_cmyk_aux:nnnn { \fp_eval:n {#1} } { \fp_eval:n {#2} } { \fp_eval:n {#3} } { \fp_eval:n {#4} } } } \cs_new_protected:Npn \@@_draw_color_cmyk_aux:nnnn #1#2#3#4 { \@@_draw_literal:n { #1 ~ #2 ~ #3 ~ #4 ~ k ~ #1 ~ #2 ~ #3 ~ #4 ~ K } } \cs_new_protected:Npn \@@_draw_color_cmyk_fill:nnnn #1#2#3#4 { \@@_draw_literal:x { \fp_eval:n {#1} ~ \fp_eval:n {#2} ~ \fp_eval:n {#3} ~ \fp_eval:n {#4} ~ k } } \cs_new_protected:Npn \@@_draw_color_cmyk_stroke:nnnn #1#2#3#4 { \@@_draw_literal:x { \fp_eval:n {#1} ~ \fp_eval:n {#2} ~ \fp_eval:n {#3} ~ \fp_eval:n {#4} ~ K } } \cs_new_protected:Npn \@@_draw_color_gray:n #1 { \use:x { \@@_draw_color_gray_aux:n { \fp_eval:n {#1} } } } \cs_new_protected:Npn \@@_draw_color_gray_aux:n #1 { \@@_draw_literal:n { #1 ~ g ~ #1 ~ G } } \cs_new_protected:Npn \@@_draw_color_gray_fill:n #1 { \@@_draw_literal:x { \fp_eval:n {#1} ~ g } } \cs_new_protected:Npn \@@_draw_color_gray_stroke:n #1 { \@@_draw_literal:x { \fp_eval:n {#1} ~ G } } \cs_new_protected:Npn \@@_draw_color_rgb:nnn #1#2#3 { \use:x { \@@_draw_color_rgb_aux:nnn { \fp_eval:n {#1} } { \fp_eval:n {#2} } { \fp_eval:n {#3} } } } \cs_new_protected:Npn \@@_draw_color_rgb_aux:nnn #1#2#3 { \@@_draw_literal:n { #1 ~ #2 ~ #3 ~ rg ~ #1 ~ #2 ~ #3 ~ RG } } \cs_new_protected:Npn \@@_draw_color_rgb_fill:nnn #1#2#3 { \@@_draw_literal:x { \fp_eval:n {#1} ~ \fp_eval:n {#2} ~ \fp_eval:n {#3} ~ rg } } \cs_new_protected:Npn \@@_draw_color_rgb_stroke:nnn #1#2#3 { \@@_draw_literal:x { \fp_eval:n {#1} ~ \fp_eval:n {#2} ~ \fp_eval:n {#3} ~ RG } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[int]{\@@_draw_transformcm:nnnnnn} % The first four arguments here are floats (the affine matrix), the last % two are a displacement vector. Once again, force evaluation to allow for % caching. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_transformcm:nnnnnn #1#2#3#4#5#6 { \@@_draw_literal:x { \fp_eval:n {#1} ~ \fp_eval:n {#2} ~ \fp_eval:n {#3} ~ \fp_eval:n {#4} ~ \dim_to_decimal_in_bp:n {#5} ~ \dim_to_decimal_in_bp:n {#6} ~ cm } } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_draw_hbox:Nnnnnnn} % \begin{variable}[aux]{\l_@@_tmp_box} % Inserting a \TeX{} box transformed to the requested position and using % the current matrix is done using a mixture of \TeX{} and low-level % manipulation. The offset can be handled by \TeX{}, so only any rotation/^^A % skew/scaling component needs to be done using the matrix operation. As this % operation can never be cached, the scope is set directly not using the % \texttt{draw} version. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_hbox:Nnnnnnn #1#2#3#4#5#6#7 { \hbox_set:Nn \l_@@_tmp_box { \tex_kern:D \__dim_eval:w #6 \__dim_eval_end: \@@_scope_begin: \@@_draw_transformcm:nnnnnn {#2} {#3} {#4} {#5} { 0pt } { 0pt } \box_move_up:nn {#7} { \box_use:N #1 } \@@_scope_end: } \box_set_wd:Nn \l_@@_tmp_box { 0pt } \box_set_ht:Nn \l_@@_tmp_box { 0pt } \box_set_dp:Nn \l_@@_tmp_box { 0pt } \box_use:N \l_@@_tmp_box } \box_new:N \l_@@_tmp_box % \end{macrocode} % \end{variable} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \subsection{\texttt{dvisvgm} driver} % % \begin{macrocode} %<*dvisvgm> % \end{macrocode} % % \subsubsection{Basics} % % \begin{macro}[int]{\@@_literal:n} % Unlike the other drivers, the requirements for making SVG files mean % that we can't conveniently transform all operations to the current point. % That makes life a bit more tricky later as that needs to be accounted for. % A new line is added after each call to help to keep the output readable % for debugging. % \begin{macrocode} \cs_new_protected:Npn \@@_literal:n #1 { \tex_special:D { dvisvgm:raw~ #1 { ?nl } } } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_scope_begin:, \@@_scope_end:} % A scope in SVG terms is slightly different to the other drivers as % operations have to be \enquote{tied} to these not simply inside them. % \begin{macrocode} \cs_new_protected:Npn \@@_scope_begin: { \@@_literal:n { } } \cs_new_protected:Npn \@@_scope_end: { \@@_literal:n { } } % \end{macrocode} % \end{macro} % % \subsection{Driver-specific auxiliaries} % % \begin{macro}[int]{\@@_scope_begin:n} % In SVG transformations, clips and so on are attached directly to scopes so % we need a way or allowing for that. This is rather more useful than % \cs{@@_scope_begin:} as a result. No assumptions are made about the nature % of the scoped operation(s). % \begin{macrocode} \cs_new_protected:Npn \@@_scope_begin:n #1 { \@@_literal:n { } } % \end{macrocode} % \end{macro} % % \subsubsection{Box operations} % % \begin{macro}[int]{\@@_box_use_clip:N} % \begin{variable}[aux]{\g_@@_clip_path_int} % Clipping in SVG is more involved than with other drivers. The first issue % is that the clipping path must be defined separately from where it is used, % so we need to track how many paths have applied. The naming here uses % \texttt{l3cp} as the namespace with a number following. Rather than use % a rectangular operation, we define the path manually as this allows it to % have a depth: easier than the alternative approach of shifting content % up and down using scopes to allow for the depth of the \TeX{} box and % keep the reference point the same! % \begin{macrocode} \cs_new_protected:Npn \@@_box_use_clip:N #1 { \int_gincr:N \g_@@_clip_path_int \@@_literal:n { < clipPath~id = " l3cp \int_use:N \g_@@_clip_path_int " > } \@@_literal:n { < path ~ d = " M ~ 0 ~ \dim_to_decimal:n { -\box_dp:N #1 } ~ L ~ \dim_to_decimal:n { \box_wd:N #1 } ~ \dim_to_decimal:n { -\box_dp:N #1 } ~ L ~ \dim_to_decimal:n { \box_wd:N #1 } ~ \dim_to_decimal:n { \box_ht:N #1 + \box_dp:N #1 } ~ L ~ 0 ~ \dim_to_decimal:n { \box_ht:N #1 + \box_dp:N #1 } ~ Z " /> } \@@_literal:n { < /clipPath > } % \end{macrocode} % In general the SVG set up does not try to transform coordinates to the % current point. For clipping we need to do that, so have a transformation % here to get us to the right place, and a matching one just before the % \TeX{} box is inserted to get things back on track. The clip path needs to % come between those two such that if lines up with the current point, as % does the \TeX{} box. % \begin{macrocode} \@@_scope_begin:n { transform = " translate ( { ?x } , { ?y } ) ~ scale ( 1 , -1 ) " } \@@_scope_begin:n { clip-path = "url ( \c_hash_str l3cp \int_use:N \g_@@_clip_path_int ) " } \@@_scope_begin:n { transform = " scale ( -1 , 1 ) ~ translate ( { ?x } , { ?y } ) ~ scale ( -1 , -1 ) " } \box_use:N #1 \@@_scope_end: \@@_scope_end: \@@_scope_end: % \skip_horizontal:n { \box_wd:N #1 } } \int_new:N \g_@@_clip_path_int % \end{macrocode} % \end{variable} % \end{macro} % % \begin{macro}[int]{\@@_box_use_rotate:Nn} % Rotation has a dedicated operation which includes a centre-of-rotation % optional pair. That can be picked up from the driver syntax, so there is % no need to worry about the transformation matrix. % \begin{macrocode} \cs_new_protected:Npn \@@_box_use_rotate:Nn #1#2 { \@@_scope_begin:n { transform = " rotate ( \fp_eval:n { round ( -#2 , 5 ) } , ~ { ?x } , ~ { ?y } ) " } \box_use:N #1 \@@_scope_end: } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_box_use_scale:Nnn} % In contrast to rotation, we have to account for the current position in this % case. That is done using a couple of translations in addition to the scaling % (which is therefore done backward with a flip). % \begin{macrocode} \cs_new_protected:Npn \@@_box_use_scale:Nnn #1#2#3 { \@@_scope_begin:n { transform = " translate ( { ?x } , { ?y } ) ~ scale ( \fp_eval:n { round ( -#2 , 5 ) } , \fp_eval:n { round ( -#3 , 5 ) } ) ~ translate ( { ?x } , { ?y } ) ~ scale ( -1 ) " } \hbox_overlap_right:n { \box_use:N #1 } \@@_scope_end: } % \end{macrocode} % \end{macro} % % \subsection{Images} % % \begin{macro}[int]{\@@_image_getbb_png:n, \@@_image_getbb_jpg:n} % These can be included by extracting the bounding box data. % \begin{macrocode} \cs_new_eq:NN \@@_image_getbb_png:n \__image_extract_bb:n \cs_new_eq:NN \@@_image_getbb_jpg:n \__image_extract_bb:n % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_image_include_png:n, \@@_image_include_jpg:n} % \begin{macro}[aux]{\@@_image_include_bitmap_quote:w} % The driver here has built-in support for basic image inclusion (see % \texttt{dvisvgm.def} for a more complex approach, needed if clipping, % \emph{etc.}, is covered at the image driver level). The only issue is % that |#1| must be quote-corrected. The \texttt{dvisvgm:img} operation % quotes the file name, but if it is already quoted (contains spaces) % then we have an issue: we simply strip off any quotes as a result. % \begin{macrocode} \cs_new_protected:Npn \@@_image_include_png:n #1 { \tex_special:D { dvisvgm:img~ \dim_to_decimal:n { \l__image_ury_dim } ~ \dim_to_decimal:n { \l__image_ury_dim } ~ \@@_image_include_bitmap_quote:w #1 " " \q_stop } } \cs_new_eq:NN \@@_image_include_jpg:n \@@_image_include_png:n \cs_new:Npn \@@_image_include_bitmap_quote:w #1 " #2 " #3 \q_stop { #1#2 } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Drawing} % % \begin{macro}[aux]{\@@_draw_literal:n, \@@_draw_literal:x} % The same as the more general literal call. % \begin{macrocode} \cs_new_eq:NN \@@_draw_literal:n \@@_literal:n \cs_generate_variant:Nn \@@_draw_literal:n { x } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_draw_begin:, \@@_draw_end:} % A drawing needs to be set up such that the co-ordinate system is % translated. That is done inside a scope, which as described below % \begin{macrocode} \cs_new_protected:Npn \@@_draw_begin: { \@@_draw_scope_begin: \@@_draw_scope:n { transform="translate({?x},{?y})~scale(1,-1)" } } \cs_new_protected:Npn \@@_draw_end: { \@@_draw_scope_end: } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_draw_scope_begin:, \@@_draw_scope_end:} % \begin{macro}[aux]{\@@_draw_scope:n, \@@_draw_scope:x} % \begin{variable}[aux]{\g_@@_draw_scope_int, \l_@@_draw_scope_int} % Several settings that with other drivers are \enquote{stand alone} have % to be given as part of a scope in SVG. As a result, there is a need to % provide a mechanism to automatically close these extra scopes. That is % done using a dedicated function and a pair of tracking variables. Within % each graphics scope we use a global variable to do the work, with a group % used to save the value between scopes. The result is that no direct action % is needed when creating a scope. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_scope_begin: { \int_set_eq:NN \l_@@_draw_scope_int \g_@@_draw_scope_int \group_begin: \int_gzero:N \g_@@_draw_scope_int } \cs_new_protected:Npn \@@_draw_scope_end: { \prg_replicate:nn { \g_@@_draw_scope_int } { \@@_draw_literal:n { } } \group_end: \int_gset_eq:NN \g_@@_draw_scope_int \l_@@_draw_scope_int } \cs_new_protected:Npn \@@_draw_scope:n #1 { \@@_draw_literal:n { } \int_gincr:N \g_@@_draw_scope_int } \cs_generate_variant:Nn \@@_draw_scope:n { x } \int_new:N \g_@@_draw_scope_int \int_new:N \l_@@_draw_scope_int % \end{macrocode} % \end{variable} % \end{macro} % \end{macro} % % \begin{macro}[int]{\@@_draw_moveto:nn, \@@_draw_lineto:nn} % \begin{macro}[int]{\@@_draw_rectangle:nnnn} % \begin{macro}[int]{\@@_draw_curveto:nnnnnn} % \begin{macro}[aux]{\@@_draw_add_to_path:n} % \begin{variable}[aux]{\g_@@_draw_path_tl} % Once again, some work is needed to get path constructs correct. Rather % then write the values as they are given, the entire path needs to be % collected up before being output in one go. For that we use a dedicated % storage routine, which adds spaces as required. Since paths should % be fully expanded there is no need to worry about the internal % \texttt{x}-type expansion. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_moveto:nn #1#2 { \@@_draw_add_to_path:n { M ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} } } \cs_new_protected:Npn \@@_draw_lineto:nn #1#2 { \@@_draw_add_to_path:n { L ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} } } \cs_new_protected:Npn \@@_draw_rectangle:nnnn #1#2#3#4 { \@@_draw_add_to_path:n { M ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} h ~ \dim_to_decimal:n {#3} ~ v ~ \dim_to_decimal:n {#4} ~ h ~ \dim_to_decimal:n { -#3 } ~ Z } } \cs_new_protected:Npn \@@_draw_curveto:nnnnnn #1#2#3#4#5#6 { \@@_draw_add_to_path:n { C ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} ~ \dim_to_decimal:n {#3} ~ \dim_to_decimal:n {#4} ~ \dim_to_decimal:n {#5} ~ \dim_to_decimal:n {#6} } } \cs_new_protected:Npn \@@_draw_add_to_path:n #1 { \tl_gset:Nx \g_@@_draw_path_tl { \g_@@_draw_path_tl \tl_if_empty:NF \g_@@_draw_path_tl { \c_space_tl } #1 } } \tl_new:N \g_@@_draw_path_tl % \end{macrocode} % \end{variable} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[int]{\@@_draw_evenodd_rule:, \@@_draw_nonzero_rule:} % The fill rules here have to be handled as scopes. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_evenodd_rule: { \@@_draw_scope:n { fill-rule="evenodd" } } \cs_new_protected:Npn \@@_draw_nonzero_rule: { \@@_draw_scope:n { fill-rule="nonzero" } } % \end{macrocode} % \end{macro} % % \begin{macro}[aux]{\@@_draw_path:n} % \begin{macro}[int] % { % \@@_draw_closepath: , % \@@_draw_stroke: , % \@@_draw_closestroke: , % \@@_draw_fill: , % \@@_draw_fillstroke: , % \@@_draw_clip: , % \@@_draw_discardpath: % } % \begin{variable}[aux]{\g_@@_draw_clip_bool} % \begin{variable}[aux]{\g_@@_draw_path_int} % Setting fill and stroke effects and doing clipping all has to be done using % scopes. This means setting up the various requirements in a shared % auxiliary which deals with the bits and pieces. Clipping paths are reused % for path drawing: not essential but avoids constructing them twice. % Discarding a path needs a separate function as it's not quite the same. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_closepath: { \@@_draw_add_to_path:n { Z } } \cs_new_protected:Npn \@@_draw_path:n #1 { \bool_if:NTF \g_@@_draw_clip_bool { \int_gincr:N \g_@@_clip_path_int \@@_draw_literal:x { < clipPath~id = " l3cp \int_use:N \g_@@_clip_path_int " > { ?nl } { ?nl } < /clipPath > { ? nl } < use~xlink:href = "\c_hash_str l3path \int_use:N \g_@@_path_int " ~ #1 /> } \@@_draw_scope:x { clip-path = "url( \c_hash_str l3cp \int_use:N \g_@@_clip_path_int)" } } { \@@_draw_literal:x { } } \tl_gclear:N \g_@@_draw_path_tl \bool_gset_false:N \g_@@_draw_clip_bool } \int_new:N \g_@@_path_int \cs_new_protected:Npn \@@_draw_stroke: { \@@_draw_path:n { style="fill:none" } } \cs_new_protected:Npn \@@_draw_closestroke: { \@@_draw_closepath: \@@_draw_stroke: } \cs_new_protected:Npn \@@_draw_fill: { \@@_draw_path:n { style="stroke:none" } } \cs_new_protected:Npn \@@_draw_fillstroke: { \@@_draw_path:n { } } \cs_new_protected:Npn \@@_draw_clip: { \bool_gset_true:N \g_@@_draw_clip_bool } \bool_new:N \g_@@_draw_clip_bool \cs_new_protected:Npn \@@_draw_discardpath: { \bool_if:NT \g_@@_draw_clip_bool { \int_gincr:N \g_@@_clip_path_int \@@_draw_literal:x { < clipPath~id = " l3cp \int_use:N \g_@@_clip_path_int " > { ?nl } { ?nl } < /clipPath > } \@@_draw_scope:x { clip-path = "url( \c_hash_str l3cp \int_use:N \g_@@_clip_path_int)" } } \tl_gclear:N \g_@@_draw_path_tl \bool_gset_false:N \g_@@_draw_clip_bool } % \end{macrocode} % \end{variable} % \end{variable} % \end{macro} % \end{macro} % % \begin{macro}[int]{\@@_draw_dash:nn} % \begin{macro}[aux]{\@@_draw_dash:n} % \begin{macro}[aux]{\@@_draw_dash_aux:nn} % \begin{macro}[int]{\@@_draw_linewidth:n} % \begin{macro}[int]{\@@_draw_miterlimit:n} % \begin{macro}[int] % { % \@@_draw_cap_butt:, \@@_draw_cap_round:, \@@_draw_cap_rectangle:, % \@@_draw_join_miter:, \@@_draw_join_round:, \@@_draw_join_bevel: % } % All of these ideas are properties of scopes in SVG. The only slight % complexity is converting the dash array properly (doing any required % maths). % \begin{macrocode} \cs_new_protected:Npn \@@_draw_dash:nn #1#2 { \use:x { \@@_draw_dash_aux:nn { \clist_map_function:nn {#1} \@@_draw_dash:n } { \dim_to_decimal:n {#2} } } } \cs_new:Npn \@@_draw_dash:n #1 { , \dim_to_decimal_in_bp:n {#1} } \cs_new_protected:Npn \@@_draw_dash_aux:nn #1#2 { \@@_draw_scope:x { stroke-dasharray = " \tl_if_empty:oTF { \use_none:n #1 } { none } { \use_none:n #1 } " ~ stroke-offset=" #2 " } } \cs_new_protected:Npn \@@_draw_linewidth:n #1 { \@@_draw_scope:x { stroke-width=" \dim_to_decimal:n {#1} " } } \cs_new_protected:Npn \@@_draw_miterlimit:n #1 { \@@_draw_scope:x { stroke-miterlimit=" \fp_eval:n {#1} " } } \cs_new_protected:Npn \@@_draw_cap_butt: { \@@_draw_scope:n { stroke-linecap="butt" } } \cs_new_protected:Npn \@@_draw_cap_round: { \@@_draw_scope:n { stroke-linecap="round" } } \cs_new_protected:Npn \@@_draw_cap_rectangle: { \@@_draw_scope:n { stroke-linecap="square" } } \cs_new_protected:Npn \@@_draw_join_miter: { \@@_draw_scope:n { stroke-linejoin="miter" } } \cs_new_protected:Npn \@@_draw_join_round: { \@@_draw_scope:n { stroke-linejoin="round" } } \cs_new_protected:Npn \@@_draw_join_bevel: { \@@_draw_scope:n { stroke-linejoin="bevel" } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[int] % { % \@@_draw_color_cmyk:nnnn , % \@@_draw_color_cmyk_fill:nnnn , % \@@_draw_color_cmyk_stroke:nnnn % } % \begin{macro}[int] % { % \@@_draw_color_gray:n , % \@@_draw_color_gray_fill:n , % \@@_draw_color_gray_stroke:n % } % \begin{macro}[int] % { % \@@_draw_color_rgb:nnn , % \@@_draw_color_rgb_fill:nnn , % \@@_draw_color_rgb_stroke:nnn % } % SVG only works with RGB colors, so there is some conversion to % do. The values also need to be given as percentages, which means a % little more maths. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_color_cmyk_aux:NNnnnnn #1#2#3#4#5#6 { \use:x { \@@_draw_color_rgb_auxii:nnn { \fp_eval:n { -100 * ( (#3) * ( 1 - (#6) ) - 1 ) } } { \fp_eval:n { -100 * ( (#4) * ( 1 - (#6) ) + #6 - 1 ) } } { \fp_eval:n { -100 * ( (#5) * ( 1 - (#6) ) + #6 - 1 ) } } } #1 #2 } \cs_new_protected:Npn \@@_draw_color_cmyk:nnnn { \@@_draw_color_cmyk_aux:NNnnnnn \c_true_bool \c_true_bool } \cs_new_protected:Npn \@@_draw_color_cmyk_fill:nnnn { \@@_draw_color_cmyk_aux:NNnnnnn \c_false_bool \c_true_bool } \cs_new_protected:Npn \@@_draw_color_cmyk_stroke:nnnn { \@@_draw_color_cmyk_aux:NNnnnnn \c_true_bool \c_false_bool } \cs_new_protected:Npn \@@_draw_color_gray_aux:NNn #1#2#3 { \use:x { \@@_draw_color_gray_aux:nNN { \fp_eval:n { 100 * (#3)} } } #1 #2 } \cs_new_protected:Npn \@@_draw_color_gray_aux:nNN #1 { \@@_draw_color_rgb_auxii:nnnNN {#1} {#1} {#1} } \cs_generate_variant:Nn \@@_draw_color_gray_aux:nNN { x } \cs_new_protected:Npn \@@_draw_color_gray:n { \@@_draw_color_gray_aux:NNn \c_true_bool \c_true_bool } \cs_new_protected:Npn \@@_draw_color_gray_fill:n { \@@_draw_color_gray_aux:NNn \c_false_bool \c_true_bool } \cs_new_protected:Npn \@@_draw_color_gray_stroke:n { \@@_draw_color_gray_aux:NNn \c_true_bool \c_false_bool } \cs_new_protected:Npn \@@_draw_color_rgb_auxi:NNnnn #1#2#3#4#5 { \use:x { \@@_draw_color_rgb_auxii:nnnNN { \fp_eval:n { 100 * (#3) } } { \fp_eval:n { 100 * (#4) } } { \fp_eval:n { 100 * (#5) } } } #1 #2 } \cs_new_protected:Npn \@@_draw_color_rgb_auxii:nnnNN #1#2#3#4#5 { \@@_draw_scope:x { \bool_if:NT #4 { fill = " rgb ( #1 \c_percent_str , #2 \c_percent_str , #3 \c_percent_str ) " \bool_if:NT #5 { ~ } } \bool_if:NT #5 { stroke = " rgb ( #1 \c_percent_str , #2 \c_percent_str , #3 \c_percent_str ) " } } } \cs_new_protected:Npn \@@_draw_color_rgb:nnn { \@@_draw_color_rgb_auxi:NNnnn \c_true_bool \c_true_bool } \cs_new_protected:Npn \@@_draw_color_rgb_fill:nnn { \@@_draw_color_rgb_auxi:NNnnn \c_false_bool \c_true_bool } \cs_new_protected:Npn \@@_draw_color_rgb_stroke:nnn { \@@_draw_color_rgb_auxi:NNnnn \c_true_bool \c_false_bool } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[int]{\@@_draw_transformcm:nnnnnn} % The first four arguments here are floats (the affine matrix), the last % two are a displacement vector. Once again, force evaluation to allow for % caching. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_transformcm:nnnnnn #1#2#3#4#5#6 { \@@_draw_scope:x { transform = " matrix ( \fp_eval:n {#1} , \fp_eval:n {#2} , \fp_eval:n {#3} , \fp_eval:n {#4} , \dim_to_decimal:n {#5} , \dim_to_decimal:n {#6} ) " } } % \end{macrocode} % \end{macro} % % \begin{macro}[int]{\@@_draw_hbox:Nnnnnnn} % No special savings can be made here: simply displace the box inside % a scope. As there is nothing to re-box, just make the box passed of % zero size. % \begin{macrocode} \cs_new_protected:Npn \@@_draw_hbox:Nnnnnnn #1#2#3#4#5#6#7 { \@@_scope_begin: \@@_draw_transformcm:nnnnnn {#2} {#3} {#4} {#5} {#6} {#7} \@@_literal:n { < g~ stroke="none"~ transform="scale(-1,1)~translate({?x},{?y})~scale(-1,-1)" > } \box_set_wd:Nn #1 { 0pt } \box_set_ht:Nn #1 { 0pt } \box_set_dp:Nn #1 { 0pt } \box_use:N #1 \@@_literal:n { } \@@_scope_end: } % \end{macrocode} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \begin{macrocode} % % \end{macrocode} % % \end{implementation} % % \PrintIndex