% \iffalse %% File: trig.dtx Copyright (C) 1993 1994 1995 1996 1997 1999 David Carlisle %% %% This file is part of the Standard LaTeX `Graphics Bundle'. %% It may be distributed under the terms of the LaTeX Project Public %% License, as described in lppl.txt in the base LaTeX distribution. %% Either version 1.3c or, at your option, any later version. %% % %<*dtx> \ProvidesFile{trig.dtx} % %<*!plain> %\NeedsTeXFormat{LaTeX2e} %\ProvidesPackage{trig} % \ProvidesFile{trig.drv} % \fi % \ProvidesFile{trig.dtx} [1999/03/16 v1.09 sin cos tan (DPC)] % % \iffalse % %<*driver> \documentclass{ltxdoc} \usepackage{trig} \begin{document} \DocInput{trig.dtx} \end{document} % % \fi % % \GetFileInfo{trig.dtx} % \title{The \textsf{trig} package\thanks{This file % has version number \fileversion, last % revised \filedate.}} % \author{David Carlisle} % \date{\filedate} % \maketitle % % \CheckSum{246} % % \changes{v1.00}{1993/00/00}{Undocumented versions} % \changes{v1.05}{1993/10/07}{Documented, added tan} % \changes{v1.06}{1994/02/01}{Update for LaTeX2e} % \changes{v1.07}{1994/03/15}{Use ltxdoc} % \changes{v1.08}{1994/10/16}{Change \cs{@xc} to \cs{nin@ty}} % % \section{Introduction} % % These macros implement the trigonometric functions, sin, cos and tan. % In each case two commands are defined. For instance the command % |\CalculateSin{33}| may be issued at some point, and then anywhere % later in the document, the command |\UseSin{33}| will return the % decimal expansion of $\sin(33^\circ)$. % % The arguments to these macros do not have to be whole numbers, % although in the case of whole numbers, \LaTeX\ or plain \TeX\ counters % may be used. In \TeX{}Book syntax, arguments must be of type: % \meta{optional signs}\meta{factor} % % Some other examples are:\\ % |\CalculateSin{22.5}|, |\UseTan{\value{mycounter}}|, % |\UseCos{\count@}|. % % Note that unlike the psfig macros, these save all previously % computed values. This could easily be changed, but I thought that in % many applications one would want many instances of the % same value. (eg rotating all the headings of a table by the % \emph{same} amount). % % I don't really like this need to pre-calculate the values, I % originally implemented |\UseSin| so that it automatically calculated % the value if it was not pre-stored. This worked fine in testing, until % I remembered why one needs these values. You want to be able to say % |\dimen2=\UseSin{30}\dimen0|. Which means that |\UseSin| must % \emph{expand} to a \meta{factor}. % % \StopEventually{} % % \section{The Macros} % % \begin{macrocode} %<*package> % \end{macrocode} % % \begin{macro}{\nin@ty}\begin{macro}{\@clxx} % \begin{macro}{\@lxxi}\begin{macro}{\@mmmmlxviii} % Some useful constants for converting between degrees and radians. % $$\frac{\pi}{180}\simeq\frac{355}{113\times180}=\frac{71}{4068}$$ % \begin{macrocode} \chardef\nin@ty=90 \chardef\@clxx=180 \chardef\@lxxi=71 \mathchardef\@mmmmlxviii=4068 % \end{macrocode} % \end{macro}\end{macro}\end{macro}\end{macro} % % The approximation to $\sin$. I experimented with various % approximations based on Tchebicheff polynomials, and also some % approximations from a SIAM handbook `Computer Approximations' However % the standard Taylor series seems sufficiently accurate, and used by % far the fewest \TeX\ tokens, as the coefficients are all rational. % \begin{eqnarray*} % \sin(x)& \simeq& x - (1/3!)x^3 + (1/5!)x^5 - (1/7!)x^7 + (1/9!)x^9\\ % &\simeq&\frac{((((7!/9!x^2-7!/7!)x^2+7!/5!)x^2 +7!/3!)x^2+7!/1!)x} % {7!}\\ % &=&\frac{((((1/72x^2-1)x^2+42)x^2 +840)x^2+5040)x} % {5040} % \end{eqnarray*} % The nested form used above reduces the number of operations required. % In order to further reduce the number of operations, and more % importantly reduce the number of tokens used, we can precompute the % coefficients. Note that we can not use $9!$ as the denominator as % this would cause overflow of \TeX's arithmetic. % \begin{macro}{\@coeffz}\begin{macro}{\@coeffa}\begin{macro}{\@coeffb} % \begin{macro}{\@coeffc}\begin{macro}{\@coeffd} % Save the coefficients as |\|(|math|)|char|s. % \begin{macrocode} \chardef\@coeffz=72 %\chardef\@coefa=1 \chardef\@coefb=42 \mathchardef\@coefc=840 \mathchardef\@coefd=5040 % \end{macrocode} % \end{macro}\end{macro}\end{macro}\end{macro}\end{macro} % % \begin{macro}{\TG@rem@pt} % The standard trick of getting a real number out of a \meta{dimen}. % This gives a maximum accuracy of approx.\ 5 decimal places, which % should be sufficient. It puts a space after the number, perhaps it % shouldn't. % \begin{macrocode} {\catcode`t=12\catcode`p=12\gdef\noPT#1pt{#1}} \def\TG@rem@pt#1{\expandafter\noPT\the#1\space} % \end{macrocode} % \end{macro} % % \begin{macro}{\TG@term} % Compute one term of the above nested series. Multiply the previous sum % by $x^2$ (stored in |\@tempb|, then add the next coefficient, |#1|. % \begin{macrocode} \def\TG@term#1{% \dimen@\@tempb\dimen@ \advance\dimen@ #1\p@} % \end{macrocode} % \end{macro} % % \begin{macro}{\TG@series} % Compute the above series. the value in degrees will be in |\dimen@| % before this is called. % \begin{macrocode} \def\TG@series{% \dimen@\@lxxi\dimen@ \divide \dimen@ \@mmmmlxviii % \end{macrocode} % |\dimen@| now contains the angle in radians, as a \meta{dimen}. We % need to remove the units, so store the same value as a \meta{factor} % in |\@tempa|. % \begin{macrocode} \edef\@tempa{\TG@rem@pt\dimen@}% % \end{macrocode} % Now put $x^2$ in |\dimen@| and |\@tempb|. % \begin{macrocode} \dimen@\@tempa\dimen@ \edef\@tempb{\TG@rem@pt\dimen@}% % \end{macrocode} % The first coefficient is $1/72$. % \begin{macrocode} \divide\dimen@\@coeffz \advance\dimen@\m@ne\p@ \TG@term\@coefb \TG@term{-\@coefc}% \TG@term\@coefd % \end{macrocode} % Now the cubic in $x^2$ is completed, so we need to multiply by $x$ and % divide by $7!$. % \begin{macrocode} \dimen@\@tempa\dimen@ \divide\dimen@ \@coefd} % \end{macrocode} % \end{macro} % % \begin{macro}{\CalculateSin} % If this angle has already been computed, do nothing, else store the % angle, and call |\TG@@sin|. % \begin{macrocode} \def\CalculateSin#1{{% \expandafter\ifx\csname sin(\number#1)\endcsname\relax \dimen@=#1\p@\TG@@sin \expandafter\xdef\csname sin(\number#1)\endcsname {\TG@rem@pt\dimen@}% \fi}} % \end{macrocode} % \end{macro} % % \begin{macro}{\CalculateCos} % As above, but use the relation $\cos(x) = \sin(90-x)$. % \begin{macrocode} \def\CalculateCos#1{{% \expandafter\ifx\csname cos(\number#1)\endcsname\relax \dimen@=\nin@ty\p@ \advance\dimen@-#1\p@ \TG@@sin \expandafter\xdef\csname cos(\number#1)\endcsname {\TG@rem@pt\dimen@}% \fi}} % \end{macrocode} % \end{macro} % % \begin{macro}{\TG@reduce} % Repeatedly use one of the the relations % $\sin(x)=\sin(180-x)=\sin(-180-x)$ to get $x$ in the range $-90 \leq % x\leq 90$. Then call |\TG@series|. % \begin{macrocode} \def\TG@reduce#1#2{% \dimen@#1#2\nin@ty\p@ \advance\dimen@#2-\@clxx\p@ \dimen@-\dimen@ \TG@@sin} % \end{macrocode} % \end{macro} % % \begin{macro}{\TG@@sin} % Slightly cryptic, but it seems to work\ldots % \begin{macrocode} \def\TG@@sin{% \ifdim\TG@reduce>+% \else\ifdim\TG@reduce<-% \else\TG@series\fi\fi}% % \end{macrocode} % \end{macro} % % \begin{macro}{\UseSin} % \begin{macro}{\UseCos} % Use a pre-computed value. % \begin{macrocode} \def\UseSin#1{\csname sin(\number#1)\endcsname} \def\UseCos#1{\csname cos(\number#1)\endcsname} % \end{macrocode} % \end{macro} % \end{macro} % % A few shortcuts to save space. % \begin{macrocode} \chardef\z@num\z@ \expandafter\let\csname sin(0)\endcsname\z@num \expandafter\let\csname cos(0)\endcsname\@ne \expandafter\let\csname sin(90)\endcsname\@ne \expandafter\let\csname cos(90)\endcsname\z@num \expandafter\let\csname sin(-90)\endcsname\m@ne \expandafter\let\csname cos(-90)\endcsname\z@num \expandafter\let\csname sin(180)\endcsname\z@num \expandafter\let\csname cos(180)\endcsname\m@ne % \end{macrocode} % % \begin{macro}{\CalculateTan} % Originally I coded the Taylor series for tan, but it seems to be % more accurate to just take the ratio of the sine and cosine. % This is accurate to 4 decimal places for angles up to % $50^\circ$, after that the accuracy tails off, giving % 57.47894 instead of 57.2900 for $89^\circ$. % \begin{macrocode} \def\CalculateTan#1{{% \expandafter\ifx\csname tan(\number#1)\endcsname\relax \CalculateSin{#1}% \CalculateCos{#1}% \@tempdima\UseCos{#1}\p@ \divide\@tempdima\@iv \@tempdimb\UseSin{#1}\p@ \@tempdimb\two@fourteen\@tempdimb \divide\@tempdimb\@tempdima \expandafter\xdef\csname tan(\number#1)\endcsname {\TG@rem@pt\@tempdimb}% \fi}} % \end{macrocode} % \end{macro} % % \begin{macro}{\UseTan} % Just like |\UseSin|. % \begin{macrocode} \def\UseTan#1{\csname tan(\number#1)\endcsname} % \end{macrocode} % \end{macro} % % \begin{macro}{\two@fourteen} % \begin{macro}{\@iv} % two constants needed to keep the division within \TeX's range. % \begin{macrocode} \mathchardef\two@fourteen=16384 \chardef\@iv=4 % \end{macrocode} % \end{macro} % \end{macro} % % Predefine $\tan(\pm90)$ to be an error. % \begin{macrocode} \expandafter\def\csname tan(90)\endcsname{\errmessage{Infinite tan !}} \expandafter\let\csname tan(-90)\expandafter\endcsname \csname tan(90)\endcsname % \end{macrocode} % % \begin{macrocode} % % \end{macrocode} % % \Finale % \endinput