% \iffalse %% File: l3prg.dtx Copyright (C) 2005-2010 LaTeX3 project %% %% It may be distributed and/or modified under the conditions of the %% LaTeX Project Public License (LPPL), either version 1.3c of this %% license or (at your option) any later version. The latest version %% of this license is in the file %% %% http://www.latex-project.org/lppl.txt %% %% This file is part of the ``expl3 bundle'' (The Work in LPPL) %% and all files in that bundle must be distributed together. %% %% The released version of this bundle is available from CTAN. %% %% ----------------------------------------------------------------------- %% %% The development version of the bundle can be found at %% %% http://www.latex-project.org/svnroot/experimental/trunk/ %% %% for those people who are interested. %% %%%%%%%%%%% %% NOTE: %% %%%%%%%%%%% %% %% Snapshots taken from the repository represent work in progress and may %% not work or may contain conflicting material! We therefore ask %% people _not_ to put them into distributions, archives, etc. without %% prior consultation with the LaTeX Project Team. %% %% ----------------------------------------------------------------------- % %<*driver|package> \RequirePackage{l3names} % %\fi \GetIdInfo$Id: l3prg.dtx 2063 2010-10-03 08:26:49Z mittelba $ {L3 Experimental control structures} %\iffalse %<*driver> %\fi \ProvidesFile{\filename.\filenameext} [\filedate\space v\fileversion\space\filedescription] %\iffalse \documentclass[full]{l3doc} \begin{document} \DocInput{l3prg.dtx} \end{document} % % \fi % % % \title{The \textsf{l3prg} package\thanks{This file % has version number \fileversion, last % revised \filedate.}\\ % Program control structures} % \author{\Team} % \date{\filedate} % \maketitle % % \begin{documentation} % % \section{Conditionals and logical operations} % % Conditional processing in \LaTeX3 is defined as something that % performs a series of tests, possibly involving assignments and % calling other functions that do not read further ahead in the input % stream. After processing the input, a \emph{state} is returned. The % typical states returned are \meta{true} and \meta{false} but other % states are possible, say an \meta{error} state for erroneous % input, e.g., text as input in a function comparing integers. % % % % \LaTeX3 has two primary forms of conditional flow processing based % on these states. One type is predicate functions that turn the % returned state into a boolean \meta{true} or \meta{false}. For % example, the function "\cs_if_free_p:N" checks whether the control % sequence given as its argument is free and then returns the boolean % \meta{true} or \meta{false} values to be used in testing with % "\if_predicate:w" or in functions to be described below. The other type % is the kind of functions choosing a particular argument from the % input stream based on the result of the testing as in % "\cs_if_free:NTF" which also takes one argument (the "N") and then % executes either \meta{true} or \meta{false} depending on the % result. Important to note here is that the arguments are executed % after exiting the underlying "\if...\fi:" structure % % % % % % % % \section{Defining a set of conditional functions} % % \begin{function}{ \prg_return_true: | % \prg_return_false: } % These functions exit conditional processing when used in % conjunction with the generating functions listed below. % \end{function} % % \begin{function}{% % \prg_set_conditional:Nnn | % \prg_set_conditional:Npnn | % \prg_new_conditional:Nnn | % \prg_new_conditional:Npnn | % \prg_set_protected_conditional:Nnn | % \prg_set_protected_conditional:Npnn | % \prg_new_protected_conditional:Nnn | % \prg_new_protected_conditional:Npnn | % \prg_set_eq_conditional:NNn | % \prg_new_eq_conditional:NNn % } % \begin{syntax} % "\prg_set_conditional:Nnn" % "\prg_set_conditional:Npnn" % \end{syntax} % This defines a conditional \meta{base function} which upon % evaluation using |\prg_return_true:| and |\prg_return_false:| to % finish branches, % returns a state. Currently the states are either \meta{true} or % \meta{false} although this can change as more states may be % introduced, say an \meta{error} state. \meta{conds} is a comma % separated list possibly consisting of |p| for denoting a predicate function % returning the boolean \meta{true} or \meta{false} values and |TF|, % |T| and |F| for the functions that act on the tokens following in % the input stream. The |:Nnn| form implicitly determines the number % of arguments from the function being defined whereas the |:Npnn| % form expects a primitive parameter text. % % An example can easily clarify matters here: % \begin{verbatim} % \prg_set_conditional:Nnn \foo_if_bar:NN {p,TF,T} { % \if_meaning:w \l_tmpa_tl #1 % \prg_return_true: % \else: % \if_meaning:w \l_tmpa_tl #2 % \prg_return_true: % \else: % \prg_return_false: % \fi: % \fi: % } % \end{verbatim} % This defines the function |\foo_if_bar_p:NN|, |\foo_if_bar:NNTF|, % |\foo_if_bar:NNT| but not |\foo_if_bar:NNF| (because "F" is missing from % the \meta{conds} list). The return statements % take care of resolving the remaining |\else:| and |\fi:| before % returning the state. There must be a return statement for each % branch, failing to do so will result in an error if that branch is % executed. % \end{function} % % % % % % \section{The boolean data type} % % This section describes a boolean data type which is closely % connected to conditional processing as sometimes you want to % execute some code depending on the value of a switch % (e.g.,~draft/final) and other times you perhaps want to use it as a % predicate function in an "\if_predicate:w" test. The problem of the % primitive "\if_false:" and "\if_true:" tokens is that it is not % always safe to pass them around as they may interfere with scanning % for termination of primitive conditional processing. Therefore, we % employ two canonical booleans: "\c_true_bool" or % "\c_false_bool". Besides preventing problems as described above, it % also allows us to implement a simple boolean parser supporting the % logical operations And, Or, Not, etc.\ which can then be used on % both the boolean type and predicate functions. % % All conditonal "\bool_" functions are expandable and expect the % input to also be fully expandable (which will generally mean being % constructed from predicate functions, possibly nested). % % \begin{function}{% % \bool_new:N | % \bool_new:c | % } % \begin{syntax} % "\bool_new:N" % \end{syntax} % Define a new boolean variable. The initial value is . A % boolean is actually just either "\c_true_bool" or "\c_false_bool". % \end{function} % % \begin{function}{% % \bool_set_true:N | % \bool_set_true:c | % \bool_set_false:N | % \bool_set_false:c | % \bool_gset_true:N | % \bool_gset_true:c | % \bool_gset_false:N | % \bool_gset_false:c | % } % \begin{syntax} % "\bool_gset_false:N" % \end{syntax} % Set either or . We can also do this globally. % \end{function} % % % \begin{function}{% % \bool_set_eq:NN | % \bool_set_eq:Nc | % \bool_set_eq:cN | % \bool_set_eq:cc | % \bool_gset_eq:NN | % \bool_gset_eq:Nc | % \bool_gset_eq:cN | % \bool_gset_eq:cc | % % } % \begin{syntax} % "\bool_set_eq:NN" % \end{syntax} % Set equal to the value of . % \end{function} % % \begin{function}{% % \bool_if_p:N / (EXP) | % \bool_if:N / (TF)(EXP) | % \bool_if_p:c / (EXP) | % \bool_if:c / (TF)(EXP) | % % } % \begin{syntax} % "\bool_if:NTF" \Arg{true} \Arg{false} \\ % "\bool_if_p:N" % \end{syntax} % Test the truth value of and execute the \m{true} or % \m{false} code. "\bool_if_p:N" is a predicate function for use in % "\if_predicate:w" tests or "\bool_if:nTF"-type functions described below. % \end{function} % % \begin{function}{% % \bool_while_do:Nn | % \bool_while_do:cn | % \bool_until_do:Nn | % \bool_until_do:cn | % \bool_do_while:Nn | % \bool_do_while:cn | % \bool_do_until:Nn | % \bool_do_until:cn | % % } % \begin{syntax} % "\bool_while_do:Nn" \Arg{code} \\ % "\bool_until_do:Nn" \Arg{code} \\ % \end{syntax} % The `while' versions execute as long as the boolean is % true and the `until' versions execute as long as the % boolean is false. The "while_do" functions execute the body after % testing the boolean and the "do_while" functions executes the body % first and then tests the boolean. % \end{function} % % % % \section{Boolean expressions} % % As we have a boolean datatype and predicate functions returning % boolean \meta{true} or \meta{false} values, it seems only fitting % that we also provide a parser for \meta{boolean expressions}. % % A boolean expression is an expression which given input in the form % of predicate functions and boolean variables, return boolean % \meta{true} or \meta{false}. It supports the logical operations And, % Or and Not as the well-known infix operators "&&", "||" and "!". In % addition to this, parentheses can be used to isolate % sub-expressions. For example, % \begin{verbatim} % \int_compare_p:n {1=1} && % ( % \int_compare_p:n {2=3} || % \int_compare_p:n {4=4} || % \int_compare_p:n {1=\error} % is skipped % ) && % !(\int_compare_p:n {2=4}) % \end{verbatim} % is a valid boolean expression. Note that minimal evaluation is % carried out whenever possible so that whenever a truth value cannot % be changed anymore, the remainding tests within the current group % are skipped. % % \begin{function}{% % \bool_if_p:n / (EXP) | % \bool_if:n / (TF)(EXP) | % } % \begin{syntax} % "\bool_if:nTF" \Arg{boolean expression} \Arg{true} % \Arg{false} % \end{syntax} % The functions evaluate the truth value of \m{boolean expression} % where each predicate is separated by \verb+&&+ or \verb+||+ % denoting logical `And' and `Or' functions. "(" and ")" denote % grouping of sub-expressions while "!" is used to as a prefix to % either negate a single expression or a group. Hence % \begin{verbatim} % \bool_if_p:n{ % \int_compare_p:n {1=1} && % ( % \int_compare_p:n {2=3} || % \int_compare_p:n {4=4} || % \int_compare_p:n {1=\error} % is skipped % ) && % !(\int_compare_p:n {2=4}) % } % \end{verbatim} % from above returns \meta{true}. % % Logical operators take higher precedence the later in the predicate they % appear. `` "||" "&&" '' is interpreted as the equivalent of % `` \textsc{or} [~ \textsc{and} ~]'' (but now we have grouping % you shouldn't write this sort of thing, anyway). % \end{function} % % % % \begin{function}{ \bool_not_p:n / (EXP) } % \begin{syntax} % "\bool_not_p:n" \Arg{boolean expression} % \end{syntax} % Longhand for writing "!("\meta{boolean expression}")" within a boolean % expression. Might not stick around. % \end{function} % % \begin{function}{ \bool_xor_p:nn / (EXP) } % \begin{syntax} % "\bool_xor_p:nn" \Arg{boolean expression} \Arg{boolean expression} % \end{syntax} % Implements an `exclusive or' operation between two boolean % expressions. There is no infix operation for this. % \end{function} % % \begin{function}{\bool_set:Nn |\bool_set:cn |\bool_gset:Nn |\bool_gset:cn} % \begin{syntax} % "\bool_set:Nn" \Arg{boolean expression} % \end{syntax} % Sets to the logical outcome of evaluating . % \end{function} % % % \section{Case switches} % % % \begin{function}{ \prg_case_int:nnn / (EXP) } % \begin{syntax} % "\prg_case_int:nnn" \Arg{integer expr} "{" % ~~\Arg{integer expr 1} \Arg{code 1}\\ % ~~\Arg{integer expr 2} \Arg{code 2}\\ % ~~\dots\\ % ~~\Arg{integer expr\,$\sb n$} \Arg{code\,$\sb n$}\\ % "}" \Arg{else case} % \end{syntax} % This function evaluates the first \meta{integer expr} and then compares it % to the values found in the list. Thus the expression % \begin{verbatim} % \prg_case_int:nnn{2*5}{ % {5}{Small} {4+6}{Medium} {-2*10}{Negative} % }{Other} % \end{verbatim} % evaluates first the term to look for and then tries to find this % value in the list of values. If the value is found, the code on its % right is executed after removing the remainder of the list. If the % value is not found, the \meta{else case} is executed. The example % above will return ``Medium''. % % The function is expandable and is written in such a way that % \texttt{f} style expansion can take place cleanly, i.e., no tokens % from within the function are left over. % \end{function} % % \begin{function}{ \prg_case_dim:nnn / (EXP) } % \begin{syntax} % "\prg_case_int:nnn" \Arg{dim expr} "{"\\ % ~~\Arg{dim expr 1} \Arg{code 1}\\ % ~~\Arg{dim expr 2} \Arg{code 2}\\ % ~~"..."\\ % ~~\Arg{dim expr\,$\sb n$} \Arg{code\,$\sb n$}\\ % "}" \Arg{else case} % \end{syntax} % This function works just like |\prg_case_int:nnn| except it works % for \meta{dim} registers. % \end{function} % % \begin{function}{ \prg_case_str:nnn / (EXP) } % \begin{syntax} % "\prg_case_str:nnn" \Arg{string} "{" \\ % ~~\Arg{string 1} \Arg{code 1}\\ % ~~\Arg{string 2} \Arg{code 2}\\ % ~~"..."\\ % ~~\Arg{string\,$\sb n$} \Arg{code,$\sb n$}\\ % "}" \Arg{else case} % \end{syntax} % This function works just like |\prg_case_int:nnn| except it % compares strings. Each string is evaluated fully using \texttt{x} % style expansion. % % The function is expandable\footnote{Provided you use pdfTeX v1.30 or % later} and is written in such a way that % \texttt{f} style expansion can take place cleanly, i.e., no tokens % from within the function are left over. % \end{function} % % \begin{function}{ \prg_case_tl:Nnn / (EXP) } % \begin{syntax} % "\prg_case_tl:Nnn" "{" % ~~ \Arg{code 1} \Arg{code 2} "..." \Arg{code\,$\sb n$}\\ % "}" \Arg{else case} % \end{syntax} % This function works just like |\prg_case_int:nnn| except it % compares token list variables. % % The function is expandable\footnote{Provided you use pdfTeX v1.30 or % later} and is written in such a way that % \texttt{f} style expansion can take place cleanly, i.e., no tokens % from within the function are left over. % \end{function} % % \section{Generic loops} % % % \begin{function}{ \bool_while_do:nn | % \bool_until_do:nn | % \bool_do_while:nn | % \bool_do_until:nn } % \begin{syntax} % "\bool_while_do:nn" \Arg{boolean expression} \Arg{code} \\ % "\bool_until_do:nn" \Arg{boolean expression} \Arg{code} % \end{syntax} % The `while' versions execute the code as long as is true and the `until' versions execute as long % as is false. The "while_do" functions execute % the body after testing the boolean and the "do_while" functions % executes the body first and then tests the boolean. % \end{function} % % \section{Choosing modes} % % \begin{function}{ \mode_if_vertical_p: / (EXP)| % \mode_if_vertical: / (TF)(EXP) } % \begin{syntax} % "\mode_if_vertical:TF" \Arg{true code} \Arg{false code} % \end{syntax} % Determines if \TeX{} is in vertical mode or not and executes either % or accordingly. % \end{function} % % \begin{function}{ \mode_if_horizontal_p: / (EXP)| % \mode_if_horizontal: / (TF)(EXP) } % \begin{syntax} % "\mode_if_horizontal:TF" \Arg{true code} \Arg{false code} % \end{syntax} % Determines if \TeX{} is in horizontal mode or not and executes either % or accordingly. % \end{function} % % % \begin{function}{ % \mode_if_inner_p: / (EXP)| % \mode_if_inner: / (TF)(EXP) } % \begin{syntax} % "\mode_if_inner:TF" \Arg{true code} \Arg{false code} % \end{syntax} % Determines if \TeX{} is in inner mode or not and executes either % or accordingly. % \end{function} % % \begin{function}{ % \mode_if_math_p: /(EXP) | % \mode_if_math: / (TF)(EXP) } % \begin{syntax} % "\mode_if_math:TF" \Arg{true code} \Arg{false code} % \end{syntax} % Determines if \TeX{} is in math mode or not and executes either % or accordingly. % \begin{texnote} % This version will choose the right branch even at the beginning of % an alignment cell. % \end{texnote} % \end{function} % % % \section{Alignment safe grouping and scanning} % % \begin{function}{\scan_align_safe_stop:} % \begin{syntax} % "\scan_align_safe_stop:" % \end{syntax} % This function gets \TeX{} on the right track inside an alignment % cell but without destroying any kerning. % \end{function} % % % \begin{function}{\group_align_safe_begin:| % \group_align_safe_end:} % \begin{syntax} % "\group_align_safe_begin:" <...> "\group_align_safe_end:" % \end{syntax} % Encloses <...> inside a group but is safe inside an alignment cell. % See the implementation of |\peek_token_generic:NNTF| for an % application. % \end{function} % % % \section{Producing $n$ copies} % % There are often several different requirements for producing % multiple copies of something. Sometimes one might want to produce a % number of identical copies of a sequence of tokens whereas at other % times the goal is to simulate a for loop as known from most real % programming languages. % % \begin{function}{\prg_replicate:nn / (EXP) } % \begin{syntax} % "\prg_replicate:nn" \Arg{number} \Arg{arg} % \end{syntax} % Creates copies of . Note that it is expandable. % \end{function} % % % \begin{function}{\prg_stepwise_function:nnnN / (EXP) } % \begin{syntax} % "\prg_stepwise_function:nnnN" \Arg{start} \Arg{step} % \Arg{end} % \end{syntax} % This function performs once for each step starting at % and ending once is passed. is placed % directly in front of a brace group holding the current number so it % should usually be a function taking one argument. % \end{function} % % \begin{function}{\prg_stepwise_inline:nnnn} % \begin{syntax} % "\prg_stepwise_inline:nnnn" \Arg{start} \Arg{step} \Arg{end} % \Arg{action} % \end{syntax} % Same as |\prg_stepwise_function:nnnN| except here is % performed each time with |##1| as a placeholder for the number % currently being tested. This function is not expandable and it is % nestable. % \end{function} % % \begin{function}{\prg_stepwise_variable:nnnNn} % \begin{syntax} % "\prg_stepwise_variable:nnnn" \Arg{start} \Arg{step} \Arg{end} % \Arg{action} % \end{syntax} % Same as |\prg_stepwise_inline:nnnn| except here the current value is % stored in and the programmer can use it in . This % function is not expandable. % \end{function} % % \section{Sorting} % % % \begin{function}{ % \prg_quicksort:n | % } % \begin{syntax} % "\prg_quicksort:n" "{" \Arg{item~1} \Arg{item~2} \dots \Arg{item~n} "}" % \end{syntax} % Performs a Quicksort on the token list. The comparisons are % performed by the function |\prg_quicksort_compare:nnTF| which is up % to the programmer to define. When the sorting process is over, all % items are given as argument to the function % |\prg_quicksort_function:n| which the programmer also controls. % \end{function} % % \begin{function}{ % \prg_quicksort_function:n | % \prg_quicksort_compare:nnTF % } % \begin{syntax} % "\prg_quicksort_function:n" \Arg{element} \\ % "\prg_quicksort_compare:nnTF" \Arg{element 1} \Arg{element 2}\\ % \end{syntax} % The two functions the programmer must define before calling % |\prg_quicksort:n|. As an example we could define % \begin{quote} % |\cs_set_nopar:Npn\prg_quicksort_function:n #1{{#1}}|\\ % |\cs_set_nopar:Npn\prg_quicksort_compare:nnTF #1#2#3#4 {\int_compare:nNnTF{#1}>{#2}}| % \end{quote} % Then the function call % \begin{quote} % |\prg_quicksort:n {876234520}| % \end{quote} % would return |{0}{2}{2}{3}{4}{5}{6}{7}{8}|. An alternative example % where one sorts a list of words, |\prg_quicksort_compare:nnTF| could % be defined as % \begin{quote} % |\cs_set_nopar:Npn\prg_quicksort_compare:nnTF #1#2 {|\\ % | \int_compare:nNnTF{\tl_compare:nn{#1}{#2}}>\c_zero }| % \end{quote} % % \end{function} % % \subsection{Variable type and scope} % %\begin{function}{\prg_variable_get_scope:N / (EXP) } % \begin{syntax} % "\prg_variable_get_scope:N" % \end{syntax} % Returns the scope (\texttt{g} for global, blank otherwise) for the % . %\end{function} % %\begin{function}{\prg_variable_get_type:N / (EXP) } % \begin{syntax} % "\prg_variable_get_type:N" % \end{syntax} % Returns the type of (\texttt{tl}, \texttt{int}, etc.) %\end{function} % %\subsection{Mapping to variables} % %\begin{function}{ \prg_new_map_functions:Nn } % \begin{syntax} % \cs{prg_new_map_functions:Nn} \meta{token} \Arg{name} % \end{syntax} % Creates a family of mapping functions which can be applied to % a token list, dividing the list up at each occurance of the % \meta{token}. The functions defined will be % \begin{itemize} % \item \cs{\meta{name}_map_function:NN} % \item \cs{\meta{name}_map_function:nN} % \item \cs{\meta{name}_map_inline:Nn} % \item \cs{\meta{name}_map_inline:nn} % \item \cs{\meta{name}_map_break:} % \end{itemize} % Of these, the \texttt{inline} functions are not expandable but % the other functions can be used in expansion contexts. The use of % each function is best illustrated by the \cs{clist_map_\ldots} % family defined by \LaTeX3 itself for mapping to comma-separated % lists. An error will be raised if the \meta{name} has already been % used to generate a family of mapping functions. All of the % definitions are created globally. %\end{function} % %\begin{function}{ \prg_set_map_functions:Nn } % \begin{syntax} % \cs{prg_set_map_functions:Nn} \meta{token} \Arg{name} % \end{syntax} % Creates a family of mapping functions which can be applied to % a token list, dividing the list up at each occurance of the % \meta{token}. The functions defined will be % \begin{itemize} % \item \cs{\meta{name}_map_function:NN} % \item \cs{\meta{name}_map_function:nN} % \item \cs{\meta{name}_map_inline:Nn} % \item \cs{\meta{name}_map_inline:nn} % \item \cs{\meta{name}_map_break:} % \end{itemize} % Of these, the \texttt{inline} functions are not expandable but % the other functions can be used in expansion contexts. The use of % each function is best illustrated by the \cs{clist_map_\ldots} % family defined by \LaTeX3 itself for mapping to comma-separated % lists. Any existing defintions for the \meta{name} will be % overwritten. All of the definitions are created globally. %\end{function} % % \end{documentation} % % \begin{implementation} % % \section{\pkg{l3prg} implementation} % % \subsection{Variables} % % \begin{function}{ \l_tmpa_bool | \g_tmpa_bool } % Reserved booleans. % \end{function} % % \begin{variable}{\g_prg_inline_level_int} % Global variable to track the nesting of the stepwise inline loop. % \end{variable} % % \subsection{Module code} % % We start by ensuring that the required packages are loaded. % \begin{macrocode} %<*package> \ProvidesExplPackage {\filename}{\filedate}{\fileversion}{\filedescription} \package_check_loaded_expl: % %<*initex|package> % \end{macrocode} % % \begin{macro}{\prg_return_true:} % \begin{macro}{\prg_return_false:} % \begin{macro}{ % \prg_set_conditional:Npnn, % \prg_new_conditional:Npnn, % \prg_set_protected_conditional:Npnn, % \prg_new_protected_conditional:Npnn %} % \begin{macro}{ % \prg_set_conditional:Nnn, % \prg_new_conditional:Nnn, % \prg_set_protected_conditional:Nnn, % \prg_new_protected_conditional:Nnn %} % \begin{macro}{ % \prg_set_eq_conditional:NNn, % \prg_new_eq_conditional:NNn %} % These are all defined in \pkg{l3basics}, as they are needed ``early''. % This is just a reminder that that is the case! % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Choosing modes} % % \begin{macro}{\mode_if_vertical_p:} % \begin{macro}[TF]{\mode_if_vertical:} % For testing vertical mode. Strikes me here on the bus with David, % that as long as we are just talking about returning true and % false states, we can just use the primitive conditionals for this % and gobbling the |\c_zero| in the input stream. However this % requires knowledge of the implementation so we keep things nice % and clean and use the return statements. % \begin{macrocode} \prg_set_conditional:Npnn \mode_if_vertical: {p,TF,T,F}{ \if_mode_vertical: \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\mode_if_horizontal_p:} % \begin{macro}[TF]{\mode_if_horizontal:} % For testing horizontal mode. % \begin{macrocode} \prg_set_conditional:Npnn \mode_if_horizontal: {p,TF,T,F}{ \if_mode_horizontal: \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\mode_if_inner_p:} % \begin{macro}[TF]{\mode_if_inner:} % For testing inner mode. % \begin{macrocode} \prg_set_conditional:Npnn \mode_if_inner: {p,TF,T,F}{ \if_mode_inner: \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\mode_if_math_p:} % \begin{macro}[TF]{\mode_if_math:} % For testing math mode. Uses the kern-save |\scan_align_safe_stop:|. % \begin{macrocode} \prg_set_conditional:Npnn \mode_if_math: {p,TF,T,F}{ \scan_align_safe_stop: \if_mode_math: \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % \end{macro} % \end{macro} % % \paragraph{Alignment safe grouping and scanning} % % % \begin{macro}{\group_align_safe_begin:} % \begin{macro}{\group_align_safe_end:} % \TeX's alignment structures present many problems. As Knuth says % himself in \emph{\TeX : The Program}: ``It's sort of a miracle % whenever |\halign| or |\valign| work, [\ldots]'' One problem relates % to commands that internally issues a |\cr| but also peek ahead for % the next character for use in, say, an optional argument. If the % next token happens to be a |&| with category code~4 we will get some % sort of weird error message because the underlying % |\tex_futurelet:D| will store the token at the end of the alignment % template. This could be a |&|$\sb4$ giving a message like % |! Misplaced \cr.| or even worse: it could be the |\endtemplate| % token causing even more trouble! To solve this we have to open a % special group so that \TeX{} still thinks it's on safe ground but at % the same time we don't want to introduce any brace group that may % find its way to the output. The following functions help with this % by using code documented only in Appendix~D of % \emph{The \TeX book}\dots % \begin{macrocode} \cs_new_nopar:Npn \group_align_safe_begin: { \if_false:{\fi:\if_num:w`}=\c_zero\fi:} \cs_new_nopar:Npn \group_align_safe_end: {\if_num:w`{=\c_zero}\fi:} % \end{macrocode} % \end{macro} % \end{macro} % % % \begin{macro}{\scan_align_safe_stop:} % When \TeX{} is in the beginning of an align cell (right after the % |\cr|) it is in a somewhat strange mode as it is looking ahead to % find an |\tex_omit:D| or |\tex_noalign:D| and hasn't looked at the % preamble yet. Thus an |\tex_ifmmode:D| test will always fail unless % we insert |\scan_stop:| to stop \TeX's scanning ahead. On the other % hand we don't want to insert a |\scan_stop:| every time as that will % destroy kerning between letters\footnote{Unless we enforce an extra % pass with an appropriate value of \texttt{\string\pretolerance}.} % Unfortunately there is no way to detect if we're in the beginning of % an alignment cell as they have different characteristics depending % on column number etc. However we \emph{can} detect if we're in an % alignment cell by checking the current group type and we can also % check if the previous node was a character or ligature. What is done % here is that |\scan_stop:| is only inserted iff a)~we're in the % outer part of an alignment cell and b)~the last node \emph{wasn't} a % char node or a ligature node. % \begin{macrocode} \cs_new_nopar:Npn \scan_align_safe_stop: { \int_compare:nNnT \etex_currentgrouptype:D = \c_six { \int_compare:nNnF \etex_lastnodetype:D = \c_zero { \int_compare:nNnF \etex_lastnodetype:D = \c_seven \scan_stop: } } } % \end{macrocode} % \end{macro} % % \subsection{Producing $n$ copies} % % \begin{macro}{\prg_replicate:nn} % \begin{macro}[aux]{\prg_replicate_aux:N,\prg_replicate_first_aux:N} % This function uses a cascading csname technique by David Kastrup % (who else :-) % % The idea is to make the input "25" result in first adding five, and % then 20 copies of the code to be replicated. The technique uses % cascading csnames which means that we start building several csnames % so we end up with a list of functions to be called in reverse % order. This is important here (and other places) because it means % that we can for instance make the function that inserts five copies % of something to also hand down ten to the next function in % line. This is exactly what happens here: in the example with "25" % then the next function is the one that inserts two copies but it % sees the ten copies handed down by the previous function. In order % to avoid the last function to insert say, 100 copies of the original % argument just to gobble them again we define separate functions to % be inserted first. Finally we must ensure that the cascade comes to % a peaceful end so we make it so that the original csname \TeX{} is % creating is simply "\prg_do_nothing:" expanding to nothing. % % This function has one flaw though: Since it constantly passes down % ten copies of its previous argument it will severely affect the main % memory once you start demanding hundreds of thousands of copies. Now % I don't think this is a real limitation for any ordinary use. An % alternative approach is to create a string of "m"'s with % "\int_to_roman:w" which can be done with just four macros but that % method has its own problems since it can exhaust the string % pool. Also, it is considerably slower than what we use here so the % few extra csnames are well spent I would say. % \begin{macrocode} \cs_new_nopar:Npn \prg_replicate:nn #1{ \cs:w prg_do_nothing: \exp_after:wN\prg_replicate_first_aux:N \tex_romannumeral:D -`\q \int_eval:n{#1} \cs_end: \cs_end: } \cs_new_nopar:Npn \prg_replicate_aux:N#1{ \cs:w prg_replicate_#1:n\prg_replicate_aux:N } \cs_new_nopar:Npn \prg_replicate_first_aux:N#1{ \cs:w prg_replicate_first_#1:n\prg_replicate_aux:N } % \end{macrocode} % \end{macro} % \end{macro} % Then comes all the functions that do the hard work of inserting all % the copies. % \begin{macrocode} \cs_new_nopar:Npn \prg_replicate_ :n #1{}% no, this is not a typo! \cs_new:cpn {prg_replicate_0:n}#1{\cs_end:{#1#1#1#1#1#1#1#1#1#1}} \cs_new:cpn {prg_replicate_1:n}#1{\cs_end:{#1#1#1#1#1#1#1#1#1#1}#1} \cs_new:cpn {prg_replicate_2:n}#1{\cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1} \cs_new:cpn {prg_replicate_3:n}#1{ \cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1} \cs_new:cpn {prg_replicate_4:n}#1{ \cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1} \cs_new:cpn {prg_replicate_5:n}#1{ \cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1} \cs_new:cpn {prg_replicate_6:n}#1{ \cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1#1} \cs_new:cpn {prg_replicate_7:n}#1{ \cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1#1#1} \cs_new:cpn {prg_replicate_8:n}#1{ \cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1#1#1#1} \cs_new:cpn {prg_replicate_9:n}#1{ \cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1#1#1#1#1} % \end{macrocode} % Users shouldn't ask for something to be replicated once or even % not at all but\dots % \begin{macrocode} \cs_new:cpn {prg_replicate_first_-:n}#1{\cs_end: \ERROR } \cs_new:cpn {prg_replicate_first_0:n}#1{\cs_end: } \cs_new:cpn {prg_replicate_first_1:n}#1{\cs_end: #1} \cs_new:cpn {prg_replicate_first_2:n}#1{\cs_end: #1#1} \cs_new:cpn {prg_replicate_first_3:n}#1{\cs_end: #1#1#1} \cs_new:cpn {prg_replicate_first_4:n}#1{\cs_end: #1#1#1#1} \cs_new:cpn {prg_replicate_first_5:n}#1{\cs_end: #1#1#1#1#1} \cs_new:cpn {prg_replicate_first_6:n}#1{\cs_end: #1#1#1#1#1#1} \cs_new:cpn {prg_replicate_first_7:n}#1{\cs_end: #1#1#1#1#1#1#1} \cs_new:cpn {prg_replicate_first_8:n}#1{\cs_end: #1#1#1#1#1#1#1#1} \cs_new:cpn {prg_replicate_first_9:n}#1{\cs_end: #1#1#1#1#1#1#1#1#1} % \end{macrocode} % % % % % \begin{macro}{\prg_stepwise_function:nnnN} % \begin{macro}[aux]{\prg_stepwise_function_incr:nnnN, % \prg_stepwise_function_decr:nnnN} % A stepwise function. Firstly we check the direction of the steps % |#2| since that will depend on which test we should use. If the % step is positive we use a greater than test, otherwise a less than % test. If the test comes out true exit, otherwise perform |#4|, % add the step to |#1| and try again with this new value of |#1|. % \begin{macrocode} \cs_new:Npn \prg_stepwise_function:nnnN #1#2{ \int_compare:nNnTF{#2}<\c_zero {\exp_args:Nf\prg_stepwise_function_decr:nnnN } {\exp_args:Nf\prg_stepwise_function_incr:nnnN } {\int_eval:n{#1}}{#2} } \cs_new:Npn \prg_stepwise_function_incr:nnnN #1#2#3#4{ \int_compare:nNnF {#1}>{#3} { #4{#1} \exp_args:Nf \prg_stepwise_function_incr:nnnN {\int_eval:n{#1 + #2}} {#2}{#3}{#4} } } \cs_new:Npn \prg_stepwise_function_decr:nnnN #1#2#3#4{ \int_compare:nNnF {#1}<{#3} { #4{#1} \exp_args:Nf \prg_stepwise_function_decr:nnnN {\int_eval:n{#1 + #2}} {#2}{#3}{#4} } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\g_prg_inline_level_int} % \begin{macro}{\prg_stepwise_inline:nnnn} % \begin{macro}[aux]{\prg_stepwise_inline_decr:nnnn, % \prg_stepwise_inline_incr:nnnn} % This function uses the same approach as for instance % |\clist_map_inline:Nn| to allow arbitrary nesting. First construct % the special function and then call an auxiliary one which just % carries the newly constructed csname. Must make assignments global % when we maintain our own stack. % \begin{macrocode} \int_new:N\g_prg_inline_level_int \cs_new_protected:Npn\prg_stepwise_inline:nnnn #1#2#3#4{ \int_gincr:N \g_prg_inline_level_int \cs_gset_nopar:cpn{prg_stepwise_inline_\int_use:N\g_prg_inline_level_int :n}##1{#4} \int_compare:nNnTF {#2}<\c_zero {\exp_args:Ncf \prg_stepwise_inline_decr:Nnnn } {\exp_args:Ncf \prg_stepwise_inline_incr:Nnnn } {prg_stepwise_inline_\int_use:N\g_prg_inline_level_int :n} {\int_eval:n{#1}} {#2} {#3} \int_gdecr:N \g_prg_inline_level_int } \cs_new:Npn \prg_stepwise_inline_incr:Nnnn #1#2#3#4{ \int_compare:nNnF {#2}>{#4} { #1{#2} \exp_args:NNf \prg_stepwise_inline_incr:Nnnn #1 {\int_eval:n{#2 + #3}} {#3}{#4} } } \cs_new:Npn \prg_stepwise_inline_decr:Nnnn #1#2#3#4{ \int_compare:nNnF {#2}<{#4} { #1{#2} \exp_args:NNf \prg_stepwise_inline_decr:Nnnn #1 {\int_eval:n{#2 + #3}} {#3}{#4} } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\prg_stepwise_variable:nnnNn} % \begin{macro}[aux]{\prg_stepwise_variable_decr:nnnNn, % \prg_stepwise_variable_incr:nnnNn} % Almost the same as above. Just store the value in |#4| and execute % |#5|. % \begin{macrocode} \cs_new_protected:Npn \prg_stepwise_variable:nnnNn #1#2 { \int_compare:nNnTF {#2}<\c_zero {\exp_args:Nf\prg_stepwise_variable_decr:nnnNn} {\exp_args:Nf\prg_stepwise_variable_incr:nnnNn} {\int_eval:n{#1}}{#2} } \cs_new_protected:Npn \prg_stepwise_variable_incr:nnnNn #1#2#3#4#5 { \int_compare:nNnF {#1}>{#3} { \cs_set_nopar:Npn #4{#1} #5 \exp_args:Nf \prg_stepwise_variable_incr:nnnNn {\int_eval:n{#1 + #2}}{#2}{#3}#4{#5} } } \cs_new_protected:Npn \prg_stepwise_variable_decr:nnnNn #1#2#3#4#5 { \int_compare:nNnF {#1}<{#3} { \cs_set_nopar:Npn #4{#1} #5 \exp_args:Nf \prg_stepwise_variable_decr:nnnNn {\int_eval:n{#1 + #2}}{#2}{#3}#4{#5} } } % \end{macrocode} % \end{macro} % \end{macro} % % % \subsection{Booleans} % For normal booleans we set them to either "\c_true_bool" or "\c_false_bool" % and then use "\if_bool:N" to choose the right branch. The functions % return either the TF, T, or F case \emph{after} ending the |\if_bool:N|. % We only define the |N| versions here as the |c| versions can easily % be constructed with the expansion module. % % \begin{macro}{\bool_new:N} % \begin{macro}{\bool_new:c} % \begin{macro}{\bool_set_true:N} % \begin{macro}{\bool_set_true:c} % \begin{macro}{\bool_set_false:N} % \begin{macro}{\bool_set_false:c} % \begin{macro}{\bool_gset_true:N} % \begin{macro}{\bool_gset_true:c} % \begin{macro}{\bool_gset_false:N} % \begin{macro}{\bool_gset_false:c} % Defining and setting a boolean is easy. % \begin{macrocode} \cs_new_protected_nopar:Npn \bool_new:N #1 { \cs_new_eq:NN #1 \c_false_bool } \cs_new_protected_nopar:Npn \bool_new:c #1 { \cs_new_eq:cN {#1} \c_false_bool } \cs_new_protected_nopar:Npn \bool_set_true:N #1 { \cs_set_eq:NN #1 \c_true_bool } \cs_new_protected_nopar:Npn \bool_set_true:c #1 { \cs_set_eq:cN {#1} \c_true_bool } \cs_new_protected_nopar:Npn \bool_set_false:N #1 { \cs_set_eq:NN #1 \c_false_bool } \cs_new_protected_nopar:Npn \bool_set_false:c #1 { \cs_set_eq:cN {#1} \c_false_bool } \cs_new_protected_nopar:Npn \bool_gset_true:N #1 { \cs_gset_eq:NN #1 \c_true_bool } \cs_new_protected_nopar:Npn \bool_gset_true:c #1 { \cs_gset_eq:cN {#1} \c_true_bool } \cs_new_protected_nopar:Npn \bool_gset_false:N #1 { \cs_gset_eq:NN #1 \c_false_bool } \cs_new_protected_nopar:Npn \bool_gset_false:c #1 { \cs_gset_eq:cN {#1} \c_false_bool } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\bool_set_eq:NN} % \begin{macro}{\bool_set_eq:Nc} % \begin{macro}{\bool_set_eq:cN} % \begin{macro}{\bool_set_eq:cc} % \begin{macro}{\bool_gset_eq:NN} % \begin{macro}{\bool_gset_eq:Nc} % \begin{macro}{\bool_gset_eq:cN} % \begin{macro}{\bool_gset_eq:cc} % Setting a boolean to another is also pretty easy. % \begin{macrocode} \cs_new_eq:NN \bool_set_eq:NN \cs_set_eq:NN \cs_new_eq:NN \bool_set_eq:Nc \cs_set_eq:Nc \cs_new_eq:NN \bool_set_eq:cN \cs_set_eq:cN \cs_new_eq:NN \bool_set_eq:cc \cs_set_eq:cc \cs_new_eq:NN \bool_gset_eq:NN \cs_gset_eq:NN \cs_new_eq:NN \bool_gset_eq:Nc \cs_gset_eq:Nc \cs_new_eq:NN \bool_gset_eq:cN \cs_gset_eq:cN \cs_new_eq:NN \bool_gset_eq:cc \cs_gset_eq:cc % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\l_tmpa_bool} % \begin{macro}{\g_tmpa_bool} % A few booleans just if you need them. % \begin{macrocode} \bool_new:N \l_tmpa_bool \bool_new:N \g_tmpa_bool % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\bool_if_p:N,\bool_if_p:c} % \begin{macro}[TF]{\bool_if:N,\bool_if:c} % Straight forward here. We could optimize here if we wanted to as % the boolean can just be input directly. % \begin{macrocode} \prg_set_conditional:Npnn \bool_if:N #1 {p,TF,T,F}{ \if_bool:N #1 \prg_return_true: \else: \prg_return_false: \fi: } \cs_generate_variant:Nn \bool_if_p:N {c} \cs_generate_variant:Nn \bool_if:NTF {c} \cs_generate_variant:Nn \bool_if:NT {c} \cs_generate_variant:Nn \bool_if:NF {c} % \end{macrocode} % \end{macro} % \end{macro} % % % % \begin{macro}{\bool_while_do:Nn} % \begin{macro}{\bool_while_do:cn} % \begin{macro}{\bool_until_do:Nn} % \begin{macro}{\bool_until_do:cn} % A "while" loop where the boolean is tested before executing the % statement. The `while' version executes the code as long as the % boolean is true; the `until' version executes the code as % long as the boolean is false. % \begin{macrocode} \cs_new:Npn \bool_while_do:Nn #1 #2 { \bool_if:NT #1 {#2 \bool_while_do:Nn #1 {#2}} } \cs_generate_variant:Nn \bool_while_do:Nn {c} % \end{macrocode} % % \begin{macrocode} \cs_new:Npn \bool_until_do:Nn #1 #2 { \bool_if:NF #1 {#2 \bool_until_do:Nn #1 {#2}} } \cs_generate_variant:Nn \bool_until_do:Nn {c} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\bool_do_while:Nn} % \begin{macro}{\bool_do_while:cn} % \begin{macro}{\bool_do_until:Nn} % \begin{macro}{\bool_do_until:cn} % A "do-while" loop where the body is performed at least once and the % boolean is tested after executing the body. Otherwise identical to % the above functions. % \begin{macrocode} \cs_new:Npn \bool_do_while:Nn #1 #2 { #2 \bool_if:NT #1 {\bool_do_while:Nn #1 {#2}} } \cs_generate_variant:Nn \bool_do_while:Nn {c} % \end{macrocode} % % \begin{macrocode} \cs_new:Npn \bool_do_until:Nn #1 #2 { #2 \bool_if:NF #1 {\bool_do_until:Nn #1 {#2}} } \cs_generate_variant:Nn \bool_do_until:Nn {c} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % % % \subsection{Parsing boolean expressions} % % \begin{macro}{\bool_if_p:n} % \begin{macro}[TF]{\bool_if:n} % \begin{macro}[aux]{\bool_get_next:N, \bool_cleanup:N, \bool_choose:NN} % \begin{macro}[aux]{\bool_!:w} % \begin{macro}[aux]{\bool_Not:w} % \begin{macro}[aux]{\bool_Not:w} % \begin{macro}[aux]{\bool_(:w} % \begin{macro}[aux]{\bool_p:w} % \begin{macro}[aux]{\bool_8_1:w} % \begin{macro}[aux]{\bool_I_1:w} % \begin{macro}[aux]{\bool_8_0:w} % \begin{macro}[aux]{\bool_I_0:w} % \begin{macro}[aux]{\bool_)_0:w} % \begin{macro}[aux]{\bool_)_1:w} % \begin{macro}[aux]{\bool_S_0:w} % \begin{macro}[aux]{\bool_S_1:w} % % Evaluating the truth value of a list of predicates is done using % an input syntax somewhat similar to the one found in other % programming languages with "(" and ")" for grouping, "!" for % logical `Not', "&&" for logical `And' and "||" for logical % "Or". We shall use the terms Not, And, Or, Open and Close for % these operations. % % Any expression is terminated by a Close operation. Evaluation % happens from left to right in the following manner using a GetNext % function: % \begin{itemize} % \item If an Open is seen, start evaluating a new expression using % the Eval function and % call GetNext again. % \item If a Not is seen, insert a negating function (if-even in % this case) and call GetNext. % \item If none of the above, start evaluating a new expression by % reinserting the token found (this is supposed to be a predicate % function) in front of Eval. % \end{itemize} % The Eval function then contains a post-processing operation which % grabs the instruction following the predicate. This is either And, % Or or Close. In each case the truth value is used to determine % where to go next. The following situations can arise: % \begin{description} % \item[\meta{true}And] Current truth value is true, logical And % seen, continue with GetNext to examine truth value of next % boolean (sub-)expression. % \item[\meta{false}And] Current truth value is false, logical And % seen, stop evaluating the predicates within this sub-expression % and break to the nearest Close. Then return \meta{false}. % \item[\meta{true}Or] Current truth value is true, logical Or % seen, stop evaluating the predicates within this sub-expression % and break to the nearest Close. Then return \meta{true}. % \item[\meta{false}Or] Current truth value is false, logical Or % seen, continue with GetNext to examine truth value of next % boolean (sub-)expression. % \item[\meta{true}Close] Current truth value is true, Close % seen, return \meta{true}. % \item[\meta{false}Close] Current truth value is false, Close % seen, return \meta{false}. % \end{description} % We introduce an additional Stop operation with the following % semantics: % \begin{description} % \item[\meta{true}Stop] Current truth value is true, return % \meta{true}. % \item[\meta{false}Stop] Current truth value is false, return % \meta{false}. % \end{description} % The reasons for this follow below. % % Now for how these works in practice. The canonical true and false % values have numerical values 1 and 0 respectively. We evaluate % this using the primitive "\tex_number:D" operation. First we % issue a "\group_align_safe_begin:" as we are using "&&" as syntax % shorthand for the And operation and we need to hide it for \TeX. % We also need to finish this special group before finally % returning a "\c_true_bool" or "\c_false_bool" as there might % otherwise be something left in front in the input stream. For % this we call the Stop operation, denoted simply by a "S" % following the last Close operation. % \begin{macrocode} \cs_new:Npn \bool_if_p:n #1{ \group_align_safe_begin: \bool_get_next:N ( #1 )S } % \end{macrocode} % The GetNext operation. We make it a switch: If not a "!" or "(", we % assume it is a predicate. % \begin{macrocode} \cs_new:Npn \bool_get_next:N #1{ \use:c { bool_ \if_meaning:w !#1 ! \else: \if_meaning:w (#1 ( \else: p \fi: \fi: :w } #1 } % \end{macrocode} % This variant gets called when a \textsc{not} has just been entered. % It (eventually) results in a reveral of the logic of the directly following % material. % \begin{macrocode} \cs_new:Npn \bool_get_not_next:N #1{ \use:c { bool_not_ \if_meaning:w !#1 ! \else: \if_meaning:w (#1 ( \else: p \fi: \fi: :w } #1 } % \end{macrocode} % We need these later on to nullify the unity operation |!!|. % \begin{macrocode} \cs_new:Npn \bool_get_next:NN #1#2{ \bool_get_next:N #2 } \cs_new:Npn \bool_get_not_next:NN #1#2{ \bool_get_not_next:N #2 } % \end{macrocode} % The Not operation. Discard the token read and reverse the truth % value of the next expression if there % are brackets; otherwise % if we're coming up to a |!| then we don't need to reverse anything % (but we then want to continue scanning ahead in case some fool has written % |!!(...)|); % otherwise we have a boolean that we can reverse here and now. % \begin{macrocode} \cs_new:cpn { bool_!:w } #1#2 { \if_meaning:w ( #2 \exp_after:wN \bool_Not:w \else: \if_meaning:w ! #2 \exp_after:wN \exp_after:wN \exp_after:wN \bool_get_next:NN \else: \exp_after:wN \exp_after:wN \exp_after:wN \bool_Not:N \fi: \fi: #2 } % \end{macrocode} % Variant called when already inside a \textsc{not}. % Essentially the opposite of the above. % \begin{macrocode} \cs_new:cpn { bool_not_!:w } #1#2 { \if_meaning:w ( #2 \exp_after:wN \bool_not_Not:w \else: \if_meaning:w ! #2 \exp_after:wN \exp_after:wN \exp_after:wN \bool_get_not_next:NN \else: \exp_after:wN \exp_after:wN \exp_after:wN \bool_not_Not:N \fi: \fi: #2 } % \end{macrocode} % These occur when processing |!(...)|. The idea is to use a variant % of |\bool_get_next:N| that finishes its parsing with a logic reveral. % Of course, the double logic reversal gets us back to where we started. % \begin{macrocode} \cs_new:Npn \bool_Not:w { \exp_after:wN \tex_number:D \bool_get_not_next:N } \cs_new:Npn \bool_not_Not:w { \exp_after:wN \tex_number:D \bool_get_next:N } % \end{macrocode} % These occur when processing |!| and can be evaluated directly. % \begin{macrocode} \cs_new:Npn \bool_Not:N #1 { \exp_after:wN \bool_p:w \if_meaning:w #1 \c_true_bool \c_false_bool \else: \c_true_bool \fi: } \cs_new:Npn \bool_not_Not:N #1 { \exp_after:wN \bool_p:w \if_meaning:w #1 \c_true_bool \c_true_bool \else: \c_false_bool \fi: } % \end{macrocode} % The Open operation. Discard the token read and start a % sub-expression. % |\bool_get_next:N| continues building up the logical expressions as usual; % |\bool_not_cleanup:N| is what reverses the logic if we're inside |!(...)|. % \begin{macrocode} \cs_new:cpn {bool_(:w}#1{ \exp_after:wN \bool_cleanup:N \tex_number:D \bool_get_next:N } \cs_new:cpn {bool_not_(:w}#1{ \exp_after:wN \bool_not_cleanup:N \tex_number:D \bool_get_next:N } % \end{macrocode} % Otherwise just evaluate the predicate and look for And, Or or Close % afterward. % \begin{macrocode} \cs_new:cpn {bool_p:w}{\exp_after:wN \bool_cleanup:N \tex_number:D } \cs_new:cpn {bool_not_p:w}{\exp_after:wN \bool_not_cleanup:N \tex_number:D } % \end{macrocode} % This cleanup function can be omitted once predicates return their % true/false booleans outside the conditionals. % \begin{macrocode} \cs_new_nopar:Npn \bool_cleanup:N #1{ \exp_after:wN \bool_choose:NN \exp_after:wN #1 \int_to_roman:w-`\q } \cs_new_nopar:Npn \bool_not_cleanup:N #1{ \exp_after:wN \bool_not_choose:NN \exp_after:wN #1 \int_to_roman:w-`\q } % \end{macrocode} % Branching the six way switch. % Reversals should be reasonably straightforward. % When programming this, however, I got things around the wrong way a few times. % (Will's hacks onto Morten's code, that is.) % \begin{macrocode} \cs_new_nopar:Npn \bool_choose:NN #1#2{ \use:c{bool_#2_#1:w} } \cs_new_nopar:Npn \bool_not_choose:NN #1#2{ \use:c{bool_not_#2_#1:w} } % \end{macrocode} % Continues scanning. Must remove the second "&" or "|". % \begin{macrocode} \cs_new_nopar:cpn{bool_&_1:w}&{\bool_get_next:N} \cs_new_nopar:cpn{bool_|_0:w}|{\bool_get_next:N} \cs_new_nopar:cpn{bool_not_&_0:w}&{\bool_get_next:N} \cs_new_nopar:cpn{bool_not_|_1:w}|{\bool_get_next:N} % \end{macrocode} % Closing a group is just about returning the result. The Stop % operation is similar except it closes the special alignment group % before returning the boolean. % \begin{macrocode} \cs_new_nopar:cpn{bool_)_0:w}{ \c_false_bool } \cs_new_nopar:cpn{bool_)_1:w}{ \c_true_bool } \cs_new_nopar:cpn{bool_not_)_0:w}{ \c_true_bool } \cs_new_nopar:cpn{bool_not_)_1:w}{ \c_false_bool } \cs_new_nopar:cpn{bool_S_0:w}{\group_align_safe_end: \c_false_bool } \cs_new_nopar:cpn{bool_S_1:w}{\group_align_safe_end: \c_true_bool } % \end{macrocode} % When the truth value has already been decided, we have to throw away % the remainder of the current group as we are doing minimal % evaluation. This is slightly tricky as there are no braces so we % have to play match the "()" manually. % \begin{macrocode} \cs_new:cpn{bool_&_0:w}&{\bool_eval_skip_to_end:Nw \c_false_bool} \cs_new:cpn{bool_|_1:w}|{\bool_eval_skip_to_end:Nw \c_true_bool} \cs_new:cpn{bool_not_&_1:w}&{\bool_eval_skip_to_end:Nw \c_false_bool} \cs_new:cpn{bool_not_|_0:w}|{\bool_eval_skip_to_end:Nw \c_true_bool} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[aux]{\bool_eval_skip_to_end:Nw, % \bool_eval_skip_to_end_aux:Nw,\bool_eval_skip_to_end_auxii:Nw} % There is always at least one ")" waiting, namely the outer % one. However, we are facing the problem that there may be more than % one that need to be finished off and we have to detect the correct % number of them. Here is a complicated example showing how this is % done. After evaluating the following, we realize we must skip % everything after the first And. Note the extra Close at the end. % \begin{quote} % |\c_false_bool && ((abc) && xyz) && ((xyz) && (def)))| % \end{quote} % First read up to the first Close. This gives us the list we first % read up until the first right parenthesis so we are looking at the % token list % \begin{quote} % |((abc| % \end{quote} % This contains two Open markers so we must remove two groups. Since % no evaluation of the contents is to be carried out, it doesn't % matter how we remove the groups as long as we wind up with the % correct result. We therefore first remove a "()" pair and what % preceded the Open -- but leave the contents as it may contain Open % tokens itself -- leaving % \begin{quote} % |(abc && xyz) && ((xyz) && (def)))| % \end{quote} % Another round of this gives us % \begin{quote} % |(abc && xyz| % \end{quote} % which still contains an Open so we remove another "()" pair, giving us % \begin{quote} % |abc && xyz && ((xyz) && (def)))| % \end{quote} % Again we read up to a Close and again find Open tokens: % \begin{quote} % |abc && xyz && ((xyz| % \end{quote} % Further reduction gives us % \begin{quote} % |(xyz && (def)))| % \end{quote} % and then % \begin{quote} % |(xyz && (def| % \end{quote} % with reduction to % \begin{quote} % |xyz && (def))| % \end{quote} % and ultimately we arrive at no Open tokens being skipped and we can % finally close the group nicely. % % This whole operation could be made a lot simpler if we were allowed % to do simple pattern matching. With a new enough pdf\TeX\ one can do % that sort of thing to test for existence of particular tokens. % \begin{macrocode} \cs_new:Npn \bool_eval_skip_to_end:Nw #1#2){ \bool_eval_skip_to_end_aux:Nw #1 #2(\q_no_value\q_stop{#2} } % \end{macrocode} % If no right parenthesis, then |#3| is no_value and we are done, return % the boolean |#1|. If there is, we need to grab a () pair and then % recurse % \begin{macrocode} \cs_new:Npn \bool_eval_skip_to_end_aux:Nw #1#2(#3#4\q_stop#5{ \quark_if_no_value:NTF #3 { #1 } { \bool_eval_skip_to_end_auxii:Nw #1 #5 } } % \end{macrocode} % keep the boolean, throw away anything up to the ( as it is % irrelevant, remove a () pair but remember to reinsert |#3| as it may % contain ( tokens! % \begin{macrocode} \cs_new:Npn \bool_eval_skip_to_end_auxii:Nw #1#2(#3){ \bool_eval_skip_to_end:Nw #1#3 ) } % \end{macrocode} % \end{macro} % % \begin{macro}{\bool_set:Nn,\bool_set:cn,\bool_gset:Nn,\bool_gset:cn} % This function evaluates a boolean expression and assigns the first % argument the meaning "\c_true_bool" or "\c_false_bool". % \begin{macrocode} \cs_new:Npn \bool_set:Nn #1#2 {\tex_chardef:D #1 = \bool_if_p:n {#2}} \cs_new:Npn \bool_gset:Nn #1#2 { \tex_global:D \tex_chardef:D #1 = \bool_if_p:n {#2} } \cs_generate_variant:Nn \bool_set:Nn {c} \cs_generate_variant:Nn \bool_gset:Nn {c} % \end{macrocode} % \end{macro} % % \begin{macro}{\bool_not_p:n} % The "not" variant just reverses the outcome of |\bool_if_p:n|. Can % be optimized but this is nice and simple and according to the % implementation plan. Not even particularly useful to have it when % the infix notation is easier to use. % \begin{macrocode} \cs_new:Npn \bool_not_p:n #1{ \bool_if_p:n{!(#1)} } % \end{macrocode} % \end{macro} % % \begin{macro}{\bool_xor_p:nn} % Exclusive or. If the boolean expressions have same truth value, % return false, otherwise return true. % \begin{macrocode} \cs_new:Npn \bool_xor_p:nn #1#2 { \int_compare:nNnTF {\bool_if_p:n { #1 }} = {\bool_if_p:n { #2 }} {\c_false_bool}{\c_true_bool} } % \end{macrocode} % \end{macro} % % \begin{macrocode} \prg_set_conditional:Npnn \bool_if:n #1 {TF,T,F}{ \if_predicate:w \bool_if_p:n{#1} \prg_return_true: \else: \prg_return_false: \fi: } % \end{macrocode} % % \begin{macro}{\bool_while_do:nn,\bool_until_do:nn} % \begin{macro}{\bool_do_while:nn,\bool_do_until:nn} % \begin{arguments} % \item Predicate test % \item Code to execute % \end{arguments} % \begin{macrocode} \cs_new:Npn \bool_while_do:nn #1#2 { \bool_if:nT {#1} { #2 \bool_while_do:nn {#1}{#2} } } \cs_new:Npn \bool_until_do:nn #1#2 { \bool_if:nF {#1} { #2 \bool_until_do:nn {#1}{#2} } } \cs_new:Npn \bool_do_while:nn #1#2 { #2 \bool_if:nT {#1} { \bool_do_while:nn {#1}{#2} } } \cs_new:Npn \bool_do_until:nn #1#2 { #2 \bool_if:nF {#1} { \bool_do_until:nn {#1}{#2} } } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Case switch} % % \begin{macro}{\prg_case_int:nnn} % \begin{macro}[aux]{\prg_case_int_aux:nnn} % This case switch is in reality quite simple. It takes three arguments: % \begin{enumerate} % \item An integer expression you wish to find. % \item A list of pairs of \Arg{integer expr} \Arg{code}. % The list can be as long as is desired % and \meta{integer expr} can be negative. % \item The code to be executed if the value wasn't found. % \end{enumerate} % We don't need the else case here yet, so leave it dangling in the % input stream. % \begin{macrocode} \cs_new:Npn \prg_case_int:nnn #1 #2 { % \end{macrocode} % We will be parsing on |#1| for each step so we might as well % evaluate it first in case it is complicated. % \begin{macrocode} \exp_args:Nf \prg_case_int_aux:nnn { \int_eval:n{#1}} #2 % \end{macrocode} % The \texttt{?} below is just so there are enough arguments when we % reach the end. And it made you look.~\texttt{;-)} % \begin{macrocode} \q_recursion_tail ? \q_recursion_stop } \cs_new:Npn \prg_case_int_aux:nnn #1#2#3{ % \end{macrocode} % If we reach the end, return the else case. We just remove braces. % \begin{macrocode} \quark_if_recursion_tail_stop_do:nn{#2}{\use:n} % \end{macrocode} % Otherwise we compare (which evaluates |#2| for us) % \begin{macrocode} \int_compare:nNnTF{#1}={#2} % \end{macrocode} % If true, we want to remove the remainder of the list, the else case % and then execute the code specified. |\prg_end_case:nw {#3}| does % just that in one go. This means |f| style expansion works the way % one wants it to work. % \begin{macrocode} { \prg_end_case:nw {#3} } { \prg_case_int_aux:nnn {#1}} } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\prg_case_dim:nnn} % \begin{macro}[aux]{\prg_case_dim_aux:nnn} % Same as |\prg_case_dim:nnn| except it is for \meta{dim} registers. % \begin{macrocode} \cs_new:Npn \prg_case_dim:nnn #1 #2 { \exp_args:No \prg_case_dim_aux:nnn {\dim_use:N \dim_eval:n{#1}} #2 \q_recursion_tail ? \q_recursion_stop } \cs_new:Npn \prg_case_dim_aux:nnn #1#2#3{ \quark_if_recursion_tail_stop_do:nn{#2}{\use:n} \dim_compare:nNnTF{#1}={#2} { \prg_end_case:nw {#3} } { \prg_case_dim_aux:nnn {#1}} } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\prg_case_str:nnn} % \begin{macro}[aux]{\prg_case_str_aux:nnn} % Same as |\prg_case_dim:nnn| except it is for strings. % \begin{macrocode} \cs_new:Npn \prg_case_str:nnn #1 #2 { \prg_case_str_aux:nnn {#1} #2 \q_recursion_tail ? \q_recursion_stop } \cs_new:Npn \prg_case_str_aux:nnn #1#2#3{ \quark_if_recursion_tail_stop_do:nn{#2}{\use:n} \str_if_eq:xxTF{#1}{#2} { \prg_end_case:nw {#3} } { \prg_case_str_aux:nnn {#1}} } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\prg_case_tl:Nnn} % \begin{macro}[aux]{\prg_case_tl_aux:NNn} % Same as |\prg_case_dim:nnn| except it is for token list variables. % \begin{macrocode} \cs_new:Npn \prg_case_tl:Nnn #1 #2 { \prg_case_tl_aux:NNn #1 #2 \q_recursion_tail ? \q_recursion_stop } \cs_new:Npn \prg_case_tl_aux:NNn #1#2#3{ \quark_if_recursion_tail_stop_do:Nn #2{\use:n} \tl_if_eq:NNTF #1 #2 { \prg_end_case:nw {#3} } { \prg_case_tl_aux:NNn #1} } % \end{macrocode} % \end{macro} % \end{macro} % % % \begin{macro}[aux]{\prg_end_case:nw} % Ending a case switch is always performed the same way so we % optimize for this. |#1| is the code to execute, |#2| the % remainder, and |#3| the dangling else case. % \begin{macrocode} \cs_new:Npn \prg_end_case:nw #1#2\q_recursion_stop#3{#1} % \end{macrocode} % \end{macro} % % \subsection{Sorting} % % % \begin{macro}[aux]{\prg_define_quicksort:nnn} % |#1| is the name, |#2| and |#3| are the tokens enclosing the % argument. For the somewhat strange \meta{clist} type which doesn't % enclose the items but uses a separator we define it by hand % afterwards. When doing the first pass, the algorithm wraps all % elements in braces and then uses a generic quicksort which works % on token lists. % % As an example % \begin{quote} % |\prg_define_quicksort:nnn{seq}{\seq_elt:w}{\seq_elt_end:w}| % \end{quote} % defines the user function |\seq_quicksort:n| and furthermore % expects to use the two functions |\seq_quicksort_compare:nnTF| % which compares the items and |\seq_quicksort_function:n| which is % placed before each sorted item. It is up to the programmer to % define these functions when needed. For the |seq| type a sequence % is a token list variable, so one additionally has to define % \begin{quote} % |\cs_set_nopar:Npn \seq_quicksort:N{\exp_args:No\seq_quicksort:n}| % \end{quote} % % % For details on the implementation see ``Sorting in \TeX's Mouth'' % by Bernd Raichle. Firstly we define the function for parsing the % initial list and then the braced list afterwards. % \begin{macrocode} \cs_new_protected_nopar:Npn \prg_define_quicksort:nnn #1#2#3 { \cs_set:cpx{#1_quicksort:n}##1{ \exp_not:c{#1_quicksort_start_partition:w} ##1 \exp_not:n{#2\q_nil#3\q_stop} } \cs_set:cpx{#1_quicksort_braced:n}##1{ \exp_not:c{#1_quicksort_start_partition_braced:n} ##1 \exp_not:N\q_nil\exp_not:N\q_stop } \cs_set:cpx {#1_quicksort_start_partition:w} #2 ##1 #3{ \exp_not:N \quark_if_nil:nT {##1}\exp_not:N \use_none_delimit_by_q_stop:w \exp_not:c{#1_quicksort_do_partition_i:nnnw} {##1}{}{} } \cs_set:cpx {#1_quicksort_start_partition_braced:n} ##1 { \exp_not:N \quark_if_nil:nT {##1}\exp_not:N \use_none_delimit_by_q_stop:w \exp_not:c{#1_quicksort_do_partition_i_braced:nnnn} {##1}{}{} } % \end{macrocode} % Now for doing the partitions. % \begin{macrocode} \cs_set:cpx {#1_quicksort_do_partition_i:nnnw} ##1##2##3 #2 ##4 #3 { \exp_not:N \quark_if_nil:nTF {##4} \exp_not:c {#1_do_quicksort_braced:nnnnw} { \exp_not:c{#1_quicksort_compare:nnTF}{##1}{##4} \exp_not:c{#1_quicksort_partition_greater_ii:nnnn} \exp_not:c{#1_quicksort_partition_less_ii:nnnn} } {##1}{##2}{##3}{##4} } \cs_set:cpx {#1_quicksort_do_partition_i_braced:nnnn} ##1##2##3##4 { \exp_not:N \quark_if_nil:nTF {##4} \exp_not:c {#1_do_quicksort_braced:nnnnw} { \exp_not:c{#1_quicksort_compare:nnTF}{##1}{##4} \exp_not:c{#1_quicksort_partition_greater_ii_braced:nnnn} \exp_not:c{#1_quicksort_partition_less_ii_braced:nnnn} } {##1}{##2}{##3}{##4} } \cs_set:cpx {#1_quicksort_do_partition_ii:nnnw} ##1##2##3 #2 ##4 #3 { \exp_not:N \quark_if_nil:nTF {##4} \exp_not:c {#1_do_quicksort_braced:nnnnw} { \exp_not:c{#1_quicksort_compare:nnTF}{##4}{##1} \exp_not:c{#1_quicksort_partition_less_i:nnnn} \exp_not:c{#1_quicksort_partition_greater_i:nnnn} } {##1}{##2}{##3}{##4} } \cs_set:cpx {#1_quicksort_do_partition_ii_braced:nnnn} ##1##2##3##4 { \exp_not:N \quark_if_nil:nTF {##4} \exp_not:c {#1_do_quicksort_braced:nnnnw} { \exp_not:c{#1_quicksort_compare:nnTF}{##4}{##1} \exp_not:c{#1_quicksort_partition_less_i_braced:nnnn} \exp_not:c{#1_quicksort_partition_greater_i_braced:nnnn} } {##1}{##2}{##3}{##4} } % \end{macrocode} % This part of the code handles the two branches in each % sorting. Again we will also have to do it braced. % \begin{macrocode} \cs_set:cpx {#1_quicksort_partition_less_i:nnnn} ##1##2##3##4{ \exp_not:c{#1_quicksort_do_partition_i:nnnw}{##1}{##2}{{##4}##3}} \cs_set:cpx {#1_quicksort_partition_less_ii:nnnn} ##1##2##3##4{ \exp_not:c{#1_quicksort_do_partition_ii:nnnw}{##1}{##2}{##3{##4}}} \cs_set:cpx {#1_quicksort_partition_greater_i:nnnn} ##1##2##3##4{ \exp_not:c{#1_quicksort_do_partition_i:nnnw}{##1}{{##4}##2}{##3}} \cs_set:cpx {#1_quicksort_partition_greater_ii:nnnn} ##1##2##3##4{ \exp_not:c{#1_quicksort_do_partition_ii:nnnw}{##1}{##2{##4}}{##3}} \cs_set:cpx {#1_quicksort_partition_less_i_braced:nnnn} ##1##2##3##4{ \exp_not:c{#1_quicksort_do_partition_i_braced:nnnn}{##1}{##2}{{##4}##3}} \cs_set:cpx {#1_quicksort_partition_less_ii_braced:nnnn} ##1##2##3##4{ \exp_not:c{#1_quicksort_do_partition_ii_braced:nnnn}{##1}{##2}{##3{##4}}} \cs_set:cpx {#1_quicksort_partition_greater_i_braced:nnnn} ##1##2##3##4{ \exp_not:c{#1_quicksort_do_partition_i_braced:nnnn}{##1}{{##4}##2}{##3}} \cs_set:cpx {#1_quicksort_partition_greater_ii_braced:nnnn} ##1##2##3##4{ \exp_not:c{#1_quicksort_do_partition_ii_braced:nnnn}{##1}{##2{##4}}{##3}} % \end{macrocode} % Finally, the big kahuna! This is where the sub-lists are sorted. % \begin{macrocode} \cs_set:cpx {#1_do_quicksort_braced:nnnnw} ##1##2##3##4\q_stop { \exp_not:c{#1_quicksort_braced:n}{##2} \exp_not:c{#1_quicksort_function:n}{##1} \exp_not:c{#1_quicksort_braced:n}{##3} } } % \end{macrocode} % \end{macro} % % % \begin{macro}{\prg_quicksort:n} % A simple version. Sorts a list of tokens, uses the function % |\prg_quicksort_compare:nnTF| to compare items, and places the % function |\prg_quicksort_function:n| in front of each of them. % \begin{macrocode} \prg_define_quicksort:nnn {prg}{}{} % \end{macrocode} % \end{macro} % % \begin{macro}{\prg_quicksort_function:n} % \begin{macro}{\prg_quicksort_compare:nnTF} % \begin{macrocode} \cs_set:Npn \prg_quicksort_function:n {\ERROR} \cs_set:Npn \prg_quicksort_compare:nnTF {\ERROR} % \end{macrocode} % \end{macro} % \end{macro} % %\subsection{Variable type and scope} % % %\begin{macro}{\prg_variable_get_scope:N} %\begin{macro}[aux]{\prg_variable_get_scope_aux:w} %\begin{macro}{\prg_variable_get_type:N} %\begin{macro}[aux]{\prg_variable_get_type:w} % Expandable functions to find the type of a variable, and to % return \texttt{g} if the variable is global. The trick for % \cs{prg_variable_get_scope:N} is the same as that in % \cs{cs_split_function:NN}, but it can be simplified as the % requirements here are less complex. % \begin{macrocode} \group_begin: \tex_lccode:D `\& = `\g \tex_relax:D \tex_catcode:D `\& = \c_twelve \tex_relax:D \tl_to_lowercase:n { \group_end: \cs_new_nopar:Npn \prg_variable_get_scope:N #1 { \exp_last_unbraced:Nf \prg_variable_get_scope_aux:w { \cs_to_str:N #1 \exp_stop_f: \q_stop } } \cs_new_nopar:Npn \prg_variable_get_scope_aux:w #1#2 \q_stop { \token_if_eq_meaning:NNT & #1 {g} } } \group_begin: \tex_lccode:D `\& = `\_ \tex_relax:D \tex_catcode:D `\& = \c_twelve \tex_relax:D \tl_to_lowercase:n { \group_end: \cs_new_nopar:Npn \prg_variable_get_type:N #1 { \exp_after:wN \p;rg_variable_get_type_aux:w \token_to_str:N #1 & a \q_stop } \cs_new_nopar:Npn \prg_variable_get_type_aux:w #1 & #2#3 \q_stop { \token_if_eq_meaning:NNTF a #2 { #1 }{ \prg_variable_get_type_aux:w #2#3 \q_stop } } } % \end{macrocode} %\end{macro} %\end{macro} %\end{macro} %\end{macro} % %\subsection{Mapping to variables} % %\begin{macro}{\prg_new_map_functions:Nn} %\begin{macro}{\prg_set_map_functions:Nn} % The idea here is to generate all of the various mapping functions % in one go. Everything is done with expansion so that the performance % hit is taken at definition time and not at point of use. The inline % version uses a counter as this keeps things nestable, and global to % avoid problems with, for example, table cells. % \begin{macrocode} \cs_new_protected:Npn \prg_new_map_functions:Nn #1#2 { \cs_if_free:cTF { #2 _map_function:NN } { \prg_set_map_functions:Nn #1 {#2} } { \msg_kernel_error:nnx { code } { csname-already-defined } { \token_to_str:c { #2 _map_function:NN } } } } \cs_new_protected:Npn \prg_set_map_functions:Nn #1#2 { \cs_gset_nopar:cpx { #2 _map_function:NN } ##1##2 { \exp_not:N \tl_if_empty:NF ##1 { \exp_not:N \exp_after:wN \exp_not:c { #2 _map_function_aux:Nw } \exp_not:N \exp_after:wN ##2 ##1 \exp_not:n { #1 \q_recursion_tail #1 \q_recursion_stop } } } \cs_gset:cpx { #2 _map_function:nN } ##1##2 { \exp_not:N \tl_if_blank:nF {##1} { \exp_not:c { #2 _map_function_aux:Nw } ##2 ##1 \exp_not:n { #1 \q_recursion_tail #1 \q_recursion_stop } } } \cs_gset:cpx { #2 _map_function_aux:Nw } ##1##2 #1 { \exp_not:N \quark_if_recursion_tail_stop:n {##2} ##1 {##2} \exp_not:c { #2 _map_function_aux:Nw } ##1 } \cs_if_free:cT { g_ #2 _map_inline_int } { \int_new:c { g_ #2 _map_inline_int } } \cs_gset_protected_nopar:cpx { #2 _map_inline:Nn } ##1##2 { \exp_not:N \tl_if_empty:NF ##1 { \exp_not:N \int_gincr:N \exp_not:c { g_ #2 _map_inline_int } \cs_gset:cpn { #2 _map_inline_ \exp_not:N \int_use:N \exp_not:c { g_ #2 _map_inline_int } :n } ####1 {##2} \exp_not:N \exp_last_unbraced:NcV \exp_not:c { #2 _map_function_aux:Nw } { #2 _map_inline_ \exp_not:N \int_use:N \exp_not:c { g_ #2 _map_inline_int } :n } ##1 \exp_not:n { #1 \q_recursion_tail #1 \q_recursion_stop } \exp_not:N \int_gdecr:N \exp_not:c { g_ #2 _map_inline_int } } } \cs_gset_protected:cpx { #2 _map_inline:nn } ##1##2 { \exp_not:N \tl_if_empty:nF {##1} { \exp_not:N \int_gincr:N \exp_not:c { g_ #2 _map_inline_int } \cs_gset:cpn { #2 _map_inline_ \exp_not:N \int_use:N \exp_not:c { g_ #2 _map_inline_int } :n } ####1 {##2} \exp_not:N \exp_args:Nc \exp_not:c { #2 _map_function_aux:Nw } { #2 _map_inline_ \exp_not:N \int_use:N \exp_not:c { g_ #2 _map_inline_int } :n } ##1 \exp_not:n { #1 \q_recursion_tail #1 \q_recursion_stop } \exp_not:N \int_gdecr:N \exp_not:c { g_ #2 _map_inline_int } } } \cs_gset_eq:cN { #2 _map_break: } \use_none_delimit_by_q_recursion_stop:w } % \end{macrocode} %\end{macro} %\end{macro} % % That's it (for now). % \begin{macrocode} % % \end{macrocode} % % \begin{macrocode} %<*showmemory> \showMemUsage % % \end{macrocode} % % \end{implementation} % \PrintIndex % % \endinput