% premiere version 29 novembre 2003 % entierement modifiee le 08/02/2008 % allégée de 3D.pro % version 1.0 du 5 mars 2008 % manuel.luque27@gmail.com /tx@map3DDict 100 dict def tx@map3DDict begin %% /CalcCoor{ /Y exch def /X exch def /Xpoint Y cos X cos mul Rsphere mul def /Ypoint Y cos X sin mul Rsphere mul def /Zpoint Y sin Rsphere mul def } def /CompteurRegions{% /regions_visibles [] def /compteur 0 def { /region exch def /nbr region length def % nombre de points 0 1 nbr 1 sub { /counter exch def % pour mémoriser le premier point vu region counter get aload pop CalcCoor CalculsPointsAfterTransformations Test PS condition {% marque le point /regions_visibles [regions_visibles aload pop compteur ] def exit % termine } if } for /compteur compteur 1 add def } forall /TableauRegionsVisibles [ 0 1 regions_visibles length 1 sub { /NoRegion exch def /No regions_visibles NoRegion get def REGION No get } for ] def TableauRegionsVisibles } def /CalculsPointsRegion{% /region1 exch def region1 0 get aload pop CalcCoor newpath CalculsPointsAfterTransformations CalcCoordinates Test PS condition { moveto }{ 2 mul exch 2 mul exch moveto} ifelse % 0 1 region1 length 1 sub { /NoPoint exch def region1 NoPoint get aload pop CalcCoor CalculsPointsAfterTransformations CalcCoordinates Test PS condition { lineto }{ 2 mul exch 2 mul exch lineto} ifelse } for } def /MatriceTransformation{% /Sin1 THETA sin def /Sin2 PHI sin def /Cos1 THETA cos def /Cos2 PHI cos def /Cos1Sin2 Cos1 Sin2 mul def /Sin1Sin2 Sin1 Sin2 mul def /Cos1Cos2 Cos1 Cos2 mul def /Sin1Cos2 Sin1 Cos2 mul def /XpointVue Dobs Cos1Cos2 mul def /YpointVue Dobs Sin1Cos2 mul def /ZpointVue Dobs Sin2 mul def /M11 RotZ cos RotY cos mul def /M12 RotZ cos RotY sin mul RotX sin mul RotZ sin RotX cos mul sub def /M13 RotZ cos RotY sin mul RotX cos mul RotZ sin RotX sin mul add def /M21 RotZ sin RotY cos mul def /M22 RotZ sin RotY sin RotX sin mul mul RotZ cos RotX cos mul add def /M23 RotZ sin RotY sin mul RotX cos mul RotZ cos RotX sin mul sub def /M31 RotY sin neg def /M32 RotX sin RotY cos mul def /M33 RotX cos RotY cos mul def } def % RotZ -> RotX -> RotY /MatriceTransformationZXY{% /Sin1 THETA sin def /Sin2 PHI sin def /Cos1 THETA cos def /Cos2 PHI cos def /Cos1Sin2 Cos1 Sin2 mul def /Sin1Sin2 Sin1 Sin2 mul def /Cos1Cos2 Cos1 Cos2 mul def /Sin1Cos2 Sin1 Cos2 mul def /XpointVue Dobs Cos1Cos2 mul def /YpointVue Dobs Sin1Cos2 mul def /ZpointVue Dobs Sin2 mul def /M11 RotZ cos RotY cos mul RotZ sin RotX sin mul RotY sin mul sub def /M12 RotZ sin RotY cos mul RotZ cos RotX sin mul RotY sin mul add def /M13 RotX cos RotY sin mul def /M21 RotZ sin RotX cos mul neg def /M22 RotZ cos RotX cos mul def /M23 RotX sin neg def /M31 RotZ cos neg RotY sin mul RotZ sin RotX sin mul RotY cos mul sub def /M32 RotZ sin neg RotY sin mul RotZ cos RotX sin mul RotY cos mul add def /M33 RotX cos RotY cos mul def } def % /CalcCoordinates{% formulesTroisD Xi xunit Yi yunit } def % pour la 3D conventionnelle /formulesTroisD{% /xObservateur Xabscisse Sin1 mul neg Yordonnee Cos1 mul add def /yObservateur Xabscisse Cos1Sin2 mul neg Yordonnee Sin1Sin2 mul sub Zcote Cos2 mul add def /zObservateur Xabscisse neg Cos1Cos2 mul Yordonnee Sin1Cos2 mul sub Zcote Sin2 mul sub Dobs add def /Xi DScreen xObservateur mul zObservateur div def /Yi DScreen yObservateur mul zObservateur div def } def % /CalculsPointsAfterTransformations{% /Xabscisse M11 Xpoint mul M12 Ypoint mul add M13 Zpoint mul add def /Yordonnee M21 Xpoint mul M22 Ypoint mul add M23 Zpoint mul add def /Zcote M31 Xpoint mul M32 Ypoint mul add M33 Zpoint mul add def } def % /Test { % test de visibilité d'un point % rayon vers point de vue /RXvue XpointVue Xabscisse sub def /RYvue YpointVue Yordonnee sub def /RZvue ZpointVue Zcote sub def % test de visibilité /PS RXvue Xabscisse mul % produit scalaire RYvue Yordonnee mul add RZvue Zcote mul add def } def % /MaillageSphere { gsave maillagewidth maillagecolor 0.25 setlinewidth 0 increment 360 increment sub {% /theta exch def -90 increment 90 increment sub {% /phi exch def % newpath /Xpoint Rsphere theta cos mul phi cos mul def /Ypoint Rsphere theta sin mul phi cos mul def /Zpoint Rsphere phi sin mul def CalculsPointsAfterTransformations CalcCoordinates moveto % Centre de la facette /Xpoint Rsphere theta increment 2 div add cos mul phi increment 2 div add cos mul def /Ypoint Rsphere theta increment 2 div add sin mul phi increment 2 div add cos mul def /Zpoint Rsphere phi increment 2 div add sin mul def CalculsPointsAfterTransformations /xCentreFacette Xabscisse def /yCentreFacette Yordonnee def /zCentreFacette Zcote def % normale à la facette /nXfacette xCentreFacette def /nYfacette yCentreFacette def /nZfacette zCentreFacette def % rayon vers point de vue /RXvue XpointVue xCentreFacette sub def /RYvue YpointVue yCentreFacette sub def /RZvue ZpointVue zCentreFacette sub def % test de visibilité /PSfacette RXvue nXfacette mul RYvue nYfacette mul add RZvue nZfacette mul add def PSfacette condition { theta 1 theta increment add {% /theta1 exch def /Xpoint Rsphere theta1 cos mul phi cos mul def /Ypoint Rsphere theta1 sin mul phi cos mul def /Zpoint Rsphere phi sin mul def CalculsPointsAfterTransformations CalcCoordinates lineto } for phi 1 phi increment add { /phi1 exch def /Xpoint Rsphere theta increment add cos mul phi1 cos mul def /Ypoint Rsphere theta increment add sin mul phi1 cos mul def /Zpoint Rsphere phi1 sin mul def CalculsPointsAfterTransformations CalcCoordinates lineto } for theta increment add -1 theta {% /theta1 exch def /Xpoint Rsphere theta1 cos mul phi increment add cos mul def /Ypoint Rsphere theta1 sin mul phi increment add cos mul def /Zpoint Rsphere phi increment add sin mul def CalculsPointsAfterTransformations CalcCoordinates lineto } for phi increment add -1 phi { /phi1 exch def /Xpoint Rsphere theta cos mul phi1 cos mul def /Ypoint Rsphere theta sin mul phi1 cos mul def /Zpoint Rsphere phi1 sin mul def CalculsPointsAfterTransformations CalcCoordinates lineto } for } if } for } for stroke } def % /DrawCitys { /CITY exch def /Rayon exch def /nbr CITY length def % nombre de villes 0 1 nbr 1 sub { /compteur exch def CITY compteur get aload pop /X exch def /Y exch def /Xpoint {% Y cos X cos mul Rsphere mul } def /Ypoint {% Y cos X sin mul Rsphere mul } def /Zpoint { Y sin Rsphere mul } def CalculsPointsAfterTransformations CalcCoordinates Test PS condition % {1 0 0 setrgbcolor newpath Rayon 0 360 arc closepath fill}{pop pop} ifelse } for } def /oceans_seas_hatched { -90 circlesep 90 { /latitude_parallel exch def Parallel circlecolor circlewidth stroke } for } def /meridien { % liste des points vus /TabPointsVusNeg[ -180 1 0{ % for /phi exch def /Xpoint Rsphere longitude_meridien cos mul phi cos mul def /Ypoint Rsphere longitude_meridien sin mul phi cos mul def /Zpoint Rsphere phi sin mul def CalculsPointsAfterTransformations Test PS condition { phi } if } for ] def % /TabPointsVusPos[ 0 1 180{ % for /phi exch def /Xpoint Rsphere longitude_meridien cos mul phi cos mul def /Ypoint Rsphere longitude_meridien sin mul phi cos mul def /Zpoint Rsphere phi sin mul def CalculsPointsAfterTransformations Test PS condition { phi } if } for ] def % plus grand et plus petit /phi_minNeg 0 def /phi_maxNeg -180 def 0 1 TabPointsVusNeg length 1 sub { % for /iPoint exch def /phi TabPointsVusNeg iPoint get def phi phi_minNeg le {/phi_minNeg phi def} if } for 0 1 TabPointsVusNeg length 1 sub { % for /iPoint exch def /phi TabPointsVusNeg iPoint get def phi phi_maxNeg ge {/phi_maxNeg phi def} if } for /phi_minPos 180 def /phi_maxPos 0 def 0 1 TabPointsVusPos length 1 sub { % for /iPoint exch def /phi TabPointsVusPos iPoint get def phi phi_minPos le {/phi_minPos phi def} if } for 0 1 TabPointsVusPos length 1 sub { % for /iPoint exch def /phi TabPointsVusPos iPoint get def phi phi_maxPos ge {/phi_maxPos phi def} if } for /Xpoint Rsphere longitude_meridien cos mul phi_minNeg cos mul def /Ypoint Rsphere longitude_meridien sin mul phi_minNeg cos mul def /Zpoint Rsphere phi_minNeg sin mul def CalculsPointsAfterTransformations CalcCoordinates moveto phi_minNeg 1 phi_maxNeg{ /phi exch def /Xpoint Rsphere longitude_meridien cos mul phi cos mul def /Ypoint Rsphere longitude_meridien sin mul phi cos mul def /Zpoint Rsphere phi sin mul def CalculsPointsAfterTransformations CalcCoordinates lineto } for meridiencolor meridienwidth stroke /Xpoint Rsphere longitude_meridien cos mul phi_minPos cos mul def /Ypoint Rsphere longitude_meridien sin mul phi_minPos cos mul def /Zpoint Rsphere phi_minPos sin mul def CalculsPointsAfterTransformations CalcCoordinates moveto phi_minPos 1 phi_maxPos{ /phi exch def /Xpoint Rsphere longitude_meridien cos mul phi cos mul def /Ypoint Rsphere longitude_meridien sin mul phi cos mul def /Zpoint Rsphere phi sin mul def CalculsPointsAfterTransformations CalcCoordinates lineto } for meridiencolor meridienwidth stroke } def %% macros de Jean-Paul Vignault %% dans solides.pro %% produit vectoriel de deux vecteurs 3d /vectprod3d { %% x1 y1 z1 x2 y2 z2 6 dict begin /zp exch def /yp exch def /xp exch def /z exch def /y exch def /x exch def y zp mul z yp mul sub z xp mul x zp mul sub x yp mul y xp mul sub end } def % coordonnées sphériques -> coordonnées cartésiennes /rtp2xyz { 6 dict begin /phi exch def /theta exch def /r exch def /x phi cos theta cos mul r mul def /y phi cos theta sin mul r mul def /z phi sin r mul def x y z end } def %% norme d'un vecteur 3d /norme3d { %% x y z 3 dict begin /z exch def /y exch def /x exch def x dup mul y dup mul add z dup mul add sqrt end } def %% duplique le vecteur 3d /dupp3d { %% x y z 3 copy } def /dupv3d {dupp3d} def %%%%% ### mulv3d ### %% (scalaire)*(vecteur 3d) Attention : dans l autre sens ! /mulv3d { %% x y z lambda 4 dict begin /lambda exch def /z exch def /y exch def /x exch def x lambda mul y lambda mul z lambda mul end } def %%%%% ### defpoint3d ### %% creation du point A a partir de xA yA yB et du nom /A /defpoint3d { %% xA yA zA /nom 1 dict begin /memo exch def [ 4 1 roll ] cvx memo exch end def }def %%%%% ### scalprod3d ### %% produit scalaire de deux vecteurs 3d /scalprod3d { %% x1 y1 z1 x2 y2 z2 6 dict begin /zp exch def /yp exch def /xp exch def /z exch def /y exch def /x exch def x xp mul y yp mul add z zp mul add end } def %%%%% ### addv3d ### %% addition de deux vecteurs 3d /addv3d { %% x1 y1 z1 x2 y2 z2 6 dict begin /zp exch def /yp exch def /xp exch def /z exch def /y exch def /x exch def x xp add y yp add z zp add end } def /arccos { dup dup mul neg 1 add sqrt exch atan } def %% fin des macros de Jean-Paul Vignault %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%% ### rotV3d ### %% rotation autour d'un vecteur u %% defini par (ux,uy,uz) %% ici l'axe des pôles de la Terre %% d'un angle theta /rotV3d { 15 dict begin /N2uvw ux dup mul uy dup mul add uz dup mul add def /N2uv ux dup mul uy dup mul add def /N2vw uz dup mul uy dup mul add def /N2uw uz dup mul ux dup mul add def /z exch def /y exch def /x exch def /uxvywz ux x mul uy y mul add uz z mul add def /uxvy ux x mul uy y mul add def /uxwz ux x mul uz z mul add def /vywz uy y mul uz z mul add def /_wyvz uz y mul neg uy z mul add def /wx_uz uz x mul ux z mul sub def /_vxuy uy x mul neg ux y mul add def ux uxvywz mul x N2vw mul ux vywz mul sub theta cos mul add N2uvw sqrt _wyvz mul theta sin mul add N2uvw div uy uxvywz mul y N2uw mul uy uxwz mul sub theta cos mul add N2uvw sqrt wx_uz mul theta sin mul add N2uvw div uz uxvywz mul z N2uv mul uz uxvy mul sub theta cos mul add N2uvw sqrt _vxuy mul theta sin mul add N2uvw div end } def /the_night{ 50 dict begin /theta {180 hour 15 mul sub} bind def % direction des rayons du soleil au solstice d'hiver u1 u2 u3 /u defpoint3d % vecteur normal dans le plan meridien % la latitude % /phi0 u2 neg u3 atan def u1 u2 u3 rotV3d /nZ exch def /nY exch def pop /phi0 nY neg nZ atan def % vecteur normal dans le plan equateur /theta0 u1 neg u2 atan def theta0 cos theta0 sin 0 /v defpoint3d % w tels que le trièdre u v w soit direct u v vectprod3d dupp3d norme3d 1 exch div mulv3d /w defpoint3d /TabPointsVusNeg[ -180 1 0{ % for /t exch def v t cos Rsphere mul mulv3d w t sin Rsphere mul mulv3d addv3d rotV3d /Zpoint exch def /Ypoint exch def /Xpoint exch def CalculsPointsAfterTransformations Test PS 0 ge { t } if } for ] def % /TabPointsVusPos[ 0 1 180{ % for /t exch def v t cos Rsphere mul mulv3d w t sin Rsphere mul mulv3d addv3d rotV3d /Zpoint exch def /Ypoint exch def /Xpoint exch def CalculsPointsAfterTransformations Test PS 0 ge { t } if } for ] def /t_minNeg 0 def /t_maxNeg -180 def 0 1 TabPointsVusNeg length 1 sub { % for /iPoint exch def /t TabPointsVusNeg iPoint get def t t_minNeg le {/t_minNeg t def} if } for 0 1 TabPointsVusNeg length 1 sub { % for /iPoint exch def /t TabPointsVusNeg iPoint get def t t_maxNeg ge {/t_maxNeg t def} if } for /t_minPos 180 def /t_maxPos 0 def 0 1 TabPointsVusPos length 1 sub { % for /iPoint exch def /t TabPointsVusPos iPoint get def t t_minPos le {/t_minPos t def} if } for 0 1 TabPointsVusPos length 1 sub { % for /iPoint exch def /t TabPointsVusPos iPoint get def t t_maxPos ge {/t_maxPos t def} if } for theta -90 ge theta 90 le and { v t_minNeg cos Rsphere mul mulv3d w t_minNeg sin Rsphere mul mulv3d addv3d rotV3d /Zpoint exch def /Ypoint exch def /Xpoint exch def CalculsPointsAfterTransformations CalcCoordinates moveto t_minNeg 1 t_maxPos{ /t exch def v t cos Rsphere mul mulv3d w t sin Rsphere mul mulv3d addv3d rotV3d /Zpoint exch def /Ypoint exch def /Xpoint exch def CalculsPointsAfterTransformations CalcCoordinates lineto } for phi0 1 phi0 180 add { /t exch def RsphereScreen t cos mul RsphereScreen t sin mul lineto } for }{ v t_minPos cos Rsphere mul mulv3d w t_minPos sin Rsphere mul mulv3d addv3d rotV3d /Zpoint exch def /Ypoint exch def /Xpoint exch def CalculsPointsAfterTransformations CalcCoordinates moveto t_minPos 1 t_maxPos { /t exch def v t cos Rsphere mul mulv3d w t sin Rsphere mul mulv3d addv3d rotV3d /Zpoint exch def /Ypoint exch def /Xpoint exch def CalculsPointsAfterTransformations CalcCoordinates lineto } for t_minNeg 1 t_maxNeg { /t exch def v t cos Rsphere mul mulv3d w t sin Rsphere mul mulv3d addv3d rotV3d /Zpoint exch def /Ypoint exch def /Xpoint exch def CalculsPointsAfterTransformations CalcCoordinates lineto } for phi0 1 phi0 180 add { /t exch def RsphereScreen t cos mul RsphereScreen t sin mul lineto } for } ifelse closepath end } def % ondes seismes /ondes { 50 dict begin /l exch def % latitude : phi /L exch def % longitude : theta /dlmax exch def % intervalle maximal en degrés /nbr exch def % nombre de cercles /dl dlmax nbr div def % le vecteur unitaire normal % à la sphère au point considéré L cos l cos mul L sin l cos mul l sin /u defpoint3d 1 1 nbr { /i exch def /l' l dl i mul add def /r Rsphere dl i mul cos mul def /r' Rsphere dl i mul sin mul def % le centre de l'onde /x_o r L cos mul l cos mul def /y_o r L sin mul l cos mul def /z_o r l sin mul def % un vecteur unitaire du plan du cercle % perpendiculaire à n et dans le plan méridien % donc même longitude /x_I Rsphere L cos mul l' cos mul def /y_I Rsphere L sin mul l' cos mul def /z_I Rsphere l' sin mul def x_I x_o sub y_I y_o sub z_I z_o sub /uOI defpoint3d uOI dupp3d norme3d 1 exch div mulv3d /v defpoint3d % un vecteur w normal à u et v dans le plan du cercle u v vectprod3d dupp3d norme3d 1 exch div mulv3d /w defpoint3d % on décrit le cercle v 0 cos r' mul mulv3d w 0 sin r' mul mulv3d addv3d x_o y_o z_o addv3d /Zpoint exch def /Ypoint exch def /Xpoint exch def CalculsPointsAfterTransformations CalcCoordinates moveto 0 1 360{% /t exch def v t cos r' mul mulv3d w t sin r' mul mulv3d addv3d x_o y_o z_o addv3d /Zpoint exch def /Ypoint exch def /Xpoint exch def CalculsPointsAfterTransformations CalcCoordinates lineto } for stroke } for end } def %% nouvelle construction des parallèles /Parallel { 0 1 360{ % for /theta exch def /Xpoint Rsphere theta cos mul latitude_parallel cos mul def /Ypoint Rsphere theta sin mul latitude_parallel cos mul def /Zpoint Rsphere latitude_parallel sin mul def CalculsPointsAfterTransformations Test PS condition { CalcCoordinates moveto /theta theta 1 add def /Xpoint Rsphere theta cos mul latitude_parallel cos mul def /Ypoint Rsphere theta sin mul latitude_parallel cos mul def /Zpoint Rsphere latitude_parallel sin mul def CalculsPointsAfterTransformations Test PS condition { CalcCoordinates lineto } { /theta theta 1 sub def /Xpoint Rsphere theta cos mul latitude_parallel cos mul def /Ypoint Rsphere theta sin mul latitude_parallel cos mul def /Zpoint Rsphere latitude_parallel sin mul def CalculsPointsAfterTransformations CalcCoordinates lineto } ifelse } if } for } def end