%% %% This is file `pst-func.pro', %% %% IMPORTANT NOTICE: %% %% Package `pst-func' %% %% Herbert Voss %% %% This program can be redistributed and/or modified under the terms %% of the LaTeX Project Public License Distributed from CTAN archives %% in directory macros/latex/base/lppl.txt. %% %% DESCRIPTION: %% `pst-func' is a PSTricks package to plot special math functions %% %% %% version 0.06 / 2006-04-16 Herbert Voss % /tx@FuncDict 100 dict def tx@FuncDict begin % /eps1 1.0e-05 def /eps2 1.0e-04 def /eps8 1.0e-08 def /Pi2 1.57079632679489661925640 def /CEuler 0.5772156649 def % Euler-Mascheroni constant % /factorial { % n on stack, returns n! dup 0 eq { 1 }{ dup 1 gt { dup 1 sub factorial mul } if } ifelse } def % /MoverN { % m n on stack, returns the binomial coefficient m over n /n exch def /m exch def n 0 eq { 1 }{ m n eq { 1 }{ m factorial n factorial m n sub factorial mul div } ifelse } ifelse } def % /Si { % integral sin from 0 to x (arg on stack) /arg exch def /Sum arg def /sign -1 def /index 3 def { arg index exp index div index factorial div sign mul dup abs eps8 lt { pop exit } if Sum add /Sum exch def /sign sign neg def /index index 2 add def } loop Sum } def /si { % integral sin from x to infty -> si(x)=Si(x)-pi/2 Si Pi2 sub } def /Ci { % integral cosin from x to infty (arg on stack) abs /arg exch def arg 0 eq { 0 } { /argExp 1 def /fact 1 def /Sum CEuler arg ln add def /sign -1 def /index 2 def { /argExp argExp arg arg mul mul def /fact fact index 1 sub index mul mul def argExp index div fact div sign mul dup abs exch Sum add /Sum exch def eps8 lt { exit } if /sign sign neg def /index index 2 add def } loop Sum } ifelse } def /ci { % integral cosin from x to infty -> ci(x)=-Ci(x)+ln(x)+CEuler dup Ci neg exch abs ln add CEuler add } def % /MaxIter 255 def /func { coeff Derivation FuncValue } def /func' { coeff Derivation 1 add FuncValue } def /func'' { coeff Derivation 2 add FuncValue } def % /NewtonMehrfach {% the start value must be on top of the stack /Nx exch def /Iter 0 def { /Iter Iter 1 add def Nx func /F exch def % f(Nx) F abs eps2 lt { exit } if Nx func' /FS exch def % f'(Nx) FS 0 eq { /FS 1.0e-06 def } if Nx func'' /F2S exch def % f''(Nx) 1.0 1.0 F F2S mul FS dup mul div sub div /J exch def J F mul FS div /Diff exch def /Nx Nx Diff sub def Diff abs eps1 lt Iter MaxIter gt or { exit } if } loop Nx % the returned value ist the zero point } def /Steffensen {% the start value must be on top of the stack /y0 exch def % the start value /Iter 0 def { y0 func /F exch def F abs eps2 lt { exit } if y0 F sub /Phi exch def Phi func /F2 exch def F2 abs eps2 le { exit }{ Phi y0 sub dup mul Phi F2 sub 2 Phi mul sub y0 add Div /Diff exch def y0 Diff sub /y0 exch def Diff abs eps1 le { exit } if } ifelse /Iter Iter 1 add def Iter MaxIter gt { exit } if } loop y0 % the returned value ist the zero point } def % /Horner {% x [coeff] must be on top of the stack aload length dup 2 add -1 roll exch 1 sub { dup 4 1 roll mul add exch } repeat pop % the y value is on top of the stack } def % /FuncValue {% x [coeff] Derivation must be on top of the stack { aload % a0 a1 a2 ... a(n-1) [array] length % a0 a1 a2 ... a(n-1) n 1 sub /grad exch def % a0 a1 a2 ... a(n-1) grad -1 1 { % for n=grad step -1 until 1 /n exch def % Laufvariable speichern n % a0 a1 a2 ... a(n-1) n mul % a0 a1 a2 ... a(n-1)*n grad 1 add % a0 a1 a2 ... a(n-1)*n grad+1 1 roll % an*na0 a1 a2 ... a(n-2) } for pop % loesche a0 grad array astore % [ a1 a2 ... a(n-2)] } repeat Horner } def % /FindZeros { % dxN dxZ must be on top of the stack (x0..x1 the intervall) /dxZ exch def /dxN exch def /pstZeros [] def x0 dxZ x1 { % suche Nullstellen /xWert exch def xWert NewtonMehrfach %xWert Steffensen /xNull exch def pstZeros aload length /Laenge exch def % now test if value is a new one Laenge 0 eq { xNull 1 } { /newZero true def Laenge { xNull sub abs dxN lt { /newZero false def } if } repeat pstZeros aload pop newZero { xNull Laenge 1 add } { Laenge } ifelse } ifelse array astore /pstZeros exch def } for } def % /Simpson { % on stack must be a b M % /SFunc must be defined /M ED /b ED /a ED /h b a sub M 2 mul div def /s1 0 def /s2 0 def 1 1 M { /k exch def /x k 2 mul 1 sub h mul a add def /s1 s1 x SFunc add def } for 1 1 M 1 sub { /k exch def /x k 2 mul h mul a add def /s2 s2 x SFunc add def } for /I a SFunc b SFunc add s1 4 mul add s2 2 mul add 3 div h mul def } def % % subroutines for complex numbers, given as an array [a b] % which is a+bi = Real+i Imag % /cxadd { % [a1 b1] [a2 b2] = [a1+a2 b1+b2] dup 0 get % [a1 b1] [a2 b2] a2 3 -1 roll % [a2 b2] a2 [a1 b1] dup 0 get % [a2 b2] a2 [a1 b1] a1 3 -1 roll % [a2 b2] [a1 b1] a1 a2 add % [a2 b2] [a1 b1] a1+a2 3 1 roll % a1+a2 [a2 b2] [a1 b1] 1 get % a1+a2 [a2 b2] b1 exch 1 get % a1+a2 b1 b2 add 2 array astore } def % /cxneg { % [a b] dup 1 get % [a b] b exch 0 get % b a neg exch neg % -a -b 2 array astore } def % /cxsub { cxneg cxadd } def % same as negative addition % % [a1 b1][a2 b2] = [a1a2-b1b2 a1b2+b1a2] = [a3 b3] /cxmul { % [a1 b1] [a2 b2] dup 0 get % [a1 b1] [a2 b2] a2 exch 1 get % [a1 b1] a2 b2 3 -1 roll % a2 b2 [a1 b1] dup 0 get % a2 b2 [a1 b1] a1 exch 1 get % a2 b2 a1 b1 dup % a2 b2 a1 b1 b1 5 -1 roll dup % b2 a1 b1 b1 a2 a2 3 1 roll mul % b2 a1 b1 a2 b1a2 5 -2 roll dup % b1 a2 b1a2 b2 a1 a1 3 -1 roll dup % b1 a2 b1a2 a1 a1 b2 b2 3 1 roll mul % b1 a2 b1a2 a1 b2 a1b2 4 -1 roll add % b1 a2 a1 b2 b3 4 2 roll mul % b1 b2 b3 a1a2 4 2 roll mul sub % b3 a3 exch 2 array astore } def % % [a b]^2 = [a^2-b^2 2ab] = [a2 b2] /cxsqr { % [a b] square root dup 0 get exch 1 get % a b dup dup mul % a b b^2 3 -1 roll % b b^2 a dup dup mul % b b^2 a a^2 3 -1 roll sub % b a a2 3 1 roll mul 2 mul % a2 b2 2 array astore } def % /cxsqrt { % [a b] % dup cxnorm sqrt /r exch def % cxarg 2 div RadtoDeg dup cos r mul exch sin r mul cxmake2 cxlog % log[a b] 2 cxrdiv % log[a b]/2 aload pop exch % b a 2.781 exch exp % b exp(a) exch cxconv exch % [Re +iIm] exp(a) cxrmul % } def % /cxarg { % [a b] aload pop % a b exch atan % arctan b/a DegtoRad % arg(z)=atan(b/a) } def % % log[a b] = [a^2-b^2 2ab] = [a2 b2] /cxlog { % [a b] dup % [a b][a b] cxnorm % [a b] |z| log % [a b] log|z| exch % log|z|[a b] cxarg % log|z| Theta cxmake2 % [log|z| Theta] } def % % square of magnitude of complex number /cxnorm2 { % [a b] dup 0 get exch 1 get % a b dup mul % a b^2 exch dup mul add % a^2+b^2 } def % /cxnorm { % [a b] cxnorm2 sqrt } def % /cxconj { % conjugent complex dup 0 get exch 1 get % a b neg 2 array astore % [a -b] } def % /cxre { 0 get } def % real value /cxim { 1 get } def % imag value % % 1/[a b] = ([a -b]/(a^2+b^2) /cxrecip { % [a b] dup cxnorm2 exch % n2 [a b] dup 0 get exch 1 get % n2 a b 3 -1 roll % a b n2 dup % a b n2 n2 4 -1 roll exch div % b n2 a/n2 3 1 roll div % a/n2 b/n2 neg 2 array astore } def % /cxmake1 { 0 2 array astore } def % make a complex number, real given /cxmake2 { 2 array astore } def % dito, both given % /cxdiv { cxrecip cxmul } def % % multiplikation by a real number /cxrmul { % [a b] r exch aload pop % r a b 3 -1 roll dup % a b r r 3 1 roll mul % a r b*r 3 1 roll mul % b*r a*r exch 2 array astore % [a*r b*r] } def % % division by a real number /cxrdiv { % [a b] r 1 exch div % [a b] 1/r cxrmul } def % % exp(i theta) = cos(theta)+i sin(theta) polar<->cartesian /cxconv { % theta RadtoDeg dup sin exch cos cxmake2 } def end