
TLaunch: a launcher for a TEX Live system

Siep Kroonenberg

February 1, 2017

This manual is for tlaunch, the TEX Live Launcher, version 0.5.1.
Copyright © 2017 Siep Kroonenberg.
Copying and distribution of this file, with or without modification, are permitted
in any medium without royalty provided the copyright notice and this notice are
preserved. This file is offered as-is, without any warranty.

Contents

1 The launcher 5
1.1 Introduction . 5
1.2 Modes . 6

1.2.1 Normal mode . 6
1.2.2 Initializing . 6
1.2.3 Forgetting . 6

1.3 Using scripts . 7
1.4 The ini file . 7

1.4.1 Location . 7
1.4.2 Encoding . 7
1.4.3 Syntax . 7
1.4.4 The Strings section . 9
1.4.5 Sections for filetype associations (FTAs) 9
1.4.6 Sections for utility scripts 10
1.4.7 The built-in functions 10
1.4.8 Menus and buttons . 11
1.4.9 The General section . 11

1.5 Editor choice . 12
1.6 Launcher-based installations 13

1.6.1 The tlaunchmode script 13
1.6.2 TEX Live Manager . 14

2 The launcher at the RUG 15
2.1 Historical . 15
2.2 RES desktops . 16
2.3 Components of the rug TEX installation 16
2.4 Directory organization . 17
2.5 Fixes for add-ons . 17

2.5.1 TeXnicCenter . 17
2.5.2 TeXstudio . 18
2.5.3 SumatraPDF . 18
2.5.4 LyX . 18

2.6 Moving the XeTEX font cache 19

3

CONTENTS 4

2.7 Fixing non-roaming filetype associations 19

A Windows issues 20
A.1 User and system . 20
A.2 Roaming . 20
A.3 Windows configuration . 20

A.3.1 Registry locations . 21
A.3.2 Filetype associations 21
A.3.3 UserChoice . 22
A.3.4 Application registration 22
A.3.5 The searchpath and other environment variables . . . 22

A.4 Windows Known Folders . 23
A.4.1 Programs . 23
A.4.2 Configuration- and data files 23
A.4.3 TEX Live choices . 24

Chapter 1

The launcher

About this document

This document is about the TEX Live launcher. The first chapter describes
the launcher in general.

The second chapter describes the launcher-based installation at the rug,
or Rijksuniversiteit Groningen, as an example of what can be done with a
launcher-based installation.

Finally, sincemanyTEXdevelopers spend as little time as they can help in
a Windows environment, I added an appendix with Windows background
information.

1.1 Introduction

I designed the TEX Live launcher for the Windows TEX Live installation on
our university network, which contains TEX Live itself plus several other
TEX-related applications. The launcher provides a single access point to all
this software, and to related local and online resources.

The launcher also takes care of configuration: at first run, TEX Live is
added to the searchpath, and relevant filetype associations are set up.

This means that the launcher rather than the classic TEX Live installer

Figure 1.1: A possible Launcher window

5

CHAPTER 1. THE LAUNCHER 6

takes care of all Windows-specific configuration. Which is a good thing if
the TEX Live directory tree is on a shared network drive, or if a TEX Live
installation has to be copied to many workstations.

Filetypes, menus and buttons and pre- and post configuration scripts are
defined in a standard Windows ini file. The format of this file is described
in section 1.4 of this chapter. The supplied ini file provides something more
or less equivalent to a classic Windows TEX Live installation.

Although at the moment the launcher contains no support for localiza-
tion, most of the user interface strings are defined in the ini file and can be
replaced with strings in other languages.

1.2 Modes

1.2.1 Normal mode

In a normal run, the launcher displays a window with a menu or a series
of buttons or both, see figure 1.1. For anything launched via these controls,
TEX Live is prepended to the process searchpath irrespective of the system-
or user searchpath; see Appendix A.3.5 on Windows searchpath handling.

1.2.2 Initializing

On first run, tlaunch creates file associations and prepends TEX Live to the
user searchpath, see appendix A.3.5. Such configuration allows users to
start up their LATEX editor by double-clicking a LATEXfile in their filemanager,
bypassing the launcher altogether.

On first run, the launcher also creates a renamed copy of itself and a
renamed modified copy of the configuration file to a directory inside the
user’s profile. This pair of copies serves as forgetter, see below. tlaunch reg-
isters this forgetter as an uninstaller under Windows.

1.2.3 Forgetting

Since a network- or multi-user TEX Live installation can be uninstalled by
others, it is desirable that the configuration done on first run can be reversed
without the presence of the original TEX Live. The forgetter takes care of
this.

The launcher detects from its location whether it should run normally
or as forgetter.

It is also possible to undo configuration from within a normal run if the
ini file defines a button- or menu control for it.

CHAPTER 1. THE LAUNCHER 7

1.3 Using scripts

External scripts may run on demand, as the action associated with a button
or a menu control; see section 1.4.6. Scripts may also run automatically, as
supplemental initialization or cleanup; see the pre_config, post_config
and pre_forget variables in table 1.1. Examples uses:

• Forgetting a previous release of TEX Live before configuring the cur-
rent one. This only makes sense for a centrally-managed TEX installa-
tion, where it is known what TEX installation came before.

• Giving TEXworks some spelling dictionaries

• Writing configuration data for non-TEX Live components

• Generating or updating the XeTEX font cache, assuming that the font
cache directory is user-writable

• Adjusting XeTEX font configuration, see Section 2.6

1.4 The ini file

The ini file defines the menu items and buttons of the graphical interface.
These controls can start up gui programs or run utility scripts, or run some
predefined functions. The ini file also defines filetype associations, andmay
define scripts for doing additional configuration and cleanup.

1.4.1 Location

One option is to place both the binary and the ini file in the root of the
TEX Live installation. Another is to place the binary in TEX Live binary di-
rectory, tlroot /bin/win32, and the ini file where kpsewhich can find it, e.g.
in tlroot /texmf-config/web2c.

The binary and the ini file should have the same first name.

1.4.2 Encoding

The launcher tries to guess the encoding used, and accepts ASCII, UTF-8
and Windows’ UTF-16, with or without BOM. If all else fails, it tries ANSI
with the system default code page.

1.4.3 Syntax

The ini file is a regular Windows ini file with sections, definitions and com-
ment lines.

CHAPTER 1. THE LAUNCHER 8

DEFAULT MEANING
tlroot predefined root of the TEX Live installation
version predefined release year
tlperl predefined path of the built-in Perl binary
tlwperl predefined same for the gui binary
java predefined Java binary, if found
tlconfig required directory for the launcher’s user data,

see e.g. sections 1.4.4 and Appendix
A.4.2

tlname TeX Live %version% used for e.g. window title and
uninstaller ‘DisplayName’

customed_progid TL.customed Filetype for external, user-selected
editor, see section 1.4.5

pre_config empty optional program or script to be run
before first-time initialization

post_config empty optional program or script to be run
after first-time initialization

pre_forget empty optional program or script to be run
before undoing initialization

announce empty optional text to display

Note. All process environment variables, e.g. %appdata%, are accessible while the
launcher parses the ini file. Variable names are case-insensitive.

Table 1.1: Strings with a special meaning in the ini file

• A section starts with a line containing the section name enclosed in
square brackets ‘[’ and ‘]’. It ends at the start of the next section or at
the end of the file.

• A definition line consists of a line key =value .

• A comment line starts with ‘;’.

The ini file is processed in one go, which means that everything must be
defined before it is used. The ordering of the list below of possible sections
satisfies this requirement.

However, it is not necessary that everything that is referred to actually
exists; if a menu- or button control refers to a non-existent file, the control is
quietly left out, and if the COMMAND of a filetype refers to a non-existent file
the filetype registry key is created but remains empty.

The ini file can contain the following sections:

CHAPTER 1. THE LAUNCHER 9

1.4.4 The Strings section

In this section arbitrary strings can be defined to be used later during pars-
ing. The names of the strings are case-insensitive, their values are not. Var-
ious strings have a special meaning, see Table 1.1. Their values may be pre-
defined, i.e. they are set by the launcher before processing the ini file, and
should not be tampered with; they may be required, or they are allowed to
stay empty.

At least TLCONFIG should be defined in the ini file. This is the directory
for launcher user files such as the forgetter. A few suggestions:

• %UserProfile%\.texlive%version%\tlaunch, i.e. under the common
root of %TEXMFVAR% and %TEXMFCONFIG%

• %appdata%\tlaunch\%version%; see Appendix A.4.2

• ormaybe %localappdata%\tlaunch\%version% if TEX Live is installed
on the local system

1.4.5 Sections for filetype associations (FTAs)

In Windows, an extension is associated with a filetype and a filetype is as-
sociated with a program. An extension can also have alternate filetypes
associated with it, which may show up if you right-click a file and select
‘Open with. . . ’. More on filetypes in appendix A.3.2.

A filetype section has as name the string ‘FT:’ followed by the filetype
name. An example of a filetype section:

[FT:TL.TeXworks.edit.%VERSION%]
COMMAND="%tlroot%\bin\win32\TeXworks.exe"
;SHELL_CMD="%tlroot%\bin\win32\TeXworks.exe" "%1"
;ICON="%tlroot%\bin\win32\TeXworks.exe,0"
;NAME=TeXworks
EXTENSIONS=.tex .cls .sty
;PRIMARY=1
;PATH_PREFIX=0

The commented lines are optional and represent default values.

COMMAND is the command to start the program.

SHELL_CMD is the command to open a file. The default is COMMAND with
‘ "%1"’ appended.

ICON is the icon to be used in GUI file managers. The default is COMMAND
with ‘,0’ appended, without a space. If there is no such icon then a
fall-back icon will be used; see the right-most icon in Figure 1.1.

CHAPTER 1. THE LAUNCHER 10

NAME is only used for LATEX editors, in the editor-selection window, see sec-
tion 1.5. If not specified, it will be derived from the program filename.

EXTENSIONS is the list of extensions that should have the filetype as primary
or secondary association.

PRIMARY is default 1. If set to 0, then the program only shows up in the
Open with... dialog. Mainly of interest for the bitmap2eps utility. See
appendix A.3.2 on primary and secondary filetypes.

PATH_PREFIX is default 0. If set to 1, then Windows will prepend TEX Live
to the program’s searchpath. The launcherwill only do this if COMMAND
is a bare or quoted filename, without options or parameters; see Ap-
pendix A.3.4.

1.4.6 Sections for utility scripts

A batchfile or command-line program can be declared in a utility-script sec-
tion. If a button or menu item invokes such a script, standard output is
intercepted and displayed in a dialog box when the script has completed.
Standard error is also captured, but shows up only in the log file %TEMP%\
TeXLive_Launcher.log. A splash text is displayed while the script is run-
ning. The default value for the splash text is ‘Working...’. An example:

[SC:XeTeX-fontcache]
command=fc-cache -v
splash=Creating or updating XeTeX font cache

This item is included in the default ini file, although it may not work out
of the box on a multi-user installation. Section 2.6 describes how to get it
to work, and the tlaunchmode script, see section 1.6.1, will take care of this
automatically.

1.4.7 The built-in functions

The following functions are available:

FU:quit Terminate the launcher

FU:clear Undo all configuration and terminate

FU:initialize Undo all configuration, terminate and restart. This forces
re-initialization.

FU:editor_select See section 1.5 below

FU:default_editor See section 1.5 below

FU:about An About box

CHAPTER 1. THE LAUNCHER 11

1.4.8 Menus and buttons

The visible interface of the launcher consists of an optionalmenuwith drop-
down submenus and an optional row of buttons. There should be at least
one button or one submenu with one entry.

A submenu is defined in a section with name ‘MN:’ followed by the sub-
menu name, and the row of buttons is defined in a section named ‘BUTTONS’.
A button- or a menu item has as key the string to be displayed and as value
one of the following:

• A filetype. This invokes its COMMAND.

• A utility script. This also invokes its COMMAND.

• ‘SO:’ (Shell Open) followed by a document or url. The document or
url will be opened in its default program.

• A predefined function, see section 1.4.7.

• An arbitrary command.

In a submenu section, a sole ‘=’ will produce a separator line. In the button
section, it will do nothing.

Example buttons- and submenu sections (see section 1.4.6 for the
SC:XeTeX-fontcache entry):

[MN:Tools]
Editor choice=FU:editor_select
TeX Live Command Prompt=%comspec% /T "TeX Live" /e:on
=
Generate/Refresh xetex font database=SC:XeTeX-fontcache

[MN:Documentation]
All TeX Live documentation by package=SO:%tlroot%\doc.html
TeX and LaTeX Q & A=SO:http://tex.stackexchange.com/

[BUTTONS]
LaTeX Editor=FU:default_editor
PostScript Viewer=FT:TL.PSView.view.%VERSION%
Quit=FU:quit

1.4.9 The General section

Here, three keywords are allowed:

Filetypes Allowed values are

• none: do not set or change filetype associations

CHAPTER 1. THE LAUNCHER 12

Figure 1.2: Editor selection with a file browser for a custom editor

• new: create filetype associations only if they do not override ex-
isting ones; default

• overwrite create filetype associations regardless of existing ones

searchpath Allowed values are 0 (leave searchpath alone) and 1 (add
TEX Live to the searchpath; default). See appendix A.3.5. In any case,
when a program is started from the launcher it will have TEX Live
prepended to the process searchpath.

keeptemps Allowedvalues are 0 (delete temporary files; default) and 1 (keep
them). This is a debug option for running external scripts. In most
cases however, the contents of the temporary files are copied to the
log file %TEMP%\TeXLive_Launcher.log anyway.

An example general section:

[General]
FILETYPES=new
SEARCHPATH=1
KEEPTEMPS=0

Since these are all default settings, one may as well omit this section.

1.5 Editor choice

If a filetype has .tex among its supported extensions, the launcher consid-
ers it an editor. On initialization, the first one becomes the default, unless
PRIMARY is set to 0 and there is another candidate with PRIMARY 1. If in the
General section FILETYPES is set to none or new, then an existing file associ-
ation for .tex files will not be overwritten.

CHAPTER 1. THE LAUNCHER 13

The function FU:default_editor invokes the default editor if there is
one. The function FU:editor_select invokes a dialog for selecting a default
editor; the options are the ones defined in the ini file, the current default and
selecting one via a file browser dialog, see figure 1.2.

If the new editor is selected via the file browser, it will be assigned to
the filetype TL.customed and this filetype will become the default for .tex
files. It is possible to configure another filetype string in the ini file, e.g. one
which includes the %VERSION% string.

Appendix A.3.3 explains why a .tex file might still get opened in the
previous editor.

1.6 Launcher-based installations

It seems possible to do away with much of the Windows-specific code of
the current installer. To this end, I added install and uninstall options to the
launcher. Installation merely means creating a Start menu entry for itself
and to register itself as uninstaller.

In installation mode, it is assumed that the launcher and its ini file are
already in place as part of the regular TEX Live installation.

Installation and uninstallation are triggered by command-line parame-
ters:

user_inst Install the launcher for a single user

admin_inst Install the launcher for all users

uninst Undo installation but leave the TEX Live directory tree alone

uninst_all Undo installation and remove the TEX Live directory tree. This
is the only option of these four which touches the TEX Live installation
itself.

If there is a forgetter for the current user, both uninst options will run
it. A command-line option silent will ensure that the forgetter will run
without user interaction.

Within the launcher, there are corresponding functions FU:uninst_all
and FU:uninst which can be assigned to a menu- or button control. If nec-
essary, the launcher will pop up a uac prompt and restart in elevated mode.

1.6.1 The tlaunchmode script

The included Perl script tlaunchmode can convert a local TEX Live instal-
lation between classic and launcher-based. Run with a parameter ‘on’, the
script turns launcher mode on; with ‘off’ it reverts the installation to classic,
and anything else prints a brief help message.

CHAPTER 1. THE LAUNCHER 14

It aborts if admin permissions are required but missing.
It can be installed in the usual way: put it under the scripts subdirectory

of some texmf tree, run mktexlsr on that tree, and copy in the tlroot \bin\
win32 directory runscript.exe to tlaunchmode.exe.

Although at the moment there is no mechanism to make the path- and
file association settings in the ini file conform to those set during a clas-
sic installation, those orginal settings are restored when converting back to
classic mode.

1.6.2 TEX Live Manager

Nothing special has been done for the TEX Live Manager. It can be assigned
to a menu- or button control, although this makes little sense for a centrally
managed network installation. If necessary it will automatically pop up a
uac prompt.

Chapter 2

The launcher at the
Rijksuniversiteit Groningen

This chapter is about the launcher-based TEX Live installation at the rug
(Rijksuniversiteit Groningen) and the environment in which it operates.

Our TEX Live installation resides on the network. The TEX Live Launcher
is available via the start menu, and anybody on the university network can
click the launcher shortcut and start using TEX.

The files in the tlrug.zip zipfile are tidied up versions of those of the
rug installation: compared to the files actually in use, they benefit from
hindsight and omit ugly workarounds for specific local problems.

2.1 Historical

Anearlier solution for TEXLivewas implementedwith a patchwork of scripts
in various languages. An initialization script created filetype associations,
Start Menu shortcuts andmodified the searchpath. It made use of the built-
in Perl and its TEX Live modules.

However, some people got confused that the generated TEX Live menu

Figure 2.1: The launcher at the Rijksuniversiteit Groningen

15

CHAPTER 2. THE LAUNCHER AT THE RUG 16

was in one place, viz. in the conventional Start / Programs menu, and the
initializer script in the centrally maintained ‘RUG menu’.

When between 2013 to 2014 the university transitioned to centrallyman-
aged desktops, using the RES workspace management system1, I created
the launcher. For speed of development, a first version was written in the
AutoIT2 scripting language. AutoIT has good access toWindows’ internals,
and comes with a utility which packages a script with a AutoIT runtime
into a self-contained executable. The AutoIT versions did not use an ini file;
everything was coded into the script itself.

For the 2015 TEX Live release, I finally had a usable C version, in which
all configuration was read from an ini file.

2.2 RES desktops

The RES system synthesizes a desktop or workspace for the user on logon.
Personal settings are selectively captured, stored in a database and restored
on re-logon; the settings part of RES can be considered an alternative im-
plementation of the roaming profiles described in Appendix A.2.

This desktop is also available remotely, which works reasonably well
most of the time.

For TEX Live, I submit a wish list of settings to the workspace manage-
ment people, and they enter everything into the RES system. Unfortunately,
the RES system has its quirks, and what I expect to happen is not always
what actually does happen. But this is not the place to expand on my trials
and tribulations with RES.

2.3 Components of the rug TEX installation

Various third-party programs are incorporated into our TEX Live installa-
tion. Below are some details.

Most TEX-related software does not have deep hooks into the system.
Even if applications require elevated permissions to install, usuallly they
can simply be copied to another location and work fine from there. This is
the case with e.g. TEX Live itself and with TeXstudio.

The add-ons are:

• Additional editors: TeXnicCenter and TeXstudio

• The pdf viewer SumatraPDF

• The Java-based bibliography manager JabRef
1Real Enterprise Solutions, https://res.com/
2https://www.autoitscript.com/

CHAPTER 2. THE LAUNCHER AT THE RUG 17

• The epspdf gui with bundled single-file Tcl/Tk runtime

• The pseudo-wysywyg LyX LATEX editor

There are also controls for:

• browsing the TEX Live installation

• a command-prompt with TEX Live as the first directory on the search-
path

• generating or updating a XeTEX font cache; see Section 2.6

• some manuals from the TEX Live installation

• links to TEX-related websites

Such menu items are simply created by single lines in the ini file.
There are no controls for the TEX Live manager or for uninstalling.
Figure 2.1 shows buttons for some of the additional software. Along the

bottom of the window is an announcement text, which is an optional string
item in the ini file. The Help menu item opens a help text in the configured
default text editor – probably Notepad.

2.4 Directory organization

There is a directory under the TEX Live root containing all the extras. There
is another subdirectory for the various scripts. All paths in both the ini file
and the scripts are relative to the root of the installation.

I did not put anything into the existing subdirectories of the TEX Live
installation, and put both the binary and the ini file in the root of the instal-
lation.

2.5 Fixes for add-ons

Some of the add-ons needed a bit more work than just copying the installed
program directory to its place under the TEX Live root:

2.5.1 TeXnicCenter

The original university installation was based on MikTeX, with TeXnicCen-
ter as editor. In 2008 I replaced MikTeX with TEX Live, and TeXnicCenter
with the more up to date TeXstudio editor. Since I did not want to force
anyone to switch editors, I also kept TeXnicCenter around.

While TeXnicCenter can autoconfigure itself nicely for MikTeX, it asks
TEX Live users a series of questions about what is where. Since many users

CHAPTER 2. THE LAUNCHER AT THE RUG 18

are only vaguely aware of directories beyond their home directory, I wrote
a vbscript which emulates the MiKTeX autoconfiguration for TEX Live and
avoids awkward questions.

2.5.2 TeXstudio

TeXstudio autoconfigures itself fine, but there were still two problems:

1. By default, it checks whether there is a more recent version, while
users are not in a position to do an update.

2. With our current desktopmanagement software, programs do not get
the user searchpath appended to their process searchpath.

The first problem is solved during first-time initialization of the launcher.
If there is no TeXstudio configuration file, then one is created with just the
setting not to check for updates. If there is one, the update check option is
edited to be off. Either way, there is no impact on other settings.

A solution for the second problem is described in Appendix A.3.4.3
Note that TeXworks, Dviout and PSV[iew] are invoked via the TEX Live

runscript wrapper, which takes care of the searchpath, among other things.

2.5.3 SumatraPDF

In the absence of any registry settings, SumatraPDF assumes that it is a
portable setup, and tries to write user configuration to its own directory.
Its developers informed me what registry setting would convince Suma-
traPDF otherwise, so that it would write its configuration data to the user’s
profile.

Checks for updates are disabled in a similar way as for TeXstudio.

2.5.4 LyX

On first start, LyX can take several minutes to take stock of its environment
and figure out what it can use. During this time, it is not even clear that
anything is happening.

To prevent this delay, the post-config script copies a pre-generated con-
figuration directory to the user’s profile.

In the LyX installation itself, in the file lyxroot \Resources\lyxrc.dist,
the setting \path_prefix has been rephrased to only contain paths relative
to $LyXDir, which is the root of the LyX installation.

3In the current rug installation, TeXstudio is started instead via a smallwrapper program.

CHAPTER 2. THE LAUNCHER AT THE RUG 19

2.6 Moving the XeTEX font cache

At the time of writing, the default location of the XeTEX font cache in
TEX Live is $TEXMFYSVAR/fonts/cache, i.e. tlroot /texmf-var/fonts/
cache. In a multi-user or network install, this location is not user-writable.
Since this was a problem, a line

FC_CACHEDIR = $TEXMFVAR/fonts/cache

in the file tlroot /texmf.cnfmoved the cache to a user-writable location.
Since I generate the TEX Live installation on a Linux system, the con-

figured TEX Live font paths in $TEXMFSYSVAR/fonts/conf/fonts.conf do
not match the target installation. Of course this generated file can be hand-
edited, but a less error-prone solution is to leave this file alone andmove the
font configuration files also to a user-writable location with another line:

FONTCONFIG_PATH = $TEXMFVAR/fonts/conf

in tlroot /texmf.cnf. A per-user font configuration is then created by a
line

"%TLROOT%\tlpkg\tlperl\bin\perl.exe"
"%TLROOT%\tlpkg\tlpostcode\xetex.pl"
install "%TLROOT%" skip_gen 2>NUL

(one line) in a post-config script, see section 1.3.
The last parameter , viz. skip_gen, suppresses actual cache generation,

since that might take quite some time. Any non-null value would have had
the same effect.

2.7 Fixing non-roaming filetype associations

Before RES (see Section 2.2), and before the launcher, the TEX Live-related
filetype associations would not follow the user from desktop to desktop;
see also Appendix A.3.2. This was solved with a batchfile which restored
missing file associations. By placing a shortcut to this batchfile in the Start
/ All Programs / Startup menu, this batchfile would automatically run at
logon. However, RES made this workaround unnecessary.

For situations where non-roaming file associations are still a problem, I
intend to add a ‘reassoc’ mode to the forgetter. The forgetter is already in
place and knows how to parse the ini file. With the reassoc option, the for-
getter will silently recreate missing filetypes. If TEX Live or the launcher is
missing it will do nothing. There will be an option in the ini file to enable or
disable creation of such a shortcut to the forgetter, in its role as rememberer.

Appendix A

Windows issues

A.1 User and system

Microsoft has wised up a lot security-wise. When Windows XP appeared,
the line ofWindows 9x windowsesmade place for slightly crippled versions
of the NT-based professional editions. Even for Home editions there is now
a separation between per-user and system-wide settings and files. Since
Windows Vista, this separation is much more strictly enforced, and even
administrators have to take an extra step, such as clicking yes to a UAC1

prompt, before they can do anything deemed risky.

A.2 Roaming

On a Windows domain network, it can be arranged that users have more
or less the same desktop, whatever computer within the network they hap-
pen to be working on. This is accomplished by either ‘folder redirection’,
i.e. defining network locations for certain dedicated directories (see ‘Known
Folders’ in Appendix A.4), or by copying user data back and forth between
workstation and network on logon and logoff. There may also be a dedi-
cated network share for user documents which is accessible from any com-
puter, and which may do double duty as home to redirected folders.

A.3 Windows configuration

Some Windows configuration can only be stored in the registry, in partic-
ular file associations, see section A.3.2 below, and environment variables,
including the searchpath.

Other configuration can be stored either in the registry or in configura-
tion files, at the discretion of the developer.

1User Account Control

20

APPENDIX A. WINDOWS ISSUES 21

A.3.1 Registry locations

We have to deal with three locations or hives within the registry:

• HKEY_CURRENT_USER, or hkcu in short, for user-specific settings

• HKEY_LOCAL_MACHINE, or hklm in short, for system-level settings

• A third hive, HKEY_CLASSES_ROOT, or hkcr, will be described in the
next subsection.

A.3.2 Filetype associations

The basic idea is that an extension has a default filetype or ProgID, and this
filetype in its turn can define commands such as open, edit, view or print.
For example, the extension .jar has as its filetype or ProgID jarfile, and
for the ProgID jarfile the open command is defined as e.g.

"C:\Program Files (x86)\Java\jre1.8.0_45\bin\javaw.exe" -jar "%1" %*

Extensions can also have secondary file associations. These are the ones
showing up when right-clicking a file and selecting ‘Open with. . . ’.

Filetype associations exist in per-user and system-wide flavors:

• User-specific filetype associations are stored in hkcu\Software\
Classes

• System-level filetype associations are stored in hklm\Software\
Classes

• The effective filetype associations are stored in HKEY_CLASSES_ROOT or
hkcr, which is a runtime merge of the above two branches. Settings
in hkcu override corresponding settings in hklm.

For example, the link from .jar to jarfile is can be read from the hkcr\
.jar key and the link from jarfile to actual commands from the hkcr\
jarfile key.2

Secondary filetype associations can be stored in a subkey of the exten-
sion subkey, either the OpenWithList (obsolete) or the OpenWithProgIds
subkey.

Unfortunately, these user-level filetype associations do not roam. With
the RES desktop management system, this is no longer a problem for us.
But a future version of the launcher will contain a workaround for other
environments; see section 2.7.

2In some situations, reading from hkcr proved not entirely reliable. Therefore, TEX Live
always explicitly checks first hkcu and if necessary hklm.

APPENDIX A. WINDOWS ISSUES 22

A.3.3 UserChoice

Apart from this scheme, choices made by the user in the ‘Open with. . . ’
dialog are stored under subkeys of hkcu\Software\Microsoft\Windows\
CurrentVersion\Explorer\FileExts\.ext , the exact subkey(s) depending
on the Windows version. Such entries should have priority over the ones
described above, and do roam.

Windows 8 and later may pop up a dialog asking with what program
to open a file even if there is already an answer in a Software\Classes key.
The answer will be a preference stored under the FileExts key mentioned
above. This should alleviate the problem of non-roaming filetype associa-
tions.

The launcher will not touch these registry entries.

A.3.4 Application registration

An application which is registered may have a better chance to be listed as
an alternative in the ‘Open with...’ dialog.

The currently recommended way to register an application is under
the SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\basename
key (basename including .exe file extension). The default entry of such a
key is the full path of the file. Therefore, only one file with a given base-
name can have such a registration entry.

The other entry of interest under this key is ‘Path’, which is a search-
path fragment that should be prepended to the regular searchpath, just for
this program. This prefixing happens if the program is opened by Win-
dows Explorer. The path prefix is ignored if the program is started from
the command-line or from the launcher.

For filetypes defined in the launcher ini file, the launcher creates an ap-
plication registration key for the associated program, but only if the COMMAND
field is just a filename or -path, with or without quotes.

Applications can also be registered under hkcr\Applications\
basename , but here is no option to set a searchpath prefix. Microsoft
considers this location obsolete.

A.3.5 The searchpath and other environment variables

Environment variables are also stored in the registry: per-user variables
in hkcu\software\environment, system environment variables in hklm\
System\CurrentControlSet\Control\Session Manager\Environment.

For the searchpath, the effective searchpath consists of the system %Path%
variable, with the user %Path% variable appended if it exists, with an interven-
ing ‘;’ of course. Therefore, directories on the system searchpath have priority
over the user searchpath.

APPENDIX A. WINDOWS ISSUES 23

Other environment variables from these registry locations behave as ex-
pected: the user version has priority if both exist. Note that the names of
environment variables are case-insensitive.

Various pieces of system information, such as COMPUTERNAME and
CommonProgramFiles, are not explicitly stored as environment variables, but
are nevertheless available as such.

A.4 Windows Known Folders

Windows has an elaborate and ever expanding system of ‘Known Fold-
ers’: e.g. Program Files, ProgramData, User Profile (HOME directory), Start
Menu, Desktop, Documents, Downloads, History, SendTo, Templates, Ad-
ministrative Tools, Pictures, Music, Videos, Account Pictures, Cookies, Fa-
vorites, and dozens more, many of them both in a system- and a user ver-
sion.

Sometimes a known folder is not a real folder but a virtual one, and
for some known folders, 64-bits applications and 32-bits applications view
things differently.

There are APIs which associate known folder identifiers to actual direc-
tory paths.

WithWindowsVista a newAPI has been introduced, and the old one de-
clared obsolete. One change for the better: the directory name ‘Documents
and Settings’ has been replaced with simply ‘Users’.

ThisAPI also gives access to other properties, such as the localized names
shown inWindowsExplorer, such as ‘Programme’ instead of ‘ProgramFiles’,
or ‘Gebruikers’ instead of ‘Users’.

Microsoft recommends to avoid hard-coded paths, and to place every-
thing under known folders instead. One benefit is at least that files in known
folders have a better chance of surviving system upgrades.

A.4.1 Programs

The directory reserved for programs is normally c:\Program Files. On 64-
bit systems, this directory is reserved for 64-bits programs, and c:\Program
Files (x86) for 32-bits programs. Directories under one of the Program
Files folders are automatically write-protected.

A.4.2 Configuration- and data files

There are also preferred locations for per-user- and system-wide program
data. For Windows Vista and later these are:

• For user-specific settings, typical locations are %appdata%, which
is usually %userprofile%\%appdata%\roaming, and %localappdata%,

APPENDIX A. WINDOWS ISSUES 24

which is usually %userprofile%\%appdata%\local. For a networked
workstation, %appdata% may be relocated or backed up to a location
on the network, and be available to the user on any workstation.

• For system-wide settings there is %ProgramData%, usually
C:\ProgramData.

On Windows Vista and later, these directories normally do not have spaces
in their path. They are by default also hidden.

A.4.3 TEX Live choices

It is clear that TEX Live does not try very hard to conform to all Microsoft’s
recommendations, and I do not think that it should. A couple of obvious ad-
vantages of the existing default path C:\texlive\yyyy 3 are the absence of
spaces, and the locale-independence of the path seen inWindows Explorer.

In this default location, TEX Live will not be write-protected automati-
cally. For a system-wide installation, the TEX Live installer itself will take
care of this.

As to user files, it should be ok to put $TEXMFCONFIG, $TEXMFVAR and
tlaunch’s %TLCONFIG% under %appdata% or %localappdata%. For the first
two, this could also be done after the fact with a couple of lines in
tlroot /texmf.cnf, e.g.:

TEXMFVAR = $APPDATA/texlive2016/texmf-var
TEXMFCONFIG = $APPDATA/texlive2016/texmf-config

There they will be hidden, but most users will never interact directly with
files in these directories anyway.

3Regular users can create directories in the root directory of the C:-drive, even though
they cannot create regular files there.

	1 The launcher
	1.1 Introduction
	1.2 Modes
	1.2.1 Normal mode
	1.2.2 Initializing
	1.2.3 Forgetting

	1.3 Using scripts
	1.4 The ini file
	1.4.1 Location
	1.4.2 Encoding
	1.4.3 Syntax
	1.4.4 The Strings section
	1.4.5 Sections for filetype associations (FTAs)
	1.4.6 Sections for utility scripts
	1.4.7 The built-in functions
	1.4.8 Menus and buttons
	1.4.9 The General section

	1.5 Editor choice
	1.6 Launcher-based installations
	1.6.1 The tlaunchmode script
	1.6.2 TeX Live Manager

	2 The launcher at the RUG
	2.1 Historical
	2.2 RES desktops
	2.3 Components of the rug TeX installation
	2.4 Directory organization
	2.5 Fixes for add-ons
	2.5.1 TeXnicCenter
	2.5.2 TeXstudio
	2.5.3 SumatraPDF
	2.5.4 LyX

	2.6 Moving the XeTeX font cache
	2.7 Fixing non-roaming filetype associations

	A Windows issues
	A.1 User and system
	A.2 Roaming
	A.3 Windows configuration
	A.3.1 Registry locations
	A.3.2 Filetype associations
	A.3.3 UserChoice
	A.3.4 Application registration
	A.3.5 The searchpath and other environment variables

	A.4 Windows Known Folders
	A.4.1 Programs
	A.4.2 Configuration- and data files
	A.4.3 TeX Live choices

