
The make4ht build system
Michal Hoftich∗

Version v0.2b
2018-05-04

Contents
1 Introduction 2

1.1 How it works . 2
1.1.1 The issues with default tex4ht conversion commands . . 2

2 Output file formats and extensions 3
2.1 Extensions . 4

3 Build files 4
3.1 User commands . 5

3.1.1 Provided commands . 5
3.1.2 Command function . 5
3.1.3 Parameters table . 6
3.1.4 Repetition . 6
3.1.5 Expected exit code . 7

3.2 File matches . 7
3.2.1 Filters . 7
3.2.2 DOM filters . 8
3.2.3 make4ht-aeneas-config package 9

3.3 Image conversion . 11
3.4 The mode variable . 12
3.5 The settings table . 12
3.6 List of available settings for filters and extensions. 13

3.6.1 The tidy extension . 13
3.6.2 The fixinlines dom filter 13
3.6.3 The joincharacters dom filter 13
3.6.4 The mathjaxnode filter . 14
3.6.5 The aeneas filter . 14
3.6.6 The staticsite filter and extension 14

∗michal.h21@gmail.com

1

michal.h21@gmail.com

4 Configuration file 15
4.1 Location . 15
4.2 Additional commands . 15
4.3 Example . 15

5 Command line options 16

6 Troubleshooting 16
6.1 Incorrect handling of command line arguments for tex4ht, t4ht

or latex . 16

7 License 17

8 Changelog 17

1 Introduction
make4ht is a simple build system for tex4ht, TEX to XML converter. It provides
a command line tool that drive the conversion process. It also provides a library
which can be used to create customized conversion tools. An example of such
conversion tool is tex4ebook for conversion of TEX to ePub and other e-book
formats.

1.1 How it works
1.1.1 The issues with default tex4ht conversion commands

tex4ht system supports several output formats, most notably XHTML, HTML 5 and
ODT. The conversion can be invoked using several commands. These commands
invoke LaTeX or Plain TeX with special instructions to load tex4ht.sty package.
The TEX run produces special DVI file which contains the code for desired output
format. The DVI file is then processed and desired output files are created.

The basic command provided by tex4ht is named htlatex. It compiles
LATEX files to HTML with this command sequence:

latex $latex_options 'code for loading tex4ht.sty \input{filename}'
latex $latex_options 'code for loading tex4ht.sty \input{filename}'
latex $latex_options 'code for loading tex4ht.sty \input{filename}'
tex4ht $tex4ht_options filename
t4ht $t4ht_options filename

The options for various parts of the system can be passed on the command
line:

htlatex filename "tex4ht.sty options" "tex4ht_options" "t4ht_options" "latex_options"

For basic HTML conversion it is possible to use the most basic invocation:

htlatex filename.tex

2

https://github.com/michal-h21/tex4ebook

It can be much more involved for HTML 5 output in UTF-8 encoding:

htlatex filename.tex "xhtml,html5,charset=utf-8" "-cmozhtf -utf8"

make4ht can simplify it:

make4ht -uf html5 filename.tex

Another issue is the fixed compilation order and hard-coded number of
LaTeX invocations.

When you need to run a program which interact with LaTeX, such as
Makeindex or Bibtex, you need to create a new script based on htlatex, or run
htlatex twice, which means that LaTeX will be invoked six times. This can
lead to significantly long compilation times. make4ht provides build files and
extensions, which can be used for interaction with external tools.

It is also possible to have several compilation modes. When you just add
new text to a document, which doesn’t contain cross-references, don’t add new
stuff to the table of contents, etc., it is possible to use the draft mode which
will invoke LaTeX only once. It can save quite a lot of the compilation time:

make4ht -um draft -f html5 filename.tex

There are also issues with a behaviour of the t4ht application. It reads
file filename.lg, generated by tex4ht, where are instructions about generated
files, CSS instructions, calls to external applications, instructions for image
conversions etc. It can be instructed to copy generated files to some output
directory, but it doesn’t preserve directory structure, so when you have images
in a subdirectory, they will be copied to the output directory. Links will be
pointing to a non-existing subdirectory. The following command should copy
all output files to the correct destinations.

make4ht -d outputdir filename.tex

The image conversion is configured in the env file, which has really strange
syntax based and the rules are os dependent. make4ht provides simpler means
for the image conversion in the build files.

With make4ht build files, we have simple mean to fix these issues. We can
change image conversion parameters without the need to modify the env file,
or execute actions on the output files. These actions can be either external
programs such as xslt processors or HTML tidy or Lua functions.

The idea is to make system controlled by a build file. Because Lua interpreter
is included in modern TeX distributions and Lua is ideal language for such task,
it was chosen as language in which the build scripts are written.

2 Output file formats and extensions
The default output format used by make4ht is html5. Different format can be
requested using the --format option. Supported formats are:

3

http://www.tug.org/applications/tex4ht/mn35.html#index35-73001
http://www.tug.org/applications/tex4ht/mn-unix.html#index27-69005

• xhtml

• html5

• odt

The --format option can be also used for extension loading.

2.1 Extensions
Extensions can be used to modify the build process without the need to use
a build file. They may post-process the output files or request additional
commands for the compilation.

The extensions can be enabled or disabled by appending +EXTENSION or
-EXTENSION after the output format name:

make4ht -uf html5+tidy filename.tex

Available extensions:

latexmk_build use Latexmk for LATEX compilation.

tidy clean the HTML files using the tidy command.

common_filters clean the output HTML files using filters.

common_domfilters Clean the HTML file using DOM filters. It is more pow-
erful than common_filters. Used DOM filters are fixinlines, idcolons
and joincharacters.

mathjaxnode use mathjax-node-page to convert from MathML code to HTML
+ CSS or SVG. See the available settings.

staticsite build the document in form suitable for static site generators like
Jekyll.

3 Build files
make4ht supports build files. These are Lua scripts which can adjust the build
process. You can request external applications like bibtex or makeindex, pass
options to the commands, modify the image conversion process, or post-process
the generated files.

make4ht tries to load default build file named as filename + .mk4 extension.
You can choose different build file with -e or --build-file command line option.

Sample build file:

Make:htlatex()
Make:match("html$", "tidy -m -xml -utf8 -q -i ${filename}")

4

https://github.com/pkra/mathjax-node-page/
https://jekyllrb.com/

Make:htlatex() is preconfigured command for calling LaTeX with tex4ht
loaded on the input file. In this case, it will be called one time. After compilation,
the tidy command is executed on the output HTML file.

Note that you don’t have to call tex4ht and t4ht commands explicitly in the
build file, they are called automatically.

3.1 User commands
You can add more commands like Make:htlatex using Make:add command:

Make:add("name", "command", {parameters}, repetition)

The name and command parameters are required, rest of the parameters are
optional.

This defines name command, which can be then executed as Make:name()
command.

3.1.1 Provided commands

Make:htlatex One call to TeX engine with special configuration for tex4ht
loading.

Make:latexmk Use Latexmk for the document compilation. tex4ht will be loaded
automatically.

Make:tex4ht Process the DVI file and creates the output files.

Make:t4ht Creates the CSS file.

3.1.2 Command function

The command parameter can be either string template or function:

Make:add("text", "echo hello, input file: ${input}")
Make:add("function", function(params)

for k, v in pairs(params) do
print(k..": "..v)

end, {custom="Hello world"}
)

The template can get variable value from the parameters table using a
${var_name} placeholder. Templates are executed using operating system, so
they should invoke existing OS commands. Function commands may execute
system commands using os.execute function.

5

3.1.3 Parameters table

parameters parameter is optional, it can be table or nil value, which should
be used if you want to use the repetition parameter, but don’t want to modify
the parameters table.

The table with default parameters is passed to all commands, they can be
accessed from command functions or templates. When you specify your own
parameters in the command definition, these additional parameters are added
to the default parameters table for this particular command. You can override
the default parameters in the parameters table.

The default parameters are following:

htlatex used compiler

input it is output file name in fact

tex_file input TeX file

latex_par parameters to latex

packages insert additional LaTeX code which is inserted before \documentclass.
Useful for passing options to packages or additional packages loading

tex4ht_sty_par parameters to tex4ht.sty

tex4ht_par parameters to the tex4ht application

t4ht_par parameters to the t4ht application

outdir the output directory

repetition limit number of command execution.

correct_exit expected exit code from the command. The compilation will be
terminated if the command exit code is different.

3.1.4 Repetition

Repetition is number which specifies a maximal number of executions of the
particular command. This is used for instance for tex4ht and t4ht commands,
as they should be executed only once in the compilation. They would be executed
multiple times if you include them in the build file because they are called by
make4ht by default. Because these commands allow only one repetition, the
second execution will be blocked.

6

3.1.5 Expected exit code

You can set the expected exit code from a command with a correct_exit key
in the parameters table. The compilation will be stopped when the command
returns a different exit code.

This mechanism isn’t used for LaTeX (for all TeX engines and formats, in
fact), because it doesn’t differentiate between fatal and non-fatal errors, and it
returns the same exit code in all cases. Log parsing is used because of that,
error code 1 is returned in the case of fatal error, 0 is used otherwise. The
Make.testlogfile function can be used in the build file to detect compilation
errors in the TeX log file.

3.2 File matches
Another type of action which can be specified in the build file is match. It can
be called on the generated files:

Make:match("html$", "tidy -m -xml -utf8 -q -i ${filename}")

It tests output file names with Lua pattern matching and on matched items
will execute a command or a function, specified in the second argument. Com-
mands may be specified as strings, the templates will be expanded, ${var_name}
placeholders will be replaced with corresponding variables from the parameters
table, described in the previous subsection. One additional variable is available:
filename. It contains the name of the current output file.

The above example will clean all output HTML files using the tidy command.
If function is used instead, it will get two parameters. The first one is a

current filename, the second one table with parameters.

3.2.1 Filters

Some default match actions which can be used are available from the make4ht-
filter module. It contains some functions which are useful for fixing some
tex4ht bugs or shortcomings.

Example:

local filter = require "make4ht-filter"
local process = filter{"cleanspan", "fixligatures", "hruletohr"}
Make:htlatex()
Make:htlatex()
Make:match("html$",process)

The make4ht-filter module return a function which can be used for the
filter chain building. Multiple filters can be chained, each of them can modify
the string which was modified by the previous filters. The changes are then
saved to the processed file.

Built-in filters are:

7

cleanspan clean spurious span elements when accented characters are used

cleanspan-nat alternative clean span filter, provided by Nat Kuhn

fixligatures decompose ligatures to base characters

hruletohr \hrule commands are translated to series of underscore characters
by tex4ht, this filter translate these underscores to <hr> elements

entites convert prohibited named entities to numeric entities (currently, only
 , as it causes validation errors, and tex4ht is producing it some-
times)

fix-links replace colons in local links and id attributes with underscores.
Some cross-reference commands may produce colons in internal links,
which results in validation error.

mathjaxnode use mathjax-node-page to convert from MathML code to HTML
+ CSS or SVG. See the available settings.

staticsite create HTML file in format suitable for static site generators such
as Jekyll

svg-height some SVG images produced by dvisvgm seem to have wrong di-
mensions. This filter tries to set the correct image size.

Function filter accepts also function arguments, in this case this function
takes file contents as a parameter and modified contents are returned.

Example:

local filter = require "make4ht-filter"
local changea = function(s) return s:gsub("a","z") end
local process = filter{"cleanspan", "fixligatures", changea}
Make:htlatex()
Make:htlatex()
Make:match("html$",process)

In this example, spurious span elements are joined, ligatures are decom-
posed, and then all letters ‘a’ are replaced with ‘z’ letters.

3.2.2 DOM filters

DOM filters use the LuaXML library to modify directly the XML object. This
enables more powerful operations than the regex based filters from the previous
section.

Example:

local domfilter = require "make4ht-domfilter"
local process = domfilter {"joincharacters"}
Make:match("html$", process)

8

https://github.com/pkra/mathjax-node-page/
https://jekyllrb.com/
https://ctan.org/pkg/luaxml

Available DOM filters:

aeneas Aeneas is a tool for automagical synchronization of text and audio.
This filter modifies the HTML code to support the synchronization.

fixinlines put all inline elements which are direct children of the <body>
elements to a paragraph.

idcolons replace the colon (:) character in internal links and id attributes.
They cause validation issues.

joincharacters join consecutive or <mn> elements.

3.2.3 make4ht-aeneas-config package

Companion for the aeneas DOM filter is the make4ht-aeneas-config plugin.
It can be used to write Aeneas configuration file or execute Aeneas on the
generated HTML files.

Available functions:

write_job(parameters) write Aenas job configuration to config.xml file. See
the Aeneas documentation for more information about jobs.

execute(parameters) execute Aeneas.

process_files(parameters) process the audio and generated subtitle files.

By default, the smil file is created. It is assumed that there is audio file in
mp3 format named as the TeX file. It is possible to use different formats and
file names using mapping.

The configuration options can be passed directly to the functions or set
using filter_settings "aeneas-config" {parameters} function.

Available parameters:

lang document language. It is interfered from the HTML file, so it is not
necessary to set it.

map mapping between HTML, audio and subtitle files. More info bellow.

text_type type of the input. The aeneas DOM filter produces unparsed text
type.

id_sort sorting of id attributes. Default value is numeric.

id_regex regular expression to parse the id attributes.

sub_format generated subtitle format. Default smil.

Additional parameters for the job configuration file:

• description

9

https://www.readbeyond.it/aeneas/
https://www.readbeyond.it/aeneas/docs/clitutorial.html#processing-jobs

• prefix

• config_name

• keep_config

It is possible to generate multiple HTML files from the LaTeX source.
For example, tex4ebook generates separate file for each chapter or section.
It is possible to set options for each HTML file, in particular names of the
corresponding audio files. This mapping is done using map parameter.

Example:

filter_settings "aeneas-config" {
map = {
["sampleli1.html"] = {audio_file="sample.mp3"},
["sample.html"] = false

}
}

Table keys are the configured file names. It is necessary to insert them as
["filename.html"], because of Lua syntax rules.

This example maps audio file sample.mp3 to a section subpage. The main
HTML file, which may contain title and table of contents doesn’t have an
corresponding audio file.

The filenames of sub files corresponds to chapter numbers, so they are
not stable when a new chapter is added. It is possible to request file names
interfered from the chapter titles using the sec-filename option or tex4ht.

Available map options:

audio_file the corresponding audio file

sub_file name of the generated subtitle file

The following options are same as their counter-parts from the main pa-
rameters table and generally don’t need to be set:

• prefix

• file_desc

• file_id

• text_type

• id_sort

• id_prefix

• sub_format

10

Full example:

local domfilter = require "make4ht-domfilter"
local aeneas_config = require "make4ht-aeneas-config"

filter_settings "aeneas-config" {
map = {
["krecekli1.xhtml"] = {audio_file="krecek.mp3"},
["krecek.xhtml"] = false

}
}

local process = domfilter {"aeneas"}
Make:match("html$", process)

if mode == "draft" then
aeneas_config.process_files {}

else
aeneas_config.execute {}

end

3.3 Image conversion
It is possible to convert parts of LaTeX input to pictures, it is used for example
for math or diagrams in tex4ht.

These pictures are stored in a special dvi file, which can be processed by
the dvi to image commands.

This conversion is normally configured in the env file, which is system
dependent and which has a bit unintuitive syntax. This configuration is pro-
cessed by the t4ht application and conversion commands are called for all
pictures.

It is possible to disable t4ht image processing and configure image conver-
sion in the build file:

Make:image("png$",
"dvipng -bg Transparent -T tight -o ${output} -pp ${page} ${source}")

Make:image takes two parameters, pattern to match image name and action.
Action can be either string template with conversion command, or function
which takes a table with parameters as an argument.

There are three parameters:

• output - output image file name

• source - dvi file with the pictures

• page - page number of the converted image

11

3.4 The mode variable
There is global mode variable available in the build file. It contains contents
of the --mode command line option. It can be used to run some commands
conditionally. For example:

if mode == "draft" then
Make:htlatex{}

else
Make:htlatex{}
Make:htlatex{}
Make:htlatex{}

end

In this example (which is the default configuration used by make4ht), LaTeX
is called only once when make4ht is called with draft mode:

make4ht -m draft filename

3.5 The settings table
You may want to access to the parameters also outside commands, file matches
and image conversion functions. For example, if you want to convert your file
to the OpenDocument Format (ODT), you can use the following settings, based
on the oolatex command:

settings.tex4ht_sty_par = settings.tex4ht_sty_par ..",ooffice"
settings.tex4ht_par = settings.tex4ht_par .. " ooffice/! -cmozhtf"
settings.t4ht_par = settings.t4ht_par .. " -cooxtpipes -coo "

There are some functions to ease access to the settings:

set_settings{parameters} overwrite settings with values from a passed table

settings_add{parameters} add values to the current settings

filter_settings "filter name" {parameters} set settings for a filter

get_filter_settings(name) get settings for a filter

Using these functions, it is possible to simplify the settings for the ODT
format:

settings_add {
tex4ht_sty_par =",ooffice",
tex4ht_par = " ooffice/! -cmozhtf",
t4ht_par = " -cooxtpipes -coo "

}

12

Settings for filters and extensions can be set using filter_settings:

filter_settings "test" {
hello = "world"

}

These settings can be read in the extensions and filters using get_filter_settings:

function test(input)
local options = get_filter_settings("test")
print(options.hello)
return input

end

3.6 List of available settings for filters and extensions.
These settings may be set using filter_settings function.

3.6.1 The tidy extension

options command line options for the tidy command. Default value is -m
-utf8 -w 512 -q.

3.6.2 The fixinlines dom filter

inline_elements table of inline elements which shouldn’t be direct descen-
dants of the body element. The element names should be table keys, the
values should be true.

Example

filter_settings "fixinlines" {inline_elements = {a = true, b = true}}

3.6.3 The joincharacters dom filter

charelements table of elements which should be joined if several instances
with the same value of class attribute are side by side.

Example

filter_settings "joincharacters" { charclases = { span=true, mn = true}}

13

3.6.4 The mathjaxnode filter

options command line options for the mjpage command. Default value is
--output CommonHTML

Example

filter_settings "mathjaxnode" {
options="--output SVG --font Neo-Euler"

}

cssfilename mjpage puts some CSS code into the HTML pages. mathjaxnode
extracts this information and saves it to a standalone CSS file. Default
CSS filename is mathjax-chtml.css

fontdir directory with MathJax font files. This option enables use of local
fonts, which is usefull in Epub conversion, for example. The font direc-
tory should be sub-directory of the current directory. Only TeX font is
supported at the moment.

Example

filter_settings "mathjaxnode" {
fontdir="fonts/TeX/woff/"

}

3.6.5 The aeneas filter

skip_elements List of CSS selectors that match elements which shouldn’t be
processed. Default value: { "math", "svg"}.

id_prefix prefix used in the ID attribute forming.

sentence_match Lua pattern used to match a sentence. Default value:
"([^%.^%?^!]*)([%.%?!]?)".

3.6.6 The staticsite filter and extension

site_root directory where generated files should be copied.

map table where keys are patterns that match filenames, value contains
destination directoryfor matched files, relative to the site_root (it is
possible to use .. to swich to parent directory).

file_pattern pattern used for filename generation. It is possible to use string
templates and format strings for os.date function. Default value of %Y-
%m-%d-${input} creates names in the form of YYYY-MM-DD-file_name.

header table with variables to be set in the YAML header in HTML files. If
the table value is a function, it is executed with current parameters and
HTML page DOM object as arguments.

14

Example:

local outdir = os.getenv "blog_root"

filter_settings "staticsite" {
site_root = outdir,
map = {
[".css$"] = "../css/"

},
header = {

layout="post",
date = function(parameters, dom)

return os.date("!%Y-%m-%d %T", parameters.time)
end

}
}

4 Configuration file
It is possible to globally modify the build settings using the configuration file.
New compilation commands can be added, extensions can be loaded or disabled
and settings can be set.

4.1 Location
The configuration file can be saved either in $HOME/.config/make4ht/config.lua
or in .make4ht in the current directory or it’s parents (up to $HOME).

4.2 Additional commands
There are two additional commands:

Make:enable_extension(name) require extension

Make:disable_extension(name) disable extension

4.3 Example
The following configuration add support for the biber command, requires
common_domfilters extension and requires MathML output for math.

Make:add("biber", "biber ${input}")
Make:enable_extension "common_domfilters"
settings_add {

tex4ht_sty_par =",mathml"
}

15

5 Command line options
make4ht - build system for tex4ht
Usage:
make4ht [options] filename ["tex4ht.sty op." "tex4ht op."

"t4ht op" "latex op"]
-b,--backend (default tex4ht) Backend used for xml generation.

possible values: tex4ht or lua4ht
-c,--config (default xhtml) Custom config file
-d,--output-dir (default "") Output directory
-e,--build-file (default nil) If build file name is different

than `filename`.mk4
-f,--format (default nil) Output file format
-l,--lua Use lualatex for document compilation
-m,--mode (default default) Switch which can be used in the makefile
-n,--no-tex4ht Disable dvi file processing with tex4ht command
-s,--shell-escape Enables running external programs from LaTeX
-u,--utf8 For output documents in utf8 encoding
-v,--version Print version number
-x,--xetex Use xelatex for document compilation
<filename> (string) Input file name

You can still invoke make4ht in the same way as htlatex:

make4ht filename "customcfg, charset=utf-8" "-cunihtf -utf8" "-dfoo"

Note that this will not use make4ht routines for output directory making
and copying. If you want to use them, change the line above to:

make4ht -d foo filename "customcfg, charset=utf-8" "-cunihtf -utf8"

This call has the same effect as the following:

make4ht -u -c customcfg -d foo filename

Output directory doesn’t have to exist, it will be created automatically.
Specified path can be relative to current directory, or absolute:

make4ht -d use/current/dir/ filename
make4ht -d ../gotoparrentdir filename
make4ht -d ~/gotohomedir filename
make4ht -d c:\documents\windowspathsareworkingtoo filename

6 Troubleshooting
6.1 Incorrect handling of command line arguments for

tex4ht, t4ht or latex

Sometimes, you may get a similar error:

make4ht:unrecognized parameter: i

16

It may be caused by a following make4ht invocation:

make4ht hello.tex "customcfg,charset=utf-8" "-cunihtf -utf8" -d foo

The command line option parser is confused by mixing options for make4ht
and tex4ht in this case and tries to interpret the -cunihtf -utf8, which are
options for tex4ht command as make4ht options. To fix that, you can either
move the -d foo directly after make4ht command:

make4ht -d foo hello.tex "customcfg,charset=utf-8" "-cunihtf -utf8"

Another option is to add a space before tex4ht options:

make4ht hello.tex "customcfg,charset=utf-8" " -cunihtf -utf8" -d foo

The former way is preferable, though.

7 License
Permission is granted to copy, distribute and/or modify this software under the
terms of the LaTeX Project Public License, version 1.3.

8 Changelog
• 2018/05/03

– released version 0.2b

– bug fix: use only load function in Make:run, in order to support a
local environment.

• 2018/05/03

– released version 0.2a

– renamed latexmk extension to latexmk_build, due to clash in TL

• 2018/04/18

– staticsite extension:
∗ make YAML header configurable
∗ set the time and updated headers

– don’t override existing tables in filter_settings

• 2018/04/17

– done first version of staticsite extension

17

• 2018/04/16

– check for Git repo in the Makefile, don’t run Git commands outside
of repo

• 2018/04/15

– added staticsite filter
– working on staticsite extension

• 2018/04/13

– use ipairs instead of pairs to traverse lists of images and image
match functions

– load extensions in the correct order

• 2018/04/09

– released version 0.2

– disabled default loading of common_domfilters extension

• 2018/04/06

– added Make:enable_extension and Make:disable_extension func-
tions

– documented the configuration file

• 2018/03/09

– load the configuration file before extensions

• 2018/03/02

– Aeneas execution works
– Aeneas documentation
– added support for .make4ht configuration file

• 2018/02/28

– Aeneas configuration file creation works

• 2018/02/22

– fixed bug in fixinlines DOM filter

• 2018/02/21

– added Aeneas domfilter

18

– fixed bugs in joincharacters DOM filter

• 2018/02/20

– fixed bug in joincharacters DOM filter
– make woff default font format for mathjaxnode

– added documentation for mathjaxnode settings

• 2018/02/19

– fixed bug in filter loading
– added mathjaxnode extension

• 2018/02/15

– use HTML5 as a default format
– use common_domfilters implicitly for the XHTML and HTML5 for-

mats

• 2018/02/12

– added common_domfilters extension
– documented DOM filters

• 2018/02/12

– handle XML parsing errors in the DOM handler
– enable extension loading in Formatters

• 2018/02/11

– fixed Tidy extension output to support LuaXML
– fixed white space issues with joincharacters DOM filter

• 2018/02/09

– fixed issues with the Mathjax filter
– documented basic info about thd DOM filters
– DOM filter optimalizations

• 2018/02/08

– make Tidy extension configurable
– documented filter settings

• 2018/02/07

19

– added filter for Mathjax-node

• 2018/02/06

– created DOM filter function
– added DOM filter for spurious inlinine elements

• 2018/02/03

– added settings handling functions
– settings made available for extensions and filters

• 2017/12/08

– fixed the mk4 build file loading when it is placed in the current
working dir and another one with same filename somewhere in the
TEXMF tree.

• 2017/11/10

– Added new filter: svg-height. It tries to fix height of some of the
images produced by dvisvgm

• 2017/10/06

– Added support for output format selection. Supported formats are
xhtml, html5 and odt

– Added support for extensions

• 2017/09/10

– Added support for Latexmk
– Added support of math library and tonumber function in the build

files

• 2017/09/04

– fixed bug caused by the previous change – the –help and –version
didn’t work

• 2017/08/22

– fixed the command line option parsing for tex4ht, t4ht and latex
commands

– various grammar and factual fixes in the documentation

• 2017/04/26

20

– Released version v0.1c

• 2017/03/16

– check for TeX capacity exceeded error in the LATEX run.

• 2016/12/19

– use full input name in tex_file variable. This should enable use of
files without .tex extension.

• 2016/10/22

– new command available in the build file: Make:add_file(filename).
This enables filters and commands to register files to the output.

– use ipairs instead of pairs for traversing files and executing filters.
This should ensure correct order of executions.

• 2016/10/18

– new filter: replace colons in id and href attributes with underscores

• 2016/01/11

– fixed bug in loading documents with full path specified

• 2015/12/06 version 0.1b

– modifed lapp library to recognize --version and
– added --help and --version command line options

• 2015/11/30

– use kpse library for build file locating

• 2015/11/17

– better -jobname handling

• 2015/09/23 version 0.1a

– various documentation updates
– mozhtf profile for unicode output is used, this should prevent liga-

tures in the output files

• 2015/06/29 version 0.1

– major README file update

• 2015/06/26

– added Makefile
– moved INSTALL instructions from README to INSTALL

21

	Introduction
	How it works
	The issues with default tex4ht conversion commands

	Output file formats and extensions
	Extensions

	Build files
	User commands
	Provided commands
	Command function
	Parameters table
	Repetition
	Expected exit code

	File matches
	Filters
	DOM filters
	make4ht-aeneas-config package

	Image conversion
	The mode variable
	The settings table
	List of available settings for filters and extensions.
	The tidy extension
	The fixinlines dom filter
	The joincharacters dom filter
	The mathjaxnode filter
	The aeneas filter
	The staticsite filter and extension

	Configuration file
	Location
	Additional commands
	Example

	Command line options
	Troubleshooting
	Incorrect handling of command line arguments for tex4ht, t4ht or latex

	License
	Changelog

