
Lua2DOXlua
v0.1

Copyright (c) 2012 Simon Dales

4th July 2012

This is a hack to enable doxygen to document lua.
It uses the well-known doxygen filter mechanism to fool doxygen into
reading foreign languages.
If this works for you then enjoy.

Contents

1 Introduction 2

1.1 Literate Programming . 2

1.2 Autodoc . 2

1.2.1 Doxygen . 2

1.2.2 Lua2DOXlua . 3

1.3 Origins . 3

2 Installation 4

2.1 System requirements . 4

2.1.1 Luatex/lua . 4

2.1.2 doxygen . 4

2.2 Linux/other Unices . 4

2.3 Windows . 4

2.4 Mac OSX . 4

3 Useage 5

3.1 Learn to use Doxygen . 5

3.2 running Lua2DOXlua . 5

3.2.1 make Doxyfile . 5

3.2.2 run Lua2DOXlua . 5

3.3 In use . 5

4 Design 6

4.1 Classes . 6

4.2 Multiline function declarations . 6

4.3 Multiple magic comments . 6

1 INTRODUCTION 2

1 Introduction

Documenting sourcecode is a hassle. There are two basic methods of providing documented sourcecode:
“literate programming” and “autodoc”. Without these tools a human has to keep the documentation and
code aligned, which rarely happens.

1.1 Literate Programming

If one is sufficiently organised, and it fits in with your existing work practices, then there is a lot going for
literate programming. Here you write a combined document that contains both code and documentation
fragments. When you want code or documentation you run it through a program which assembles the
appropriate files.

This is theoretically the neatest way of making code. The best known example of literate programming
is the source of TEX.

1.2 Autodoc

In the real world we get source from many sources, usually where literate programming wasn’t used or
isn’t available.

One solution is to use an automatic documentation tool: feed it sourcecode and it will extract what
documentation it can.

If you feed it raw source then all it can do is tell you where it found features such as function and class
declarations.

If your source has been suitably prepared, then more detailed documentation can be produced. This
preparation takes the form of “magic comments”. These are source comments that contain “magic”
features that let the autodoc tool know to make use of them.

1.2.1 Doxygen

Doxygen is one of the many autodoc tools use to document C-like languages. It is widely used and
supported in the linux world and has MacOS and Windows ports.

83 void helloWorldOnce (){
84 p r i n t f (" h e l l o ␣world\n") ;
85 }
86 /∗ !
87 \ b r i e f w r i t e s h e l l o world ∗n
88

89 This i s a demo of how to loop round
90 and p r i n t something
91

92 \param N number o f t imes round
93 ∗/
94 void helloWorldN (int N){
95 for (int i =0; i<N; i++)
96 p r i n t f (" h e l l o ␣world␣%d\n" , i) ;
97 }

void helloWorldN(int N)
writes hello world *n
This is a demo of how to loop round and print something
Parameters:

N number of times round
Definition at line 94 of file hello.cpp.

void helloWorldOnce()
Definition at line 83 of file hello.cpp.

1 INTRODUCTION 3

1.2.2 Lua2DOXlua

In the case of doxygen, which is intended for C-like languages, it expects ‘///’ or ‘//!’ for C++
comments and ‘/**. . . */’/‘/*!. . . */’ for C-style comments. For Lua2DOXlua we recycle this convention
and use ‘--!’ and ‘--[[!. . .]]’.

The internal format of the magic comments is identical to doxygen. This is not suprising in that
lua2dox_filter is a doxygen filter. What it does is to read lua code and output something not entirely
unlike C++.

This lets us make Doxygen output some documentation to let us develop this code.

83 function helloWorldOnce ()
84 i o . wr i t e (" h e l l o ␣world\n")
85 end
86 −−[[!
87 \ b r i e f w r i t e s h e l l o world ∗n
88

89 This i s a demo of how to loop round
90 and p r i n t something
91

92 \param N number o f t imes round
93]]
94 function helloWorldN (N)
95 for i =0,N do
96 i o . wr i t e (" h e l l o ␣world" . . i . . "\n")
97 end
98 end

function helloWorldN(N)
writes hello world *n
This is a demo of how to loop round and print something
Parameters:

N number of times round
Definition at line 94 of file hello.cpp.

function helloWorldOnce()
Definition at line 83 of file hello.cpp.

1.3 Origins

Lua2DOXlua inspired by the functionality of lua2dox1. Found on CPAN when looking for something
else; kinda handy.

Improved from lua2dox to make the doxygen output more friendly. Runs faster in lua than in Perl.

Because this Perl based system is called “lua2dox”, I have decided to add “_lua” to the name to keep
the two separate, so it is called “lua2dox_lua”.

1http://search.cpan.org/˜alec/Doxygen-Lua-0.02/lib/Doxygen/Lua.pm

2 INSTALLATION 4

2 Installation

2.1 System requirements

Should run on any reasonably modern computer (PC or MacOS X).

Requires a reasonably recent: doxygen and luatex or lua.

2.1.1 Luatex/lua

Whilst luatex isn’t strictly required to make it run; TEX users are more likely to have a recent version
(via texlive) of texlua rather than relying on your, possibly aging, distro’s lua.

It should work with either texlua or lua. The calling bash script determines which one is available
(texlua then lua) and selects that one.

2.1.2 doxygen

Install this using whatever mechanism you usually use.

It is also helpful if you know how to use doxygen.

2.2 Linux/other Unices

Only tested for linux, but should work for any Unix-like OS.

For other OS you need to figure it out yourself. If you do, then please email me with the code/suggestions.

1. manually check if lua2dox.lua runs on your system.

From the commandline run “./lua2dox_lua --help”. If it runs and produces a sensible result
then it probably works.

2. Manually pick an appropriate directory for this system.

Make this new directory and copy/mv all these files into there. If you are installing it as a personal
app then put it somewhere in your userspace. For system-wide: ask sysadmin.

3. Run “install.sh”. This makes the links to the active code.

Default is to put in ‘˜/bin”. For system-wide: ask sysadmin.

2.3 Windows

Not yet

2.4 Mac OSX

Not yet

3 USEAGE 5

3 Useage

Because this is a doxygen filter then it is assumed that the endusers are familiar with the use of this
app. When familiar then one can move on to documenting lua code.

3.1 Learn to use Doxygen

Ensure doxygen is installed on your system and that you are familiar with its use. Best is to try to make
and document some simple C/C++/PHP to see what it produces.

Included with this distribution are some examples of php and lua code. They are two simple programs
that create some classes and then show their use. The documentation should be nearly the same as each
other.

3.2 running Lua2DOXlua

3.2.1 make Doxyfile

Run “lua2dox_lua -g” to create a default Doxyfile. This is the configuration file that doxygen needs
for making the documentation.

Then alter it to let it recognise lua. Add the two following lines:

1 PROJECT_NAME = <name o f pro j e c t>
2 PROJECT_NUMBER = <ver s i on number>
3 OUTPUT_DIRECTORY = docs
4 FILE_PATTERNS = ∗ . lua
5 FILTER_PATTERNS = ∗ . lua=lua2dox_f i l t e r
6 SOURCE_BROWSER = yes
7 GENERATE_LATEX = no

Either add them to the end or find the appropriate entry in Doxyfile.

3.2.2 run Lua2DOXlua

Once Doxyfile has been edited run as “lua2dox_lua”.

When reading source with classes multiple passes are needed. Each pass generates a list of member func-
tions (as a file) that were found on this pass. This list is read in on the next pass. If the class+methods
haven’t changed this time then you only need to run it once, else run twice, much like running LATEX
\tableofcontents.

3.3 In use

As with doxygen the HTML output is the most useful for development. When the project is finished
then PDF output (via LATEX) may be useful.

Typically you will have some source files open in your editor/IDE. Also keep a web-browser window
open pointing at the documentation.

After a bit of editing the documentation will become stale. At this point run Lua2DOXlua once/twice
and refresh the HTML pages. Then your documentation will be updated.

4 DESIGN 6

4 Design

Lua2DOXlua is a doxygen filter. It has a basic parser that will read each line of lua and output an
equivalent in pseudo-C++. It loops round until it has found the end of the file. It only has to be good
enough for doxygen to see it as legal. Therefore our lua interpreter is fairly limited, but “good enough”.

The parser is relatively crude and assumes that the programmer writes lua in a fairly clean way. Some
bits of lua will confuse it.

In order for the source browser to work in the doxygen output it must preserve the number of lines.
The output of each line is either written as-is or a converted line. When doxygen re-reads the source to
make the source-HTML/LATEX/. . . it uses the line number to set the position.

It only supports comments that preceded the function/class declaration. Any in the middle will act
as cruft in the resulting documentation. This will be slightly out of place but at least should refer to
somewhere near to where it was intended. In particular “@todo”. This will appear in the ToDo list, but
not associated with the right function.

4.1 Classes

Class declarations are assumed to be using a “well-known” userdefined function “class()”. It processes

“AA = class(A)” → “class AA: public A{};”.

However it will probably have some member functions. These get converted from

”A.foo(a,b)” → “A::foo(a,b)”. This is stored in a temporary file. When Lua2DOXlua is run a
subsequent time this is used to generate a list of methods. So

“AA = class(A)” → “class AA: public A{foo(a,b);bar(x);};”

4.2 Multiline function declarations

Because Lua2DOXlua can only process one line at a time it cannot correctly process function declarations
with multiline parameter list. This is because the parser isn’t sophisticated enough to guarantee finding
the close paren on some random later line.

So I have put in a hack that will insert the “missing” close paren. It looks at the function declaration
that you have got and checks for a close paren. It if is not there then it will add a spoof parameter and
the close.

The effect is that you will get the function documented, but not with the parameter list you might
expect.

94 f unc t i on foo (A
95 ,B
96 ,C)

Becomes

94 f unc t i on foo (A, ___MissingCloseParenHere___)

4.3 Multiple magic comments

The hacking of lua to C++ by Lua2DOXlua has the limitation that some magic comments will not get
associated with the correct function/class. This is a “feature” that might get correct in a later version.

	Introduction
	Literate Programming
	Autodoc
	Doxygen
	Lua2D-.3emOXlua

	Origins

	Installation
	System requirements
	Luatex/lua
	doxygen

	Linux/other Unices
	Windows
	Mac OSX

	Useage
	Learn to use Doxygen
	running Lua2D-.3emOXlua
	make Doxyfile
	run Lua2D-.3emOXlua

	In use

	Design
	Classes
	Multiline function declarations
	Multiple magic comments

