
LATEXMK(1) General Commands Manual LATEXMK(1)

NAME
latexmk − generate LaTeX document

SYNOPSIS
latexmk [options] [file ...]

DESCRIPTION
Latexmk completely automates the process of compiling a LaTeX document. Essentially, it is like a spe-

cialized relative of the general make utility, but one which determines dependencies automatically and has

some other very useful features. In its basic mode of operation latexmk is given the name of the primary

source file for a document, and it issues the appropriate sequence of commands to generate a .dvi, .ps, .pdf

and/or hardcopy version of the document.

By default latexmk will run the commands necessary to generate a .dvi file.

Latexmk can also be set to run continuously with a suitable previewer. In that case the latex program (or

one of its relatives), etc, are rerun whenever one of the source files is modified, and the previewer automati-

cally updates the on-screen view of the compiled document.

Latexmk determines which are the source files by examining the log file. (Optionally, it also examines the

list of input and output files generated by the -recorder option of modern versions of latex (and pdflatex,

xelatex, lualatex, etc). See the documentation for the -recorder option of latexmk below.) When latexmk is

run, it examines properties of the source files, and if any hav e been changed since the last document genera-

tion, latexmk will run the various LaTeX processing programs as necessary. In particular, it will repeat the

run of latex (or a related program)) often enough to resolve all cross references; depending on the macro

packages used. With some macro packages and document classes, four, or even more, runs may be needed.

If necessary, latexmk will also run bibtex, biber, and/or makeindex. In addition, latexmk can be configured

to generate other necessary files. For example, from an updated figure file it can automatically generate a

file in encapsulated postscript or another suitable format for reading by LaTeX.

Latexmk has two different previewing options. With the simple -pv option, a dvi, postscript or pdf pre-

viewer is automatically run after generating the dvi, postscript or pdf version of the document. The type of

file to view is selected according to configuration settings and command line options.

The second previewing option is the powerful -pvc option (mnemonic: "preview continuously"). In this

case, latexmk runs continuously, regularly monitoring all the source files to see if any hav e changed. Every

time a change is detected, latexmk runs all the programs necessary to generate a new version of the docu-

ment. A good previewer will then automatically update its display. Thus the user can simply edit a file

and, when the changes are written to disk, latexmk completely automates the cycle of updating the .dvi

(and/or the .ps and .pdf) file, and refreshing the previewer’s display. It’s not quite WYSIWYG, but usefully

close.

For other previewers, the user may have to manually make the previewer update its display, which can be

(e.g., with some versions of xdvi and gsview) as simple as forcing a redraw of its display.

Latexmk has the ability to print a banner in gray diagonally across each page when making the postscript

file. It can also, if needed, call an external program to do other postprocessing on generated dvi and post-

script files. (See the options -dF and -pF, and the documentation for the $dvi_filter and $ps_filter configu-

ration variables.) These capabilities are leftover from older versions of latexmk. More flexibility can be

obtained in current versions, since the command strings for running latex, pdflatex, etc can now be config-

ured to run multiple commands. This also extends the possibility of postprocessing generated files.

Latexmk is highly configurable, both from the command line and in configuration files, so that it can

accommodate a wide variety of user needs and system configurations. Default values are set according to

the operating system, so latexmk often works without special configuration on MS-Windows, cygwin,

Linux, OS-X, and other UNIX systems.

A very annoying complication handled very reliably by latexmk, is that LaTeX is a multiple pass system.

On each run, LaTeX reads in information generated on a previous run, for things like cross referencing and

indexing. In the simplest cases, a second run of LaTeX suffices, and often the log file contains a message

about the need for another pass. However, there is a wide variety of add-on macro packages to LaTeX, with

17 January 2017 1

LATEXMK(1) General Commands Manual LATEXMK(1)

a variety of behaviors. The result is to break simple-minded determinations of how many runs are needed

and of which programs. Latexmk has a highly general and efficient solution to these issues. The solution

involves retaining between runs information on the source files, and a symptom is that latexmk generates an

extra file (with extension .fdb_latexmk, by default) that contains the source file information.

LATEXMK OPTIONS AND ARGUMENTS ON COMMAND LINE
In general the command line to invoke latexmk has the form

latexmk [options] [file]

All options can be introduced by single or double "-" characters, e.g., "latexmk -help" or "latexmk --help".

Note 1: In addition to the options in the list below, latexmk recognizes almost all the options recognized

by the latex, pdflatex programs (and their relatives) in their current TeXLive and MiKTeX implementations.

Some of the options for these programs also trigger special action or behavior by latexmk, in which case

they hav e specific explanations in this document. Otherwise, they are just passed through to a called latex

or pdflatex program. Run latexmk with the -showextraoptions to get a list of the options that latexmk

accepts and that are simply passed through to latex or pdflatex (etc). See also the explanation of the

-showextraoptions option for more information.

Note 2: In this documentation, the program pdflatex is often referred to. Users of programs like lualatex

and xelatex should know that from latexmk’s point of view, these other programs behave very like pdflatex,

i.e., they make a pdf file from a tex file, etc. So whenever pdflatex is mentioned without mention of the

other programs, the statements apply equally to lualatex, xelatex, and any other similar programs. Latexmk

can be easily configured to use whichever of these programs is needed. See the documentation for the fol-

lowing options: -pdflua, -pdfxe, -lualatex, and -xelatex, and also see the documentation for the $pdflatex,

$lualatex, and $xelatex configuration variables. At present latexmk does not do automatic detection of

which program is to be used.

Definitions of options and arguments

file One or more files can be specified. If no files are specified, latexmk will, by default, run on all

files in the current working directory with a ".tex" extension. This behavior can be changed: see

the description concerning the @default_files variable in the section "List of configuration vari-

ables usable in initialization files".

If a file is specified without an extension, then the ".tex" extension is automatically added, just as

LaTeX does. Thus, if you specify:

latexmk foo

then latexmk will operate on the file "foo.tex".

-auxdir=FOO or -aux-directory=FOO

Sets the directory for auxiliary output files of (pdf)latex (.aux, .log etc). This achieves its effect by

the -aux-directory option of (pdf)latex, which currently is only implemented on the MiKTeX ver-

sion of (pdf)latex.

See also the -outdir/-output-directory options, and the $aux_dir, $out_dir, and

$search_path_separator configuration variables of latexmk. In particular, see the documentation

of $out_dir for some complications on what directory names are suitable.

17 January 2017 2

LATEXMK(1) General Commands Manual LATEXMK(1)

If you also use the -cd option, and the specified auxiliary output directory is a relative path, then

the path is interpreted relative to the document directory.

-bibtex When the source file uses bbl files for bibliography, run bibtex or biber as needed to regenerate the

bbl files.

This property can also be configured by setting the $bibtex_use variable to 2 in a configuration file

-bibtex-

Never run bibtex or biber.

A common use for this option is when a document comes from an external source, complete with

its bbl file(s), and the user does not have the corresponding bib files available. In this situation use

of the -bibtex- option will prevent latexmk from trying to run bibtex or biber, which would result

in overwriting of the bbl files.

-bibtex-cond

When the source file uses bbl file(s) for the bibliography, run bibtex or biber as needed to regener-

ate the bbl files, but only if the relevant bib file(s) exist. Thus when the bib files are not available,

bibtex or biber is not run, thereby avoiding overwriting of the bbl file(s). This is the default set-

ting.

(Note that it is possible for latexmk to decide that the bib file does not exist, even though the bib

file does exist and bibtex or biber finds it. The problem is that the bib file may not be in the cur-

rent directory but in some search path; the places latexmk and bibtex or biber cause to be searched

need not be identical. On modern installations of TeX and related programs this problem should

not arise, since latexmk uses the kpsewhich program to do the search, and kpsewhich should use

the same search path as bibtex and biber. If this problem arises, use the -bibtex option when

invoking latexmk.)

-bm <message>

A banner message to print diagonally across each page when converting the dvi file to postscript.

The message must be a single argument on the command line so be careful with quoting spaces

and such.

Note that if the -bm option is specified, the -ps option is assumed.

-bi <intensity>

How dark to print the banner message. A decimal number between 0 and 1. 0 is black and 1 is

white. The default is 0.95, which is OK unless your toner cartridge is getting low.

-bs <scale>

A decimal number that specifies how large the banner message will be printed. Experimentation is

necessary to get the right scale for your message, as a rule of thumb the scale should be about

equal to 1100 divided by the number of characters in the message. The default is 220.0 which is

just right for 5 character messages.

-commands

List the commands used by latexmk for processing files, and then exit.

17 January 2017 3

LATEXMK(1) General Commands Manual LATEXMK(1)

-c Clean up (remove) all regeneratable files generated by latex and bibtex or biber except dvi, post-

script and pdf. These files are a combination of log files, aux files, latexmk’s database file of

source file information, and those with extensions specified in the @generated_exts configuration

variable. In addition, files specified by the $clean_ext configuration variable are removed.

This cleanup is instead of a regular make. See the -gg option if you want to do a cleanup then a

make.

If $bibtex_use is set to 0 or 1, bbl files are counted as non-regeneratable.

If $cleanup_includes_cusdep_generated is nonzero, regeneratable files are considered as including

those generated by custom dependencies and are also deleted. Otherwise these files are not

deleted.

-C Clean up (remove) all regeneratable files generated by latex and bibtex or biber. This is the same

as the -c option with the addition of dvi, postscript and pdf files, and those specified in the

$clean_full_ext configuration variable.

This cleanup is instead of a regular make. See the -gg option if you want to do a cleanup than a

make.

If $bibtex_use is set to 0 or 1, bbl files are counted as non-regeneratable.

If $cleanup_includes_cusdep_generated is nonzero, regeneratable files are considered as including

those generated by custom dependencies and are also deleted. Otherwise these files are not

deleted.

-CA (Obsolete). Now equivalent to the -C option. See that option for details.

-cd Change to the directory containing the main source file before processing it. Then all the gener-

ated files (aux, log, dvi, pdf, etc) will be relative to the source file.

This option is particularly useful when latexmk is invoked from a GUI configured to invoke

latexmk with a full pathname for the source file.

-cd- Do NOT change to the directory containing the main source file before processing it. Then all the

generated files (aux, log, dvi, pdf, etc) will be relative to the current directory rather than the

source file.

This is the default behavior and corresponds to the behavior of the latex and pdflatex programs.

However, it is not desirable behavior when latexmk is invoked by a GUI configured to invoke

latexmk with a full pathname for the source file. See the -cd option.

-CF Remove the file containing the database of source file information, before doing the other actions

requested.

-d Set draft mode. This prints the banner message "DRAFT" across your page when converting the

dvi file to postscript. Size and intensity can be modified with the -bs and -bi options. The -bm

option will override this option as this is really just a short way of specifying:

latexmk -bm DRAFT

17 January 2017 4

LATEXMK(1) General Commands Manual LATEXMK(1)

Note that if the -d option is specified, the -ps option is assumed.

-deps Show a list of dependent files after processing. This is in the form of a dependency list of the form

used by the make program, and it is therefore suitable for use in a Makefile. It gives an overall

view of the files without listing intermediate files, as well as latexmk can determine them.

By default the list of dependent files is sent to stdout (i.e., normally to the screen unless you’ve

redirected latexmk’s output). But you can set the filename where the list is sent by the -deps-out=

option.

See the section "USING latexmk WITH make" for an example of how to use a dependency list

with make.

Users familiar with GNU automake and gcc will find that the -deps option is very similar in its

purpose and results to the -M option to gcc. (In fact, latexmk also has options -M, -MF, and -MP

options that behave like those of gcc.)

-dependents

Equivalent to -deps.

-deps- Do not show a list of dependent files after processing. (This is the default.)

-dependents-

Equivalent to -deps-.

-deps-out=FILENAME

Set the filename to which the list of dependent files is written. If the FILENAME argument is

omitted or set to "-", then the output is sent to stdout.

Use of this option also turns on the output of the list of dependent files after processing.

-dF Dvi file filtering. The argument to this option is a filter which will generate a filtered dvi file with

the extension ".dviF". All extra processing (e.g. conversion to postscript, preview, printing) will

then be performed on this filtered dvi file.

Example usage: To use dviselect to select only the even pages of the dvi file:

latexmk -dF "dviselect even" foo.tex

-diagnostics

Print detailed diagnostics during a run. This may help for debugging problems or to understand

latexmk’s behavior in difficult situations.

-dvi Generate dvi version of document.

-dvi- Turn off generation of dvi version of document. (This may get overridden, if some other file is

made (e.g., a .ps file) that is generated from the dvi file, or if no generated file at all is requested.)

17 January 2017 5

LATEXMK(1) General Commands Manual LATEXMK(1)

-e <code>

Execute the specified initialization code before processing. The code is Perl code of the same

form as is used in latexmk’s initialization files. For more details, see the information on the -r

option, and the section about "Configuration/initialization (RC) files". The code is typically a

sequence of assignment statements separated by semicolons.

The code is executed when the -e option is encountered during latexmk’s parsing of its command

line. See the -r option for a way of executing initialization code from a file. An error results in

latexmk stopping. Multiple instances of the -r and -e options can be used, and they are executed in

the order they appear on the command line.

Some care is needed to deal with proper quoting of special characters in the code on the command

line. For example, suppose you want to set the latex command to use its -shell-escape option, then

under UNIX/Linux you could use the line

latexmk -e ’$latex=q/latex %O -shell-escape %S/’ file.tex

Note that the single quotes block normal UNIX/Linux command shells from treating the charac-

ters inside the quotes as special. (In this example, the q/.../ construct is a Perl idiom equivalent to

using single quotes. This avoids the complications of getting a quote character inside an already

quoted string in a way that is independent of both the shell and the operating-system.)

The above command line will NOT work under MS-Windows with cmd.exe or command.com or

4nt.exe. For MS-Windows with these command shells you could use

latexmk -e "$latex=q/latex %O -shell-escape %S/" file.tex

or

latexmk -e "$latex=’latex %O -shell-escape %S’" file.tex

The last two examples will NOT work with UNIX/Linux command shells.

(Note: the above examples show are to show how to use the -e to specify initialization code to be

executed. But the particular effect can be achieved also by the use of the -latex option with less

problems in dealing with quoting.)

-f Force latexmk to continue document processing despite errors. Normally, when latexmk detects

that LaTeX or another program has found an error which will not be resolved by further process-

ing, no further processing is carried out.

Note: "Further processing" means the running of other programs or the rerunning of latex (etc) that

would be done if no errors had occurred. If instead, or additionally, you want the latex (etc) pro-

gram not to pause for user input after an error, you should arrange this by an option that is passed

to the program, e.g., by latexmk’s option -interaction=nonstopmode.

-f- Turn off the forced processing-past-errors such as is set by the -f option. This could be used to

override a setting in a configuration file.

-g Force latexmk to process document fully, even under situations where latexmk would normally

decide that no changes in the source files have occurred since the previous run. This option is use-

ful, for example, if you change some options and wish to reprocess the files.

17 January 2017 6

LATEXMK(1) General Commands Manual LATEXMK(1)

-g- Turn off -g.

-gg "Super go mode" or "clean make": clean out generated files as if -C had been given, and then do a

regular make.

-h, -help

Print help information.

-jobname=STRING

Set the basename of output files(s) to STRING, instead of the default, which is the basename of

the specified TeX file.

This is like the same option for current implementations of the latex, pdflatex, etc, and the passing

of this option to these programs is part of latexmk’s implementation of -jobname.

-l Run in landscape mode, using the landscape mode for the previewers and the dvi to postscript con-

verters. This option is not normally needed nowadays, since current previewers normally deter-

mine this information automatically.

-l- Turn off -l.

-latex="COMMAND"

This sets the string specifying the command to run latex, and is typically used to add desired

options. Since the string normally contains spaces, it should be quoted, e.g.,

latexmk -latex="latex --shell-escape %O %S" foo.tex

The specification of the contents of the string are the same as for the $latex configuration variable.

Depending on your operating system and the command-line shell you are using, you may need to

change the single quotes to double quotes (or something else).

To set the command for running pdflatex (rather than the command for latex) see the -pdflatex

option.

-logfilewarninglist

-logfilewarnings After a run of (pdf)latex, giv e a list of warnings about undefined citations and

references (unless silent mode is on).

See also the $silence_logfile_warnings configuration variable.

-logfilewarninglist-

-logfilewarnings- After a run of (pdf)latex, do not give a list of warnings about undefined citations

and references. (Default)

See also the $silence_logfile_warnings configuration variable.

-lualatex

Use lualatex. That is, use lualatex to process the source file(s) to pdf. The generation of dvi and

postscript files is turned off.

This option is equivalent to using the following set of options

17 January 2017 7

LATEXMK(1) General Commands Manual LATEXMK(1)

-pdflua -dvi- -ps-

(Note: Note that the method of implementation of this option, but not its intended effect, differ

from some earlier versions of latexmk.)

-M Show list of dependent files after processing. This is equivalent to the -deps option.

-MF file

If a list of dependents is made, the -MF specifies the file to write it to.

-MP If a list of dependents is made, include a phony target for each source file. If you use the depen-

dents list in a Makefile, the dummy rules work around errors the program make gives if you

remove header files without updating the Makefile to match.

-new-viewer

When in continuous-preview mode, always start a new viewer to view the generated file. By

default, latexmk will, in continuous-preview mode, test for a previously running previewer for the

same file and not start a new one if a previous previewer is running. However, its test sometimes

fails (notably if there is an already-running previewer that is viewing a file of the same name as the

current file, but in a different directory). This option turns off the default behavior.

-new-viewer-

The inverse of the -new-viewer option. It puts latexmk in its normal behavior that in preview-con-

tinuous mode it checks for an already-running previewer.

-nobibtex

Never run bibtex or biber. Equivalent to the -bibtex- option.

-norc Turn off the automatic reading of initialization (rc) files.

N.B. Normally the initialization files are read and obeyed, and then command line options are

obeyed in the order they are encountered. But -norc is an exception to this rule: it is acted on first,

no matter where it occurs on the command line.

-outdir=FOO or -output-directory=FOO

Sets the directory for the output files of (pdf)latex. This achieves its effect by the -output-direc-

tory option of (pdf)latex, which currently (Dec. 2011 and later) is implemented on the common

versions of (pdf)latex, i.e., MiKTeX and TeXLive. It may not be present in other versions.

See also the -auxdir/-aux-directory options, and the $aux_dir, $out_dir, and $search_path_sepa-

rator configuration variables of latexmk. In particular, see the documentation of $out_dir for some

complications on what directory names are suitable.

If you also use the -cd option, and the specified output directory is a relative path, then the path is

interpreted relative to the document directory.

-p Print out the document. By default the file to be printed is the first in the list postscript, pdf, dvi

that is being made. But you can use the -print=... option to change the type of file to be printed,

and you can configure this in a start up file (by setting the $print_type variable).

17 January 2017 8

LATEXMK(1) General Commands Manual LATEXMK(1)

However, printing is enabled by default only under UNIX/Linux systems, where the default is to

use the lpr command and only on postscript files. In general, the correct behavior for printing very

much depends on your system’s software. In particular, under MS-Windows you must have suit-

able program(s) available, and you must have configured the print commands used by latexmk.

This can be non-trivial. See the documentation on the $lpr, $lpr_dvi, and $lpr_pdf configuration

variables to see how to set the commands for printing.

This option is incompatible with the -pv and -pvc options, so it turns them off.

-pdf Generate pdf version of document using pdflatex. (If you wish to use lualatex or xelatex, you can

use whichever of the options -pdflua, -pdfxe, -lualatex or -xelatex applies.) To configure latexmk

to have such behavior by default, see the section on "Configuration/initialization (rc) files".

-pdfdvi

Generate pdf version of document from the dvi file, by default using dvipdf.

-pdflua Generate pdf version of document using lualatex.

-pdfps Generate pdf version of document from the ps file, by default using ps2pdf.

-pdfxe Generate pdf version of document using xelatex. Note that to optimize processing time, latexmk

uses xelatex to generate an xdv file rather than a pdf file directly. Only after possibly multiple runs

to generate a fully up-to-date xdv does latexmk then call xdvipdfmx to generate the final pdf file.

(Note: When the document includes large graphics files, especially png files, the last step can be

quite time consuming, even when the creation of the xdv file by xelatex is fast. So the use of the

intermediate xdv file can result in substantial gains in procesing time, since the pdf file is produced

once rather than on every run of xelatex.)

-pdf- Turn off generation of pdf version of document. (This can be used to override a setting in a con-

figuration file. It may get overridden if some other option requires the generation of a pdf file.)

-pdflatex="COMMAND"

This sets the string specifying the command to run pdflatex, and is typically used to add desired

options. Since the string normally contains spaces, it should be quoted, e.g.,

latexmk -pdf -pdflatex="pdflatex --shell-escape %O %S" foo.tex

The specification of the contents of the string are the same as for the $pdflatex configuration vari-

able. Depending on your operating system and the command-line shell you are using, you may

need to change the single quotes to double quotes (or something else).

To set the command for running latex (rather than the command for pdflatex) see the -latex option.

-print=dvi, -print=ps, -print=pdf, -print=auto,

Define which kind of file is printed. This option also ensures that the requisite file is made, and

turns on printing.

The (default) case -print=auto determines the kind of print file automatically from the set of files

that is being made. The first in the list postscript, pdf, dvi that is among the files to be made is the

one used for print out.

17 January 2017 9

LATEXMK(1) General Commands Manual LATEXMK(1)

-ps Generate postscript version of document.

-ps- Turn off generation of postscript version of document. This can be used to override a setting in a

configuration file. (It may get overridden by some other option that requires a postscript file, for

example a request for printing.)

-pF Postscript file filtering. The argument to this option is a filter which will generate a filtered post-

script file with the extension ".psF". All extra processing (e.g. preview, printing) will then be per-

formed on this filtered postscript file.

Example of usage: Use psnup to print two pages on the one page:

latexmk -ps -pF ’psnup -2’ foo.tex

or

latexmk -ps -pF "psnup -2" foo.tex

Whether to use single or double quotes round the "psnup -2" will depend on your command inter-

preter, as used by the particular version of perl and the operating system on your computer.

-pv Run file previewer. If the -view option is used, this will select the kind of file to be previewed

(dvi, ps or pdf). Otherwise the viewer views the "highest" kind of file selected, by the -dvi, -ps,

-pdf, -pdfps options, in the order dvi, ps, pdf (low to high). If no file type has been selected, the

dvi previewer will be used. This option is incompatible with the -p and -pvc options, so it turns

them off.

-pv- Turn off -pv.

-pvc Run a file previewer and continually update the .dvi, .ps, and/or .pdf files whenever changes are

made to source files (see the Description above). Which of these files is generated and which is

viewed is governed by the other options, and is the same as for the -pv option. The preview-con-

tinuous option -pvc can only work with one file. So in this case you will normally only specify

one filename on the command line. It is also incompatible with the -p and -pv options, so it turns

these options off.

The -pvc option also turns off force mode (-f), as is normally best for continuous preview mode.

If you really want force mode, use the options in the order -pvc -f.

With a good previewer the display will be automatically updated. (Under some but not all ver-

sions of UNIX/Linux "gv -watch" does this for postscript files; this can be set by a configuration

variable. This would also work for pdf files except for an apparent bug in gv that causes an error

when the newly updated pdf file is read.) Many other previewers will need a manual update.

Important note: the acroread program on MS-Windows locks the pdf file, and prevents new ver-

sions being written, so it is a bad idea to use acroread to view pdf files in preview-continuous

mode. It is better to use a different viewer: SumatraPDF and gsview are good possibilities.

There are some other methods for arranging an update, notably useful for many versions of xdvi

and xpdf. These are best set in latexmk’s configuration; see below.

Note that if latexmk dies or is stopped by the user, the "forked" previewer will continue to run.

17 January 2017 10

LATEXMK(1) General Commands Manual LATEXMK(1)

Successive inv ocations with the -pvc option will not fork new previewers, but latexmk will nor-

mally use the existing previewer. (At least this will happen when latexmk is running under an

operating system where it knows how to determine whether an existing previewer is running.)

-pvc- Turn off -pvc.

-quiet Same as -silent

-r <rcfile>

Read the specified initialization file ("RC file") before processing.

Be careful about the ordering: (1) Standard initialization files -- see the section below on "Configu-

ration/initialization (RC) files" -- are read first. (2) Then the options on the command line are

acted on in the order they are given. Therefore if an initialization file is specified by the -r option,

it is read during this second step. Thus an initialization file specified with the -r option can over-

ride both the standard initialization files and previously specified options. But all of these can be

overridden by later options.

The contents of the RC file just comprise a piece of code in the Perl programming language (typi-

cally a sequence of assignment statements); they are executed when the -r option is encountered

during latexmk’s parsing of its command line. See the -e option for a way of giving initialization

code directly on latexmk’s command line. An error results in latexmk stopping. Multiple instances

of the -r and -e options can be used, and they are executed in the order they appear on the com-

mand line.

-recorder

Give the -recorder option with latex and pdflatex. In (most) modern versions of these programs,

this results in a file of extension .fls containing a list of the files that these programs have read and

written. Latexmk will then use this file to improve its detection of source files and generated files

after a run of latex or pdflatex. This is the default setting of latexmk, unless overridden in an ini-

tialization file.

For further information, see the documentation for the $recorder configuration variable.

-recorder-

Do not supply the -recorder option with latex and pdflatex.

-rules Show a list of latemk’s rules and dependencies after processing.

-rules- Do not show a list of latexmk’s rules and dependencies after processing. (This is the default.)

-showextraoptions

Show the list of extra latex and pdflatex options that latexmk recognizes, but that it simply passes

through to the programs latex, pdflatex, etc when they are run. These options are (currently) a

combination of those allowed by the TeXLive and MiKTeX implementations. (If a particular

option is given to latexmk but is not handled by the particular implementation of latex or pdflatex

that is being used, that program will probably give an error message.) These options are very

numerous, but are not listed in this documentation because they hav e no effect on latexmk’s

actions.

There are a few options (-includedirectory=dir, -initialize, -ini) that are not recognized, either

17 January 2017 11

LATEXMK(1) General Commands Manual LATEXMK(1)

because they don’t fit with latexmk’s intended operations, or because they need special processing

by latexmk that isn’t implemented (at least, not yet).

There are also options that are accepted by latex etc, but instead trigger actions by latexmk: -help,

-version.

Finally, there are certain options for latex and pdflatex (e.g., -recorder) that trigger special actions

or behavior by latexmk itself as well as being passed in some form to the called latex and pdflatex

program, or that affect other programs as well. These options do have entries in this documenta-

tion. These options are: -jobname=STRING, -aux-directory=dir, -output-directory=DIR,

-quiet, and -recorder.

-silent Run commands silently, i.e., with options that reduce the amount of diagnostics generated. For

example, with the default settings, the command "latex -interaction=batchmode" is used for

(pdf)latex and friends.

See also the -logfilewarninglist and -logfilewarninglist- options.

Also reduce the number of informational messages that latexmk itself generates.

To change the options used to make the commands run silently, you need to configure latexmk

with changed values of its configuration variables, the relevant ones being $bibtex_silent_switch,

$biber_silent_switch, $dvipdf_silent_switch, $dvips_silent_switch, $latex_silent_switch, $luala-

tex_silent_switch $makeindex_silent_switch, $pdflatex_silent_switch, and $xelatex_silent_switch

-time Show CPU time used. See also the configuration variable $show_time.

-time- Do not show CPU time used. See also the configuration variable $show_time.

-use-make

When after a run of latex or pdflatex, there are warnings about missing files (e.g., as requested by

the LaTeX \input, \include, and \includgraphics commands), latexmk tries to make them by a cus-

tom dependency. If no relevant custom dependency with an appropriate source file is found, and if

the -use-make option is set, then as a last resort latexmk will try to use the make program to try to

make the missing files.

Note that the filename may be specified without an extension, e.g., by \includegraphics{drawing}

in a LaTeX file. In that case, latexmk will try making drawing.ext with ext set in turn to the possi-

ble extensions that are relevant for latex (or as appropriate pdflatex).

See also the documentation for the $use_make_for_missing_files configuration variable.

-use-make-

Do not use the make program to try to make missing files. (Default.)

-v, -version

Print version number of latexmk.

-verbose

Opposite of -silent. This is the default setting.

17 January 2017 12

LATEXMK(1) General Commands Manual LATEXMK(1)

-view=default, -view=dvi, -view=ps, -view=pdf, -view=none

Set the kind of file used when previewing is requested (e.g., by the -pv or -pvc switches). The

default is to view the "highest" kind of requested file (in the low-to-high order dvi, ps, pdf).

Note the possibility -view=none where no viewer is opened at all. One example of is use is in

conjunction with the -pvc option, when you want latexmk to do a compilation automatically when-

ev er source file(s) change, but do not want a previewer to be opened.

-xelatex

Use xelatex. That is, use xelatex to process the source file(s) to pdf. The generation of dvi and

postscript files is turned off.

This option is equivalent to using the following set of options

-pdfxe -dvi- -ps-

[Note: Note that the method of implementation of this option, but not its intended primary effect,

differ from some earlier versions of latexmk. Latexmk first uses xelatex to make an xdv file, and

does all the extra runs needed (including those of bibtex, etc). Only after that does it make the pdf

file from the xdv file, using xdvipdfmx. This procedure can result in considerable savings in run

time, since the xdv-to-pdf conversion is quite time-consuming when large graphics files are used

in the document.]

Compatibility between options

The preview-continuous option -pvc can only work with one file. So in this case you will normally only

specify one filename on the command line.

Options -p, -pv and -pvc are mutually exclusive. So each of these options turns the others off.

EXAMPLES
% latexmk thesis # run latex enough times to resolve

cross-references

% latexmk -pvc -ps thesis # run latex enough times to resolve

cross-references, make a postscript

file, start a previewer. Then

watch for changes in the source

file thesis.tex and any files it

uses. After any changes rerun latex

the appropriate number of times and

remake the postscript file. If latex

encounters an error, latexmk will

keep running, watching for

source file changes.

% latexmk -c # remove .aux, .log, .bbl, .blg, .dvi,

.pdf, .ps & .bbl files

17 January 2017 13

LATEXMK(1) General Commands Manual LATEXMK(1)

DEALING WITH ERRORS, PROBLEMS, ETC
Some possibilities:

a. If you get a strange error, do look carefully at the output that is on the screen and in log files. While

there is much that is notoriously verbose in the output of latex (and that is added to by latexmk), the ver-

bosity is there for a reason: to enable the user to diagnose problems. Latexmk does repeat some messages at

the end of a run that it thinks would otherwise be easy to miss in the middle of other output.

b. Generally, remember that latexmk does its work by running other programs. Your first priority in dealing

with errors should be to examine what went wrong with the individual programs. Then you need to correct

the causes of errors in the runs of these programs. (Often these come from errors in the source document,

but they could also be about missing LaTeX packages, etc.)

c. If latexmk doesn’t run the programs the way you would like, then you need to look in this documentation

at the list of command line options and then at the sections on configuration/initialization files. A lot of

latexmk’s behavior is configurable to deal with particular situations. (But there is a lot of reading!)

The remainder of these notes consists of ideas for dealing with more difficult situations.

d. Further tricks can involve replacing the standard commands that latexmk runs by other commands or

scripts.

e. For possible examples of code for use in an RC file, see the directory example_rcfiles in the distribution

of latexmk (e.g., at http://mirror.ctan.org/support/latexmk/example_rcfiles). Even if these examples don’t

do what you want, they may provide suitable inspiration.

f. There’s a useful trick that can be used when you use lualatex instead of pdflatex (and in some related situ-

ations). The problem is that latexmk won’t notice a dependency on a file, bar.baz say, that is input by the

lua code in your document instead of by the LaTeX part. (Thus if you change bar.baz and rerun latexmk,

then latexmk will think no files have changed and not rerun lualatex, whereas if you had ’\input{bar.baz}’

in the LaTeX part of the document, latexmk would notice the change.) One solution is just to put the fol-

lowing somewhere in the LaTeX part of the document:

\typeout{(bar.baz)}

This puts a line in the log file that latexmk will treat as implying that the file bar.baz was read. (At present I

don’t know a way of doing this automatically.) Of course, if the file has a different name, change bar.baz to

the name of your file.

g. See also the section ADVANCED CONFIGURATION: Some extra resources.

h. Look on tex.stackexchange, i.e., at http://tex.stackexchange.com/questions/tagged/latexmk Someone

may have already solved your problem.

i. Ask a question at tex.stackexchange.com.

j. Or ask me (the author of latexmk). My e-mail is at the end of this documentation.

CONFIGURATION/INITIALIZATION (RC) FILES
Latexmk can be customized using initialization files, which are read at startup in the following order:

1) The system RC file, if it exists.

On a UNIX system, latexmk searches for following places for its system RC file, in the following order,

and reads the first it finds:

17 January 2017 14

LATEXMK(1) General Commands Manual LATEXMK(1)

"/opt/local/share/latexmk/LatexMk",

"/usr/local/share/latexmk/LatexMk",

"/usr/local/lib/latexmk/LatexMk".

On a MS-Windows system it looks for "C:\latexmk\LatexMk".

On a cygwin system (i.e., a MS-Windows system in which Perl is that of cygwin), latexmk reads the first

it finds of

"/cygdrive/c/latexmk/LatexMk",

"/opt/local/share/latexmk/LatexMk",

"/usr/local/share/latexmk/LatexMk",

"/usr/local/lib/latexmk/LatexMk".

In addition, it then tries the same set of locations, but with the file name replaced "LatexMk" replaced by

"latexmkrc".

2) The user’s RC file, if it exists. This can be in one of two places. The traditional one is ".latexmkrc" in

the user’s home directory. The other possibility is "latexmk/latexmkrc" in the user’s XDG configuration

home directory. The actual file read is the first of "$XDG_CONFIG_HOME/latexmk/latexmkrc" or

"$HOME/.latexmkrc" which exists. (See https://specifications.freedesktop.org/basedir-spec/basedir-spec-

latest.html for details on the XDG Base Directory Specification.)

Here $HOME is the user’s home directory. [Latexmk determines the user’s home directory as follows: It is

the value of the environment variable HOME, if this variable exists, which normally is the case on UNIX-

like systems (including Linux and OS-X). Otherwise the environment variable USERPROFILE is used, if

it exists, which normally is the case on MS-Windows systems. Otherwise a blank string is used instead of

$HOME, in which case latexmk does not look for an RC file in it.]

$XDG_CONFIG_HOME is the value of the environment variable XDG_CONFIG_HOME if it exists. If

this environment variable does not exist, but $HOME is non-blank, then $XDG_CONFIG_HOME is set to

the default value of $HOME/.config. Otherwise $XDG_CONFIG_HOME is blank, and latexmk does not

look for an RC file under it.

3) The RC file in the current working directory. This file can be named either "latexmkrc" or ".latexmkrc",

and the first of these to be found is used, if any.

4) Any RC file(s) specified on the command line with the -r option.

Each RC file is a sequence of Perl commands. Naturally, a user can use this in creative ways. But for most

purposes, one simply uses a sequence of assignment statements that override some of the built-in settings of

Latexmk. Straightforward cases can be handled without knowledge of the Perl language by using the exam-

ples in this document as templates. Comment lines are introduced by the "#" character.

Note that command line options are obeyed in the order in which they are written; thus any RC file speci-

fied on the command line with the -r option can override previous options but can be itself overridden by

later options on the command line. There is also the -e option, which allows initialization code to be speci-

fied in latexmk’s command line.

For possible examples of code for in an RC file, see the directory example_rcfiles in the distribution of

latexmk (e.g., at http://mirror.ctan.org/support/latexmk/example_rcfiles).

HOW TO SET VARIABLES IN INITIALIZATION FILES
The important variables that can be configured are described in the section "List of configuration variables

usable in initialization files". Syntax for setting these variables is of the following forms:

$bibtex = ’bibtex %O %B’;

for the setting of a string variable,

17 January 2017 15

LATEXMK(1) General Commands Manual LATEXMK(1)

$preview_mode = 1;

for the setting of a numeric variable, and

@default_files = (’paper’, ’paper1’);

for the setting of an array of strings. It is possible to append an item to an array variable as follows:

push @default_files, ’paper2’;

Note that simple "scalar" variables have names that begin with a $ character and array variables have names

that begin with a @ character. Each statement ends with a semicolon.

Strings should be enclosed in single quotes. (You could use double quotes, as in many programming lan-

guages. But then the Perl programming language brings into play some special rules for interpolating vari-

ables into strings. People not fluent in Perl will want to avoid these complications.)

You can do much more complicated things, but for this you will need to consult a manual for the Perl pro-

gramming language.

FORMAT OF COMMAND SPECIFICATIONS
Some of the variables set the commands that latexmk uses for carrying out its work, for example to generate

a dvi file from a tex file or to view a postscript file. This section describes some important features of how

the commands are specified. (Note that some of the possibilities listed here do not apply to the $kpsewhich

variable; see its documentation.)

Placeholders: Supposed you wanted latexmk to use the command elatex in place of the regular latex com-

mand, and suppose moreover that you wanted to give it the option "--shell-escape". You could do this by

the following setting:

$latex = ’elatex --shell-escape %O %S’;

The two items starting with the % character are placeholders. These are substituted by appropriate values

before the command is run. Thus %S will be replaced by the source file that elatex will be applied to, and

%O will be replaced by any options that latexmk has decided to use for this command. (E.g., if you used

the -silent option in the invocation of latexmk, it results in the replacement of %O by "-interaction=batch-

mode".)

The available placeholders are:

%B base of filename for current command. E.g., if a postscript file document.ps is being made from

the dvi file document.dvi, then the basename is document.

%D destination file (e.g., the name of the postscript file when converting a dvi file to postscript).

%O options

%R root filename. This is the base name for the main tex file.

%S source file (e.g., the name of the dvi file when converting a dvi file to ps).

%T The name of the primary tex file.

%Y Name of directory for auxiliary output files (see the configuration variable $aux_dir). A directory

separation character (’/’) is appended if $aux_dir is non-empty and does not end in a suitable char-

acter, with suitable characters being those appropriate to UNIX and MS-Windows, i.e., ’:’, ’/’ and

’\’. Note that if after initialization, $out_dir is set, but $aux_dir is not set (i.e., it is blank), then

latexmk sets $aux_dir to the same value $out_dir.

17 January 2017 16

LATEXMK(1) General Commands Manual LATEXMK(1)

%Z Name of directory for output files (see the configuration variable $out_dir). A directory separation

character (’/’) is appended if $out_dir is non-empty and does not end in a suitable character, with

suitable characters being those appropriate to UNIX and MS-Windows, i.e., ’:’, ’/’ and ’\’.

If for some reason you need a literal % character in your string not subject to the above rules, use "%%".

Appropriate quoting will be applied to the filename substitutions, so you mustn’t supply them yourself even

if the names of your files have spaces in them. (But if your TeX filenames have spaces in them, beware that

many versions of the TeX program cannot correctly handle filenames containing spaces.) In case latexmk’s

quoting does not work correctly on your system, you can turn it off -- see the documentation for the vari-

able $quote_filenames.

The distinction between %B and %R needs a bit of care, since they are often the same, but not always. For

example on a simple document, the basename of a bibtex run is the same as for the texfile. But in a docu-

ment with several bibliographies, the bibliography files will have a variety of names. Since bibtex is

invoked with the basename of the bibliography file, the setting for the bibtex command should therefore be

$bibtex = ’bibtex %O %B’;

Generally, you should use %B rather than %R. Similarly for most purposes, the name %T of the primary

texfile is not a useful placeholder.

See the default values in the section "List of configuration variables usable in initialization files" for what is

normally the most appropriate usage.

If you omit to supply any placeholders whatever in the specification of a command, latexmk will supply

what its author thinks are appropriate defaults. This gives compatibility with configuration files for previ-

ous versions of latexmk, which didn’t use placeholders.

"Detaching" a command: Normally when latexmk runs a command, it waits for the command to run to

completion. This is appropriate for commands like latex, of course. But for previewers, the command

should normally run detached, so that latexmk gets the previewer running and then returns to its next task

(or exits if there is nothing else to do). To achieve this effect of detaching a command, you need to precede

the command name with "start ", as in

$dvi_previewer = ’start xdvi %O %S’;

This will be translated to whatever is appropriate for your operating system.

Notes: (1) In some circumstances, latexmk will always run a command detached. This is the case for a pre-

viewer in preview continuous mode, since otherwise previewing continuously makes no sense. (2) This

precludes the possibility of running a command named start. (3) If the word start occurs more than once at

the beginning of the command string, that is equivalent to having just one. (4) Under cygwin, some com-

plications happen, since cygwin amounts to a complicated merging of UNIX and MS-Windows. See the

source code for how I’v e handled the problem.

Command names containing spaces: Under MS-Windows it is common that the name of a command

includes spaces, since software is often installed in a subdirectory of "C:\Program Files". Such command

names should be enclosed in double quotes, as in

$lpr_pdf = ’"c:/Program Files/Ghostgum/gsview/gsview32.exe" /p %S’;

$pdf_previewer = ’start "c:/Program Files/SumatraPDF/SumatraPDF.exe" %O %S’;

$pdf_previewer = ’start "c:/Program Files/SumatraPDF (x86)/SumatraPDF.exe" %O %S’;

(Note about the above example: Under MS-Windows forward slashes are equivalent to backslashes in a file-

name under almost all circumstances, provided that the filename is inside double quotes. It is easier to use

forward slashes in examples like the one above, since then one does not have to worry about the rules for

dealing with forward slashes in strings in the Perl language.)

17 January 2017 17

LATEXMK(1) General Commands Manual LATEXMK(1)

Command names under Cygwin: If latexmk is executed by Cygwin’s Perl, be particularly certain that

pathnames in commands have forward slashes not the usual backslashes for the separator of pathname

components. See the above examples. Backslashes often get misinterpreted by the Unix shell used by

Cygwin’s Perl to execute external commands. Forward slashes don’t suffer from this problem, and (when

quoted, as above) are equally acceptable to MS-Windows.

Using MS-Windows file associations: A useful trick under modern versions of MS-Windows (e.g.,

WinXP) is to use just the command ’start’ by itself:

$dvi_previewer = ’start %S’;

Under MS-Windows, this will cause to be run whatever program the system has associated with dvi files.

(The same applies for a postscript viewer and a pdf viewer.) But note that this trick is not always suitable

for the pdf previwer, if your system has acroread for the default pdf viewer. As explained elsewhere,

acroread under MS-Windows does not work well with latex and latexmk, because acroread locks the pdf

file.

Not using a certain command: If a command is not to be run, the command name NONE is used, as in

$lpr = ’NONE lpr’;

This typically is used when an appropriate command does not exist on your system. The string after the

"NONE" is effectively a comment.

Options to commands: Setting the name of a command can be used not only for changing the name of the

command called, but also to add options to command. Suppose you want latexmk to use latex with source

specials enabled. Then you might use the following line in an initialization file:

$latex = ’latex --src-specials %O %S’;

Running a subroutine instead of an external command: Use a specification starting with "internal", as in

$latex = ’internal mylatex %O %S’;

sub mylatex {

my @args = @_;

Possible preprocessing here

return system ’latex’, @args;

}

For some of the more exotic possibilities that then become available, see the section "ADVANCED CON-

FIGURATION: Some extra resources and advanced tricks". Also see some of the examples in the directory

example_rcfiles in the latexmk distribution.

Advanced tricks: Normally one specifies a single command for the commands invoked by latexmk. Natu-

rally, if there is some complicated additional processing you need to do in your special situation, you can

write a script (or batch file) to do the processing, and then configure latexmk to use your script in place of

the standard program.

You can also use a Perl subroutine instead of a script -- see above. This is generally the most flexible and

portable solution.

It is also possible to configure latexmk to run multiple commands. For example, if when running pdflatex to

generate a pdf file from a tex file you need to run another program after pdflatex to perform some extra pro-

cessing, you could do something like:

$pdflatex = ’pdflatex --shell-escape %O %S; pst2pdf_for_latexmk %B’;

This definition assumes you are using a UNIX-like system (which includes Linux and OS-X), so that the

two commands to be run are separated by the semicolon in the middle of the string.

17 January 2017 18

LATEXMK(1) General Commands Manual LATEXMK(1)

If you are using MS-Windows, you would replace the above line by

$pdflatex = ’cmd /c pdflatex --shell-escape %O %S’

. ’&& pst2pdf_for_latexmk %B’;

Here, the UNIX command separator ; is replaced by &&. In addition, there is a problem that some versions

of Perl on MS-Windows do not obey the command separator; this problem is overcome by explicitly invok-

ing the MS-Windows command-line processor cmd.exe.

LIST OF CONFIGURATION VARIABLES USABLE IN INITIALIZATION FILES
Default values are indicated in brackets.

$always_view_file_via_temporary [0]

Whether ps and pdf files are initially to be made in a temporary directory and then moved to the

final location. (This applies to dvips, dvipdf, and ps2pdf operations, and the filtering operators on

dvi and ps files. It does not apply to pdflatex, unfortunately, since pdflatex provides no way of

specifying a chosen name for the output file.)

This use of a temporary file solves a problem that the making of these files can occupy a substan-

tial time. If a viewer (notably gv) sees that the file has changed, it may read the new file before the

program writing the file has not yet finished its work, which can cause havoc.

See the $pvc_view_file_via_temporary variable for a setting that applies only if preview-continu-

ous mode (-pvc option) is used. See $tmpdir for the setting of the directory where the temporary

file is created.

$auto_rc_use [1]

Whether to automatically read the standard initialization (rc) files, which are the system RC file,

the user’s RC file, and the RC file in the current directory. The command line option -norc can be

used to turn this setting off. Each RC file could also turn this setting off, i.e., it could set

$auto_rc_use to zero to prevent automatic reading of the later RC files.

This variable does not affect the reading of RC files specified on the command line by the -r

option.

$aux_dir [""]

The directory in which auxiliary files (aux, log, etc) are to be written by a run of (pdf)latex. If this

variable is not set, but $out_dir is set, then $aux_dir is set to $out_dir, which is the directory to

which general output files are to be written.

Important note: The effect of $aux_dir, if different from $out_dir, is achieved by giving

(pdf)latex the -aux-directory. Currently (Dec. 2011 and later) this only works on the MiKTeX

version of (pdf)latex.

See also the documentation of $out_dir for some complications on what directory names are suit-

able.

If you also use the -cd option, and $out_dir (or $aux_dir) contains a relative path, then the path is

interpreted relative to the document directory.

$banner [0]

If nonzero, the banner message is printed across each page when converting the dvi file to post-

script. Without modifying the variable $banner_message, this is equivalent to specifying the -d

17 January 2017 19

LATEXMK(1) General Commands Manual LATEXMK(1)

option.

Note that if $banner is nonzero, the $postscript_mode is assumed and the postscript file is

always generated, even if it is newer than the dvi file.

$banner_intensity [0.95]

Equivalent to the -bi option, this is a decimal number between 0 and 1 that specifies how dark to

print the banner message. 0 is black, 1 is white. The default is just right if your toner cartridge

isn’t running too low.

$banner_message ["DRAFT"]

The banner message to print across each page when converting the dvi file to postscript. This is

equivalent to the -bm option.

$banner_scale [220.0]

A decimal number that specifies how large the banner message will be printed. Experimentation is

necessary to get the right scale for your message, as a rule of thumb the scale should be about

equal to 1100 divided by the number of characters in the message. The Default is just right for 5

character messages. This is equivalent to the -bs option.

@BIBINPUTS

This is an array variable, now mostly obsolete, that specifies directories where latexmk should look

for .bib files. By default it is set from the BIBINPUTS environment variable of the operating sys-

tem. If that environment variable is not set, a single element list consisting of the current directory

is set. The format of the directory names depends on your operating system, of course. Examples

for setting this variable are:

@BIBINPUTS = (".", "C:\\bibfiles");

@BIBINPUTS = (".", "\\server\bibfiles");

@BIBINPUTS = (".", "C:/bibfiles");

@BIBINPUTS = (".", "//server/bibfiles");

@BIBINPUTS = (".", "/usr/local/texmf/bibtex/bib");

Note that under MS Windows, either a forward slash "/" or a backward slash "\" can be used to

separate pathname components, so the first two and the second two examples are equivalent. Each

backward slash should be doubled to avoid running afoul of Perl’s rules for writing strings.

Important note: This variable is now mostly obsolete in the current version of latexmk, since it has

a better method of searching for files using the kpsewhich command. However, if your system is

an unusual one without the kpsewhich command, you may need to set the variable @BIBINPUTS.

$biber ["biber %O %S"]

The biber processing program.

$biber_silent_switch ["--onlylog"]

Switch(es) for the biber processing program when silent mode is on.

$bibtex ["bibtex %O %S"]

The BibTeX processing program.

$bibtex_silent_switch ["-terse"]

Switch(es) for the BibTeX processing program when silent mode is on.

$bibtex_use [1]

Under what conditions to run bibtex or biber. When latexmk discovers from the log file that one

(or more) bibtex/biber-generated bibliographies are used, it can run bibtex or biber whenever it

appears necessary to regenerate the bbl file(s) from their source bib database file(s).

But sometimes, the bib file(s) are not available (e.g., for a document obtained from an external ar-

chive), but the bbl files are provided. In that case use of bibtex or biber will result in incorrect

17 January 2017 20

LATEXMK(1) General Commands Manual LATEXMK(1)

overwriting of the precious bbl files. The variable $bibtex_use controls whether this happens. Its

possible values are: 0: never use BibTeX or biber. 1: only use bibtex or biber if the bib files exist.

2: run bibtex or biber whenever it appears necessary to update the bbl files, without testing for the

existence of the bib files.

$cleanup_includes_cusdep_generated [0]

If nonzero, specifies that cleanup also deletes files that are generated by custom dependencies.

(When doing a clean up, e.g., by use of the -C option, custom dependencies are those listed in the

.fdb_latexmk file from a previous run.)

$cleanup_includes_generated [0]

If nonzero, specifies that cleanup also deletes files that are detected in log file as being generated

(see the \openout lines in the log file). It will also include files made from these first generation

generated files.

$cleanup_mode [0]

If nonzero, specifies cleanup mode: 1 for full cleanup, 2 for cleanup except for dvi, ps and pdf

files, 3 for cleanup except for dep and aux files. (There is also extra cleaning as specified by the

$clean_ext, $clean_full_ext and @generated_exts variables.)

This variable is equivalent to specifying one of the -c or -C options. But there should be no need

to set this variable from an RC file.

$clean_ext [""]

Extra extensions of files for latexmk to remove when any of the clean-up options (-c or -C) is

selected. The value of this variable is a string containing the extensions separated by spaces.

It is also possible to specify a more general pattern of file to be deleted, by using the place holder

%R, as in commands, and it is also possible to use wildcards. Thus setting

$clean_ext = "out %R-blx.bib %R-figures*.log";

in an initialization file will imply that when a clean-up operation is specified, not only is the stan-

dard set of files deleted, but also files of the form FOO.out, FOO-blx.bib, and %R-figures*.log,

where FOO stands for the basename of the file being processed (as in FOO.tex).

$clean_full_ext [""]

Extra extensions of files for latexmk to remove when the -C option is selected, i.e., extensions of

files to remove when the .dvi, etc files are to be cleaned-up.

More general patterns are allowed, as for $clean_ext.

$compiling_cmd [undefined], $failure_cmd [undefined], $success_cmd [undefined]

These variables specify commands that are executed at certain points of compilations during pre-

view-continuous mode. One motivation for their existance is to allow convenient visual indica-

tions of compilation status even when the window receiving the screen output of the compilation is

hidden.

The commands are executed at the following points: $compiling_cmd at the start of compilation,

$success_cmd at the end of a successful compilation, and $failure_cmd at the end of an unsuccess-

ful compilation. If any of above variables is undefined (the default situation) or blank, then the

corresponding command is not executed.

An example of a typical setting of these variables is as follows

17 January 2017 21

LATEXMK(1) General Commands Manual LATEXMK(1)

$compiling_cmd = "xdotool search --name \"%D\" set_window --name \"%D compiling\"";

$success_cmd = "xdotool search --name \"%D\" set_window --name \"%D OK\"";

$failure_cmd = "xdotool search --name \"%D\" set_window --name \"%D FAILURE\"";

These assume that the program xdotool is installed, that the previewer is using an X-Window sys-

tem for display, and that the title of the window contains the name of the displayed file, as it nor-

mally does. When the commands are executed, the placeholder string %D is replaced by the name

of the destination file, which is the previewed file. The above commands result in an appropriate

string being appended to the filename in the window title: " compiling", " OK", or " FAILURE".

Other placeholders that can be used are %S, %T, and %R, with %S and %T normally being identi-

cal. These can be useful for a command changing the title of the edit window. The visual indica-

tion in a window title can useful, since the user does not have to keep shifting attention to the (pos-

sibly hidden) compilation window to know the status of the compilation.

@cus_dep_list [()]

Custom dependency list -- see section on "Custom Dependencies".

@default_excluded_files [()]

When latexmk is invoked with no files specified on the command line, then, by default, it will

process all files in the current directory with the extension .tex. (In general, it will process the files

specified in the @default_files variable.)

But sometimes you want to exclude particular files from this default list. In that case you can

specify the excluded files in the array @default_excluded_files. For example if you wanted to

process all .tex files with the exception of common.tex, which is a not a standard alone LaTeX file

but a file input by some or all of the others, you could do

@default_files = ("*.tex");

@default_excluded_files = ("common.tex");

If you have a variable or large number of files to be processed, this method saves you from having

to list them in detail in @default_files and having to update the list every time you change the set

of files to be processed.

Notes: 1. This variable has no effect except when no files are specified on the latexmk command

line. 2. Wildcards are allowed in @default_excluded_files.

@default_files [("*.tex")]

Default list of files to be processed.

If no filenames are specified on the command line, latexmk processes all tex files specified in the

@default_files variable, which by default is set to all tex files ("*.tex") in the current directory.

This is a convenience: just run latexmk and it will process an appropriate set of files. But some-

times you want only some of these files to be processed. In this case you can list the files to be

processed by setting @default_files in an initialization file (e.g., the file "latexmkrc" in the current

directory). Then if no files are specified on the command line then the files you specify by setting

@default_files are processed.

Three examples:

@default_files = ("paper_current");

17 January 2017 22

LATEXMK(1) General Commands Manual LATEXMK(1)

@default_files = ("paper1", "paper2.tex");

@default_files = ("*.tex", "*.dtx");

Note that more than file may be given, and that the default extension is ".tex". Wild cards are

allowed. The parentheses are because @default_files is an array variable, i.e., a sequence of file-

name specifications is possible.

If you want latexmk to process all .tex files with a few exceptions, see the @default_excluded_files

array variable.

$dependents_phony [0]

If a list of dependencies is output, this variable determines whether to include a phony target for

each source file. If you use the dependents list in a Makefile, the dummy rules work around errors

make giv es if you remove header files without updating the Makefile to match.

$dependents_list [0]

Whether to display a list(s) of dependencies at the end of a run.

$deps_file ["-"]

Name of file to receive list(s) of dependencies at the end of a run, to be used if $dependesnt_list is

set. If the filename is "-", then the dependency list is set to stdout (i.e., normally the screen).

$do_cd [0]

Whether to change working directory to the directory specified for the main source file before pro-

cessing it. The default behavior is not to do this, which is the same as the behavior of latex and

pdflatex programs. This variable is set by the -cd and -cd- options on latexmk’s command line.

$dvi_filter [empty]

The dvi file filter to be run on the newly produced dvi file before other processing. Equivalent to

specifying the -dF option.

$dvi_mode [See below for default]

If nonzero, generate a dvi version of the document. Equivalent to the -dvi option.

The variable $dvi_mode defaults to 0, but if no explicit requests are made for other types of file

(postscript, pdf), then $dvi_mode will be set to 1. In addition, if a request for a file for which a

.dvi file is a prerequisite, then $dvi_mode will be set to 1.

$dvi_previewer ["start xdvi %O %S" under UNIX]

The command to invoke a dvi-previewer. [Under MS-Windows the default is "start"; then latexmk

arranges to use the MS-Windows start program, which will cause to be run whatever command the

system has associated with .dvi files.]

Important note: Normally you will want to have a previewer run detached, so that latexmk

doesn’t wait for the previewer to terminate before continuing its work. So normally you should

prefix the command by "start ", which flags to latexmk that it should do the detaching of the pre-

viewer itself (by whatever method is appropriate to the operating system). But sometimes letting

latexmk do the detaching is not appropriate (for a variety of non-trivial reasons), so you should put

the "start " bit in yourself, whenever it is needed.

$dvi_previewer_landscape ["start xdvi %O %S"]

The command to invoke a dvi-previewer in landscape mode. [Under MS-Windows the default is

"start"; then latexmk arranges to use the MS-Windows start program, which will cause to be run

whatever command the system has associated with .dvi files.]

17 January 2017 23

LATEXMK(1) General Commands Manual LATEXMK(1)

$dvipdf ["dvipdf %O %S %D"]

Command to convert dvi to pdf file. A common reconfiguration is to use the dvipdfm command,

which needs its arguments in a different order:

$dvipdf = "dvipdfm %O -o %D %S";

WARNING: The default dvipdf script generates pdf files with bitmapped fonts, which do not look

good when viewed by acroread. That script should be modified to give dvips the options "-P pdf"

to ensure that type 1 fonts are used in the pdf file.

$dvipdf_silent_switch ["-q"]

Switch(es) for dvipdf program when silent mode is on.

N.B. The standard dvipdf program runs silently, so adding the silent switch has no effect, but is

actually innocuous. But if an alternative program is used, e.g., dvipdfmx, then the silent switch

has an effect. The default setting is correct for dvipdfm and dvipdfmx.

$dvips ["dvips %O -o %D %S"]

The program to used as a filter to convert a .dvi file to a .ps file. If pdf is going to be generated

from pdf, then the value of the $dvips_pdf_switch variable -- see below -- will be included in the

options substituted for "%O".

$dvips_landscape ["dvips -tlandscape %O -o %D %S"]

The program to used as a filter to convert a .dvi file to a .ps file in landscape mode.

$dvips_pdf_switch ["-P pdf"]

Switch(es) for dvips program when pdf file is to be generated from ps file.

$dvips_silent_switch ["-q"]

Switch(es) for dvips program when silent mode is on.

$dvi_update_command [""]

When the dvi previewer is set to be updated by running a command, this is the command that is

run. See the information for the variable $dvi_update_method for further information, and see

information on the variable $pdf_update_method for an example for the analogous case of a pdf

previewer.

$dvi_update_method [2 under UNIX, 1 under MS-Windows]

How the dvi viewer updates its display when the dvi file has changed. The values here apply

equally to the $pdf_update_method and to the $ps_update_method variables.

0 => update is automatic,

1=> manual update by user, which may only mean a mouse click on the viewer’s window or

may mean a more serious action.

2 => Send the signal, whose number is in the variable $dvi_update_signal. The default value

under UNIX is suitable for xdvi.

3 => Viewer cannot do an update, because it locks the file. (As with acroread under MS-Win-

dows.)

4 => run a command to do the update. The command is specified by the variable

$dvi_update_command.

See information on the variable $pdf_update_method for an example of updating by command.

$dvi_update_signal [Under UNIX: SIGUSR1, which is a system-dependent value]

The number of the signal that is sent to the dvi viewer when it is updated by sending a signal -- see

the information on the variable $dvi_update_method. The default value is the one appropriate for

xdvi on a UNIX system.

17 January 2017 24

LATEXMK(1) General Commands Manual LATEXMK(1)

$failure_cmd [undefined]

See the documentation for $compiling_cmd.

$fdb_ext ["fdb_latexmk"]

The extension of the file which latexmk generates to contain a database of information on source

files. You will not normally need to change this.

$force_mode [0]

If nonzero, continue processing past minor latex errors including unrecognized cross references.

Equivalent to specifying the -f option.

@generated_exts [(aux , bbl , idx , ind , lof , lot , out , toc , $fdb_ext)]

This contains a list of extensions for files that are generated during a LaTeX run and that are read

in by LaTeX in later runs, either directly or indirectly.

This list has two uses: (a) to set the kinds of file to be deleted in a cleanup operation (with the -c,

-C, -CA, -g and -gg options), and (b) in the determination of whether a rerun of (pdf)LaTeX is

needed after a run that gives an error.

(Normally, a change of a source file during a run should provoke a rerun. This includes a file gen-

erated by LaTeX, e.g., an aux file, that is read in on subsequent runs. But after a run that results in

an error, a new run should occur until the user has made a change in the files. But the user may

have corrected an error in a source .tex file during the run. So latexmk needs to distinguish user-

generated and automatically generated files; it determines the automatically generated files as

those with extensions in the list in @generated_exts.)

A convenient way to add an extra extension to the list, without losing the already defined ones is to

use a push command in the line in an RC file. E.g.,

push @generated_exts, "end";

adds the extension "end" to the list of predefined generated extensions. (This extension is used by

the RevTeX package, for example.)

$go_mode [0]

If nonzero, process files regardless of timestamps, and is then equivalent to the -g option.

%hash_calc_ignore_pattern

!!!This variable is for experts only!!!

The general rule latexmk uses for determining when an extra run of some program is needed is that

one of the source files has changed. But consider for example a latex package that causes an

encapsulated postscript file (an "eps" file) to be made that is to be read in on the next run. The file

contains a comment line giving its creation date and time. On the next run the time changes, latex

sees that the eps file has changed, and therefore reruns latex. This causes an infinite loop, that is

only terminated because latexmk has a limit on the number of runs to guard against pathological

situations.

But the changing line has no real effect, since it is a comment. You can instruct latex to ignore the

offending line as follows:

$hash_calc_ignore_pattern{’eps’} = ’ˆ%%CreationDate: ’;

This creates a rule for files with extension .eps about lines to ignore. The left-hand side is a Perl

idiom for setting an item in a hash. Note that the file extension is specified without a period. The

value, on the right-hand side, is a string containing a regular expresssion. (See documentation on

Perl for how they are to be specified in general.) This particular regular expression specifies that

17 January 2017 25

LATEXMK(1) General Commands Manual LATEXMK(1)

lines beginning with "%%CreationDate: " are to be ignored in deciding whether a file of the given

extension .eps has changed.

There is only one regular expression available for each extension. If you need more one pattern to

specify lines to ignore, then you need to combine the patterns into a single regular expression.

The simplest method is separate the different simple patterns by a vertical bar character (indicating

"alternation" in the jargon of regular expressions). For example,

$hash_calc_ignore_pattern{’eps’} = ’ˆ%%CreationDate: |ˆ%%Title: ’;

causes lines starting with either "ˆ%%CreationDate: " or "ˆ%%Title: " to be ignored.

It may happen that a pattern to be ignored is specified in, for example, in a system or user initial-

ization file, and you wish to remove this in a file that is read later. To do this, you use Perl’s delete

function, e.g.,

delete $hash_calc_ignore_pattern{’eps’};

$kpsewhich ["kpsewhich %S"]

The program called to locate a source file when the name alone is not sufficient. Most filenames

used by latexmk have sufficient path information to be found directly. But sometimes, notably

when a .bib or a .bst file is found from the log file of a bibtex or biber run, only the base name of

the file is known, but not its path. The program specified by $kpsewhich is used to find it.

(For advanced users: Because of the different way in which latexmk uses the command specified

in $kpsewhich, some of the possibilities listed in the FORMAT OF COMMAND SPECIFICA-

TIONS do not apply. The internal and start keywords are not available. A simple command speci-

fication with possible options and then "%S" is all that is guaranteed to work. Note that for other

commands, "%S" is substituted by a single source file. In contrast, for $kpsewhich, "%S" may be

substituted by a long list of space-separated filenames, each of which is quoted. The result on

STDOUT of running the command is then piped to latexmk.)

See also the @BIBINPUTS variable for another way that latexmk also uses to try to locate files; it

applies only in the case of .bib files.

$landscape_mode [0]

If nonzero, run in landscape mode, using the landscape mode previewers and dvi to postscript con-

verters. Equivalent to the -l option. Normally not needed with current previewers.

$latex ["latex %O %S"]

The LaTeX processing program. Note that as with other programs, you can use this variable not

just to change the name of the program used, but also specify options to the program. E.g.,

$latex = "latex --src-specials";

%latex_input_extensions

This variable specifies the extensions tried by latexmk when it finds that a LaTeX run resulted in

an error that a file has not been found, and the file is given without an extension. This typically

happens when LaTeX commands of the form \input{file} or \includegraphics{figure}, when the

relevant source file does not exist.

In this situation, latexmk searches for custom dependencies to make the missing file(s), but

restricts it to the extensions specified by the variable %latex_input_extensions. The default exten-

sions are ’tex’ and ’eps’.

(For Perl experts: %latex_input_extensions is a hash whose keys are the extensions. The values

17 January 2017 26

LATEXMK(1) General Commands Manual LATEXMK(1)

are irrelevant.) Two subroutines are provided for manipulating this and the related variable

%pdflatex_input_extensions, add_input_ext and remove_input_ext. They are used as in the fol-

lowing examples are possible lines in an initialization file:

remove_input_ext(’latex’, ’tex’);

removes the extension ’tex’ from latex_input_extensions

add_input_ext(’latex’, ’asdf’);

add the extension ’asdf to latex_input_extensions. (Naturally with such an extension, you should

have made an appropriate custom dependency for latexmk, and should also have done the appro-

priate programming in the LaTeX source file to enable the file to be read. The standard extensions

are handled by LaTeX and its graphics/graphicx packages.

$latex_silent_switch ["-interaction=batchmode"]

Switch(es) for the LaTeX processing program when silent mode is on.

If you use MikTeX, you may prefer the results if you configure the options to include -c-style-

errors, e.g., by the following line in an initialization file

$latex_silent_switch = "-interaction=batchmode -c-style-errors";

$lpr ["lpr %O %S" under UNIX/Linux, "NONE lpr" under MS-Windows]

The command to print postscript files.

Under MS-Windows (unlike UNIX/Linux), there is no standard program for printing files. But

there are ways you can do it. For example, if you have gsview installed, you could use it with the

option "/p":

$lpr = ’"c:/Program Files/Ghostgum/gsview/gsview32.exe" /p’;

If gsview is installed in a different directory, you will need to make the appropriate change. Note

the combination of single and double quotes around the name. The single quotes specify that this

is a string to be assigned to the configuration variable $lpr. The double quotes are part of the

string passed to the operating system to get the command obeyed; this is necessary because one

part of the command name ("Program Files") contains a space which would otherwise be misinter-

preted.

$lpr_dvi ["NONE lpr_dvi"]

The printing program to print dvi files.

$lpr_pdf ["NONE lpr_pdf"]

The printing program to print pdf files.

Under MS-Windows you could set this to use gsview, if it is installed, e.g.,

$lpr = ’"c:/Program Files/Ghostgum/gsview/gsview32.exe" /p’;

If gsview is installed in a different directory, you will need to make the appropriate change. Note

the double quotes around the name: this is necessary because one part of the command name

("Program Files") contains a space which would otherwise be misinterpreted.

17 January 2017 27

LATEXMK(1) General Commands Manual LATEXMK(1)

$lualatex ["lualatex %O %S"]

The LaTeX processing program that is to be used when the lualatex program is called for (e.g., by

the option -lualatex.

%lualatex_input_extensions

This variable specifies the extensions tried by latexmk when it finds that a lualatex run resulted in

an error that a file has not been found, and the file is given without an extension. This typically

happens when LaTeX commands of the form \input{file} or \includegraphics{figure}, when the

relevant source file does not exist.

In this situation, latexmk searches for custom dependencies to make the missing file(s), but

restricts it to the extensions specified by the variable %pdflatex_input_extensions. The default

extensions are ’tex’, ’pdf’, ’jpg, and ’png’.

See details of the %latex_input_extensions for other information that equally applies to %luala-

tex_input_extensions.

$lualatex_silent_switch ["-interaction=batchmode"]

Switch(es) for the lualatex program (specified in the variable $lualatex) when silent mode is on.

See details of the $latex_silent_switch for other information that equally applies to $luala-

tex_silent_switch.

$make ["make"]

The make processing program.

$makeindex ["makeindex %O -o %D %S"]

The index processing program.

$makeindex_silent_switch ["-q"]

Switch(es) for the index processing program when silent mode is on.

$max_repeat [5]

The maximum number of times latexmk will run latex/pdflatex before deciding that there may be

an infinite loop and that it needs to bail out, rather than rerunning latex/pdflatex again to resolve

cross-references, etc. The default value covers all normal cases.

(Note that the "etc" covers a lot of cases where one run of latex/pdflatex generates files to be read

in on a later run.)

$MSWin_back_slash [1]

This configuration variable only has an effect when latexmk is running under MS-Windows. It

determines whether, when a command is executed under MS-Windows, there should be substituted

"\" for the separator character between components of a directory name. Internally, latexmk uses

"/" for the directory separator character, which is the character used by Unix-like systems.

For many programs under MS-Windows, both "\" and "/" are acceptable as the directory separator

character. But some programs only accept "\" on the command line. So for safety latexmk makes

a translation, by default. It is conceivable that under certain situations this is undesirable, so the

configuration can be changed. (A possible example might be when some of the software is imple-

mented using Cygwin, which provides a Unix-like environment inside MS-Windows.)

17 January 2017 28

LATEXMK(1) General Commands Manual LATEXMK(1)

$new_viewer_always [0]

This variable applies to latexmk only in continuous-preview mode. If $new_viewer_always is 0,

latexmk will check for a previously running previewer on the same file, and if one is running will

not start a new one. If $new_viewer_always is non-zero, this check will be skipped, and latexmk

will behave as if no viewer is running.

$out_dir [""]

If non-blank, this variable specifies the directory in which output files are to be written by a run of

(pdf)latex. See also the variable $aux_dir.

The effect of this variable (when non-blank) is achieved by using the -output-directory option of

(pdf)latex. This exists in the usual current (Dec. 2011 and later) implementations of TeX, i.e.,

MiKTeX and TeXLive. But it may not be present in other versions.

If you also use the -cd option, and $out_dir (or $aux_dir) contains a relative path, then the path is

interpreted relative to the document directory.

Commonly, the directory specified for output files is a subdirectory of the current working direc-

tory. Howev er, if you specify some other directory, e.g., "/tmp/foo" or "../output", be aware that

this could cause problems, e.g., with makeindex or bibtex. This is because modern versions of

these programs, by default, will refuse to work when they find that they are asked to write to a file

in a directory that appears not to be the current working directory or one of its subdirectories. This

is part of security measures by the whole TeX system that try to prevent malicious or errant TeX

documents from incorrectly messing with a user’s files. If for $out_dir or $aux_dir you really do

need to specify an absolute pathname (e.g., "/tmp/foo") or a path (e.g., "../output") that includes a

higher-level directory, and you need to use makeindex or bibtex, then you need to disable the secu-

rity measures (and assume any risks). One way of doing this is to temporarily set an operating

system environment variable openout_any to "a" (as in "all"), to override the default "paranoid"

setting.

$pdf_mode [0]

If zero, do NOT generate a pdf version of the document. If equal to 1, generate a pdf version of

the document using pdflatex, using the command specified by the $pdflatex variable. If equal to 2,

generate a pdf version of the document from the ps file, by using the command specified by the

$ps2pdf variable. If equal to 3, generate a pdf version of the document from the dvi file, by using

the command specified by the $dvipdf variable. If equal to 4, generate a pdf version of the docu-

ment using lualatex, using the command specified by the $lualatex variable. If equal to 5, gener-

ate a pdf version (and an xdv version) of the document using xelatex, using the commands speci-

fied by the $xelatex and xdvipdfmx variables.

In $pdf_mode=2, it is ensured that dvi and ps files are also made. In $pdf_mode=3, it is ensured

that a dvi file is also made.

$pdflatex ["pdflatex %O %S"]

The LaTeX processing program in a version that makes a pdf file instead of a dvi file.

An example use of this variable is to add certain options to the command line for the program,

e.g.,

$pdflatex = "pdflatex --shell-escape %O %S";

(In some earlier versions of latexmk, you needed to use an assignment to $pdflatex to allow the use

17 January 2017 29

LATEXMK(1) General Commands Manual LATEXMK(1)

of lualatex or xelatex instead of pdflatex. There are now separate configuration variables for the

use of lualatex or xelatex. See $lualatex and $xelatex.)

%pdflatex_input_extensions

This variable specifies the extensions tried by latexmk when it finds that a pdflatex run resulted in

an error that a file has not been found, and the file is given without an extension. This typically

happens when LaTeX commands of the form \input{file} or \includegraphics{figure}, when the

relevant source file does not exist.

In this situation, latexmk searches for custom dependencies to make the missing file(s), but

restricts it to the extensions specified by the variable %pdflatex_input_extensions. The default

extensions are ’tex’, ’pdf’, ’jpg, and ’png’.

See details of the %latex_input_extensions for other information that equally applies to %pdfla-

tex_input_extensions.

$pdflatex_silent_switch ["-interaction=batchmode"]

Switch(es) for the pdflatex program (specified in the variable $pdflatex) when silent mode is on.

See details of the $latex_silent_switch for other information that equally applies to $pdfla-

tex_silent_switch.

$pdf_previewer ["start acroread %O %S"]

The command to invoke a pdf-previewer.

On MS-Windows, the default is changed to "cmd /c start """; under more recent versions of Win-

dows, this will cause to be run whatever command the system has associated with .pdf files. But

this may be undesirable if this association is to acroread -- see the notes in the explanation of the

-pvc option.]

On OS-X the default is changed to "open %S", which results in OS-X starting up (and detaching)

the viewer associated with the file. By default, for pdf files this association is to OS-X’s preview,

which is quite satisfactory.

WARNING: Problem under MS-Windows: if acroread is used as the pdf previewer, and it is actu-

ally viewing a pdf file, the pdf file cannot be updated. Thus makes acroread a bad choice of pre-

viewer if you use latexmk’s previous-continuous mode (option -pvc) under MS-windows. This

problem does not occur if, for example, SumatraPDF or gsview is used to view pdf files.

Important note: Normally you will want to have a previewer run detached, so that latexmk

doesn’t wait for the previewer to terminate before continuing its work. So normally you should

prefix the command by "start ", which flags to latexmk that it should do the detaching of the pre-

viewer itself (by whatever method is appropriate to the operating system). But sometimes letting

latexmk do the detaching is not appropriate (for a variety of non-trivial reasons), so you should put

the "start " bit in yourself, whenever it is needed.

$pdf_update_command [""]

When the pdf previewer is set to be updated by running a command, this is the command that is

run. See the information for the variable $pdf_update_method.

$pdf_update_method [1 under UNIX, 3 under MS-Windows]

How the pdf viewer updates its display when the pdf file has changed. See the information on the

variable $dvi_update_method for the codes. (Note that information needs be changed slightly so

17 January 2017 30

LATEXMK(1) General Commands Manual LATEXMK(1)

that for the value 4, to run a command to do the update, the command is specified by the variable

$pdf_update_command, and for the value 2, to specify update by signal, the signal is specified by

$pdf_update_signal.)

Note that acroread under MS-Windows (but not UNIX) locks the pdf file, so the default value is

then 3.

Arranging to use a command to get a previewer explicitly updated requires three variables to be

set. For example:

$pdf_previewer = "start xpdf -remote %R %O %S";

$pdf_update_method = 4;

$pdf_update_command = "xpdf -remote %R -reload";

The first setting arranges for the xpdf program to be used in its "remote server mode", with the

server name specified as the rootname of the TeX file. The second setting arranges for updating to

be done in response to a command, and the third setting sets the update command.

$pdf_update_signal [Under UNIX: SIGHUP, which is a system-dependent value]

The number of the signal that is sent to the pdf viewer when it is updated by sending a signal -- see

the information on the variable $pdf_update_method. The default value is the one appropriate for

gv on a UNIX system.

$pid_position[1 under UNIX, -1 under MS-Windows]

The variable $pid_position is used to specify which word in lines of the output from $pscmd corre-

sponds to the process ID. The first word in the line is numbered 0. The default value of 1 (2nd

word in line) is correct for Solaris 2.6, Linux, and OS-X with their default settings of $pscmd.

Setting the variable to -1 is used to indicate that $pscmd is not to be used.

$postscript_mode [0]

If nonzero, generate a postscript version of the document. Equivalent to the -ps option.

If some other request is made for which a postscript file is needed, then $postscript_mode will be

set to 1.

$preview_continuous_mode [0]

If nonzero, run a previewer to view the document, and continue running latexmk to keep .dvi up-

to-date. Equivalent to the -pvc option. Which previewer is run depends on the other settings, see

the command line options -view=, and the variable $view.

$preview_mode [0]

If nonzero, run a previewer to preview the document. Equivalent to the -pv option. Which pre-

viewer is run depends on the other settings, see the command line options -view=, and the variable

$view.

$printout_mode [0]

If nonzero, print the document using the command specified in the $lpr variable. Equivalent to the

-p option. This is recommended not to be set from an RC file, otherwise you could waste lots of

paper.

$print_type = ["auto"]

Type of file to printout: possibilities are "auto", "dvi", "none", "pdf", or "ps". See the option

-print= for the meaning of the "auto" value.

$pscmd

Command used to get all the processes currently run by the user. The -pvc option uses the com-

mand specified by the variable $pscmd to determine if there is an already running previewer, and

17 January 2017 31

LATEXMK(1) General Commands Manual LATEXMK(1)

to find the process ID (needed if latexmk needs to signal the previewer about file changes).

Each line of the output of this command is assumed to correspond to one process. See the

$pid_position variable for how the process number is determined.

The default for pscmd is "NONE" under MS-Windows and cygwin (i.e., the command is not used),

"ps -ww -u $ENV{USER}" under OS-X, and "ps -f -u $ENV{USER}" under other operating sys-

tems (including Linux). In these specifications "$ENV{USER}" is substituted by the username.

$ps2pdf ["ps2pdf %O %S %D"]

Command to convert ps to pdf file.

$ps_filter [empty]

The postscript file filter to be run on the newly produced postscript file before other processing.

Equivalent to specifying the -pF option.

$ps_previewer ["start gv %O %S", but start %O %S under MS-Windows]

The command to invoke a ps-previewer. (The default under MS-Windows will cause to be run

whatever command the system has associated with .ps files.)

Note that gv could be used with the -watch option updates its display whenever the postscript file

changes, whereas ghostview does not. However, different versions of gv have slightly different

ways of writing this option. You can configure this variable appropriately.

WARNING: Linux systems may have installed one (or more) versions of gv under different

names, e.g., ggv, kghostview, etc, but perhaps not one actually called gv.

Important note: Normally you will want to have a previewer run detached, so that latexmk

doesn’t wait for the previewer to terminate before continuing its work. So normally you should

prefix the command by "start ", which flags to latexmk that it should do the detaching of the pre-

viewer itself (by whatever method is appropriate to the operating system). But sometimes letting

latexmk do the detaching is not appropriate (for a variety of non-trivial reasons), so you should put

the "start " bit in yourself, whenever it is needed.

$ps_previewer_landscape ["start gv -swap %O %S", but start %O %S under MS-Windows]

The command to invoke a ps-previewer in landscape mode.

$ps_update_command [""]

When the postscript previewer is set to be updated by running a command, this is the command

that is run. See the information for the variable $ps_update_method.

$ps_update_method [0 under UNIX, 1 under MS-Windows]

How the postscript viewer updates its display when the ps file has changed. See the information on

the variable $dvi_update_method for the codes. (Note that information needs be changed slightly

so that for the value 4, to run a command to do the update, the command is specified by the vari-

able $ps_update_command, and for the value 2, to specify update by signal, the signal is specified

by $ps_update_signal.)

$ps_update_signal [Under UNIX: SIGHUP, which is a system-dependent value]

The number of the signal that is sent to the pdf viewer when it is updated by sending a signal -- see

$ps_update_method. The default value is the one appropriate for gv on a UNIX system.

$pvc_view_file_via_temporary [1]

The same as $always_view_file_via_temporary, except that it only applies in preview-continuous

mode (-pvc option).

17 January 2017 32

LATEXMK(1) General Commands Manual LATEXMK(1)

$quote_filenames [1]

This specifies whether substitutions for placeholders in command specifications (as in $pdflatex)

are surrounded by double quotes. If this variable is 1 (or any other value Perl regards as true), then

quoting is done. Otherwise quoting is omitted.

The quoting method used by latexmk is tested to work correctly under UNIX systems (including

Linux and Mac OS-X) and under MS-Windows. It allows the use of filenames containing special

characters, notably spaces. (But note that many versions of latex and pdflatex cannot correctly

deal with TeX files whose names contain spaces. Latexmk’s quoting only ensures that such file-

names are correctly treated by the operating system in passing arguments to programs.)

$recorder [1]

Whether to use the -recorder option to latex and pdflatex. Use of this option results in a file of

extension .fls containing a list of the files that these programs have read and written. Latexmk will

then use this file to improve its detection of source files and generated files after a run of latex or

pdflatex.

It is generally recommended to use this option (or to configure the $recorder variable to be on.)

But it only works if (pdf)latex supports the -recorder option, which is true for most current imple-

mentations

Note about the name of the .fls file: Most implementations of (pdf)latex produce an .fls file with the

same basename as the main document’s LaTeX, e.g., for Document.tex, the .fls file is Docu-

ment.fls. However, some implementations instead produce files named for the program, i.e.,

latex.fls or pdflatex.fls. In this second case, latexmk copies the latex.fls or pdflatex.fls to a file with

the basename of the main LaTeX document, e.g., Document.fls.

$search_path_separator [See below for default]

The character separating paths in the environment variables TEXINPUTS, BIBINPUTS, and

BSTINPUTS. This variable is mainly used by latexmk when the -outdir, -output-directory,

-auxdir, and/or -aux-directory options are used. In that case latexmk needs to communicate

appropriately modified search paths to bibtex, dvipdf, dvips, and (pdf)latex.

[Comment to technically savvy readers: (pdf)latex doesn’t actually need the modified search path.

But, surprisingly, dvipdf and dvips do, because sometimes graphics files get generated in the out-

put or aux directories.]

The default under MSWin and Cygwin is ’;’ and under UNIX-like operating systems (including

Linux and OS-X) is ’:’. Normally the defaults give correct behavior. But there can be difficulties

if your operating system is of one kind, but some of your software is running under an emulator

for the other kind of operating system; in that case you’ll need to find out what is needed, and set

$search_path_separator explicitly. (The same goes, of course, for unusual operating systems that

are not in the MSWin, Linux, OS-X, Unix collection.)

$show_time [0]

Whether to show CPU time used.

$silence_logfile_warnings [0]

Whether after a run of (pdf)latex to summarize warnings in the log file about undefined citations

and references. Setting $silence_logfile_warnings=0 gives the summary of warnings (provided

silent mode isn’t also set), and this is useful to locate undefined citations and references without

searching through the much more verbose log file or the screen output of (pdf)latex. But the sum-

mary can also be excessively annoying. The default is not to give these warnings. The command

line options -silence_logfile_warning_list and -silence_logfile_warning_list- also set this

17 January 2017 33

LATEXMK(1) General Commands Manual LATEXMK(1)

variable.

Note that multiple occurrences for the same undefined object on the same page and same line will

be compressed to a single warning.

$silent [0]

Whether to run silently. Setting $silent to 1 has the same effect as the -quiet of -silent options on

the command line.

$sleep_time [2]

The time to sleep (in seconds) between checking for source file changes when running with the

-pvc option. This is subject to a minimum of one second delay, except that zero delay is also

allowed.

A value of exactly 0 gives no delay, and typically results in 100% CPU usage, which may not be

desirable.

$texfile_search [""]

This is an obsolete variable, replaced by the @default_files variable.

For backward compatibility, if you choose to set $texfile_search, it is a string of space-separated

filenames, and then latexmk replaces @default_files with the filenames in $texfile_search to which

is added "*.tex".

$success_cmd [undefined]

See the documentation for $compiling_cmd.

$tmpdir [See below for default]

Directory to store temporary files that latexmk may generate while running.

The default under MSWindows (including cygwin), is to set $tmpdir to the value of the first of

whichever of the system environment variables TMPDIR or TEMP exists, otherwise to the current

directory. Under other operating systems (expected to be UNIX/Linux, including OS-X), the

default is the value of the system environment variable TMPDIR if it exists, otherwise "/tmp".

$use_make_for_missing_files [0]

Whether to use make to try and make files that are missing after a run of latex or pdflatex, and for

which a custom dependency has not been found. This is generally useful only when latexmk is

used as part of a bigger project which is built by using the make program.

Note that once a missing file has been made, no further calls to make will be made on a subsequent

run of latexmk to update the file. Handling this problem is the job of a suitably defined Makefile.

See the section "USING latexmk WITH make" for how to do this. The intent of calling make from

latexmk is merely to detect dependencies.

$view ["default"]

Which kind of file is to be previewed if a previewer is used. The possible values are "default",

"dvi", "ps", "pdf". The value of "default" means that the "highest" of the kinds of file generated is

to be used (among dvi, ps and pdf).

$xdvipdfmx ["xdvipdfmx -o %D %O %S"]

The program to make a pdf file from an xdv file (used in conjunction with xelatex when

$pdf_mode=5).

17 January 2017 34

LATEXMK(1) General Commands Manual LATEXMK(1)

$xdvipdfmx_silent_switch ["-q"]

Switch(es) for the xdvipdfmx program when silent mode is on.

$xelatex ["xelatex %O %S"]

The LaTeX processing program of in a version that makes a pdf file instead of a dvi file, when the

xelatex program is called for. See the documentation of the -xelatex option for some special prop-

erties of latexmk’s use of xelatex.

%xelatex_input_extensions

This variable specifies the extensions tried by latexmk when it finds that an xelatex run resulted in

an error that a file has not been found, and the file is given without an extension. This typically

happens when LaTeX commands of the form \input{file} or \includegraphics{figure}, when the

relevant source file does not exist.

In this situation, latexmk searches for custom dependencies to make the missing file(s), but

restricts it to the extensions specified by the variable %xelatex_input_extensions. The default

extensions are ’tex’, ’pdf’, ’jpg, and ’png’.

See details of the %latex_input_extensions for other information that equally applies to %xela-

tex_input_extensions.

$xelatex_silent_switch ["-interaction=batchmode"]

Switch(es) for the xelatex program (specified in the variable $xelatex) when silent mode is on.

See details of the $latex_silent_switch for other information that equally applies to $xela-

tex_silent_switch.

CUSTOM DEPENDENCIES
In any RC file a set of custom dependencies can be set up to convert a file with one extension to a file with

another. An example use of this would be to allow latexmk to convert a .fig file to .eps to be included in the

.tex file.

The old method of configuring latexmk was to directly manipulate the @cus_dep_list array that contains

information defining the custom dependencies. This method still works. But now there are subroutines that

allow convenient manipulations of the custom dependency list. These are

add_cus_dep(fromextension, toextension, must, subroutine)

remove_cus_dep(fromextension, toextension)

show_cus_dep()

The custom dependency is a list of rules, each of which is specified as follow:

from extension:

The extension of the file we are converting from (e.g. "fig"). It is specified without a period.

to extension:

The extension of the file we are converting to (e.g. "eps"). It is specified without a period.

must: If non-zero, the file from which we are converting must exist, if it doesn’t exist latexmk will give

an error message and exit unless the -f option is specified. If must is zero and the file we are con-

verting from doesn’t exist, then no action is taken.

17 January 2017 35

LATEXMK(1) General Commands Manual LATEXMK(1)

function:

The name of the subroutine that latexmk should call to perform the file conversion. The first argu-

ment to the subroutine is the base name of the file to be converted without any extension. The sub-

routines are declared in the syntax of Perl. The function should return 0 if it was successful and a

nonzero number if it failed.

A custom dependency rule is invoked whenever latexmk detects that a run of latex/pdflatex needs to read a

file, like a graphics file, whose extension is the to-extension of a custom dependency. Then latexmk exam-

ines whether a file exists with the same name, but with the corresponding from-extension, as specified in

the custom-dependency rule. If it does, then the rule whenever the destination file (the one with the to-

extension) is out-of-date with respect to the corresponding source file.

To make the new destination file, the Perl subroutine specified in the rule is invoked, with an argument that

is the base name of the files in question. Simple cases just involve a subroutine invoking an external pro-

gram; this can be done by following the templates below, even by those without knowledge of the Perl pro-

gramming language. Of course, experts could do something much more elaborate.

One other item in each custom-dependency rule, labeled "must" above, specifies how the rule should be

applied when the source file fails to exist.

A simple and typical example of code in an initialization rcfile is

add_cus_dep(’fig’, ’eps’, 0, ’fig2eps’);

sub fig2eps {

return system("fig2dev -Leps \"$_[0].fig\" \"$_[0].eps\"");

}

The first line adds a custom dependency that converts a file with extension "fig", as created by the xfig pro-

gram, to an encapsulated postscript file, with extension "eps". The remaining lines define a subroutine that

carries out the conversion. If a rule for converting "fig" to "eps" files already exists (e.g., from a previously

read-in initialization file), the latexmk will delete this rule before making the new one.

Suppose latexmk is using this rule to convert a file "figure.fig" to "figure.eps". Then it will invoke the

fig2eps subroutine defined in the above code with a single argument "figure", which is the basename of

each of the files (possibly with a path component). This argument is referred to by Perl as $_[0]. In the

example above, the subroutine uses the Perl command system to invoke the program fig2dev. The double

quotes around the string are a Perl idiom that signify that each string of the form of a variable name, $_[0]

in this case, is to be substituted by its value.

If the return value of the subroutine is non-zero, then latexmk will assume an error occurred during the exe-

cution of the subroutine. In the above example, no explicit return value is given, and instead the return

value is the value returned by the last (and only) statement, i.e., the invocation of system, which returns the

value 0 on success.

If you use pdflatex instead of latex, then you will probably prefer to convert your graphics files to pdf for-

mat, in which case you would replace the above code in an initialization file by

add_cus_dep(’fig’, ’pdf, 0, ’fig2pdf’);

sub fig2pdf {

return system("fig2dev -Lpdf \"$_[0].fig\" \"$_[0].pdf\"");

}

Note 1: In the command lines given in the system commands in the above examples, double quotes have

been inserted around the file names (implemented by ’\"’ in the Perl language). They immunize the run-

ning of the program against special characters in filenames. Very often these quotes are not necessary, i.e.,

17 January 2017 36

LATEXMK(1) General Commands Manual LATEXMK(1)

they can be omitted. But it is normally safer to keep them in. Even though the rules for quoting vary

between operating systems, command shells and individual pieces of software, the quotes in the above

examples do not cause problems in the cases I have tested.

Note 2: One case in which the quotes are important is when the files are in a subdirectory and your operat-

ing system is Microsoft Windows. Then the separator character for directory components can be either a

forward slash ’/’ or Microsoft’s more usual backward slash ´\’. Forward slashes are generated by latexmk,

to maintain its sanity from software like MiKTeX that mixes both directory separators; but their correct use

normally requires quoted filenames. (See a log file from a run of MiKTeX (at least in v. 2.9) for an exam-

ple of the use of both directory separators.)

If you have some general custom dependencies defined in the system or user initialization file, you may find

that for a particular project they are undesirable. So you might want to delete the unneeded ones. For

example, you remove any "fig" to "eps" rule by the line

remove_cus_dep(’fig’, ’eps’);

If you have complicated sets of custom dependencies, you may want to get a listing of the custom depen-

dencies. This is done by using the line

show_cus_dep();

in an initialization file.

Another example of a custom dependency overcomes a limitation of latexmk concerning index files. The

only index-file conversion built-in to latexmk is from an ".idx" file written on one run of latex/pdflatex to an

".ind" file to be read in on a subsequent run. But with the index.sty package you can create extra indexes

with extensions that you configure. Latexmk does not know how to deduce the extensions from the infor-

mation it has. But you can easily write a custom dependency. For example if your latex file uses the com-

mand "\newindex{special}{ndx}{nnd}{Special index}" you will need to convert files with the extension

.ndx to .nnd. The following lines in an initialization RC file will cause this to happen:

add_cus_dep(’ndx’, ’nnd’, 0, ’makendx2nnd’);

sub makendx2nnd {

return system("makeindex -o \"$_[0].nnd\" \"$_[0].ndx\"");

}

Those of you with experience with Makefiles, will undoubtedly be concerned that the .ndx file is written

during a run of latex/pdflatex and is always later than the .nnd last read in. Thus the .nnd appears to be per-

petually out-of-date. This situation, of circular dependencies, is endemic to latex, and latexmk in its current

version works correctly with circular dependencies. It examines the contents of the files (by use of an md5

checksum), and only does a remake when the file contents have actually changed.

Of course if you choose to write random data to the .nnd (or the .aux file, etc) that changes on each new

run, then you will have a problem. For real experts: See the %hash_cal_ignore_pattern if you have to deal

with such problems.

Glossaries can be dealt with similarly.

OLD METHOD OF DEFINING CUSTOM DEPENDENCIES
In previous versions of latexmk, the only method of defining custom dependencies was to directly manipu-

late the table of custom dependencies. This is contained in the @cus_dep_list array. It is an array of

strings, and each string in the array has four items in it, each separated by a space, the from-extension, the

17 January 2017 37

LATEXMK(1) General Commands Manual LATEXMK(1)

to-extension, the "must" item, and the name of the subroutine for the custom dependency. These were all

defined above.

An example of the old method of defining custom dependencies is as follows. It is the code in an RC file to

ensure automatic conversion of .fig files to .eps files:

push @cus_dep_list, "fig eps 0 fig2eps";

sub fig2eps {

return system("fig2dev -Lps \"$_[0].fig\" \"$_[0].eps\"");

}

This method still works, and is equivalent to the earlier code using the add_cus_dep subroutine, except that

it doesn’t delete any previous custom-dependency for the same conversion. So the new method is prefer-

able.

ADVANCED CONFIGURATION: Some extra resources and advanced tricks
For most purposes, simple configuration for latexmk along the lines of the examples given is sufficient. But

sometimes you need something harder. In this section, I indicate some extra possibilities. Generally to use

these, you need to be fluent in the Perl language, since this is what is used in the rc files.

See also the section DEALING WITH ERRORS, PROBLEMS, ETC. See also the examples in the direc-

tory example_rcfiles in the latexmk distributions. Even if none of the examples apply to your case, they

may give ideas

Variables and subroutines for processing a rule

A step in the processing is called a rule. One possibility to implement the processing of a rule is by a Perl

subroutine. This is always the case for custom dependencies. Also, for any other rule, you can use a sub-

routine by prefixing the command specification by the word "internal" -- see the section FORMAT OF

COMMAND SPECIFICATIONS.

When you use a subroutine for processing a rule, all the possibilities of Perl programming are available, of

course. In addition, some of latexmk’s internal variables and subroutines are available. The ones listed

below are intended to be available to (advanced) users, and their specifications will generally have stability

under upgrades. Generally, the variables should be treated as read-only: Changing their values can have bad

consequences, since it is liable to mess up the consistency of what latexmk is doing.

$rule This variable has the name of the rule, as known to latexmk. Note that the exact contents of this

variable for a given rule may be dependent on the version of latexmk

$$Psource

This gives the name of the primary source file. Note the double dollar signs.

$$Pdest

This gives the name of the main output file if any. Note the double dollar signs.

rdb_ensure_file($rule, file)

This a subroutine that ensures that the given file is among the source files for the specified rule. It

is typically used when, during the processing of a rule, it is known that a particular extra file is

among the dependencies that latexmk should know, but its default methods don’t find the depen-

dency. Almost always the first argument is the name of the rule currently being processed, so it is

then appropriate to specify it by $rule.

17 January 2017 38

LATEXMK(1) General Commands Manual LATEXMK(1)

For examples of its use, see some of the files in the directory example_rcfiles of latexmk’s distribu-

tion. Currently the cases that use this subroutine are exceltex_latexmkrc and texinfo-latexmkrc.

These illustrate typical cases where latexmk’s normal processing fails to detect certain extra source

files.

rdb_remove_files($rule, file, ...)

This subroutine removes one or more files from the dependency list for the given rule.

rdb_list_source($rule)

This subroutine returns the list of source files (i.e., the dependency list) for the given rule.

rdb_set_source($rule, file, ...)

rdb_set_source($rule, @files) This subroutine sets the dependency list for the given rule to be

the specified files. Files that are already in the list have unchanged information. Files that were

not in the list are added to it. Files in the previous dependency list that are not in the newly speci-

fied list of files are removed from the dependency list.

Advanced configuration: Using latexmk with make

This section is targeted only at advanced users who use the make program for complex projects, as for soft-

ware development, with the dependencies specified by a Makefile.

Now the basic task of latexmk is to run the appropriate programs to make a viewable version of a LaTeX

document. However, the usual make program is not suited to this purpose for at least two reasons. First is

that the use of LaTeX involves circular dependencies (e.g., via .aux files), and these cannot be handled by

the standard make program. Second is that in a large document the set of source files can change quite fre-

quently, particularly with included graphics files; in this situation keeping a Makefile manually updated is

inappropriate and error-prone, especially when the dependencies can be determined automatically. Latexmk

solves both of these problems robustly.

Thus for many standard LaTeX documents latexmk can be used by itself without the make program. In a

complex project it simply needs to be suitably configured. A standard configuration would be to define cus-

tom dependencies to make graphics files from their source files (e.g., as created by the xfig program). Cus-

tom dependencies are latexmk’s equivalent of pattern rules in Makefiles.

Nevertheless there are projects for which a Makefile is appropriate, and it is useful to know how to use

latexmk from a Makefile. A typical example would be to generate documentation for a software project.

Potentially the interaction with the rest of the rules in the Makefile could be quite complicated, for example

if some of the source files for a LaTeX document are generated by the project’s software.

In this section, I give a couple of examples of how latexmk can be usefully invoked from a Makefile. The

examples use specific features of current versions of GNU make, which is the default on both linux and OS-

X systems. They may need modifications for other versions of make.

The simplest method is simply to delegate all the relevant tasks to latexmk, as is suitable for a straightfor-

ward LaTeX document. For this a suitable Makefile is like

.PHONY : FORCE_MAKE

all : try.pdf

%.pdf : %.tex FORCE_MAKE

latexmk -pdf -dvi- -ps- $<

(Note: the last line must be introduced by a tab for the Makefile to function correctly!) Naturally, if making

17 January 2017 39

LATEXMK(1) General Commands Manual LATEXMK(1)

try.pdf from its associated LaTeX file try.tex were the only task to be performed, a direct use of latexmk

without a Makefile would normally be better. The benefit of using a Makefile for a LaTeX document would

be in a larger project, where lines such as the above would be only be a small part of a larger Makefile.

The above example has a pattern rule for making a .pdf file from a .tex file, and it is defined to use latexmk

in the obvious way. There is a conventional default target named "all", with a prerequisite of try.pdf. So

when make is invoked, by default it makes try.pdf. The only complication is that there may be many source

files beyond try.tex, but these aren’t specified in the Makefile, so changes in them will not by themselves

cause latexmk to be invoked. Instead, the pattern rule is equipped with a "phony" prerequisite

FORCE_MAKE; this has the effect of causing the rule to be always out-of-date, so that latexmk is always

run. It is latexmk that decides whether any action is needed, e.g., a rerun of pdflatex. Effectively the Make-

file delegates all decisions to latexmk, while make has no knowledge of the list of source files except for pri-

mary LaTeX file for the document. If there are, for example, graphics files to be made, these must be made

by custom dependencies configured in latexmk.

But something better is needed in more complicated situations, for example, when the making of graphics

files needs to be specified by rules in the Makefile. To do this, one can use a Makefile like the following:

TARGETS = document1.pdf document2.pdf

DEPS_DIR = .deps

LATEXMK = latexmk -recorder -use-make -deps \

-e ’warn qq(In Makefile, turn off custom dependencies\n);’ \

-e ’@cus_dep_list = ();’ \

-e ’show_cus_dep();’

all : $(TARGETS)

$(foreach file,$(TARGETS),$(eval -include $(DEPS_DIR)/$(file)P))

$(DEPS_DIR) :

mkdir $@

%.pdf : %.tex

if [! -e $(DEPS_DIR)]; then mkdir $(DEPS_DIR); fi

$(LATEXMK) -pdf -dvi- -ps- -deps-out=$(DEPS_DIR)/$@P $<

%.pdf : %.fig

fig2dev -Lpdf $< $@

(Again, the lines containing the commands for the rules should be started with tabs.) This example was

inspired by how GNU automake handles automatic dependency tracking of C source files.

After each run of latexmk, dependency information is put in a file in the .deps subdirectory. The Makefile

causes these dependency files to be read by make, which now has the full dependency information for each

target .pdf file. To make things less trivial it is specificed that two files document1.pdf and document2.pdf

are the targets. The dependency files are .deps/document1.pdfP and .deps/document2.pdfP.

There is now no need for the phony prerequisite for the rule to make .pdf files from .tex files. But I hav e

added a rule to make .pdf files from .fig files produced by the xfig program; these are commonly used for

graphics insertions in LaTeX documents. Latexmk is arranged to output a dependency file after each run. It

is given the -recorder option, which improves its detection of files generated during a run of pdflatex; such

files should not be in the dependency list. The -e options are used to turn off all custom dependencies, and

to document this. Instead the -use-make is used to delegate the making of missing files to make itself.

Suppose in the LaTeX file there is a command \includegraphics{graph}, and an xfig file "graph.fig" exists.

On a first run, pdflatex reports a missing file, named "graph". Latexmk succeeds in making "graph.pdf" by

calling "make graph.pdf", and after completion of its work, it lists "fig.pdf" among the dependents of the

file latexmk is making. Then let "fig.fig" be updated, and then let make be run. Make first remakes

"fig.pdf", and only then reruns latexmk.

17 January 2017 40

LATEXMK(1) General Commands Manual LATEXMK(1)

Thus we now hav e a method by which all the subsidiary processing is delegated to make.

SEE ALSO
latex(1), bibtex(1).

BUGS
Sometimes a viewer (gv) tries to read an updated .ps or .pdf file after its creation is started but before the

file is complete. Work around: manually refresh (or reopen) display. Or use one of the other previewers

and update methods.

(The following isn’t really a bug, but concerns features of previewers.) Preview continuous mode only

works perfectly with certain previewers: Xdvi on UNIX/Linux works for dvi files. Gv on UNIX/Linux

works for both postscript and pdf. Ghostview on UNIX/Linux needs a manual update (reopen); it views

postscript and pdf. Gsview under MS-Windows works for both postscript and pdf, but only reads the

updated file when its screen is refreshed. Acroread under UNIX/Linux views pdf, but the file needs to be

closed and reopened to view an updated version. Under MS-Windows, acroread locks its input file and so

the pdf file cannot be updated. (Remedy: configure latexmk to use sumatrapdf instead.)

THANKS TO
Authors of previous versions. Many users with their feedback, and especially David Coppit (username

david at node coppit.org) who made many useful suggestions that contributed to version 3, and Herbert

Schulz. (Please note that the e-mail addresses are not written in their standard form to avoid being har-

vested by worms and viruses.)

AUTHOR
Current version, by John Collins (username jcc8 at node psu.edu). (Version 4.52b).

Released version can be obtained from CTAN: <http://www.ctan.org/pkg/latexmk/>, and from the author’s

website <http://www.personal.psu.edu/jcc8/latexmk/>.

Modifications and enhancements by Evan McLean (Version 2.0)

Original script called "go" by David J. Musliner (RCS Version 3.2)

17 January 2017 41

