% arara: indent: {overwrite: true, trace: on} % A sample chapter file- it contains a lot of % environments, including tabulars, align, etc % % Don't try and compile this file using pdflatex etc, just % compare the *format* of it to the format of the % sampleAFTER.tex % % In particular, compare the tabular and align-type % environments before and after running the script \section{Polynomial functions} \reformatstepslist{P} % the steps list should be P1, P2, \ldots In your previous mathematics classes you have studied \emph{linear} and \emph{quadratic} functions. The most general forms of these types of functions can be represented (respectively) by the functions $f$ and $g$ that have formulas \begin{equation}\label{poly:eq:linquad} f(x)=mx+b, \qquad g(x)=ax^2+bx+c \end{equation} We know that $m$ is the slope of $f$, and that $a$ is the \emph{leading coefficient} of $g$. We also know that the \emph{signs} of $m$ and $a$ completely determine the behavior of the functions $f$ and $g$. For example, if $m>0$ then $f$ is an \emph{increasing} function, and if $m<0$ then $f$ is a \emph{decreasing} function. Similarly, if $a>0$ then $g$ is \emph{concave up} and if $a<0$ then $g$ is \emph{concave down}. Graphical representations of these statements are given in \cref{poly:fig:linquad}. \begin{figure}[!htb] \setlength{\figurewidth}{.2\textwidth} \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\textwidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-10:8]{(x+2)}; \end{axis} \end{tikzpicture} \caption{$m>0$} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\textwidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-10:8]{-(x+2)}; \end{axis} \end{tikzpicture} \caption{$m<0$} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\textwidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-4:4]{(x^2-6)}; \end{axis} \end{tikzpicture} \caption{$a>0$} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\textwidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-4:4]{-(x^2-6)}; \end{axis} \end{tikzpicture} \caption{$a<0$} \end{subfigure} \caption{Typical graphs of linear and quadratic functions.} \label{poly:fig:linquad} \end{figure} Let's look a little more closely at the formulas for $f$ and $g$ in \cref{poly:eq:linquad}. Note that the \emph{degree} of $f$ is $1$ since the highest power of $x$ that is present in the formula for $f(x)$ is $1$. Similarly, the degree of $g$ is $2$ since the highest power of $x$ that is present in the formula for $g(x)$ is $2$. In this section we will build upon our knowledge of these elementary functions. In particular, we will generalize the functions $f$ and $g$ to a function $p$ that has any degree that we wish. %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{essentialskills} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{problem}[Quadratic functions] Every quadratic function has the form $y=ax^2+bx+c$; state the value of $a$ for each of the following functions, and hence decide if the parabola that represents the function opens upward or downward. \begin{multicols}{2} \begin{subproblem} $F(x)=x^2+3$ \begin{shortsolution} $a=1$; the parabola opens upward. \end{shortsolution} \end{subproblem} \begin{subproblem} $G(t)=4-5t^2$ \begin{shortsolution} $a=-5$; the parabola opens downward. \end{shortsolution} \end{subproblem} \begin{subproblem} $H(y)=4y^2-96y+8$ \begin{shortsolution} $a=4$; the parabola opens upward. \end{shortsolution} \end{subproblem} \begin{subproblem} $K(z)=-19z^2$ \begin{shortsolution} $m=-19$; the parabola opens downward. \end{shortsolution} \end{subproblem} \end{multicols} Now let's generalize our findings for the most general quadratic function $g$ that has formula $g(x)=a_2x^2+a_1x+a_0$. Complete the following sentences. \begin{subproblem} When $a_2>0$, the parabola that represents $y=g(x)$ opens $\ldots$ \begin{shortsolution} When $a_2>0$, the parabola that represents the function opens upward. \end{shortsolution} \end{subproblem} \begin{subproblem} When $a_2<0$, the parabola that represents $y=g(x)$ opens $\ldots$ \begin{shortsolution} When $a_2<0$, the parabola that represents the function opens downward. \end{shortsolution} \end{subproblem} \end{problem} \end{essentialskills} \subsection*{Power functions with positive exponents} The study of polynomials will rely upon a good knowledge of power functions| you may reasonably ask, what is a power function? \begin{pccdefinition}[Power functions] Power functions have the form \[ f(x) = a_n x^n \] where $n$ can be any real number. Note that for this section we will only be concerned with the case when $n$ is a positive integer. \end{pccdefinition} You may find assurance in the fact that you are already very comfortable with power functions that have $n=1$ (linear) and $n=2$ (quadratic). Let's explore some power functions that you might not be so familiar with. As you read \cref{poly:ex:oddpow,poly:ex:evenpow}, try and spot as many patterns and similarities as you can. %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{pccexample}[Power functions with odd positive exponents] \label{poly:ex:oddpow} Graph each of the following functions, state their domain, and their long-run behavior as $x\rightarrow\pm\infty$ \[ f(x)=x^3, \qquad g(x)=x^5, \qquad h(x)=x^7 \] \begin{pccsolution} The functions $f$, $g$, and $h$ are plotted in \cref{poly:fig:oddpow}. The domain of each of the functions $f$, $g$, and $h$ is $(-\infty,\infty)$. Note that the long-run behavior of each of the functions is the same, and in particular \begin{align*} f(x)\rightarrow\infty & \text{ as } x\rightarrow\infty \\ \mathllap{\text{and }} f(x)\rightarrow-\infty & \text{ as } x\rightarrow-\infty \end{align*} The same results hold for $g$ and $h$. \end{pccsolution} \end{pccexample} \begin{figure}[!htb] \begin{minipage}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ framed, xmin=-1.5,xmax=1.5, ymin=-5,ymax=5, xtick={-1.0,-0.5,...,1.0}, minor ytick={-3,-1,...,3}, grid=both, width=\textwidth, legend pos=north west, ] \addplot expression[domain=-1.5:1.5]{x^3}; \addplot expression[domain=-1.379:1.379]{x^5}; \addplot expression[domain=-1.258:1.258]{x^7}; \addplot[soldot]coordinates{(-1,-1)} node[axisnode,anchor=north west]{$(-1,-1)$}; \addplot[soldot]coordinates{(1,1)} node[axisnode,anchor=south east]{$(1,1)$}; \legend{$f$,$g$,$h$} \end{axis} \end{tikzpicture} \caption{Odd power functions} \label{poly:fig:oddpow} \end{minipage}% \hfill \begin{minipage}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ framed, xmin=-2.5,xmax=2.5, ymin=-5,ymax=5, xtick={-2.0,-1.5,...,2.0}, minor ytick={-3,-1,...,3}, grid=both, width=\textwidth, legend pos=south east, ] \addplot expression[domain=-2.236:2.236]{x^2}; \addplot expression[domain=-1.495:1.495]{x^4}; \addplot expression[domain=-1.307:1.307]{x^6}; \addplot[soldot]coordinates{(-1,1)} node[axisnode,anchor=east]{$(-1,1)$}; \addplot[soldot]coordinates{(1,1)} node[axisnode,anchor=west]{$(1,1)$}; \legend{$F$,$G$,$H$} \end{axis} \end{tikzpicture} \caption{Even power functions} \label{poly:fig:evenpow} \end{minipage}% \end{figure} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{pccexample}[Power functions with even positive exponents]\label{poly:ex:evenpow}% Graph each of the following functions, state their domain, and their long-run behavior as $x\rightarrow\pm\infty$ \[ F(x)=x^2, \qquad G(x)=x^4, \qquad H(x)=x^6 \] \begin{pccsolution} The functions $F$, $G$, and $H$ are plotted in \cref{poly:fig:evenpow}. The domain of each of the functions is $(-\infty,\infty)$. Note that the long-run behavior of each of the functions is the same, and in particular \begin{align*} F(x)\rightarrow\infty & \text{ as } x\rightarrow\infty \\ \mathllap{\text{and }} F(x)\rightarrow\infty & \text{ as } x\rightarrow-\infty \end{align*} The same result holds for $G$ and $H$. \end{pccsolution} \end{pccexample} \begin{doyouunderstand} \begin{problem} Repeat \cref{poly:ex:oddpow,poly:ex:evenpow} using (respectively) \begin{subproblem} $f(x)=-x^3, \qquad g(x)=-x^5, \qquad h(x)=-x^7$ \begin{shortsolution} The functions $f$, $g$, and $h$ have domain $(-\infty,\infty)$ and are graphed below. \begin{tikzpicture} \begin{axis}[ framed, xmin=-1.5,xmax=1.5, ymin=-5,ymax=5, xtick={-1.0,-0.5,...,0.5}, minor ytick={-3,-1,...,3}, grid=both, width=\solutionfigurewidth, legend pos=north east, ] \addplot expression[domain=-1.5:1.5]{-x^3}; \addplot expression[domain=-1.379:1.379]{-x^5}; \addplot expression[domain=-1.258:1.258]{-x^7}; \legend{$f$,$g$,$h$} \end{axis} \end{tikzpicture} Note that \begin{align*} f(x)\rightarrow-\infty & \text{ as } x\rightarrow\infty \\ \mathllap{\text{and }} f(x)\rightarrow\infty & \text{ as } x\rightarrow-\infty \end{align*} The same is true for $g$ and $h$. \end{shortsolution} \end{subproblem} \begin{subproblem} $F(x)=-x^2, \qquad G(x)=-x^4, \qquad H(x)=-x^6$ \begin{shortsolution} The functions $F$, $G$, and $H$ have domain $(-\infty,\infty)$ and are graphed below. \begin{tikzpicture} \begin{axis}[ framed, xmin=-2.5,xmax=2.5, ymin=-5,ymax=5, xtick={-1.0,-0.5,...,0.5}, minor ytick={-3,-1,...,3}, grid=both, width=\solutionfigurewidth, legend pos=north east, ] \addplot expression[domain=-2.236:2.236]{-x^2}; \addplot expression[domain=-1.495:1.495]{-x^4}; \addplot expression[domain=-1.307:1.307]{-x^6}; \legend{$F$,$G$,$H$} \end{axis} \end{tikzpicture} Note that \begin{align*} F(x)\rightarrow-\infty & \text{ as } x\rightarrow\infty \\ \mathllap{\text{and }} F(x)\rightarrow-\infty & \text{ as } x\rightarrow-\infty \end{align*} The same is true for $G$ and $H$. \end{shortsolution} \end{subproblem} \end{problem} \end{doyouunderstand} \subsection*{Polynomial functions} Now that we have a little more familiarity with power functions, we can define polynomial functions. Provided that you were comfortable with our opening discussion about linear and quadratic functions (see $f$ and $g$ in \cref{poly:eq:linquad}) then there is every chance that you'll be able to master polynomial functions as well; just remember that polynomial functions are a natural generalization of linear and quadratic functions. Once you've studied the examples and problems in this section, you'll hopefully agree that polynomial functions are remarkably predictable. %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{pccdefinition}[Polynomial functions] Polynomial functions have the form \[ p(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0 \] where $a_n$, $a_{n-1}$, $a_{n-2}$, \ldots, $a_0$ are real numbers. \begin{itemize} \item We call $n$ the degree of the polynomial, and require that $n$ is a non-negative integer; \item $a_n$, $a_{n-1}$, $a_{n-2}$, \ldots, $a_0$ are called the coefficients; \item We typically write polynomial functions in descending powers of $x$. \end{itemize} In particular, we call $a_n$ the \emph{leading} coefficient, and $a_nx^n$ the \emph{leading term}. Note that if a polynomial is given in factored form, then the degree can be found by counting the number of linear factors. \end{pccdefinition} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{pccexample}[Polynomial or not] Identify the following functions as polynomial or not; if the function is a polynomial, state its degree. \begin{multicols}{3} \begin{enumerate} \item $p(x)=x^2-3$ \item $q(x)=-4x^{\nicefrac{1}{2}}+10$ \item $r(x)=10x^5$ \item $s(x)=x^{-2}+x^{23}$ \item $f(x)=-8$ \item $g(x)=3^x$ \item $h(x)=\sqrt[3]{x^7}-x^2+x$ \item $k(x)=4x(x+2)(x-3)$ \item $j(x)=x^2(x-4)(5-x)$ \end{enumerate} \end{multicols} \begin{pccsolution} \begin{enumerate} \item $p$ is a polynomial, and its degree is $2$. \item $q$ is \emph{not} a polynomial, because $\frac{1}{2}$ is not an integer. \item $r$ is a polynomial, and its degree is $5$. \item $s$ is \emph{not} a polynomial, because $-2$ is not a positive integer. \item $f$ is a polynomial, and its degree is $0$. \item $g$ is \emph{not} a polynomial, because the independent variable, $x$, is in the exponent. \item $h$ is \emph{not} a polynomial, because $\frac{7}{3}$ is not an integer. \item $k$ is a polynomial, and its degree is $3$. \item $j$ is a polynomial, and its degree is $4$. \end{enumerate} \end{pccsolution} \end{pccexample} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{pccexample}[Typical graphs]\label{poly:ex:typical} \Cref{poly:fig:typical} shows graphs of some polynomial functions; the ticks have deliberately been left off the axis to allow us to concentrate on the features of each graph. Note in particular that: \begin{itemize} \item \cref{poly:fig:typical1} shows a degree-$1$ polynomial (you might also classify the function as linear) whose leading coefficient, $a_1$, is positive. \item \cref{poly:fig:typical2} shows a degree-$2$ polynomial (you might also classify the function as quadratic) whose leading coefficient, $a_2$, is positive. \item \cref{poly:fig:typical3} shows a degree-$3$ polynomial whose leading coefficient, $a_3$, is positive| compare its overall shape and long-run behavior to the functions described in \cref{poly:ex:oddpow}. \item \cref{poly:fig:typical4} shows a degree-$4$ polynomial whose leading coefficient, $a_4$, is positive|compare its overall shape and long-run behavior to the functions described in \cref{poly:ex:evenpow}. \item \cref{poly:fig:typical5} shows a degree-$5$ polynomial whose leading coefficient, $a_5$, is positive| compare its overall shape and long-run behavior to the functions described in \cref{poly:ex:oddpow}. \end{itemize} \end{pccexample} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{figure}[!htb] \begin{widepage} \setlength{\figurewidth}{\textwidth/6} \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\textwidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-10:8]{(x+2)}; \end{axis} \end{tikzpicture} \caption{$a_1>0$} \label{poly:fig:typical1} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\textwidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-4:4]{(x^2-6)}; \end{axis} \end{tikzpicture} \caption{$a_2>0$} \label{poly:fig:typical2} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\textwidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-7.5:7.5]{0.05*(x+6)*x*(x-6)}; \end{axis} \end{tikzpicture} \caption{$a_3>0$} \label{poly:fig:typical3} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\textwidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-2.35:5.35,samples=100]{0.2*(x-5)*x*(x-3)*(x+2)}; \end{axis} \end{tikzpicture} \caption{$a_4>0$} \label{poly:fig:typical4} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\textwidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-5.5:6.3,samples=100]{0.01*(x+2)*x*(x-3)*(x+5)*(x-6)}; \end{axis} \end{tikzpicture} \caption{$a_5>0$} \label{poly:fig:typical5} \end{subfigure} \end{widepage} \caption{Graphs to illustrate typical curves of polynomial functions.} \label{poly:fig:typical} \end{figure} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{doyouunderstand} \begin{problem} Use \cref{poly:ex:typical} and \cref{poly:fig:typical} to help you sketch the graphs of polynomial functions that have negative leading coefficients| note that there are many ways to do this! The intention with this problem is to use your knowledge of transformations- in particular, \emph{reflections}- to guide you. \begin{shortsolution} $a_1<0$: \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\solutionfigurewidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-10:8]{-(x+2)}; \end{axis} \end{tikzpicture} $a_2<0$ \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\solutionfigurewidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-4:4]{-(x^2-6)}; \end{axis} \end{tikzpicture} $a_3<0$ \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\solutionfigurewidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-7.5:7.5]{-0.05*(x+6)*x*(x-6)}; \end{axis} \end{tikzpicture} $a_4<0$ \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\solutionfigurewidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-2.35:5.35,samples=100]{-0.2*(x-5)*x*(x-3)*(x+2)}; \end{axis} \end{tikzpicture} $a_5<0$ \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, width=\solutionfigurewidth, xtick={-11}, ytick={-11}, ] \addplot expression[domain=-5.5:6.3,samples=100]{-0.01*(x+2)*x*(x-3)*(x+5)*(x-6)}; \end{axis} \end{tikzpicture} \end{shortsolution} \end{problem} \end{doyouunderstand} \fixthis{poly: Need a more basic example here- it can have a similar format to the multiple zeros example, but just keep it simple; it should be halfway between the 2 examples surrounding it} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{pccexample}[Multiple zeros] Consider the polynomial functions $p$, $q$, and $r$ which are graphed in \cref{poly:fig:moremultiple}. The formulas for $p$, $q$, and $r$ are as follows \begin{align*} p(x) & =(x-3)^2(x+4)^2 \\ q(x) & =x(x+2)^2(x-1)^2(x-3) \\ r(x) & =x(x-3)^3(x+1)^2 \end{align*} Find the degree of $p$, $q$, and $r$, and decide if the functions bounce off or cut through the horizontal axis at each of their zeros. \begin{pccsolution} The degree of $p$ is 4. Referring to \cref{poly:fig:bouncep}, the curve bounces off the horizontal axis at both zeros, $3$ and $4$. The degree of $q$ is 6. Referring to \cref{poly:fig:bounceq}, the curve bounces off the horizontal axis at $-2$ and $1$, and cuts through the horizontal axis at $0$ and $3$. The degree of $r$ is 6. Referring to \cref{poly:fig:bouncer}, the curve bounces off the horizontal axis at $-1$, and cuts through the horizontal axis at $0$ and at $3$, although is flattened immediately to the left and right of $3$. \end{pccsolution} \end{pccexample} \setlength{\figurewidth}{0.25\textwidth} \begin{figure}[!htb] \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-6,xmax=5, ymin=-30,ymax=200, xtick={-4,-2,...,4}, width=\textwidth, ] \addplot expression[domain=-5.63733:4.63733,samples=50]{(x-3)^2*(x+4)^2}; \addplot[soldot]coordinates{(3,0)(-4,0)}; \end{axis} \end{tikzpicture} \caption{$y=p(x)$} \label{poly:fig:bouncep} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-3,xmax=4, xtick={-2,...,3}, ymin=-60,ymax=40, width=\textwidth, ] \addplot+[samples=50] expression[domain=-2.49011:3.11054]{x*(x+2)^2*(x-1)^2*(x-3)}; \addplot[soldot]coordinates{(-2,0)(0,0)(1,0)(3,0)}; \end{axis} \end{tikzpicture} \caption{$y=q(x)$} \label{poly:fig:bounceq} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-2,xmax=4, xtick={-1,...,3}, ymin=-40,ymax=40, width=\textwidth, ] \addplot expression[domain=-1.53024:3.77464,samples=50]{x*(x-3)^3*(x+1)^2}; \addplot[soldot]coordinates{(-1,0)(0,0)(3,0)}; \end{axis} \end{tikzpicture} \caption{$y=r(x)$} \label{poly:fig:bouncer} \end{subfigure} \caption{} \label{poly:fig:moremultiple} \end{figure} \begin{pccdefinition}[Multiple zeros]\label{poly:def:multzero} Let $p$ be a polynomial that has a repeated linear factor $(x-a)^n$. Then we say that $p$ has a multiple zero at $a$ of multiplicity $n$ and \begin{itemize} \item if the factor $(x-a)$ is repeated an even number of times, the graph of $y=p(x)$ does not cross the $x$ axis at $a$, but `bounces' off the horizontal axis at $a$. \item if the factor $(x-a)$ is repeated an odd number of times, the graph of $y=p(x)$ crosses the horizontal axis at $a$, but it looks `flattened' there \end{itemize} If $n=1$, then we say that $p$ has a \emph{simple} zero at $a$. \end{pccdefinition} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{pccexample}[Find a formula] Find formulas for the polynomial functions, $p$ and $q$, graphed in \cref{poly:fig:findformulademoboth}. \begin{figure}[!htb] \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[framed, xmin=-5,xmax=5, ymin=-10,ymax=10, xtick={-4,-2,...,4}, minor xtick={-3,-1,...,3}, ytick={-8,-6,...,8}, width=\textwidth, grid=both] \addplot expression[domain=-3.25842:2.25842,samples=50]{-x*(x-2)*(x+3)*(x+1)}; \addplot[soldot]coordinates{(1,8)}node[axisnode,inner sep=.35cm,anchor=west]{$(1,8)$}; \addplot[soldot]coordinates{(-3,0)(-1,0)(0,0)(2,0)}; \end{axis} \end{tikzpicture} \caption{$p$} \label{poly:fig:findformulademo} \end{subfigure} \hfill \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[framed, xmin=-5,xmax=5, ymin=-10,ymax=10, xtick={-4,-2,...,4}, minor xtick={-3,-1,...,3}, ytick={-8,-6,...,8}, width=\textwidth, grid=both] \addplot expression[domain=-4.33:4.08152]{-.25*(x+2)^2*(x-3)}; \addplot[soldot]coordinates{(2,4)}node[axisnode,anchor=south west]{$(2,4)$}; \addplot[soldot]coordinates{(-2,0)(3,0)}; \end{axis} \end{tikzpicture} \caption{$q$} \label{poly:fig:findformulademo1} \end{subfigure} \caption{} \label{poly:fig:findformulademoboth} \end{figure} \begin{pccsolution} \begin{enumerate} \item We begin by noting that the horizontal intercepts of $p$ are $(-3,0)$, $(-1,0)$, $(0,0)$ and $(2,0)$. We also note that each zero is simple (multiplicity $1$). If we assume that $p$ has no other zeros, then we can start by writing \begin{align*} p(x) & =(x+3)(x+1)(x-0)(x-2) \\ & =x(x+3)(x+1)(x-2) \\ \end{align*} According to \cref{poly:fig:findformulademo}, the point $(1,8)$ lies on the curve $y=p(x)$. Let's check if the formula we have written satisfies this requirement \begin{align*} p(1) & = (1)(4)(2)(-1) \\ & = -8 \end{align*} which is clearly not correct| it is close though. We can correct this by multiplying $p$ by a constant $k$; so let's assume that \[ p(x)=kx(x+3)(x+1)(x-2) \] Then $p(1)=-8k$, and if this is to equal $8$, then $k=-1$. Therefore the formula for $p(x)$ is \[ p(x)=-x(x+3)(x+1)(x-2) \] \item The function $q$ has a zero at $-2$ of multiplicity $2$, and zero of multiplicity $1$ at $3$ (so $3$ is a simple zero of $q$); we can therefore assume that $q$ has the form \[ q(x)=k(x+2)^2(x-3) \] where $k$ is some real number. In order to find $k$, we use the given ordered pair, $(2,4)$, and evaluate $p(2)$ \begin{align*} p(2) & =k(4)^2(-1) \\ & =-16k \end{align*} We solve the equation $4=-8k$ and obtain $k=-\frac{1}{4}$ and conclude that the formula for $q(x)$ is \[ q(x)=-\frac{1}{4}(x+2)^2(x-3) \] \end{enumerate} \end{pccsolution} \end{pccexample} \fixthis{Chris: need sketching polynomial problems} \begin{pccspecialcomment}[Steps to follow when sketching polynomial functions] \begin{steps} \item \label{poly:step:first} Determine the degree of the polynomial, its leading term and leading coefficient, and hence determine the long-run behavior of the polynomial| does it behave like $\pm x^2$ or $\pm x^3$ as $x\rightarrow\pm\infty$? \item Determine the zeros and their multiplicity. Mark all zeros and the vertical intercept on the graph using solid circles $\bullet$. \item \label{poly:step:last} Deduce the overall shape of the curve, and sketch it. If there isn't enough information from the previous steps, then construct a table of values. \end{steps} Remember that until we have the tools of calculus, we won't be able to find the exact coordinates of local minimums, local maximums, and points of inflection. \end{pccspecialcomment} Before we demonstrate some examples, it is important to remember the following: \begin{itemize} \item our sketches will give a good representation of the overall shape of the graph, but until we have the tools of calculus (from MTH 251) we can not find local minimums, local maximums, and inflection points algebraically. This means that we will make our best guess as to where these points are. \item we will not concern ourselves too much with the vertical scale (because of our previous point)| we will, however, mark the vertical intercept (assuming there is one), and any horizontal asymptotes. \end{itemize} %=================================== % Author: Hughes % Date: May 2012 %=================================== \begin{pccexample}\label{poly:ex:simplecubic} Use \crefrange{poly:step:first}{poly:step:last} to sketch a graph of the function $p$ that has formula \[ p(x)=\frac{1}{2}(x-4)(x-1)(x+3) \] \begin{pccsolution} \begin{steps} \item $p$ has degree $3$. The leading term of $p$ is $\frac{1}{2}x^3$, so the leading coefficient of $p$ is $\frac{1}{2}$. The long-run behavior of $p$ is therefore similar to that of $x^3$. \item The zeros of $p$ are $-3$, $1$, and $4$; each zero is simple (i.e, it has multiplicity $1$). This means that the curve of $p$ cuts the horizontal axis at each zero. The vertical intercept of $p$ is $(0,6)$. \item We draw the details we have obtained so far on \cref{poly:fig:simplecubicp1}. Given that the curve of $p$ looks like the curve of $x^3$ in the long-run, we are able to complete a sketch of the graph of $p$ in \cref{poly:fig:simplecubicp2}. Note that we can not find the coordinates of the local minimums, local maximums, and inflection points| for the moment we make reasonable guesses as to where these points are (you'll find how to do this in calculus). \end{steps} \begin{figure}[!htbp] \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=15, xtick={-8,-6,...,8}, ytick={-5,5}, width=\textwidth, ] \addplot[soldot] coordinates{(-3,0)(1,0)(4,0)(0,6)}node[axisnode,anchor=south west]{$(0,6)$}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:simplecubicp1} \end{subfigure}% \hfill \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=15, xtick={-8,-6,...,8}, ytick={-5,5}, width=\textwidth, ] \addplot[soldot] coordinates{(-3,0)(1,0)(4,0)(0,6)}node[axisnode,anchor=south west]{$(0,6)$}; \addplot[pccplot] expression[domain=-3.57675:4.95392,samples=100]{.5*(x-4)*(x-1)*(x+3)}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:simplecubicp2} \end{subfigure}% \caption{$y=\dfrac{1}{2}(x-4)(x-1)(x+3)$} \label{poly:fig:simplecubic} \end{figure} \end{pccsolution} \end{pccexample} %=================================== % Author: Hughes % Date: May 2012 %=================================== \begin{pccexample}\label{poly:ex:degree5} Use \crefrange{poly:step:first}{poly:step:last} to sketch a graph of the function $q$ that has formula \[ q(x)=\frac{1}{200}(x+7)^2(2-x)(x-6)^2 \] \begin{pccsolution} \begin{steps} \item $q$ has degree $4$. The leading term of $q$ is \[ -\frac{1}{200}x^5 \] so the leading coefficient of $q$ is $-\frac{1}{200}$. The long-run behavior of $q$ is therefore similar to that of $-x^5$. \item The zeros of $q$ are $-7$ (multiplicity 2), $2$ (simple), and $6$ (multiplicity $2$). The curve of $q$ bounces off the horizontal axis at the zeros with multiplicity $2$ and cuts the horizontal axis at the simple zeros. The vertical intercept of $q$ is $\left( 0,\frac{441}{25} \right)$. \item We mark the details we have found so far on \cref{poly:fig:degree5p1}. Given that the curve of $q$ looks like the curve of $-x^5$ in the long-run, we can complete \cref{poly:fig:degree5p2}. \end{steps} \begin{figure}[!htbp] \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=40, xtick={-8,-6,...,8}, ytick={-5,0,...,35}, width=\textwidth, ] \addplot[soldot] coordinates{(-7,0)(2,0)(6,0)(0,441/25)}node[axisnode,anchor=south west]{$\left( 0, \frac{441}{25} \right)$}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:degree5p1} \end{subfigure}% \hfill \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=40, xtick={-8,-6,...,8}, ytick={-5,0,...,35}, width=\textwidth, ] \addplot[soldot] coordinates{(-7,0)(2,0)(6,0)(0,441/25)}node[axisnode,anchor=south west]{$\left( 0, \frac{441}{25} \right)$}; \addplot[pccplot] expression[domain=-8.83223:7.34784,samples=50]{1/200*(x+7)^2*(2-x)*(x-6)^2}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:degree5p2} \end{subfigure}% \caption{$y=\dfrac{1}{200}(x+7)^2(2-x)(x-6)^2$} \label{poly:fig:degree5} \end{figure} \end{pccsolution} \end{pccexample} %=================================== % Author: Hughes % Date: May 2012 %=================================== \begin{pccexample} Use \crefrange{poly:step:first}{poly:step:last} to sketch a graph of the function $r$ that has formula \[ r(x)=\frac{1}{100}x^3(x+4)(x-4)(x-6) \] \begin{pccsolution} \begin{steps} \item $r$ has degree $6$. The leading term of $r$ is \[ \frac{1}{100}x^6 \] so the leading coefficient of $r$ is $\frac{1}{100}$. The long-run behavior of $r$ is therefore similar to that of $x^6$. \item The zeros of $r$ are $-4$ (simple), $0$ (multiplicity $3$), $4$ (simple), and $6$ (simple). The vertical intercept of $r$ is $(0,0)$. The curve of $r$ cuts the horizontal axis at the simple zeros, and goes through the axis at $(0,0)$, but does so in a flattened way. \item We mark the zeros and vertical intercept on \cref{poly:fig:degree6p1}. Given that the curve of $r$ looks like the curve of $x^6$ in the long-run, we complete the graph of $r$ in \cref{poly:fig:degree6p2}. \end{steps} \begin{figure}[!htbp] \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-5,xmax=10, ymin=-20,ymax=10, xtick={-4,-2,...,8}, ytick={-15,-10,...,5}, width=\textwidth, ] \addplot[soldot] coordinates{(-4,0)(0,0)(4,0)(6,0)}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:degree6p1} \end{subfigure}% \hfill \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-5,xmax=10, ymin=-20,ymax=10, xtick={-4,-2,...,8}, ytick={-15,-10,...,5}, width=\textwidth, ] \addplot[soldot] coordinates{(-4,0)(0,0)(4,0)(6,0)}; \addplot[pccplot] expression[domain=-4.16652:6.18911,samples=100]{1/100*(x+4)*x^3*(x-4)*(x-6)}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:degree6p2} \end{subfigure}% \caption{$y=\dfrac{1}{100}(x+4)x^3(x-4)(x-6)$} \end{figure} \end{pccsolution} \end{pccexample} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{pccexample}[An open-topped box] A cardboard company makes open-topped boxes for their clients. The specifications dictate that the box must have a square base, and that it must be open-topped. The company uses sheets of cardboard that are $\unit[1200]{cm^2}$. Assuming that the base of each box has side $x$ (measured in cm), it can be shown that the volume of each box, $V(x)$, has formula \[ V(x)=\frac{x}{4}(1200-x^2) \] Find the dimensions of the box that maximize the volume. \begin{pccsolution} We graph $y=V(x)$ in \cref{poly:fig:opentoppedbox}. Note that because $x$ represents the length of a side, and $V(x)$ represents the volume of the box, we necessarily require both values to be positive; we illustrate the part of the curve that applies to this problem using a solid line. \begin{figure}[!htb] \centering \begin{tikzpicture} \begin{axis}[framed, xmin=-50,xmax=50, ymin=-5000,ymax=5000, xtick={-40,-30,...,40}, minor xtick={-45,-35,...,45}, minor ytick={-3000,-1000,1000,3000}, width=.75\textwidth, height=.5\textwidth, grid=both] \addplot[pccplot,dashed,<-] expression[domain=-40:0,samples=50]{x/4*(1200-x^2)}; \addplot[pccplot,-] expression[domain=0:34.64,samples=50]{x/4*(1200-x^2)}; \addplot[pccplot,dashed,->] expression[domain=34.64:40,samples=50]{x/4*(1200-x^2)}; \addplot[soldot] coordinates{(20,4000)}; \end{axis} \end{tikzpicture} \caption{$y=V(x)$} \label{poly:fig:opentoppedbox} \end{figure} According to \cref{poly:fig:opentoppedbox}, the maximum volume of such a box is approximately $\unit[4000]{cm^2}$, and we achieve it using a base of length approximately $\unit[20]{cm}$. Since the base is square and each sheet of cardboard is $\unit[1200]{cm^2}$, we conclude that the dimensions of each box are $\unit[20]{cm}\times\unit[20]{cm}\times\unit[30]{cm}$. \end{pccsolution} \end{pccexample} \subsection*{Complex zeros} There has been a pattern to all of the examples that we have seen so far| the degree of the polynomial has dictated the number of \emph{real} zeros that the polynomial has. For example, the function $p$ in \cref{poly:ex:simplecubic} has degree $3$, and $p$ has $3$ real zeros; the function $q$ in \cref{poly:ex:degree5} has degree $5$ and $q$ has $5$ real zeros. You may wonder if this result can be generalized| does every polynomial that has degree $n$ have $n$ real zeros? Before we tackle the general result, let's consider an example that may help motivate it. %=================================== % Author: Hughes % Date: June 2012 %=================================== \begin{pccexample}\label{poly:ex:complx} Consider the polynomial function $c$ that has formula \[ c(x)=x(x^2+1) \] It is clear that $c$ has degree $3$, and that $c$ has a (simple) zero at $0$. Does $c$ have any other zeros, i.e, can we find any values of $x$ that satisfy the equation \begin{equation}\label{poly:eq:complx} x^2+1=0 \end{equation} The solutions to \cref{poly:eq:complx} are $\pm i$. We conclude that $c$ has $3$ zeros: $0$ and $\pm i$; we note that \emph{not all of them are real}. \end{pccexample} \Cref{poly:ex:complx} shows that not every degree-$3$ polynomial has $3$ \emph{real} zeros; however, if we are prepared to venture into the complex numbers, then we can state the following theorem. %=================================== % Author: Hughes % Date: June 2012 %=================================== \begin{pccspecialcomment}[The fundamental theorem of algebra] Every polynomial function of degree $n$ has $n$ roots, some of which may be complex, and some may be repeated. \end{pccspecialcomment} \fixthis{Fundamental theorem of algebra: is this wording ok? do we want it as a theorem?} %=================================== % Author: Hughes % Date: June 2012 %=================================== \begin{pccexample} Find all the zeros of the polynomial function $p$ that has formula \[ p(x)=x^4-2x^3+5x^2 \] \begin{pccsolution} We begin by factoring $p$ \begin{align*} p(x) & =x^4-2x^3+5x^2 \\ & =x^2(x^2-2x+5) \end{align*} We note that $0$ is a zero of $p$ with multiplicity $2$. The other zeros of $p$ can be found by solving the equation \[ x^2-2x+5=0 \] This equation can not be factored, so we use the quadratic formula \begin{align*} x & =\frac{2\pm\sqrt{(-2)^2}-20}{2(1)} \\ & =\frac{2\pm\sqrt{-16}}{2} \\ & =1\pm 2i \end{align*} We conclude that $p$ has $4$ zeros: $0$ (multiplicity $2$), and $1\pm 2i$ (simple). \end{pccsolution} \end{pccexample} %=================================== % Author: Hughes % Date: June 2012 %=================================== \begin{pccexample} Find a polynomial that has zeros at $2\pm i\sqrt{2}$. \begin{pccsolution} We know that the zeros of a polynomial can be found by analyzing the linear factors. We are given the zeros, and have to work backwards to find the linear factors. We begin by assuming that $p$ has the form \begin{align*} p(x) & =(x-(2-i\sqrt{2}))(x-(2+i\sqrt{2})) \\ & =x^2-x(2+i\sqrt{2})-x(2-i\sqrt{2})+(2-i\sqrt{2})(2+i\sqrt{2}) \\ & =x^2-4x+(4-2i^2) \\ & =x^2-4x+6 \end{align*} We conclude that a possible formula for a polynomial function, $p$, that has zeros at $2\pm i\sqrt{2}$ is \[ p(x)=x^2-4x+6 \] Note that we could multiply $p$ by any real number and still ensure that $p$ has the same zeros. \end{pccsolution} \end{pccexample} \investigation*{} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{problem}[Find a formula from a graph] For each of the polynomials in \cref{poly:fig:findformula} \begin{enumerate} \item count the number of times the curve turns round, and cuts/bounces off the $x$ axis; \item approximate the degree of the polynomial; \item use your information to find the linear factors of each polynomial, and therefore write a possible formula for each; \item make sure your polynomial goes through the given ordered pair. \end{enumerate} \begin{shortsolution} \Vref{poly:fig:findformdeg2}: \begin{enumerate} \item the curve turns round once; \item the degree could be 2; \item based on the zeros, the linear factors are $(x+5)$ and $(x-3)$; since the graph opens downwards, we will assume the leading coefficient is negative: $p(x)=-k(x+5)(x-3)$; \item $p$ goes through $(2,2)$, so we need to solve $2=-k(7)(-1)$ and therefore $k=\nicefrac{2}{7}$, so \[ p(x)=-\frac{2}{7}(x+5)(x-3) \] \end{enumerate} \Vref{poly:fig:findformdeg3}: \begin{enumerate} \item the curve turns around twice; \item the degree could be 3; \item based on the zeros, the linear factors are $(x+2)^2$, and $(x-1)$; based on the behavior of $p$, we assume that the leading coefficient is positive, and try $p(x)=k(x+2)^2(x-1)$; \item $p$ goes through $(0,-2)$, so we need to solve $-2=k(4)(-1)$ and therefore $k=\nicefrac{1}{2}$, so \[ p(x)=\frac{1}{2}(x+2)^2(x-1) \] \end{enumerate} \Vref{poly:fig:findformdeg5}: \begin{enumerate} \item the curve turns around 4 times; \item the degree could be 5; \item based on the zeros, the linear factors are $(x+5)^2$, $(x+1)$, $(x-2)$, $(x-3)$; based on the behavior of $p$, we assume that the leading coefficient is positive, and try $p(x)=k(x+5)^2(x+1)(x-2)(x-3)$; \item $p$ goes through $(-3,-50)$, so we need to solve $-50=k(64)(-2)(-5)(-6)$ and therefore $k=\nicefrac{5}{384}$, so \[ p(x)=\frac{5}{384}(x+5)^2(x+1)(x-2)(x-3) \] \end{enumerate} \end{shortsolution} \end{problem} \begin{figure}[!htb] \setlength{\figurewidth}{0.3\textwidth} \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-5,xmax=5, ymin=-2,ymax=5, width=\textwidth, ] \addplot expression[domain=-4.5:3.75]{-1/3*(x+4)*(x-3)}; \addplot[soldot] coordinates{(-4,0)(3,0)(2,2)} node[axisnode,above right]{$(2,2)$}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:findformdeg2} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-3,xmax=2, ymin=-2,ymax=4, xtick={-2,...,1}, width=\textwidth, ] \addplot expression[domain=-2.95:1.75]{1/3*(x+2)^2*(x-1)}; \addplot[soldot]coordinates{(-2,0)(1,0)(0,-1.33)}node[axisnode,anchor=north west]{$(0,-2)$}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:findformdeg3} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-5,xmax=5, ymin=-100,ymax=150, width=\textwidth, ] \addplot expression[domain=-4.5:3.4,samples=50]{(x+4)^2*(x+1)*(x-2)*(x-3)}; \addplot[soldot]coordinates{(-4,0)(-1,0)(2,0)(3,0)(-3,-60)}node[axisnode,anchor=north]{$(-3,-50)$}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:findformdeg5} \end{subfigure} \caption{} \label{poly:fig:findformula} \end{figure} \begin{exercises} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{problem}[Prerequisite classifacation skills] Decide if each of the following functions are linear or quadratic. \begin{multicols}{3} \begin{subproblem} $f(x)=2x+3$ \begin{shortsolution} $f$ is linear. \end{shortsolution} \end{subproblem} \begin{subproblem} $g(x)=10-7x$ \begin{shortsolution} $g$ is linear \end{shortsolution} \end{subproblem} \begin{subproblem} $h(x)=-x^2+3x-9$ \begin{shortsolution} $h$ is quadratic. \end{shortsolution} \end{subproblem} \begin{subproblem} $k(x)=-17$ \begin{shortsolution} $k$ is linear. \end{shortsolution} \end{subproblem} \begin{subproblem} $l(x)=-82x^2-4$ \begin{shortsolution} $l$ is quadratic \end{shortsolution} \end{subproblem} \begin{subproblem} $m(x)=6^2x-8$ \begin{shortsolution} $m$ is linear. \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{problem}[Prerequisite slope identification] State the slope of each of the following linear functions, and hence decide if each function is increasing or decreasing. \begin{multicols}{4} \begin{subproblem} $\alpha(x)=4x+1$ \begin{shortsolution} $m=4$; $\alpha$ is increasing. \end{shortsolution} \end{subproblem} \begin{subproblem} $\beta(x)=-9x$ \begin{shortsolution} $m=-9$; $\beta$ is decreasing. \end{shortsolution} \end{subproblem} \begin{subproblem} $\gamma(t)=18t+100$ \begin{shortsolution} $m=18$; $\gamma$ is increasing. \end{shortsolution} \end{subproblem} \begin{subproblem} $\delta(y)=23-y$ \begin{shortsolution} $m=-1$; $\delta$ is decreasing. \end{shortsolution} \end{subproblem} \end{multicols} Now let's generalize our findings for the most general linear function $f$ that has formula $f(x)=mx+b$. Complete the following sentences. \begin{subproblem} When $m>0$, the function $f$ is $\ldots$ \begin{shortsolution} When $m>0$, the function $f$ is $\ldots$ \emph{increasing}. \end{shortsolution} \end{subproblem} \begin{subproblem} When $m<0$, the function $f$ is $\ldots$ \begin{shortsolution} When $m<0$, the function $f$ is $\ldots$ \emph{decreasing}. \end{shortsolution} \end{subproblem} \end{problem} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{problem}[Polynomial or not?] Identify whether each of the following functions is a polynomial or not. If the function is a polynomial, state its degree. \begin{multicols}{3} \begin{subproblem} $p(x)=2x+1$ \begin{shortsolution} $p$ is a polynomial (you might also describe $p$ as linear). The degree of $p$ is 1. \end{shortsolution} \end{subproblem} \begin{subproblem} $p(x)=7x^2+4x$ \begin{shortsolution} $p$ is a polynomial (you might also describe $p$ as quadratic). The degree of $p$ is 2. \end{shortsolution} \end{subproblem} \begin{subproblem} $p(x)=\sqrt{x}+2x+1$ \begin{shortsolution} $p$ is not a polynomial; we require the powers of $x$ to be integer values. \end{shortsolution} \end{subproblem} \begin{subproblem} $p(x)=2^x-45$ \begin{shortsolution} $p$ is not a polynomial; the $2^x$ term is exponential. \end{shortsolution} \end{subproblem} \begin{subproblem} $p(x)=6x^4-5x^3+9$ \begin{shortsolution} $p$ is a polynomial, and the degree of $p$ is $6$. \end{shortsolution} \end{subproblem} \begin{subproblem} $p(x)=-5x^{17}+9x+2$ \begin{shortsolution} $p$ is a polynomial, and the degree of $p$ is 17. \end{shortsolution} \end{subproblem} \begin{subproblem} $p(x)=4x(x+7)^2(x-3)^3$ \begin{shortsolution} $p$ is a polynomial, and the degree of $p$ is $6$. \end{shortsolution} \end{subproblem} \begin{subproblem} $p(x)=4x^{-5}-x^2+x$ \begin{shortsolution} $p$ is not a polynomial because $-5$ is not a positive integer. \end{shortsolution} \end{subproblem} \begin{subproblem} $p(x)=-x^6(x^2+1)(x^3-2)$ \begin{shortsolution} $p$ is a polynomial, and the degree of $p$ is $11$. \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{problem}[Polynomial graphs] Three polynomial functions $p$, $m$, and $n$ are shown in \crefrange{poly:fig:functionp}{poly:fig:functionn}. The functions have the following formulas \begin{align*} p(x) & = (x-1)(x+2)(x-3) \\ m(x) & = -(x-1)(x+2)(x-3) \\ n(x) & = (x-1)(x+2)(x-3)(x+1)(x+4) \end{align*} Note that for our present purposes we are not concerned with the vertical scale of the graphs. \begin{subproblem} Identify both on the graph {\em and} algebraically, the zeros of each polynomial. \begin{shortsolution} $y=p(x)$ is shown below. \begin{tikzpicture} \begin{axis}[ xmin=-5,xmax=5, ymin=-10,ymax=10, width=\solutionfigurewidth, ] \addplot expression[domain=-2.5:3.5,samples=50]{(x-1)*(x+2)*(x-3)}; \addplot[soldot] coordinates{(-2,0)(1,0)(3,0)}; \end{axis} \end{tikzpicture} $y=m(x)$ is shown below. \begin{tikzpicture} \begin{axis}[ xmin=-5,xmax=5, ymin=-10,ymax=10, width=\solutionfigurewidth, ] \addplot expression[domain=-2.5:3.5,samples=50]{-1*(x-1)*(x+2)*(x-3)}; \addplot[soldot] coordinates{(-2,0)(1,0)(3,0)}; \end{axis} \end{tikzpicture} $y=n(x)$ is shown below. \begin{tikzpicture} \begin{axis}[ xmin=-5,xmax=5, ymin=-90,ymax=70, width=\solutionfigurewidth, ] \addplot expression[domain=-4.15:3.15,samples=50]{(x-1)*(x+2)*(x-3)*(x+1)*(x+4)}; \addplot[soldot] coordinates{(-4,0)(-2,0)(-1,0)(1,0)(3,0)}; \end{axis} \end{tikzpicture} The zeros of $p$ are $-2$, $1$, and $3$; the zeros of $m$ are $-2$, $1$, and $3$; the zeros of $n$ are $-4$, $-2$, $-1$, and $3$. \end{shortsolution} \end{subproblem} \begin{subproblem} Write down the degree, how many times the curve of each function `turns around', and how many zeros it has \begin{shortsolution} \begin{itemize} \item The degree of $p$ is 3, and the curve $y=p(x)$ turns around twice. \item The degree of $q$ is also 3, and the curve $y=q(x)$ turns around twice. \item The degree of $n$ is $5$, and the curve $y=n(x)$ turns around 4 times. \end{itemize} \end{shortsolution} \end{subproblem} \end{problem} \begin{figure}[!htb] \begin{widepage} \setlength{\figurewidth}{0.3\textwidth} \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-5,xmax=5, ymin=-10,ymax=10, ytick={-5,5}, width=\textwidth, ] \addplot expression[domain=-2.5:3.5,samples=50]{(x-1)*(x+2)*(x-3)}; \addplot[soldot]coordinates{(-2,0)(1,0)(3,0)}; \end{axis} \end{tikzpicture} \caption{$y=p(x)$} \label{poly:fig:functionp} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-5,xmax=5, ymin=-10,ymax=10, ytick={-5,5}, width=\textwidth, ] \addplot expression[domain=-2.5:3.5,samples=50]{-1*(x-1)*(x+2)*(x-3)}; \addplot[soldot]coordinates{(-2,0)(1,0)(3,0)}; \end{axis} \end{tikzpicture} \caption{$y=m(x)$} \label{poly:fig:functionm} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-5,xmax=5, ymin=-90,ymax=70, width=\textwidth, ] \addplot expression[domain=-4.15:3.15,samples=100]{(x-1)*(x+2)*(x-3)*(x+1)*(x+4)}; \addplot[soldot]coordinates{(-4,0)(-2,0)(-1,0)(1,0)(3,0)}; \end{axis} \end{tikzpicture} \caption{$y=n(x)$} \label{poly:fig:functionn} \end{subfigure} \caption{} \end{widepage} \end{figure} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{problem}[Horizontal intercepts]\label{poly:prob:matchpolys}% State the horizontal intercepts (as ordered pairs) of the following polynomials. \begin{multicols}{2} \begin{subproblem}\label{poly:prob:degree5} $p(x)=(x-1)(x+2)(x-3)(x+1)(x+4)$ \begin{shortsolution} $(-4,0)$, $(-2,0)$, $(-1,0)$, $(1,0)$, $(3,0)$ \end{shortsolution} \end{subproblem} \begin{subproblem} $q(x)=-(x-1)(x+2)(x-3)$ \begin{shortsolution} $(-2,0)$, $(1,0)$, $(3,0)$ \end{shortsolution} \end{subproblem} \begin{subproblem} $r(x)=(x-1)(x+2)(x-3)$ \begin{shortsolution} $(-2,0)$, $(1,0)$, $(3,0)$ \end{shortsolution} \end{subproblem} \begin{subproblem}\label{poly:prob:degree2} $s(x)=(x-2)(x+2)$ \begin{shortsolution} $(-2,0)$, $(2,0)$ \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{problem}[Minimums, maximums, and concavity]\label{poly:prob:incdec} Four polynomial functions are graphed in \cref{poly:fig:incdec}. The formulas for these functions are (not respectively) \begin{gather*} p(x)=\frac{x^3}{6}-\frac{x^2}{4}-3x, \qquad q(x)=\frac{x^4}{20}+\frac{x^3}{15}-\frac{6}{5}x^2+1\\ r(x)=-\frac{x^5}{50}-\frac{x^4}{40}+\frac{2x^3}{5}+6, \qquad s(x)=-\frac{x^6}{6000}-\frac{x^5}{2500}+\frac{67x^4}{4000}+\frac{17x^3}{750}-\frac{42x^2}{125} \end{gather*} \begin{figure}[!htb] \begin{widepage} \setlength{\figurewidth}{.23\textwidth} \centering \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ framed, width=\textwidth, xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-8,-6,...,8}, grid=major, ] \addplot expression[domain=-5.28:4.68,samples=50]{-x^5/50-x^4/40+2*x^3/5+6}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:incdec3} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ framed, width=\textwidth, xmin=-10,xmax=10,ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-8,-6,...,8}, grid=major, ] \addplot expression[domain=-6.08:4.967,samples=50]{x^4/20+x^3/15-6/5*x^2+1}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:incdec2} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ framed, width=\textwidth, xmin=-6,xmax=8,ymin=-10,ymax=10, xtick={-4,-2,...,6}, ytick={-8,-4,4,8}, minor ytick={-6,-2,...,6}, grid=both, ] \addplot expression[domain=-4.818:6.081,samples=50]{x^3/6-x^2/4-3*x}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:incdec1} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ framed, width=\textwidth, xmin=-10,xmax=10,ymin=-10,ymax=10, xtick={-8,-4,4,8}, ytick={-8,-4,4,8}, minor xtick={-6,-2,...,6}, minor ytick={-6,-2,...,6}, grid=both, ] \addplot expression[domain=-9.77:8.866,samples=50]{-x^6/6000-x^5/2500+67*x^4/4000+17/750*x^3-42/125*x^2}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:incdec4} \end{subfigure} \caption{Graphs for \cref{poly:prob:incdec}.} \label{poly:fig:incdec} \end{widepage} \end{figure} \begin{subproblem} Match each of the formulas with one of the given graphs. \begin{shortsolution} \begin{itemize} \item $p$ is graphed in \vref{poly:fig:incdec1}; \item $q$ is graphed in \vref{poly:fig:incdec2}; \item $r$ is graphed in \vref{poly:fig:incdec3}; \item $s$ is graphed in \vref{poly:fig:incdec4}. \end{itemize} \end{shortsolution} \end{subproblem} \begin{subproblem} Approximate the zeros of each function using the appropriate graph. \begin{shortsolution} \begin{itemize} \item $p$ has simple zeros at about $-3.8$, $0$, and $5$. \item $q$ has simple zeros at about $-5.9$, $-1$, $1$, and $4$. \item $r$ has simple zeros at about $-5$, $-2.9$, and $4.1$. \item $s$ has simple zeros at about $-9$, $-6$, $4.2$, $8.1$, and a zero of multiplicity $2$ at $0$. \end{itemize} \end{shortsolution} \end{subproblem} \begin{subproblem} Approximate the local maximums and minimums of each of the functions. \begin{shortsolution} \begin{itemize} \item $p$ has a local maximum of approximately $3.9$ at $-2$, and a local minimum of approximately $-6.5$ at $3$. \item $q$ has a local minimum of approximately $-10$ at $-4$, and $-4$ at $3$; $q$ has a local maximum of approximately $1$ at $0$. \item $r$ has a local minimum of approximately $-5.5$ at $-4$, and a local maximum of approximately $10$ at $3$. \item $s$ has a local maximum of approximately $5$ at $-8$, $0$ at $0$, and $5$ at $7$; $s$ has local minimums of approximately $-3$ at $-4$, and $-1$ at $3$. \end{itemize} \end{shortsolution} \end{subproblem} \begin{subproblem} Approximate the global maximums and minimums of each of the functions. \begin{shortsolution} \begin{itemize} \item $p$ does not have a global maximum, nor a global minimum. \item $q$ has a global minimum of approximately $-10$; it does not have a global maximum. \item $r$ does not have a global maximum, nor a global minimum. \item $s$ has a global maximum of approximately $5$; it does not have a global minimum. \end{itemize} \end{shortsolution} \end{subproblem} \begin{subproblem} Approximate the intervals on which each function is increasing and decreasing. \begin{shortsolution} \begin{itemize} \item $p$ is increasing on $(-\infty,-2)\cup (3,\infty)$, and decreasing on $(-2,3)$. \item $q$ is increasing on $(-4,0)\cup (3,\infty)$, and decreasing on $(-\infty,-4)\cup (0,3)$. \item $r$ is increasing on $(-4,3)$, and decreasing on $(-\infty,-4)\cup (3,\infty)$. \item $s$ is increasing on $(-\infty,-8)\cup (-4,0)\cup (3,5)$, and decreasing on $(-8,-4)\cup (0,3)\cup (5,\infty)$. \end{itemize} \end{shortsolution} \end{subproblem} \begin{subproblem} Approximate the intervals on which each function is concave up and concave down. \begin{shortsolution} \begin{itemize} \item $p$ is concave up on $(1,\infty)$, and concave down on $(-\infty,1)$. \item $q$ is concave up on $(-\infty,-1)\cup (1,\infty)$, and concave down on $(-1,1)$. \item $r$ is concave up on $(-\infty,-3)\cup (0,2)$, and concave down on $(-3,0)\cup (2,\infty)$. \item $s$ is concave up on $(-6,-2)\cup (2,5)$, and concave down on $(-\infty,-6)\cup (-2,2)\cup (5,\infty)$. \end{itemize} \end{shortsolution} \end{subproblem} \begin{subproblem} The degree of $q$ is $5$. Assuming that all of the real zeros of $q$ are shown in its graph, how many complex zeros does $q$ have? \begin{shortsolution} \Vref{poly:fig:incdec2} shows that $q$ has $3$ real zeros since the curve of $q$ cuts the horizontal axis $3$ times. Since $q$ has degree $5$, $q$ must have $2$ complex zeros. \end{shortsolution} \end{subproblem} \end{problem} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{problem}[Long-run behaviour of polynomials] Describe the long-run behavior of each of polynomial functions in \crefrange{poly:prob:degree5}{poly:prob:degree2}. \begin{shortsolution} $\dd\lim_{x\rightarrow-\infty}p(x)=-\infty$, $\dd\lim_{x\rightarrow\infty}p(x)=\infty$, $\dd\lim_{x\rightarrow-\infty}q(x)=\infty$, $\dd\lim_{x\rightarrow\infty}q(x)=-\infty$, $\dd\lim_{x\rightarrow-\infty}r(x)=-\infty$, $\dd\lim_{x\rightarrow\infty}r(x)=\infty$, $\dd\lim_{x\rightarrow-\infty}s(x)=\infty$, $\dd\lim_{x\rightarrow\infty}s(x)=\infty$, \end{shortsolution} \end{problem} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{problem}[True of false?] Let $p$ be a polynomial function. Label each of the following statements as true (T) or false (F); if they are false, provide an example that supports your answer. \begin{subproblem} If $p$ has degree $3$, then $p$ has $3$ distinct zeros. \begin{shortsolution} False. Consider $p(x)=x^2(x+1)$ which has only 2 distinct zeros. \end{shortsolution} \end{subproblem} \begin{subproblem} If $p$ has degree $4$, then $\dd\lim_{x\rightarrow-\infty}p(x)=\infty$ and $\dd\lim_{x\rightarrow\infty}p(x)=\infty$. \begin{shortsolution} False. Consider $p(x)=-x^4$. \end{shortsolution} \end{subproblem} \begin{subproblem} If $p$ has even degree, then it is possible that $p$ can have no real zeros. \begin{shortsolution} True. \end{shortsolution} \end{subproblem} \begin{subproblem} If $p$ has odd degree, then it is possible that $p$ can have no real zeros. \begin{shortsolution} False. All odd degree polynomials will cut the horizontal axis at least once. \end{shortsolution} \end{subproblem} \end{problem} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{problem}[Find a formula from a description] In each of the following problems, give a possible formula for a polynomial function that has the specified properties. \begin{subproblem} Degree 2 and has zeros at $4$ and $5$. \begin{shortsolution} Possible option: $p(x)=(x-4)(x-5)$. Note we could multiply $p$ by any real number, and still meet the requirements. \end{shortsolution} \end{subproblem} \begin{subproblem} Degree 3 and has zeros at $4$,$5$ and $-3$. \begin{shortsolution} Possible option: $p(x)=(x-4)(x-5)(x+3)$. Note we could multiply $p$ by any real number, and still meet the requirements. \end{shortsolution} \end{subproblem} \begin{subproblem} Degree 4 and has zeros at $0$, $4$, $5$, $-3$. \begin{shortsolution} Possible option: $p(x)=x(x-4)(x-5)(x+3)$. Note we could multiply $p$ by any real number, and still meet the requirements. \end{shortsolution} \end{subproblem} \begin{subproblem} Degree 4, with zeros that make the graph cut at $2$, $-5$, and a zero that makes the graph touch at $-2$; \begin{shortsolution} Possible option: $p(x)=(x-2)(x+5)(x+2)^2$. Note we could multiply $p$ by any real number, and still meet the requirements. \end{shortsolution} \end{subproblem} \begin{subproblem} Degree 3, with only one zero at $-1$. \begin{shortsolution} Possible option: $p(x)=(x+1)^3$. Note we could multiply $p$ by any real number, and still meet the requirements. \end{shortsolution} \end{subproblem} \end{problem} %=================================== % Author: Hughes % Date: June 2012 %=================================== \begin{problem}[\Cref{poly:step:last}] \pccname{Saheed} is graphing a polynomial function, $p$. He is following \crefrange{poly:step:first}{poly:step:last} and has so far marked the zeros of $p$ on \cref{poly:fig:optionsp1}. Saheed tells you that $p$ has degree $3$, but does \emph{not} say if the leading coefficient of $p$ is positive or negative. \begin{figure}[!htbp] \begin{widepage} \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-15}, width=\textwidth, height=.5\textwidth, ] \addplot[soldot] coordinates{(-5,0)(2,0)(6,0)}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:optionsp1} \end{subfigure}% \hfill \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-15}, width=\textwidth, height=.5\textwidth, ] \addplot[soldot] coordinates{(-5,0)(6,0)}; \end{axis} \end{tikzpicture} \caption{} \label{poly:fig:optionsp2} \end{subfigure}% \caption{} \end{widepage} \end{figure} \begin{subproblem} Use the information in \cref{poly:fig:optionsp1} to help sketch $p$, assuming that the leading coefficient is positive. \begin{shortsolution} Assuming that $a_3>0$: \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-15}, width=\solutionfigurewidth, ] \addplot expression[domain=-6.78179:8.35598,samples=50]{1/20*(x+5)*(x-2)*(x-6)}; \addplot[soldot] coordinates{(-5,0)(2,0)(6,0)}; \end{axis} \end{tikzpicture} \end{shortsolution} \end{subproblem} \begin{subproblem} Use the information in \cref{poly:fig:optionsp1} to help sketch $p$, assuming that the leading coefficient is negative. \begin{shortsolution} Assuming that $a_3<0$: \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-15}, width=\solutionfigurewidth, ] \addplot expression[domain=-6.78179:8.35598,samples=50]{-1/20*(x+5)*(x-2)*(x-6)}; \addplot[soldot] coordinates{(-5,0)(2,0)(6,0)}; \end{axis} \end{tikzpicture} \end{shortsolution} \end{subproblem} Saheed now turns his attention to another polynomial function, $q$. He finds the zeros of $q$ (there are only $2$) and marks them on \cref{poly:fig:optionsp2}. Saheed knows that $q$ has degree $3$, but doesn't know if the leading coefficient is positive or negative. \begin{subproblem} Use the information in \cref{poly:fig:optionsp2} to help sketch $q$, assuming that the leading coefficient of $q$ is positive. Hint: only one of the zeros is simple. \begin{shortsolution} Assuming that $a_4>0$ there are $2$ different options: \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-15}, width=\solutionfigurewidth, ] \addplot expression[domain=-8.68983:7.31809,samples=50]{1/20*(x+5)^2*(x-6)}; \addplot expression[domain=-6.31809:9.68893,samples=50]{1/20*(x+5)*(x-6)^2}; \addplot[soldot] coordinates{(-5,0)(6,0)}; \end{axis} \end{tikzpicture} \end{shortsolution} \end{subproblem} \begin{subproblem} Use the information in \cref{poly:fig:optionsp2} to help sketch $q$, assuming that the leading coefficient of $q$ is negative. \begin{shortsolution} Assuming that $a_4<0$ there are $2$ different options: \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-15}, width=\solutionfigurewidth, ] \addplot expression[domain=-8.68983:7.31809,samples=50]{-1/20*(x+5)^2*(x-6)}; \addplot expression[domain=-6.31809:9.68893,samples=50]{-1/20*(x+5)*(x-6)^2}; \addplot[soldot] coordinates{(-5,0)(6,0)}; \end{axis} \end{tikzpicture} \end{shortsolution} \end{subproblem} \end{problem} %=================================== % Author: Hughes % Date: June 2012 %=================================== \begin{problem}[Zeros] Find all zeros of each of the following polynomial functions, making sure to detail their multiplicity. Note that you may need to use factoring, or the quadratic formula, or both! Also note that some zeros may be repeated, and some may be complex. \begin{multicols}{3} \begin{subproblem} $p(x)=x^2+1$ \begin{shortsolution} $\pm i$ (simple). \end{shortsolution} \end{subproblem} \begin{subproblem} $q(y)=(y^2-9)(y^2-7)$ \begin{shortsolution} $\pm 3$, $\pm \sqrt{7}$ (all are simple). \end{shortsolution} \end{subproblem} \begin{subproblem} $r(z)=-4z^3(z^2+3)(z^2+64)$ \begin{shortsolution} $0$ (multiplicity $3$), $\pm\sqrt{3}$ (simple), $\pm\sqrt{8}$ (simple). \end{shortsolution} \end{subproblem} \begin{subproblem} $a(x)=x^4-81$ \begin{shortsolution} $\pm 3$, $\pm 3i$ (all are simple). \end{shortsolution} \end{subproblem} \begin{subproblem} $b(y)=y^3-8$ \begin{shortsolution} $2$, $-1\pm i\sqrt{3}$ (all are simple). \end{shortsolution} \end{subproblem} \begin{subproblem} $c(m)=m^3-m^2$ \begin{shortsolution} $0$ (multiplicity $2$), $1$ (simple). \end{shortsolution} \end{subproblem} \begin{subproblem} $h(n)=(n+1)(n^2+4)$ \begin{shortsolution} $-1$, $\pm 2i$ (all are simple). \end{shortsolution} \end{subproblem} \begin{subproblem} $f(\alpha)=(\alpha^2-16)(\alpha^2-5\alpha+4)$ \begin{shortsolution} $-4$ (simple), $4$ (multiplicity $2$), $1$ (simple). \end{shortsolution} \end{subproblem} \begin{subproblem} $g(\beta)=(\beta^2-25)(\beta^2-5\beta-4)$ \begin{shortsolution} $\pm 5$, $\dfrac{5\pm\sqrt{41}}{2}$ (all are simple). \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: June 2012 %=================================== \begin{problem}[Given zeros, find a formula] In each of the following problems you are given the zeros of a polynomial. Write a possible formula for each polynomial| you may leave your answer in factored form, but it may not contain complex numbers. Unless otherwise stated, assume that the zeros are simple. \begin{multicols}{3} \begin{subproblem} $1$, $2$ \begin{shortsolution} $p(x)=(x-1)(x-2)$ \end{shortsolution} \end{subproblem} \begin{subproblem} $0$, $5$, $13$ \begin{shortsolution} $p(x)=x(x-5)(x-13)$ \end{shortsolution} \end{subproblem} \begin{subproblem} $-7$, $2$ (multiplicity $3$), $5$ \begin{shortsolution} $p(x)=(x+7)(x-2)^3(x-5)$ \end{shortsolution} \end{subproblem} \begin{subproblem} $0$, $\pm i$ \begin{shortsolution} $p(x)=x(x^2+1)$ \end{shortsolution} \end{subproblem} \begin{subproblem} $\pm 2i$, $\pm 7$ \begin{shortsolution} $p(x)=(x^2+4)(x^2-49)$ \end{shortsolution} \end{subproblem} \begin{subproblem} $-2\pm i\sqrt{6}$ \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: June 2012 %=================================== \begin{problem}[Composition of polynomials] Let $p$ and $q$ be polynomial functions that have formulas \[ p(x)=(x+1)(x+2)(x+5), \qquad q(x)=3-x^4 \] Evaluate each of the following. \begin{multicols}{4} \begin{subproblem} $(p\circ q)(0)$ \begin{shortsolution} $160$ \end{shortsolution} \end{subproblem} \begin{subproblem} $(q\circ p)(0)$ \begin{shortsolution} $-9997$ \end{shortsolution} \end{subproblem} \begin{subproblem} $(p\circ q)(1)$ \begin{shortsolution} $84$ \end{shortsolution} \end{subproblem} \begin{subproblem} $(p\circ p)(0)$ \begin{shortsolution} $1980$ \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: June 2012 %=================================== \begin{problem}[Piecewise polynomial functions] Let $P$ be the piecewise-defined function with formula \[ P(x)=\begin{cases} (1-x)(2x+5)(x^2+1), & x\leq -3\\ 4-x^2, & -3m$ then $r$ will have an oblique asymptote as $x\rightarrow\pm\infty$ (more on this in \cref{rat:sec:oblique}) \end{itemize} \end{pccdefinition} We will concentrate on functions that have horizontal asymptotes until we reach \cref{rat:sec:oblique}. %=================================== % Author: Hughes % Date: May 2012 %=================================== \begin{pccexample}[Long-run behavior graphically]\label{rat:ex:horizasymp} \pccname{Kebede} has graphed the following functions in his graphing calculator \[ r(x)=\frac{x+1}{x-3}, \qquad s(x)=\frac{2(x+1)}{x-3}, \qquad t(x)=\frac{3(x+1)}{x-3} \] and obtained the curves shown in \cref{rat:fig:horizasymp}. Kebede decides to test his knowledgeable friend \pccname{Oscar}, and asks him to match the formulas to the graphs. \begin{figure}[!htb] \setlength{\figurewidth}{0.3\textwidth} \begin{subfigure}{\figurewidth} \begin{tikzpicture}[/pgf/declare function={f=2*(x+1)/(x-3);}] \begin{axis}[ framed, xmin=-15,xmax=15, ymin=-6,ymax=6, xtick={-12,-8,...,12}, minor ytick={-4,-3,...,4}, grid=both, width=\textwidth, ] \addplot[pccplot] expression[domain=-15:2]{f}; \addplot[pccplot] expression[domain=5:15]{f}; \addplot[soldot] coordinates{(-1,0)}; \addplot[asymptote,domain=-6:6]({3},{x}); \addplot[asymptote,domain=-15:15]({x},{2}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:horizasymp1} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture}[/pgf/declare function={f=(x+1)/(x-3);}] \begin{axis}[ framed, xmin=-15,xmax=15, ymin=-6,ymax=6, xtick={-12,-8,...,12}, minor ytick={-4,-3,...,4}, grid=both, width=\textwidth, ] \addplot[pccplot] expression[domain=-15:2.42857,samples=50]{f}; \addplot[pccplot] expression[domain=3.8:15,samples=50]{f}; \addplot[soldot] coordinates{(-1,0)}; \addplot[asymptote,domain=-6:6]({3},{x}); \addplot[asymptote,domain=-15:15]({x},{1}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:horizasymp2} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture}[/pgf/declare function={f=3*(x+1)/(x-3);}] \begin{axis}[ framed, xmin=-15,xmax=15, ymin=-6,ymax=6, xtick={-12,-8,...,12}, minor ytick={-4,-3,...,4}, grid=both, width=\textwidth, ] \addplot[pccplot] expression[domain=-15:1.6666,samples=50]{f}; \addplot[pccplot] expression[domain=7:15]{f}; \addplot[soldot] coordinates{(-1,0)}; \addplot[asymptote,domain=-6:6]({3},{x}); \addplot[asymptote,domain=-15:15]({x},{3}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:horizasymp3} \end{subfigure} \caption{Horizontal asymptotes} \label{rat:fig:horizasymp} \end{figure} Oscar notices that each function has a vertical asymptote at $3$ and a zero at $-1$. The main thing that catches Oscar's eye is that each function has a different coefficient in the numerator, and that each curve has a different horizontal asymptote. In particular, Oscar notes that \begin{itemize} \item the curve shown in \cref{rat:fig:horizasymp1} has a horizontal asymptote with equation $y=2$; \item the curve shown in \cref{rat:fig:horizasymp2} has a horizontal asymptote with equation $y=1$; \item the curve shown in \cref{rat:fig:horizasymp3} has a horizontal asymptote with equation $y=3$. \end{itemize} Oscar is able to tie it all together for Kebede by referencing \cref{rat:def:longrun}. He says that since the degree of the numerator and the degree of the denominator is the same for each of the functions $r$, $s$, and $t$, the horizontal asymptote will be determined by evaluating the ratio of their leading coefficients. Oscar therefore says that $r$ should have a horizontal asymptote $y=\frac{1}{1}=1$, $s$ should have a horizontal asymptote $y=\frac{2}{1}=2$, and $t$ should have a horizontal asymptote $y=\frac{3}{1}=3$. Kebede is able to finish the problem from here, and says that $r$ is shown in \cref{rat:fig:horizasymp2}, $s$ is shown in \cref{rat:fig:horizasymp1}, and $t$ is shown in \cref{rat:fig:horizasymp3}. \end{pccexample} %=================================== % Author: Hughes % Date: May 2012 %=================================== \begin{pccexample}[Long-run behavior numerically] \pccname{Xiao} and \pccname{Dwayne} saw \cref{rat:ex:horizasymp} but are a little confused about horizontal asymptotes. What does it mean to say that a function $r$ has a horizontal asymptote? They decide to explore the concept by constructing a table of values for the rational functions $R$ and $S$ that have formulas \[ R(x)=\frac{-5(x+1)}{x-3}, \qquad S(x)=\frac{7(x-5)}{2(x+1)} \] In \cref{rat:tab:plusinfty} they model the behavior of $R$ and $S$ as $x\rightarrow\infty$, and in \cref{rat:tab:minusinfty} they model the behavior of $R$ and $S$ as $x\rightarrow-\infty$ by substituting very large values of $|x|$ into each function. \begin{table}[!htb] \begin{minipage}{.5\textwidth} \centering \caption{$R$ and $S$ as $x\rightarrow\infty$} \label{rat:tab:plusinfty} \begin{tabular}{crr} \beforeheading $x$ & $R(x)$ & $S(x)$ \\ \afterheading $1\times 10^2$ & $-5.20619$ & $3.29208$ \\\normalline $1\times 10^3$ & $-5.02006$ & $3.47902$ \\\normalline $1\times 10^4$ & $-5.00200$ & $3.49790$ \\\normalline $1\times 10^5$ & $-5.00020$ & $3.49979$ \\\normalline $1\times 10^6$ & $-5.00002$ & $3.49998$ \\\lastline \end{tabular} \end{minipage}% \begin{minipage}{.5\textwidth} \centering \caption{$R$ and $S$ as $x\rightarrow-\infty$} \label{rat:tab:minusinfty} \begin{tabular}{crr} \beforeheading $x$ & $R(x)$ & $S(x)$ \\ \afterheading $-1\times 10^2$ & $-4.80583$ & $3.71212$ \\\normalline $-1\times 10^3$ & $-4.98006$ & $3.52102$ \\\normalline $-1\times 10^4$ & $-4.99800$ & $3.50210$ \\\normalline $-1\times 10^5$ & $-4.99980$ & $3.50021$ \\\normalline $-1\times 10^6$ & $-4.99998$ & $3.50002$ \\\lastline \end{tabular} \end{minipage} \end{table} Xiao and Dwayne study \cref{rat:tab:plusinfty,rat:tab:minusinfty} and decide that the functions $R$ and $S$ never actually touch their horizontal asymptotes, but they do get infinitely close. They also feel as if they have a better understanding of what it means to study the behavior of a function as $x\rightarrow\pm\infty$. \end{pccexample} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{pccexample}[Repeated factors in the numerator] Consider the functions $f$, $g$, and $h$ that have formulas \[ f(x)=\frac{(x-2)^2}{(x-3)(x+1)}, \qquad g(x)=\frac{x-2}{(x-3)(x+1)}, \qquad h(x)=\frac{(x-2)^3}{(x-3)(x+1)} \] which are graphed in \cref{rat:fig:repfactn}. We note that each function has vertical asymptotes at $-1$ and $3$, and so the domain of each function is \[ (-\infty,-1)\cup(-1,3)\cup(3,\infty) \] We also notice that the numerators of each function are quite similar| indeed, each function has a zero at $2$, but how does each function behave around their zero? Using \cref{rat:fig:repfactn} to guide us, we note that \begin{itemize} \item $f$ has a horizontal intercept $(2,0)$, but the curve of $f$ does not cut the horizontal axis| it bounces off it; \item $g$ also has a horizontal intercept $(2,0)$, and the curve of $g$ \emph{does} cut the horizontal axis; \item $h$ has a horizontal intercept $(2,0)$, and the curve of $h$ also cuts the axis, but appears flattened as it does so. \end{itemize} We can further enrich our study by discussing the long-run behavior of each function. Using the tools of \cref{rat:def:longrun}, we can deduce that \begin{itemize} \item $f$ has a horizontal asymptote with equation $y=1$; \item $g$ has a horizontal asymptote with equation $y=0$; \item $h$ does \emph{not} have a horizontal asymptote| it has an oblique asymptote (we'll study this more in \cref{rat:sec:oblique}). \end{itemize} \end{pccexample} \begin{figure}[!htb] \setlength{\figurewidth}{0.3\textwidth} \begin{subfigure}{\figurewidth} \begin{tikzpicture}[/pgf/declare function={f=(x-2)^2/((x+1)*(x-3));}] \begin{axis}[ % framed, xmin=-5,xmax=5, ymin=-10,ymax=10, xtick={-4,-2,...,4}, ytick={-8,-4,...,8}, % grid=both, width=\figurewidth, ] \addplot[pccplot] expression[domain=-5:-1.248,samples=50]{f}; \addplot[pccplot] expression[domain=-0.794:2.976,samples=50]{f}; \addplot[pccplot] expression[domain=3.026:5,samples=50]{f}; \addplot[soldot] coordinates{(2,0)}; % \addplot[asymptote,domain=-6:6]({-1},{x}); % \addplot[asymptote,domain=-6:6]({3},{x}); \end{axis} \end{tikzpicture} \caption{$y=\dfrac{(x-2)^2}{(x+1)(x-3)}$} \label{rat:fig:repfactn1} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture}[/pgf/declare function={f=(x-2)/((x+1)*(x-3));}] \begin{axis}[ % framed, xmin=-5,xmax=5, ymin=-10,ymax=10, xtick={-4,-2,...,4}, ytick={-8,-4,...,8}, % grid=both, width=\figurewidth, ] \addplot[pccplot] expression[domain=-5:-1.075]{f}; \addplot[pccplot] expression[domain=-0.925:2.975]{f}; \addplot[pccplot] expression[domain=3.025:5]{f}; \addplot[soldot] coordinates{(2,0)}; % \addplot[asymptote,domain=-6:6]({-1},{x}); % \addplot[asymptote,domain=-6:6]({3},{x}); \end{axis} \end{tikzpicture} \caption{$y=\dfrac{x-2}{(x+1)(x-3)}$} \label{rat:fig:repfactn2} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture}[/pgf/declare function={f=(x-2)^3/((x+1)*(x-3));}] \begin{axis}[ % framed, xmin=-5,xmax=5, xtick={-8,-6,...,8}, % grid=both, ymin=-30,ymax=30, width=\figurewidth, ] \addplot[pccplot] expression[domain=-5:-1.27]{f}; \addplot[pccplot] expression[domain=-0.806:2.99185]{f}; \addplot[pccplot] expression[domain=3.0085:5]{f}; \addplot[soldot] coordinates{(2,0)}; % \addplot[asymptote,domain=-30:30]({-1},{x}); % \addplot[asymptote,domain=-30:30]({3},{x}); \end{axis} \end{tikzpicture} \caption{$y=\dfrac{(x-2)^3}{(x+1)(x-3)}$} \label{rat:fig:repfactn3} \end{subfigure} \caption{} \label{rat:fig:repfactn} \end{figure} \subsection*{Holes} Rational functions have a vertical asymptote at $a$ if the denominator is $0$ at $a$. What happens if the numerator is $0$ at the same place? In this case, we say that the rational function has a \emph{hole} at $a$. \begin{pccdefinition}[Holes] The rational function \[ r(x)=\frac{p(x)}{q(x)} \] has a hole at $a$ if $p(a)=q(a)=0$. Note that holes are different from a vertical asymptotes. We represent that $r$ has a hole at the point $(a,r(a))$ on the curve $y=r(x)$ by using a hollow circle, $\circ$. \end{pccdefinition} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{pccexample} \pccname{Mohammed} and \pccname{Sue} have graphed the function $r$ that has formula \[ r(x)=\frac{x^2+x-6}{(x-2)} \] in their calculators, and can not decide if the correct graph is \cref{rat:fig:hole} or \cref{rat:fig:hole1}. Luckily for them, Oscar is nearby, and can help them settle the debate. Oscar demonstrates that \begin{align*} r(x) & =\frac{(x+3)(x-2)}{(x-2)} \\ & = x+3 \end{align*} but only when $x\ne 2$, because the function is undefined at $2$. Oscar says that this necessarily means that the domain or $r$ is \[ (-\infty,2)\cup(2,\infty) \] and that $r$ must have a hole at $2$. Mohammed and Sue are very grateful for the clarification, and conclude that the graph of $r$ is shown in \cref{rat:fig:hole1}. \begin{figure}[!htb] \begin{minipage}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-4,...,8}, ytick={-8,-4,...,8}, grid=both, width=\textwidth, ] \addplot expression[domain=-10:7]{x+3}; \addplot[soldot] coordinates{(-3,0)}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:hole} \end{minipage}% \hfill \begin{minipage}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-4,...,8}, ytick={-8,-4,...,8}, grid=both, width=\textwidth, ] \addplot expression[domain=-10:7]{x+3}; \addplot[holdot] coordinates{(2,5)}; \addplot[soldot] coordinates{(-3,0)}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:hole1} \end{minipage}% \end{figure} \end{pccexample} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{pccexample} Consider the function $f$ that has formula \[ f(x)=\frac{x(x+3)}{x^2-4x} \] The domain of $f$ is $(-\infty,0)\cup(0,4)\cup(4,\infty)$ because both $0$ and $4$ make the denominator equal to $0$. Notice that \begin{align*} f(x) & = \frac{x(x+3)}{x(x-4)} \\ & = \frac{x+3}{x-4} \end{align*} provided that $x\ne 0$. Since $0$ makes the numerator and the denominator 0 at the same time, we say that $f$ has a hole at $(0,-\nicefrac{3}{4})$. Note that this necessarily means that $f$ does not have a vertical intercept. We also note $f$ has a vertical asymptote at $4$; the function is graphed in \cref{rat:fig:holeex}. \begin{figure}[!htb] \centering \begin{tikzpicture}[/pgf/declare function={f=(x+3)/(x-4);}] \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-8,-6,...,8}, grid=both, ] \addplot[pccplot] expression[domain=-10:3.36364,samples=50]{f}; \addplot[pccplot] expression[domain=4.77:10]{f}; \addplot[asymptote,domain=-10:10]({4},{x}); \addplot[holdot]coordinates{(0,-0.75)}; \addplot[soldot] coordinates{(-3,0)}; \end{axis} \end{tikzpicture} \caption{$y=\dfrac{x(x+3)}{x^2-4x}$} \label{rat:fig:holeex} \end{figure} \end{pccexample} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{pccexample}[Minimums and maximums] \pccname{Seamus} and \pccname{Trang} are discussing rational functions. Seamus says that if a rational function has a vertical asymptote, then it can not possibly have local minimums and maximums, nor can it have global minimums and maximums. Trang says this statement is not always true. She plots the functions $f$ and $g$ that have formulas \[ f(x)=-\frac{32(x-1)(x+1)}{(x-2)^2(x+2)^2}, \qquad g(x)=\frac{32(x-1)(x+1)}{(x-2)^2(x+2)^2} \] in \cref{rat:fig:minmax1,rat:fig:minmax2} and shows them to Seamus. On seeing the graphs, Seamus quickly corrects himself, and says that $f$ has a local (and global) maximum of $2$ at $0$, and that $g$ has a local (and global) minimum of $-2$ at $0$. \begin{figure}[!htb] \begin{minipage}{.45\textwidth} \begin{tikzpicture}[/pgf/declare function={f=-32*(x-1)*(x+1)/(( x-2)^2*(x+2)^2);}] \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-8,-6,...,8}, grid=both, width=\textwidth, ] \addplot[pccplot] expression[domain=-10:-3.01]{f}; \addplot[pccplot] expression[domain=-1.45:1.45]{f}; \addplot[pccplot] expression[domain=3.01:10]{f}; \addplot[soldot] coordinates{(-1,0)(1,0)}; \end{axis} \end{tikzpicture} \caption{$y=f(x)$} \label{rat:fig:minmax1} \end{minipage}% \hfill \begin{minipage}{.45\textwidth} \begin{tikzpicture}[/pgf/declare function={f=32*(x-1)*(x+1)/(( x-2)^2*(x+2)^2);}] \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-8,-6,...,8}, grid=both, width=\textwidth, ] \addplot[pccplot] expression[domain=-10:-3.01]{f}; \addplot[pccplot] expression[domain=-1.45:1.45]{f}; \addplot[pccplot] expression[domain=3.01:10]{f}; \addplot[soldot] coordinates{(-1,0)(1,0)}; \end{axis} \end{tikzpicture} \caption{$y=g(x)$} \label{rat:fig:minmax2} \end{minipage}% \end{figure} Seamus also notes that (in its domain) the function $f$ is always concave down, and that (in its domain) the function $g$ is always concave up. Furthermore, Trang observes that each function behaves like $\frac{1}{x^2}$ around each of its vertical asymptotes, because each linear factor in the denominator is raised to the power $2$. \pccname{Oscar} stops by and reminds both students about the long-run behavior; according to \cref{rat:def:longrun} since the degree of the denominator is greater than the degree of the numerator (in both functions), each function has a horizontal asymptote at $y=0$. \end{pccexample} \investigation*{} %=================================== % Author: Pettit/Hughes % Date: March 2012 %=================================== \begin{problem}[The spaghetti incident] The same Queen from \vref{exp:prob:queenschessboard} has recovered from the rice experiments, and has called her loyal jester for another challenge. The jester has an $11-$inch piece of uncooked spaghetti that he puts on a table; he uses a book to cover $\unit[1]{inch}$ of it so that $\unit[10]{inches}$ hang over the edge. The jester then produces a box of $\unit{mg}$ weights that can be hung from the spaghetti. The jester says it will take $\unit[y]{mg}$ to break the spaghetti when hung $\unit[x]{inches}$ from the edge, according to the rule $y=\frac{100}{x}$. \begin{margintable} \centering \captionof{table}{} \label{rat:tab:spaghetti} \begin{tabular}{cc} \beforeheading \heading{$x$} & \heading{$y$} \\ \afterheading $1$ & \\\normalline $2$ & \\\normalline $3$ & \\\normalline $4$ & \\\normalline $5$ & \\\normalline $6$ & \\\normalline $7$ & \\\normalline $8$ & \\\normalline $9$ & \\\normalline $10$ & \\\lastline \end{tabular} \end{margintable} \begin{subproblem}\label{rat:prob:spaggt1} Help the Queen complete \cref{rat:tab:spaghetti}, and use $2$ digits after the decimal where appropriate. \begin{shortsolution} \begin{tabular}[t]{ld{2}} \beforeheading \heading{$x$} & \heading{$y$} \\ \afterheading $1$ & 100 \\\normalline $2$ & 50 \\\normalline $3$ & 33.33 \\\normalline $4$ & 25 \\\normalline $5$ & 20 \\\normalline $6$ & 16.67 \\\normalline $7$ & 14.29 \\\normalline $8$ & 12.50 \\\normalline $9$ & 11.11 \\\normalline $10$ & 10 \\\lastline \end{tabular} \end{shortsolution} \end{subproblem} \begin{subproblem} What do you notice about the number of $\unit{mg}$ that it takes to break the spaghetti as $x$ increases? \begin{shortsolution} It seems that the number of $\unit{mg}$ that it takes to break the spaghetti decreases as $x$ increases. \end{shortsolution} \end{subproblem} \begin{subproblem}\label{rat:prob:spaglt1} The Queen wonders what happens when $x$ gets very small| help the Queen construct a table of values for $x$ and $y$ when $x=0.0001, 0.001, 0.01, 0.1, 0.5, 1$. \begin{shortsolution} \begin{tabular}[t]{d{2}l} \beforeheading \heading{$x$} & \heading{$y$} \\ \afterheading 0.0001 & $1000000$ \\\normalline 0.001 & $100000$ \\\normalline 0.01 & $10000$ \\\normalline 0.1 & $1000$ \\\normalline 0.5 & $200$ \\\normalline 1 & $100$ \\\lastline \end{tabular} \end{shortsolution} \end{subproblem} \begin{subproblem} What do you notice about the number of $\unit{mg}$ that it takes to break the spaghetti as $x\rightarrow 0$? Would it ever make sense to let $x=0$? \begin{shortsolution} The number of $\unit{mg}$ required to break the spaghetti increases as $x\rightarrow 0$. We can not allow $x$ to be $0$, as we can not divide by $0$, and we can not be $0$ inches from the edge of the table. \end{shortsolution} \end{subproblem} \begin{subproblem} Plot your results from \cref{rat:prob:spaggt1,rat:prob:spaglt1} on the same graph, and join the points using a smooth curve| set the maximum value of $y$ as $200$, and note that this necessarily means that you will not be able to plot all of the points. \begin{shortsolution} The graph of $y=\frac{100}{x}$ is shown below. \begin{tikzpicture} \begin{axis}[ framed, xmin=-2,xmax=11, ymin=-20,ymax=200, xtick={2,4,...,10}, ytick={20,40,...,180}, grid=major, width=\solutionfigurewidth, ] \addplot+[-] expression[domain=0.5:10]{100/x}; \addplot[soldot] coordinates{(0.5,200)(1,100)(2,50)(3,33.33) (4,25)(5,20)(16.67)(7,14.29)(8,12.50)(9,11.11)(10,10)}; \end{axis} \end{tikzpicture} \end{shortsolution} \end{subproblem} \begin{subproblem} Using your graph, observe what happens to $y$ as $x$ increases. If we could somehow construct a piece of uncooked spaghetti that was $\unit[101]{inches}$ long, how many $\unit{mg}$ would it take to break the spaghetti? \begin{shortsolution} As $x$ increases, $y\rightarrow 0$. If we could construct a piece of spaghetti $\unit[101]{inches}$ long, it would only take $\unit[1]{mg}$ to break it $\left(\frac{100}{100}=1\right)$. Of course, the weight of spaghetti would probably cause it to break without the weight. \end{shortsolution} \end{subproblem} The Queen looks forward to more food-related investigations from her jester. \end{problem} %=================================== % Author: Adams (Hughes) % Date: March 2012 %=================================== \begin{problem}[Debt Amortization] To amortize a debt means to pay it off in a given length of time using equal periodic payments. The payments include interest on the unpaid balance. The following formula gives the monthly payment, $M$, in dollars that is necessary to amortize a debt of $P$ dollars in $n$ months at a monthly interest rate of $i$ \[ M=\frac{P\cdot i}{1-(1+i)^{-n}} \] Use this formula in each of the following problems. \begin{subproblem} What monthly payments are necessary on a credit card debt of \$2000 at $\unit[1.5]{\%}$ monthly if you want to pay off the debt in $2$ years? In one year? How much money will you save by paying off the debt in the shorter amount of time? \begin{shortsolution} Paying off the debt in $2$ years, we use \begin{align*} M & = \frac{2000\cdot 0.015}{1-(1+0.015)^{-24}} \\ & \approx 99.85 \end{align*} The monthly payments are \$99.85. Paying off the debt in $1$ year, we use \begin{align*} M & = \frac{2000\cdot 0.015}{1-(1+0.015)^{-12}} \\ & \approx 183.36 \end{align*} The monthly payments are \$183.36 In the $2$-year model we would pay a total of $\$99.85\cdot 12=\$2396.40$. In the $1$-year model we would pay a total of $\$183.36\cdot 12=\$2200.32$. We would therefore save $\$196.08$ if we went with the $1$-year model instead of the $2$-year model. \end{shortsolution} \end{subproblem} \begin{subproblem} To purchase a home, a family needs a loan of \$300,000 at $\unit[5.2]{\%}$ annual interest. Compare a $20$ year loan to a $30$ year loan and make a recommendation for the family. (Note: when given an annual interest rate, it is a common business practice to divide by $12$ to get a monthly rate.) \begin{shortsolution} For the $20$-year loan we use \begin{align*} M & = \frac{300000\cdot \frac{0.052}{12}}{1-\left( 1+\frac{0.052}{12} \right)^{-12\cdot 20}} \\ & \approx 2013.16 \end{align*} The monthly payments are \$2013.16. For the $30$-year loan we use \begin{align*} M & = \frac{300000\cdot \frac{0.052}{12}}{1-\left( 1+\frac{0.052}{12} \right)^{-12\cdot 30}} \\ & \approx 1647.33 \end{align*} The monthly payments are \$1647.33. The total amount paid during the $20$-year loan is $\$2013.16\cdot 12\cdot 20=\$483,158.40$. The total amount paid during the $30$-year loan is $\$1647.33\cdot 12\cdot 30=\$593,038.80$. Recommendation: if you can afford the payments, choose the $20$-year loan. \end{shortsolution} \end{subproblem} \begin{subproblem} \pccname{Ellen} wants to make monthly payments of \$100 to pay off a debt of \$3000 at \unit[12]{\%} annual interest. How long will it take her to pay off the debt? \begin{shortsolution} We are given $M=100$, $P=3000$, $i=0.01$, and we need to find $n$ in the equation \[ 100 = \frac{3000\cdot 0.01}{1-(1+0.01)^{-n}} \] Using logarithms, we find that $n\approx 36$. It will take Ellen about $3$ years to pay off the debt. \end{shortsolution} \end{subproblem} \begin{subproblem} \pccname{Jake} is going to buy a new car. He puts \$2000 down and wants to finance the remaining \$14,000. The dealer will offer him \unit[4]{\%} annual interest for $5$ years, or a \$2000 rebate which he can use to reduce the amount of the loan and \unit[8]{\%} annual interest for 5 years. Which should he choose? \begin{shortsolution} \begin{description} \item[Option 1:] $\unit[4]{\%}$ annual interest for $5$ years on \$14,000. This means that the monthly payments will be calculated using \begin{align*} M & = \frac{14000\cdot \frac{0.04}{12}}{1-\left( 1+\frac{0.04}{12} \right)^{-12\cdot 5}} \\ & \approx 257.83 \end{align*} The monthly payments will be $\$257.83$. The total amount paid will be $\$257.83\cdot 5\cdot 12=\$15,469.80$, of which $\$1469.80$ is interest. \item[Option 2:] $\unit[8]{\%}$ annual interest for $5$ years on \$12,000. This means that the monthly payments will be calculated using \begin{align*} M & = \frac{12000\cdot \frac{0.08}{12}}{1-\left( 1+\frac{0.08}{12} \right)^{-12\cdot 5}} \\ & \approx 243.32 \end{align*} The monthly payments will be $\$243.32$. The total amount paid will be $\$243.32\cdot 5\cdot 12 =\$14,599.20$, of which $\$2599.2$ is interest. \end{description} Jake should choose option 1 to minimize the amount of interest he has to pay. \end{shortsolution} \end{subproblem} \end{problem} \begin{exercises} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{problem}[Rational or not] Decide if each of the following functions are rational or not. If they are rational, state their domain. \begin{multicols}{3} \begin{subproblem} $r(x)=\dfrac{3}{x}$ \begin{shortsolution} $r$ is rational; the domain of $r$ is $(-\infty,0)\cup (0,\infty)$. \end{shortsolution} \end{subproblem} \begin{subproblem} $s(y)=\dfrac{y}{6}$ \begin{shortsolution} $s$ is not rational ($s$ is linear). \end{shortsolution} \end{subproblem} \begin{subproblem} $t(z)=\dfrac{4-x}{7-8z}$ \begin{shortsolution} $t$ is rational; the domain of $t$ is $\left( -\infty,\dfrac{7}{8} \right)\cup \left( \dfrac{7}{8},\infty \right)$. \end{shortsolution} \end{subproblem} \begin{subproblem} $u(w)=\dfrac{w^2}{(w-3)(w+4)}$ \begin{shortsolution} $u$ is rational; the domain of $w$ is $(-\infty,-4)\cup(-4,3)\cup(3,\infty)$. \end{shortsolution} \end{subproblem} \begin{subproblem} $v(x)=\dfrac{4}{(x-2)^2}$ \begin{shortsolution} $v$ is rational; the domain of $v$ is $(-\infty,2)\cup(2,\infty)$. \end{shortsolution} \end{subproblem} \begin{subproblem} $w(x)=\dfrac{9-x}{x+17}$ \begin{shortsolution} $w$ is rational; the domain of $w$ is $(-\infty,-17)\cup(-17,\infty)$. \end{shortsolution} \end{subproblem} \begin{subproblem} $a(x)=x^2+4$ \begin{shortsolution} $a$ is not rational ($a$ is quadratic, or a polynomial of degree $2$). \end{shortsolution} \end{subproblem} \begin{subproblem} $b(y)=3^y$ \begin{shortsolution} $b$ is not rational ($b$ is exponential). \end{shortsolution} \end{subproblem} \begin{subproblem} $c(z)=\dfrac{z^2}{z^3}$ \begin{shortsolution} $c$ is rational; the domain of $c$ is $(-\infty,0)\cup (0,\infty)$. \end{shortsolution} \end{subproblem} \begin{subproblem} $d(x)=x^2(x+3)(5x-7)$ \begin{shortsolution} $d$ is not rational ($d$ is a polynomial). \end{shortsolution} \end{subproblem} \begin{subproblem} $e(\alpha)=\dfrac{\alpha^2}{\alpha^2-1}$ \begin{shortsolution} $e$ is rational; the domain of $e$ is $(-\infty,-1)\cup(-1,1)\cup(1,\infty)$. \end{shortsolution} \end{subproblem} \begin{subproblem} $f(\beta)=\dfrac{3}{4}$ \begin{shortsolution} $f$ is not rational ($f$ is constant). \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{problem}[Function evaluation] Let $r$ be the function that has formula \[ r(x)=\frac{(x-2)(x+3)}{(x+5)(x-7)} \] Evaluate each of the following (if possible); if the value is undefined, then state so. \begin{multicols}{4} \begin{subproblem} $r(0)$ \begin{shortsolution} $\begin{aligned}[t] r(0) & =\frac{(0-2)(0+3)}{(0+5)(0-7)} \\ & =\frac{-6}{-35} \\ & =\frac{6}{35} \end{aligned}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $r(1)$ \begin{shortsolution} $\begin{aligned}[t] r(1) & =\frac{(1-2)(1+3)}{(1+5)(1-7)} \\ & =\frac{-4}{-36} \\ & =\frac{1}{9} \end{aligned}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $r(2)$ \begin{shortsolution} $\begin{aligned}[t] r(2) & =\frac{(2-2)(2+3)}{(2+5)(2-7)} \\ & = \frac{0}{-50} \\ & =0 \end{aligned}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $r(4)$ \begin{shortsolution} $\begin{aligned}[t] r(4) & =\frac{(4-2)(4+3)}{(4+5)(4-7)} \\ & =\frac{14}{-27} \\ & =-\frac{14}{27} \end{aligned}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $r(7)$ \begin{shortsolution} $\begin{aligned}[t] r(7) & =\frac{(7-2)(7+3)}{(7+5)(7-7)} \\ & =\frac{50}{0} \end{aligned}$ $r(7)$ is undefined. \end{shortsolution} \end{subproblem} \begin{subproblem} $r(-3)$ \begin{shortsolution} $\begin{aligned}[t] r(-3) & =\frac{(-3-2)(-3+3)}{(-3+5)(-3-7)} \\ & =\frac{0}{-20} \\ & =0 \end{aligned}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $r(-5)$ \begin{shortsolution} $\begin{aligned}[t] r(-5) & =\frac{(-5-2)(-5+3)}{(-5+5)(-5-7)} \\ & =\frac{14}{0} \end{aligned}$ $r(-5)$ is undefined. \end{shortsolution} \end{subproblem} \begin{subproblem} $r\left( \frac{1}{2} \right)$ \begin{shortsolution} $\begin{aligned}[t] r\left( \frac{1}{2} \right) & = \frac{\left( \frac{1}{2}-2 \right)\left( \frac{1}{2}+3 \right)}{\left( \frac{1}{2}+5 \right)\left( \frac{1}{2}-7 \right)} \\ & =\frac{-\frac{3}{2}\cdot\frac{7}{2}}{\frac{11}{2}\left( -\frac{13}{2} \right)} \\ & =\frac{-\frac{21}{4}}{-\frac{143}{4}} \\ & =\frac{37}{143} \end{aligned}$ \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{problem}[Holes or asymptotes?] State the domain of each of the following rational functions. Identify any holes or asymptotes. \begin{multicols}{3} \begin{subproblem} $f(x)=\dfrac{12}{x-2}$ \begin{shortsolution} $f$ has a vertical asymptote at $2$; the domain of $f$ is $(-\infty,2)\cup (2,\infty)$. \end{shortsolution} \end{subproblem} \begin{subproblem} $g(x)=\dfrac{x^2+x}{(x+1)(x-2)}$ \begin{shortsolution} $g$ has a vertical asymptote at $2$, and a hole at $-1$; the domain of $g$ is $(-\infty,-1)\cup(-1,2)\cup(2,\infty)$. \end{shortsolution} \end{subproblem} \begin{subproblem} $h(x)=\dfrac{x^2+5x+4}{x^2+x-12}$ \begin{shortsolution} $h$ has a vertical asymptote at $3$, and a whole at $-4$; the domain of $h$ is $(-\infty,-4)\cup(-4,3)\cup(3,\infty)$. \end{shortsolution} \end{subproblem} \begin{subproblem} $k(z)=\dfrac{z+2}{2z-3}$ \begin{shortsolution} $k$ has a vertical asymptote at $\dfrac{3}{2}$; the domain of $k$ is $\left( -\infty,\dfrac{3}{2} \right)\cup\left( \dfrac{3}{2},\infty \right)$. \end{shortsolution} \end{subproblem} \begin{subproblem} $l(w)=\dfrac{w}{w^2+1}$ \begin{shortsolution} $l$ does not have any vertical asymptotes nor holes; the domain of $w$ is $(-\infty,\infty)$. \end{shortsolution} \end{subproblem} \begin{subproblem} $m(t)=\dfrac{14}{13-t^2}$ \begin{shortsolution} $m$ has vertical asymptotes at $\pm\sqrt{13}$; the domain of $m$ is $(-\infty,\sqrt{13})\cup(-\sqrt{13},\sqrt{13})\cup(\sqrt{13},\infty)$. \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{problem}[Find a formula from a graph] Consider the rational functions graphed in \cref{rat:fig:findformula}. Find the vertical asymptotes for each function, together with any zeros, and give a possible formula for each. \begin{shortsolution} \begin{itemize} \item \Vref{rat:fig:formula1}: possible formula is $r(x)=\dfrac{1}{x+5}$ \item \Vref{rat:fig:formula2}: possible formula is $r(x)=\dfrac{(x+3)}{(x-5)}$ \item \Vref{rat:fig:formula3}: possible formula is $r(x)=\dfrac{1}{(x-4)(x+3)}$. \end{itemize} \end{shortsolution} \end{problem} \begin{figure}[!htb] \begin{widepage} \setlength{\figurewidth}{0.3\textwidth} \begin{subfigure}{\figurewidth} \begin{tikzpicture}[/pgf/declare function={f=1/(x+4);}] \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-6,ymax=6, xtick={-8,-6,...,8}, minor ytick={-4,-3,...,4}, grid=both, width=\textwidth, ] \addplot[pccplot] expression[domain=-10:-4.16667,samples=50]{f}; \addplot[pccplot] expression[domain=-3.83333:10,samples=50]{f}; \addplot[asymptote,domain=-6:6]({-4},{x}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:formula1} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture}[/pgf/declare function={f=(x+3)/(x-5);}] \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-6,ymax=6, xtick={-8,-6,...,8}, minor ytick={-4,-3,...,4}, grid=both, width=\textwidth, ] \addplot[pccplot] expression[domain=-10:3.85714]{f}; \addplot[pccplot] expression[domain=6.6:10]{f}; \addplot[soldot] coordinates{(-3,0)}; \addplot[asymptote,domain=-6:6]({5},{x}); \addplot[asymptote,domain=-10:10]({x},{1}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:formula2} \end{subfigure} \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture}[/pgf/declare function={f=1/((x-4)*(x+3));}] \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-3,ymax=3, xtick={-8,-6,...,8}, minor ytick={-4,-3,...,4}, grid=both, width=\textwidth, ] \addplot[pccplot] expression[domain=-10:-3.0473]{f}; \addplot[pccplot] expression[domain=-2.95205:3.95205]{f}; \addplot[pccplot] expression[domain=4.0473:10]{f}; \addplot[asymptote,domain=-3:3]({-3},{x}); \addplot[asymptote,domain=-3:3]({4},{x}); \addplot[asymptote,domain=-10:10]({x},{0}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:formula3} \end{subfigure} \caption{} \label{rat:fig:findformula} \end{widepage} \end{figure} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{problem}[Find a formula from a description] In each of the following problems, give a formula of a rational function that has the listed properties. \begin{subproblem} Vertical asymptote at $2$. \begin{shortsolution} Possible option: $r(x)=\dfrac{1}{x-2}$. Note that we could multiply the numerator or denominator by any real number and still have the desired properties. \end{shortsolution} \end{subproblem} \begin{subproblem} Vertical asymptote at $5$. \begin{shortsolution} Possible option: $r(x)=\dfrac{1}{x-5}$. Note that we could multiply the numerator or denominator by any real number and still have the desired properties. \end{shortsolution} \end{subproblem} \begin{subproblem} Vertical asymptote at $-2$, and zero at $6$. \begin{shortsolution} Possible option: $r(x)=\dfrac{x-6}{x+2}$. Note that we could multiply the numerator or denominator by any real number and still have the desired properties. \end{shortsolution} \end{subproblem} \begin{subproblem} Zeros at $2$ and $-5$ and vertical asymptotes at $1$ and $-7$. \begin{shortsolution} Possible option: $r(x)=\dfrac{(x-2)(x+5)}{(x-1)(x+7)}$. Note that we could multiply the numerator or denominator by any real number and still have the desired properties. \end{shortsolution} \end{subproblem} \end{problem} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{problem}[Given formula, find horizontal asymptotes] Each of the following functions has a horizontal asymptote. Write the equation of the horizontal asymptote for each function. \begin{multicols}{3} \begin{subproblem} $f(x) = \dfrac{1}{x}$ \begin{shortsolution} $y=0$ \end{shortsolution} \end{subproblem} \begin{subproblem} $g(x) = \dfrac{2x+3}{x}$ \begin{shortsolution} $y=2$ \end{shortsolution} \end{subproblem} \begin{subproblem} $h(x) = \dfrac{x^2+2x}{x^2+3}$ \begin{shortsolution} $y=1$ \end{shortsolution} \end{subproblem} \begin{subproblem} $k(x) = \dfrac{x^2+7}{x}$ \begin{shortsolution} $y=1$ \end{shortsolution} \end{subproblem} \begin{subproblem} $l(x)=\dfrac{3x-2}{5x+8}$ \begin{shortsolution} $y=\dfrac{3}{5}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $m(x)=\dfrac{3x-2}{5x^2+8}$ \begin{shortsolution} $y=0$ \end{shortsolution} \end{subproblem} \begin{subproblem} $n(x)=\dfrac{(6x+1)(x-7)}{(11x-8)(x-5)}$ \begin{shortsolution} $y=\dfrac{6}{11}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $p(x)=\dfrac{19x^3}{5-x^4}$ \begin{shortsolution} $y=0$ \end{shortsolution} \end{subproblem} \begin{subproblem} $q(x)=\dfrac{14x^2+x}{1-7x^2}$ \begin{shortsolution} $y=-2$ \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: May 2012 %=================================== \begin{problem}[Given horizontal asymptotes, find formula] In each of the following problems, give a formula for a function that has the given horizontal asymptote. Note that there may be more than one option. \begin{multicols}{4} \begin{subproblem} $y=7$ \begin{shortsolution} Possible option: $f(x)=\dfrac{7(x-2)}{x+1}$. Note that there are other options, provided that the degree of the numerator is the same as the degree of the denominator, and that the ratio of the leading coefficients is $7$. \end{shortsolution} \end{subproblem} \begin{subproblem} $y=-1$ \begin{shortsolution} Possible option: $f(x)=\dfrac{5-x^2}{x^2+10}$. Note that there are other options, provided that the degree of the numerator is the same as the degree of the denominator, and that the ratio of the leading coefficients is $10$. \end{shortsolution} \end{subproblem} \begin{subproblem} $y=53$ \begin{shortsolution} Possible option: $f(x)=\dfrac{53x^3}{x^3+4x^2-7}$. Note that there are other options, provided that the degree of the numerator is the same as the degree of the denominator, and that the ratio of the leading coefficients is $53$. \end{shortsolution} \end{subproblem} \begin{subproblem} $y=-17$ \begin{shortsolution} Possible option: $f(x)=\dfrac{34(x+2)}{7-2x}$. Note that there are other options, provided that the degree of the numerator is the same as the degree of the denominator, and that the ratio of the leading coefficients is $-17$. \end{shortsolution} \end{subproblem} \begin{subproblem} $y=\dfrac{3}{2}$ \begin{shortsolution} Possible option: $f(x)=\dfrac{3x+4}{2(x+1)}$. Note that there are other options, provided that the degree of the numerator is the same as the degree of the denominator, and that the ratio of the leading coefficients is $\dfrac{3}{2}$. \end{shortsolution} \end{subproblem} \begin{subproblem} $y=0$ \begin{shortsolution} Possible option: $f(x)=\dfrac{4}{x}$. Note that there are other options, provided that the degree of the numerator is less than the degree of the denominator. \end{shortsolution} \end{subproblem} \begin{subproblem} $y=-1$ \begin{shortsolution} Possible option: $f(x)=\dfrac{10x}{5-10x}$. Note that there are other options, provided that the degree of the numerator is the same as the degree of the denominator, and that the ratio of the leading coefficients is $-1$. \end{shortsolution} \end{subproblem} \begin{subproblem} $y=2$ \begin{shortsolution} Possible option: $f(x)=\dfrac{8x-3}{4x+1}$. Note that there are other options, provided that the degree of the numerator is the same as the degree of the denominator, and that the ratio of the leading coefficients is $2$. \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{problem}[Find a formula from a description] In each of the following problems, give a formula for a function that has the prescribed properties. Note that there may be more than one option. \begin{subproblem} $f(x)\rightarrow 3$ as $x\rightarrow\pm\infty$. \begin{shortsolution} Possible option: $f(x)=\dfrac{3(x-2)}{x+7}$. Note that the zero and asymptote of $f$ could be changed, and $f$ would still have the desired properties. \end{shortsolution} \end{subproblem} \begin{subproblem} $r(x)\rightarrow -4$ as $x\rightarrow\pm\infty$. \begin{shortsolution} Possible option: $r(x)=\dfrac{-4(x-2)}{x+7}$. Note that the zero and asymptote of $r$ could be changed, and $r$ would still have the desired properties. \end{shortsolution} \end{subproblem} \begin{subproblem} $k(x)\rightarrow 2$ as $x\rightarrow\pm\infty$, and $k$ has vertical asymptotes at $-3$ and $5$. \begin{shortsolution} Possible option: $k(x)=\dfrac{2x^2}{(x+3)(x-5)}$. Note that the denominator must have the given factors; the numerator could be any degree $2$ polynomial, provided the leading coefficient is $2$. \end{shortsolution} \end{subproblem} \end{problem} %=================================== % Author: Hughes % Date: Feb 2011 %=================================== \begin{problem} Let $r$ be the rational function that has \[ r(x) = \frac{(x+2)(x-1)}{(x+3)(x-4)} \] Each of the following questions are in relation to this function. \begin{subproblem} What is the vertical intercept of this function? State your answer as an ordered pair. \index{rational functions!vertical intercept} \begin{shortsolution} $\left(0,\frac{1}{6}\right)$ \end{shortsolution} \end{subproblem} \begin{subproblem}\label{rat:prob:rational} What values of $x$ make the denominator equal to $0$? \begin{shortsolution} $-3,4$ \end{shortsolution} \end{subproblem} \begin{subproblem} Use your answer to \cref{rat:prob:rational} to write the domain of the function in both interval, and set builder notation. %\index{rational functions!domain}\index{domain!rational functions} \begin{shortsolution} Interval notation: $(-\infty,-3)\cup (-3,4)\cup (4,\infty)$. Set builder: $\{x|x\ne -3, \mathrm{and}\, x\ne 4\}$ \end{shortsolution} \end{subproblem} \begin{subproblem} What are the vertical asymptotes of the function? State your answers in the form $x=$ \begin{shortsolution} $x=-3$ and $x=4$ \end{shortsolution} \end{subproblem} \begin{subproblem}\label{rat:prob:zeroes} What values of $x$ make the numerator equal to $0$? \begin{shortsolution} $-2,1$ \end{shortsolution} \end{subproblem} \begin{subproblem} Use your answer to \cref{rat:prob:zeroes} to write the horizontal intercepts of $r$ as ordered pairs. \begin{shortsolution} $(-2,0)$ and $(1,0)$ \end{shortsolution} \end{subproblem} \end{problem} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{problem}[Holes] \pccname{Josh} and \pccname{Pedro} are discussing the function \[ r(x)=\frac{x^2-1}{(x+3)(x-1)} \] \begin{subproblem} What is the domain of $r$? \begin{shortsolution} The domain of $r$ is $(-\infty,-3)\cup(-3,1)\cup(1,\infty)$. \end{shortsolution} \end{subproblem} \begin{subproblem} Josh notices that the numerator can be factored- can you see how? \begin{shortsolution} $(x^2-1)=(x-1)(x+1)$ \end{shortsolution} \end{subproblem} \begin{subproblem} Pedro asks, `Doesn't that just mean that \[ r(x)=\frac{x+1}{x+3} \] for all values of $x$?' Josh says, `Nearly\ldots but not for all values of $x$'. What does Josh mean? \begin{shortsolution} $r(x)=\dfrac{x+1}{x+3}$ provided that $x\ne -1$. \end{shortsolution} \end{subproblem} \begin{subproblem} Where does $r$ have vertical asymptotes, and where does it have holes? \begin{shortsolution} The function $r$ has a vertical asymptote at $-3$, and a hole at $1$. \end{shortsolution} \end{subproblem} \begin{subproblem} Sketch a graph of $r$. \begin{shortsolution} A graph of $r$ is shown below. \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-8,-6,...,8}, grid=both, width=\solutionfigurewidth, ] \addplot[pccplot] expression[domain=-10:-3.25]{(x+1)/(x+3)}; \addplot[pccplot] expression[domain=-2.75:10]{(x+1)/(x+3)}; \addplot[asymptote,domain=-10:10]({-3},{x}); \addplot[holdot]coordinates{(1,0.5)}; \end{axis} \end{tikzpicture} \end{shortsolution} \end{subproblem} \end{problem} %=================================== % Author: Hughes % Date: July 2012 %=================================== \begin{problem}[Function algebra] Let $r$ and $s$ be the rational functions that have formulas \[ r(x)=\frac{2-x}{x+3}, \qquad s(x)=\frac{x^2}{x-4} \] Evaluate each of the following (if possible). \begin{multicols}{4} \begin{subproblem} $(r+s)(5)$ \begin{shortsolution} $\frac{197}{8}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $(r-s)(3)$ \begin{shortsolution} $\frac{53}{6}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $(r\cdot s)(4)$ \begin{shortsolution} Undefined. \end{shortsolution} \end{subproblem} \begin{subproblem} $\left( \frac{r}{s} \right)(1)$ \begin{shortsolution} $-\frac{3}{4}$ \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: July 2012 %=================================== \begin{problem}[Transformations: given the transformation, find the formula] Let $r$ be the rational function that has formula. \[ r(x)=\frac{x+5}{2x-3} \] In each of the following problems apply the given transformation to the function $r$ and write a formula for the transformed version of $r$. \begin{multicols}{2} \begin{subproblem} Shift $r$ to the right by $3$ units. \begin{shortsolution} $r(x-3)=\frac{x+2}{2x-9}$ \end{shortsolution} \end{subproblem} \begin{subproblem} Shift $r$ to the left by $4$ units. \begin{shortsolution} $r(x+4)=\frac{x+9}{2x+5}$ \end{shortsolution} \end{subproblem} \begin{subproblem} Shift $r$ up by $\pi$ units. \begin{shortsolution} $r(x)+\pi=\frac{x+5}{2x-3}+\pi$ \end{shortsolution} \end{subproblem} \begin{subproblem} Shift $r$ down by $17$ units. \begin{shortsolution} $r(x)-17=\frac{x+5}{2x-3}-17$ \end{shortsolution} \end{subproblem} \begin{subproblem} Reflect $r$ over the horizontal axis. \begin{shortsolution} $-r(x)=-\frac{x+5}{2x-3}$ \end{shortsolution} \end{subproblem} \begin{subproblem} Reflect $r$ over the vertical axis. \begin{shortsolution} $r(-x)=\frac{x-5}{2x+3}$ \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: May 2011 %=================================== \begin{problem}[Find a formula from a table]\label{rat:prob:findformula} \Crefrange{rat:tab:findformular}{rat:tab:findformulau} show values of rational functions $r$, $q$, $s$, and $t$. Assume that any values marked with an X are undefined. \begin{table}[!htb] \begin{widepage} \centering \caption{Tables for \cref{rat:prob:findformula}} \label{rat:tab:findformula} \begin{subtable}{.2\textwidth} \centering \caption{$y=r(x)$} \label{rat:tab:findformular} \begin{tabular}{rr} \beforeheading $x$ & $y$ \\ \afterheading $-4$ & $\nicefrac{7}{2}$ \\\normalline $-3$ & $-18$ \\\normalline $-2$ & X \\\normalline $-1$ & $-4$ \\\normalline $0$ & $\nicefrac{-3}{2}$ \\\normalline $1$ & $\nicefrac{-2}{3}$ \\\normalline $2$ & $\nicefrac{-1}{4}$ \\\normalline $3$ & $0$ \\\normalline $4$ & $\nicefrac{1}{6}$ \\\lastline \end{tabular} \end{subtable} \hfill \begin{subtable}{.2\textwidth} \centering \caption{$y=s(x)$} \label{rat:tab:findformulas} \begin{tabular}{rr} \beforeheading $x$ & $y$ \\ \afterheading $-4$ & $\nicefrac{-2}{21}$ \\\normalline $-3$ & $\nicefrac{-1}{12}$ \\\normalline $-2$ & $0$ \\\normalline $-1$ & X \\\normalline $0$ & $\nicefrac{-2}{3}$ \\\normalline $1$ & $\nicefrac{-3}{4}$ \\\normalline $2$ & $\nicefrac{-4}{3}$ \\\normalline $3$ & X \\\normalline $4$ & $\nicefrac{6}{5}$ \\\lastline \end{tabular} \end{subtable} \hfill \begin{subtable}{.2\textwidth} \centering \caption{$y=t(x)$} \label{rat:tab:findformulat} \begin{tabular}{rr} \beforeheading $x$ & $y$ \\ \afterheading $-4$ & $\nicefrac{3}{5}$ \\\normalline $-3$ & $0$ \\\normalline $-2$ & X \\\normalline $-1$ & $3$ \\\normalline $0$ & $3$ \\\normalline $1$ & X \\\normalline $2$ & $0$ \\\normalline $3$ & $\nicefrac{3}{5}$ \\\normalline $4$ & $\nicefrac{7}{9}$ \\\lastline \end{tabular} \end{subtable} \hfill \begin{subtable}{.2\textwidth} \centering \caption{$y=u(x)$} \label{rat:tab:findformulau} \begin{tabular}{rr} \beforeheading $x$ & $y$ \\ \afterheading $-4$ & $\nicefrac{16}{7}$ \\\normalline $-3$ & X \\\normalline $-2$ & $-\nicefrac{4}{5}$ \\\normalline $-1$ & $-\nicefrac{1}{8}$ \\\normalline $0$ & $0$ \\\normalline $1$ & $-\nicefrac{1}{8}$ \\\normalline $2$ & $-\nicefrac{4}{5}$ \\\normalline $3$ & X \\\normalline $4$ & $\nicefrac{16}{7}$ \\\lastline \end{tabular} \end{subtable} \end{widepage} \end{table} \begin{subproblem} Given that the formula for $r(x)$ has the form $r(x)=\dfrac{x-A}{x-B}$, use \cref{rat:tab:findformular} to find values of $A$ and $B$. \begin{shortsolution} $A=3$ and $B=-2$, so $r(x)=\dfrac{x-3}{x+2}$. \end{shortsolution} \end{subproblem} \begin{subproblem} Check your formula by computing $r(x)$ at the values specified in the table. \begin{shortsolution} $\begin{aligned}[t] r(-4) & = \frac{-4-3}{-4+2} \\ & = \frac{7}{2} \\ \end{aligned}$ $r(-3)=\ldots$ etc \end{shortsolution} \end{subproblem} \begin{subproblem} The function $s$ in \cref{rat:tab:findformulas} has two vertical asymptotes and one zero. Can you find a formula for $s(x)$? \begin{shortsolution} $s(x)=\dfrac{x+2}{(x-3)(x+1)}$ \end{shortsolution} \end{subproblem} \begin{subproblem} Check your formula by computing $s(x)$ at the values specified in the table. \begin{shortsolution} $\begin{aligned}[t] s(-4) & =\frac{-4+2}{(-4-3)(-4+1)} \\ & =-\frac{2}{21} \end{aligned}$ $s(-3)=\ldots$ etc \end{shortsolution} \end{subproblem} \begin{subproblem} Given that the formula for $t(x)$ has the form $t(x)=\dfrac{(x-A)(x-B)}{(x-C)(x-D)}$, use \cref{rat:tab:findformulat} to find the values of $A$, $B$, $C$, and $D$; hence write a formula for $t(x)$. \begin{shortsolution} $t(x)=\dfrac{(x+3)(x-2)}{(x+2)(x+1)}$ \end{shortsolution} \end{subproblem} \begin{subproblem} Given that the formula for $u(x)$ has the form $u(x)=\dfrac{(x-A)^2}{(x-B)(x-C)}$, use \cref{rat:tab:findformulau} to find the values of $A$, $B$, and $C$; hence write a formula for $u(x)$. \begin{shortsolution} $u(x)=\dfrac{x^2}{(x+3)(x-3)}$ \end{shortsolution} \end{subproblem} \end{problem} \end{exercises} \section{Graphing rational functions (horizontal asymptotes)} \reformatstepslist{R} % the steps list should be R1, R2, \ldots We studied rational functions in the previous section, but were not asked to graph them; in this section we will demonstrate the steps to be followed in order to sketch graphs of the functions. Remember from \vref{rat:def:function} that rational functions have the form \[ r(x)=\frac{p(x)}{q(x)} \] In this section we will restrict attention to the case when \[ \text{degree of }p\leq \text{degree of }q \] Note that this necessarily means that each function that we consider in this section \emph{will have a horizontal asymptote} (see \vref{rat:def:longrun}). The cases in which the degree of $p$ is greater than the degree of $q$ is covered in the next section. Before we begin, it is important to remember the following: \begin{itemize} \item Our sketches will give a good representation of the overall shape of the graph, but until we have the tools of calculus (from MTH 251) we can not find local minimums, local maximums, and inflection points algebraically. This means that we will make our best guess as to where these points are. \item We will not concern ourselves too much with the vertical scale (because of our previous point)| we will, however, mark the vertical intercept (assuming there is one), and any horizontal asymptotes. \end{itemize} \begin{pccspecialcomment}[Steps to follow when sketching rational functions]\label{rat:def:stepsforsketch} \begin{steps} \item \label{rat:step:first} Find all vertical asymptotes and holes, and mark them on the graph using dashed vertical lines and open circles $\circ$ respectively. \item Find any intercepts, and mark them using solid circles $\bullet$; determine if the curve cuts the axis, or bounces off it at each zero. \item Determine the behavior of the function around each asymptote| does it behave like $\frac{1}{x}$ or $\frac{1}{x^2}$? \item \label{rat:step:penultimate} Determine the long-run behavior of the function, and mark the horizontal asymptote using a dashed horizontal line. \item \label{rat:step:last} Deduce the overall shape of the curve, and sketch it. If there isn't enough information from the previous steps, then construct a table of values including sample points from each branch. \end{steps} Remember that until we have the tools of calculus, we won't be able to find the exact coordinates of local minimums, local maximums, and points of inflection. \end{pccspecialcomment} The examples that follow show how \crefrange{rat:step:first}{rat:step:last} can be applied to a variety of different rational functions. %=================================== % Author: Hughes % Date: May 2012 %=================================== \begin{pccexample}\label{rat:ex:1overxminus2p2} Use \crefrange{rat:step:first}{rat:step:last} to sketch a graph of the function $r$ that has formula \[ r(x)=\frac{1}{x-2} \] \begin{pccsolution} \begin{steps} \item $r$ has a vertical asymptote at $2$; $r$ does not have any holes. The curve of $r$ will have $2$ branches. \item $r$ does not have any zeros since the numerator is never equal to $0$. The vertical intercept of $r$ is $\left( 0,-\frac{1}{2} \right)$. \item $r$ behaves like $\frac{1}{x}$ around its vertical asymptote since $(x-2)$ is raised to the power $1$. \item Since the degree of the numerator is less than the degree of the denominator, according to \vref{rat:def:longrun} the horizontal asymptote of $r$ has equation $y=0$. \item We put the details we have obtained so far on \cref{rat:fig:1overxminus2p1}. Notice that there is only one way to complete the graph, which we have done in \cref{rat:fig:1overxminus2p2}. \end{steps} \end{pccsolution} \end{pccexample} \begin{figure}[!htbp] \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-5,xmax=5, ymin=-5,ymax=5, width=\textwidth, ] \addplot[asymptote,domain=-5:5]({2},{x}); \addplot[asymptote,domain=-5:5]({x},{0}); \addplot[soldot] coordinates{(0,-0.5)}node[axisnode,anchor=north east]{$\left( 0,-\frac{1}{2} \right)$}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:1overxminus2p1} \end{subfigure}% \hfill \begin{subfigure}{.45\textwidth} \begin{tikzpicture}[/pgf/declare function={f=1/(x-2);}] \begin{axis}[ xmin=-5,xmax=5, ymin=-5,ymax=5, width=\textwidth, ] \addplot[pccplot] expression[domain=-5:1.8,samples=50]{f}; \addplot[pccplot] expression[domain=2.2:5]{f}; \addplot[asymptote,domain=-5:5]({2},{x}); \addplot[asymptote,domain=-5:5]({x},{0}); \addplot[soldot] coordinates{(0,-0.5)}node[axisnode,anchor=north east]{$\left( 0,-\frac{1}{2} \right)$}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:1overxminus2p2} \end{subfigure}% \caption{$y=\dfrac{1}{x-2}$} \end{figure} The function $r$ in \cref{rat:ex:1overxminus2p2} has a horizontal asymptote which has equation $y=0$. This asymptote lies on the horizontal axis, and you might (understandably) find it hard to distinguish between the two lines (\cref{rat:fig:1overxminus2p2}). When faced with such a situation, it is perfectly acceptable to draw the horizontal axis as a dashed line| just make sure to label it correctly. We will demonstrate this in the next example. %=================================== % Author: Hughes % Date: May 2012 %=================================== \begin{pccexample}\label{rat:ex:1overxp1} Use \crefrange{rat:step:first}{rat:step:last} to sketch a graph of the function $v$ that has formula \[ v(x)=\frac{10}{x} \] \begin{pccsolution} \begin{steps} \item $v$ has a vertical asymptote at $0$. $v$ does not have any holes. The curve of $v$ will have $2$ branches. \item $v$ does not have any zeros (since $10\ne 0$). Furthermore, $v$ does not have a vertical intercept since $v(0)$ is undefined. \item $v$ behaves like $\frac{1}{x}$ around its vertical asymptote. \item $v$ has a horizontal asymptote with equation $y=0$. \item We put the details we have obtained so far in \cref{rat:fig:1overxp1}. We do not have enough information to sketch $v$ yet (because $v$ does not have any intercepts), so let's pick a sample point in either of the $2$ branches| it doesn't matter where our sample point is, because we know what the overall shape will be. Let's compute $v(2)$ \begin{align*} v(2) & =\dfrac{10}{2} \\ & = 5 \end{align*} We therefore mark the point $(2,5)$ on \cref{rat:fig:1overxp2}, and then complete the sketch using the details we found in the previous steps. \end{steps} \begin{figure}[!htbp] \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-5,5}, ytick={-5,5}, axis line style={color=white}, width=\textwidth, ] \addplot[asymptote,<->,domain=-10:10]({0},{x}); \addplot[asymptote,<->,domain=-10:10]({x},{0}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:1overxp1} \end{subfigure}% \hfill \begin{subfigure}{.45\textwidth} \begin{tikzpicture}[/pgf/declare function={f=10/x;}] \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-5,5}, ytick={-5,5}, axis line style={color=white}, width=\textwidth, ] \addplot[pccplot] expression[domain=-10:-1]{f}; \addplot[pccplot] expression[domain=1:10]{f}; \addplot[soldot] coordinates{(2,5)}node[axisnode,anchor=south west]{$(2,5)$}; \addplot[asymptote,<->,domain=-10:10]({0},{x}); \addplot[asymptote,<->,domain=-10:10]({x},{0}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:1overxp2} \end{subfigure}% \caption{$y=\dfrac{10}{x}$} \end{figure} \end{pccsolution} \end{pccexample} %=================================== % Author: Hughes % Date: May 2012 %=================================== \begin{pccexample}\label{rat:ex:asympandholep1} Use \crefrange{rat:step:first}{rat:step:last} to sketch a graph of the function $u$ that has formula \[ u(x)=\frac{-4(x^2-9)}{x^2-8x+15} \] \begin{pccsolution} \begin{steps} \item We begin by factoring both the numerator and denominator of $u$ to help us find any vertical asymptotes or holes \begin{align*} u(x) & =\frac{-4(x^2-9)}{x^2-8x+15} \\ & =\frac{-4(x+3)(x-3)}{(x-5)(x-3)} \\ & =\frac{-4(x+3)}{x-5} \end{align*} provided that $x\ne 3$. Therefore $u$ has a vertical asymptote at $5$ and a hole at $3$. The curve of $u$ has $2$ branches. \item $u$ has a simple zero at $-3$. The vertical intercept of $u$ is $\left( 0,\frac{12}{5} \right)$. \item $u$ behaves like $\frac{1}{x}$ around its vertical asymptote at $4$. \item Using \vref{rat:def:longrun} the equation of the horizontal asymptote of $u$ is $y=-4$. \item We put the details we have obtained so far on \cref{rat:fig:1overxminus2p1}. Notice that there is only one way to complete the graph, which we have done in \cref{rat:fig:1overxminus2p2}. \end{steps} \begin{figure}[!htbp] \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-20,ymax=20, xtick={-8,-6,...,8}, ytick={-10,10}, width=\textwidth, ] \addplot[asymptote,domain=-20:20]({4},{x}); \addplot[asymptote,domain=-10:10]({x},{-4}); \addplot[soldot] coordinates{(-3,0)(0,2.4)}node[axisnode,anchor=south east]{$\left( 0,\frac{12}{5} \right)$}; \addplot[holdot] coordinates{(3,12)}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:asympandholep1} \end{subfigure}% \hfill \begin{subfigure}{.45\textwidth} \begin{tikzpicture}[/pgf/declare function={f=-4*(x+3)/(x-5);}] \begin{axis}[ xmin=-10,xmax=10, ymin=-20,ymax=20, xtick={-8,-6,...,8}, ytick={-10,10}, width=\textwidth, ] \addplot[pccplot] expression[domain=-10:3.6666,samples=50]{f}; \addplot[pccplot] expression[domain=7:10]{f}; \addplot[asymptote,domain=-20:20]({5},{x}); \addplot[asymptote,domain=-10:10]({x},{-4}); \addplot[soldot] coordinates{(-3,0)(0,2.4)}node[axisnode,anchor=south east]{$\left( 0,\frac{12}{5} \right)$}; \addplot[holdot] coordinates{(3,12)}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:asympandholep2} \end{subfigure}% \caption{$y=\dfrac{-4(x+3)}{x-5}$} \end{figure} \end{pccsolution} \end{pccexample} \Cref{rat:ex:1overxminus2p2,rat:ex:1overxp1,rat:ex:asympandholep1} have focused on functions that only have one vertical asymptote; the remaining examples in this section concern functions that have more than one vertical asymptote. We will demonstrate that \crefrange{rat:step:first}{rat:step:last} still apply. %=================================== % Author: Hughes % Date: May 2012 %=================================== \begin{pccexample}\label{rat:ex:sketchtwoasymp} Use \crefrange{rat:step:first}{rat:step:last} to sketch a graph of the function $w$ that has formula \[ w(x)=\frac{2(x+3)(x-5)}{(x+5)(x-4)} \] \begin{pccsolution} \begin{steps} \item $w$ has vertical asymptotes at $-5$ and $4$. $w$ does not have any holes. The curve of $w$ will have $3$ branches. \item $w$ has simple zeros at $-3$ and $5$. The vertical intercept of $w$ is $\left( 0,\frac{3}{2} \right)$. \item $w$ behaves like $\frac{1}{x}$ around both of its vertical asymptotes. \item The degree of the numerator of $w$ is $2$ and the degree of the denominator of $w$ is also $2$. Using the ratio of the leading coefficients of the numerator and denominator, we say that $w$ has a horizontal asymptote with equation $y=\frac{2}{1}=2$. \item We put the details we have obtained so far on \cref{rat:fig:sketchtwoasymptp1}. The function $w$ is a little more complicated than the functions that we have considered in the previous examples because the curve has $3$ branches. When graphing such functions, it is generally a good idea to start with the branch for which you have the most information| in this case, that is the \emph{middle} branch on the interval $(-5,4)$. Once we have drawn the middle branch, there is only one way to complete the graph (because of our observations about the behavior of $w$ around its vertical asymptotes), which we have done in \cref{rat:fig:sketchtwoasymptp2}. \end{steps} \end{pccsolution} \end{pccexample} \begin{figure}[!htbp] \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-5,5}, width=\textwidth, ] \addplot[asymptote,domain=-10:10]({-5},{x}); \addplot[asymptote,domain=-10:10]({4},{x}); \addplot[asymptote,domain=-10:10]({x},{2}); \addplot[soldot] coordinates{(-3,0)(5,0)}; \addplot[soldot] coordinates{(0,1.5)}node[axisnode,anchor=north west]{$\left( 0,\frac{3}{2} \right)$}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:sketchtwoasymptp1} \end{subfigure}% \hfill \begin{subfigure}{.45\textwidth} \begin{tikzpicture}[/pgf/declare function={f=2*(x+3)*(x-5)/( (x+5)*(x-4));}] \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-5,5}, width=\textwidth, ] \addplot[asymptote,domain=-10:10]({-5},{x}); \addplot[asymptote,domain=-10:10]({4},{x}); \addplot[asymptote,domain=-10:10]({x},{2}); \addplot[soldot] coordinates{(-3,0)(5,0)}; \addplot[soldot] coordinates{(0,1.5)}node[axisnode,anchor=north west]{$\left( 0,\frac{3}{2} \right)$}; \addplot[pccplot] expression[domain=-10:-5.56708]{f}; \addplot[pccplot] expression[domain=-4.63511:3.81708]{f}; \addplot[pccplot] expression[domain=4.13511:10]{f}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:sketchtwoasymptp2} \end{subfigure}% \caption{$y=\dfrac{2(x+3)(x-5)}{(x+5)(x-4)}$} \end{figure} The rational functions that we have considered so far have had simple factors in the denominator; each function has behaved like $\frac{1}{x}$ around each of its vertical asymptotes. \Cref{rat:ex:2asympnozeros,rat:ex:2squaredasymp} consider functions that have a repeated factor in the denominator. %=================================== % Author: Hughes % Date: May 2012 %=================================== \begin{pccexample}\label{rat:ex:2asympnozeros} Use \crefrange{rat:step:first}{rat:step:last} to sketch a graph of the function $f$ that has formula \[ f(x)=\frac{100}{(x+5)(x-4)^2} \] \begin{pccsolution} \begin{steps} \item $f$ has vertical asymptotes at $-5$ and $4$. $f$ does not have any holes. The curve of $f$ will have $3$ branches. \item $f$ does not have any zeros (since $100\ne 0$). The vertical intercept of $f$ is $\left( 0,\frac{5}{4} \right)$. \item $f$ behaves like $\frac{1}{x}$ around $-5$ and behaves like $\frac{1}{x^2}$ around $4$. \item The degree of the numerator of $f$ is $0$ and the degree of the denominator of $f$ is $2$. $f$ has a horizontal asymptote with equation $y=0$. \item We put the details we have obtained so far on \cref{rat:fig:2asympnozerosp1}. The function $f$ is similar to the function $w$ that we considered in \cref{rat:ex:sketchtwoasymp}| it has two vertical asymptotes and $3$ branches, but in contrast to $w$ it does not have any zeros. We sketch $f$ in \cref{rat:fig:2asympnozerosp2}, using the middle branch as our guide because we have the most information about the function on the interval $(-5,4)$. Once we have drawn the middle branch, there is only one way to complete the graph because of our observations about the behavior of $f$ around its vertical asymptotes (it behaves like $\frac{1}{x}$), which we have done in \cref{rat:fig:2asympnozerosp2}. Note that we are not yet able to find the local minimum of $f$ algebraically on the interval $(-5,4)$, so we make a reasonable guess as to where it is| we can be confident that it is above the horizontal axis since $f$ has no zeros. You may think that this is unsatisfactory, but once we have the tools of calculus, we will be able to find local minimums more precisely. \end{steps} \end{pccsolution} \end{pccexample} \begin{figure}[!htbp] \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-5,5}, width=\textwidth, ] \addplot[asymptote,domain=-10:10]({-5},{x}); \addplot[asymptote,domain=-10:10]({4},{x}); \addplot[asymptote,domain=-10:10]({x},{0}); \addplot[soldot] coordinates{(0,1.25)}node[axisnode,anchor=south east]{$\left( 0,\frac{5}{4} \right)$}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:2asympnozerosp1} \end{subfigure}% \hfill \begin{subfigure}{.45\textwidth} \begin{tikzpicture}[/pgf/declare function={f=100/( (x+5)*(x-4)^2);}] \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-5,5}, width=\textwidth, ] \addplot[asymptote,domain=-10:10]({-5},{x}); \addplot[asymptote,domain=-10:10]({4},{x}); \addplot[asymptote,domain=-10:10]({x},{0}); \addplot[soldot] coordinates{(0,1.25)}node[axisnode,anchor=south east]{$\left( 0,\frac{5}{4} \right)$}; \addplot[pccplot] expression[domain=-10:-5.12022]{f}; \addplot[pccplot] expression[domain=-4.87298:2.87298,samples=50]{f}; \addplot[pccplot] expression[domain=5:10]{f}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:2asympnozerosp2} \end{subfigure}% \caption{$y=\dfrac{100}{(x+5)(x-4)^2}$} \end{figure} %=================================== % Author: Hughes % Date: May 2012 %=================================== \begin{pccexample}\label{rat:ex:2squaredasymp} Use \crefrange{rat:step:first}{rat:step:last} to sketch a graph of the function $g$ that has formula \[ g(x)=\frac{50(2-x)}{(x+3)^2(x-5)^2} \] \begin{pccsolution} \begin{steps} \item $g$ has vertical asymptotes at $-3$ and $5$. $g$ does not have any holes. The curve of $g$ will have $3$ branches. \item $g$ has a simple zero at $2$. The vertical intercept of $g$ is $\left( 0,\frac{4}{9} \right)$. \item $g$ behaves like $\frac{1}{x^2}$ around both of its vertical asymptotes. \item The degree of the numerator of $g$ is $1$ and the degree of the denominator of $g$ is $4$. Using \vref{rat:def:longrun}, we calculate that the horizontal asymptote of $g$ has equation $y=0$. \item The details that we have found so far have been drawn in \cref{rat:fig:2squaredasymp1}. The function $g$ is similar to the functions we considered in \cref{rat:ex:sketchtwoasymp,rat:ex:2asympnozeros} because it has $2$ vertical asymptotes and $3$ branches. We sketch $g$ using the middle branch as our guide because we have the most information about $g$ on the interval $(-3,5)$. Note that there is no other way to draw this branch without introducing other zeros which $g$ does not have. Once we have drawn the middle branch, there is only one way to complete the graph because of our observations about the behavior of $g$ around its vertical asymptotes| it behaves like $\frac{1}{x^2}$. \end{steps} \end{pccsolution} \end{pccexample} \begin{figure}[!htbp] \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-5,5}, width=\textwidth, ] \addplot[asymptote,domain=-10:10]({-3},{x}); \addplot[asymptote,domain=-10:10]({5},{x}); \addplot[asymptote,domain=-10:10]({x},{0}); \addplot[soldot] coordinates{(2,0)(0,4/9)}node[axisnode,anchor=south west]{$\left( 0,\frac{4}{9} \right)$}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:2squaredasymp1} \end{subfigure}% \hfill \begin{subfigure}{.45\textwidth} \begin{tikzpicture}[/pgf/declare function={f=50*(2-x)/( (x+3)^2*(x-5)^2);}] \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, ytick={-5,5}, width=\textwidth, ] \addplot[asymptote,domain=-10:10]({-3},{x}); \addplot[asymptote,domain=-10:10]({5},{x}); \addplot[asymptote,domain=-10:10]({x},{0}); \addplot[soldot] coordinates{(2,0)(0,4/9)}node[axisnode,anchor=south west]{$\left( 0,\frac{4}{9} \right)$}; \addplot[pccplot] expression[domain=-10:-3.61504]{f}; \addplot[pccplot] expression[domain=-2.3657:4.52773]{f}; \addplot[pccplot] expression[domain=5.49205:10]{f}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:2squaredasymp2} \end{subfigure}% \caption{$y=\dfrac{50(2-x)}{(x+3)^2(x-5)^2}$} \end{figure} Each of the rational functions that we have considered so far has had either a \emph{simple} zero, or no zeros at all. Remember from our work on polynomial functions, and particularly \vref{poly:def:multzero}, that a \emph{repeated} zero corresponds to the curve of the function behaving differently at the zero when compared to how the curve behaves at a simple zero. \Cref{rat:ex:doublezero} details a function that has a non-simple zero. %=================================== % Author: Hughes % Date: June 2012 %=================================== \begin{pccexample}\label{rat:ex:doublezero} Use \crefrange{rat:step:first}{rat:step:last} to sketch a graph of the function $g$ that has formula \[ h(x)=\frac{(x-3)^2}{(x+4)(x-6)} \] \begin{pccsolution} \begin{steps} \item $h$ has vertical asymptotes at $-4$ and $6$. $h$ does not have any holes. The curve of $h$ will have $3$ branches. \item $h$ has a zero at $3$ that has \emph{multiplicity $2$}. The vertical intercept of $h$ is $\left( 0,-\frac{3}{8} \right)$. \item $h$ behaves like $\frac{1}{x}$ around both of its vertical asymptotes. \item The degree of the numerator of $h$ is $2$ and the degree of the denominator of $h$ is $2$. Using \vref{rat:def:longrun}, we calculate that the horizontal asymptote of $h$ has equation $y=1$. \item The details that we have found so far have been drawn in \cref{rat:fig:doublezerop1}. The function $h$ is different from the functions that we have considered in previous examples because of the multiplicity of the zero at $3$. We sketch $h$ using the middle branch as our guide because we have the most information about $h$ on the interval $(-4,6)$. Note that there is no other way to draw this branch without introducing other zeros which $h$ does not have| also note how the curve bounces off the horizontal axis at $3$. Once we have drawn the middle branch, there is only one way to complete the graph because of our observations about the behavior of $h$ around its vertical asymptotes| it behaves like $\frac{1}{x}$. \end{steps} \end{pccsolution} \end{pccexample} \begin{figure}[!htbp] \begin{subfigure}{.45\textwidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-5,ymax=5, xtick={-8,-6,...,8}, ytick={-3,3}, width=\textwidth, ] \addplot[asymptote,domain=-10:10]({-4},{x}); \addplot[asymptote,domain=-10:10]({6},{x}); \addplot[asymptote,domain=-10:10]({x},{1}); \addplot[soldot] coordinates{(3,0)(0,-3/8)}node[axisnode,anchor=north west]{$\left( 0,-\frac{3}{8} \right)$}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:doublezerop1} \end{subfigure}% \hfill \begin{subfigure}{.45\textwidth} \begin{tikzpicture}[/pgf/declare function={f=(x-3)^2/((x+4)*(x-6));}] \begin{axis}[ xmin=-10,xmax=10, ymin=-5,ymax=5, xtick={-8,-6,...,8}, ytick={-3,3}, width=\textwidth, ] \addplot[asymptote,domain=-10:10]({-4},{x}); \addplot[asymptote,domain=-10:10]({6},{x}); \addplot[asymptote,domain=-10:10]({x},{1}); \addplot[soldot] coordinates{(3,0)(0,-3/8)}node[axisnode,anchor=north west]{$\left( 0,-\frac{3}{8} \right)$}; \addplot[pccplot] expression[domain=-10:-5.20088]{f}; \addplot[pccplot] expression[domain=-3.16975:5.83642,samples=50]{f}; \addplot[pccplot] expression[domain=6.20088:10]{f}; \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:doublezerop2} \end{subfigure}% \caption{$y=\dfrac{(x-3)^2}{(x+4)(x-6)}$} \end{figure} \begin{exercises} %=================================== % Author: Hughes % Date: June 2012 %=================================== \begin{problem}[\Cref{rat:step:last}]\label{rat:prob:deduce} \pccname{Katie} is working on graphing rational functions. She has been concentrating on functions that have the form \begin{equation}\label{rat:eq:deducecurve} f(x)=\frac{a(x-b)}{x-c} \end{equation} Katie notes that functions with this type of formula have a zero at $b$, and a vertical asymptote at $c$. Furthermore, these functions behave like $\frac{1}{x}$ around their vertical asymptote, and the curve of each function will have $2$ branches. Katie has been working with $3$ functions that have the form given in \cref{rat:eq:deducecurve}, and has followed \crefrange{rat:step:first}{rat:step:penultimate}; her results are shown in \cref{rat:fig:deducecurve}. There is just one more thing to do to complete the graphs| follow \cref{rat:step:last}. Help Katie finish each graph by deducing the curve of each function. \begin{shortsolution} \Vref{rat:fig:deducecurve1} \begin{tikzpicture}[/pgf/declare function={f=3*(x+4)/(x+5);}] \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, width=\solutionfigurewidth, ] \addplot[soldot] coordinates{(-4,0)(0,12/5)}; \addplot[asymptote,domain=-10:10]({-5},{x}); \addplot[asymptote,domain=-10:10]({x},{3}); \addplot[pccplot] expression[domain=-10:-5.42857]{f}; \addplot[pccplot] expression[domain=-4.76923:10,samples=50]{f}; \end{axis} \end{tikzpicture} \Vref{rat:fig:deducecurve2} \begin{tikzpicture}[/pgf/declare function={f=-3*(x-2)/(x-4);}] \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, width=\solutionfigurewidth, ] \addplot[soldot] coordinates{(2,0)(0,-3/2)}; \addplot[asymptote,domain=-10:10]({4},{x}); \addplot[asymptote,domain=-10:10]({x},{-3}); \addplot[pccplot] expression[domain=-10:3.53846,samples=50]{f}; \addplot[pccplot] expression[domain=4.85714:10]{f}; \end{axis} \end{tikzpicture} \Vref{rat:fig:deducecurve4} \begin{tikzpicture}[/pgf/declare function={f=2*(x-6)/(x-4);}] \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, width=\solutionfigurewidth, ] \addplot[soldot] coordinates{(6,0)(0,3)}; \addplot[asymptote,domain=-10:10]({x},{2}); \addplot[asymptote,domain=-10:10]({4},{x}); \addplot[pccplot] expression[domain=-10:3.5,samples=50]{f}; \addplot[pccplot] expression[domain=4.3333:10]{f}; \end{axis} \end{tikzpicture} \end{shortsolution} \end{problem} \begin{figure}[!htb] \begin{widepage} \setlength{\figurewidth}{0.3\textwidth} \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, width=\textwidth, ] \addplot[soldot] coordinates{(-4,0)(0,12/5)}; \addplot[asymptote,domain=-10:10]({-5},{x}); \addplot[asymptote,domain=-10:10]({x},{3}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:deducecurve1} \end{subfigure}% \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, width=\textwidth, ] \addplot[soldot] coordinates{(2,0)(0,-3/2)}; \addplot[asymptote,domain=-10:10]({4},{x}); \addplot[asymptote,domain=-10:10]({x},{-3}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:deducecurve2} \end{subfigure}% \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, width=\textwidth, ] \addplot[soldot] coordinates{(6,0)(0,3)}; \addplot[asymptote,domain=-10:10]({x},{2}); \addplot[asymptote,domain=-10:10]({4},{x}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:deducecurve4} \end{subfigure} \caption{Graphs for \cref{rat:prob:deduce}} \label{rat:fig:deducecurve} \end{widepage} \end{figure} %=================================== % Author: Hughes % Date: June 2012 %=================================== \begin{problem}[\Cref{rat:step:last} for more complicated rational functions]\label{rat:prob:deducehard} \pccname{David} is also working on graphing rational functions, and has been concentrating on functions that have the form \[ r(x)=\frac{a(x-b)(x-c)}{(x-d)(x-e)} \] David notices that functions with this type of formula have simple zeros at $b$ and $c$, and vertical asymptotes at $d$ and $e$. Furthermore, these functions behave like $\frac{1}{x}$ around both vertical asymptotes, and the curve of the function will have $3$ branches. David has followed \crefrange{rat:step:first}{rat:step:penultimate} for $3$ separate functions, and drawn the results in \cref{rat:fig:deducehard}. Help David finish each graph by deducing the curve of each function. \begin{shortsolution} \Vref{rat:fig:deducehard1} \begin{tikzpicture}[/pgf/declare function={f=(x-6)*(x+3)/( (x-4)*(x+1));}] \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, width=\solutionfigurewidth, ] \addplot[soldot] coordinates{(-3,0)(6,0)(0,9/2)}; \addplot[asymptote,domain=-10:10]({-1},{x}); \addplot[asymptote,domain=-10:10]({4},{x}); \addplot[asymptote,domain=-10:10]({x},{2}); \addplot[pccplot] expression[domain=-10:-1.24276]{f}; \addplot[pccplot] expression[domain=-0.6666:3.66667]{f}; \addplot[pccplot] expression[domain=4.24276:10]{f}; \end{axis} \end{tikzpicture} \Vref{rat:fig:deducehard2} \begin{tikzpicture}[/pgf/declare function={f=3*(x-2)*(x+3)/( (x-6)*(x+5));}] \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, width=\solutionfigurewidth, ] \addplot[soldot] coordinates{(-3,0)(2,0)(0,3/5)}; \addplot[asymptote,domain=-10:10]({-5},{x}); \addplot[asymptote,domain=-10:10]({6},{x}); \addplot[asymptote,domain=-10:10]({x},{3}); \addplot[pccplot] expression[domain=-10:-5.4861]{f}; \addplot[pccplot] expression[domain=-4.68395:5.22241]{f}; \addplot[pccplot] expression[domain=7.34324:10]{f}; \end{axis} \end{tikzpicture} \Vref{rat:fig:deducehard3} \begin{tikzpicture}[/pgf/declare function={f=2*(x-7)*(x+3)/( (x+6)*(x-5));}] \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, width=\solutionfigurewidth, ] \addplot[soldot] coordinates{(-3,0)(7,0)(0,1.4)}; \addplot[asymptote,domain=-10:10]({-6},{x}); \addplot[asymptote,domain=-10:10]({5},{x}); \addplot[asymptote,domain=-10:10]({x},{2}); \addplot[pccplot] expression[domain=-10:-6.91427]{f}; \addplot[pccplot] expression[domain=-5.42252:4.66427]{f}; \addplot[pccplot] expression[domain=5.25586:10]{f}; \end{axis} \end{tikzpicture} \end{shortsolution} \end{problem} \begin{figure}[!htb] \begin{widepage} \setlength{\figurewidth}{0.3\textwidth} \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, width=\textwidth, ] \addplot[soldot] coordinates{(-3,0)(6,0)(0,9/2)}; \addplot[asymptote,domain=-10:10]({-1},{x}); \addplot[asymptote,domain=-10:10]({4},{x}); \addplot[asymptote,domain=-10:10]({x},{2}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:deducehard1} \end{subfigure}% \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, width=\textwidth, ] \addplot[soldot] coordinates{(-3,0)(2,0)(0,3/5)}; \addplot[asymptote,domain=-10:10]({-5},{x}); \addplot[asymptote,domain=-10:10]({6},{x}); \addplot[asymptote,domain=-10:10]({x},{3}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:deducehard2} \end{subfigure}% \hfill \begin{subfigure}{\figurewidth} \begin{tikzpicture} \begin{axis}[ xmin=-10,xmax=10, ymin=-10,ymax=10, xtick={-8,-6,...,8}, width=\textwidth, ] \addplot[soldot] coordinates{(-3,0)(7,0)(0,1.4)}; \addplot[asymptote,domain=-10:10]({-6},{x}); \addplot[asymptote,domain=-10:10]({5},{x}); \addplot[asymptote,domain=-10:10]({x},{2}); \end{axis} \end{tikzpicture} \caption{} \label{rat:fig:deducehard3} \end{subfigure}% \hfill \caption{Graphs for \cref{rat:prob:deducehard}} \label{rat:fig:deducehard} \end{widepage} \end{figure} %=================================== % Author: Adams (Hughes) % Date: March 2012 %=================================== \begin{problem}[\Crefrange{rat:step:first}{rat:step:last}] Use \crefrange{rat:step:first}{rat:step:last} to sketch a graph of each of the following functions \fixthis{need 2 more subproblems here} \begin{multicols}{4} \begin{subproblem} $y=\dfrac{4}{x+2}$ \begin{shortsolution} Vertical intercept: $(0,2)$; vertical asymptote: $x=-2$, horizontal asymptote: $y=0$. \begin{tikzpicture} \begin{axis}[ framed, xmin=-5,xmax=5, ymin=-5,ymax=5, grid=both, width=\solutionfigurewidth, ] \addplot[pccplot] expression[domain=-5:-2.8]{4/(x+2)}; \addplot[pccplot] expression[domain=-1.2:5]{4/(x+2)}; \addplot[soldot]coordinates{(0,2)}; \addplot[asymptote,domain=-5:5]({-2},{x}); \addplot[asymptote,domain=-5:5]({x},{0}); \end{axis} \end{tikzpicture} \end{shortsolution} \end{subproblem} \begin{subproblem} $y=\dfrac{2x-1}{x^2-9}$ \begin{shortsolution} Vertical intercept:$\left( 0,\frac{1}{9} \right)$; horizontal intercept: $\left( \frac{1}{2},0 \right)$; vertical asymptotes: $x=-3$, $x=3$, horizontal asymptote: $y=0$. \begin{tikzpicture} \begin{axis}[ framed, xmin=-5,xmax=5, ymin=-5,ymax=5, grid=both, width=\solutionfigurewidth, ] \addplot[pccplot] expression[domain=-5:-3.23974]{(2*x-1)/(x^2-9)}; \addplot[pccplot,samples=50] expression[domain=-2.77321:2.83974]{(2*x-1)/(x^2-9)}; \addplot[pccplot] expression[domain=3.17321:5]{(2*x-1)/(x^2-9)}; \addplot[soldot]coordinates{(0,1/9)(1/2,0)}; \addplot[asymptote,domain=-5:5]({-3},{x}); \addplot[asymptote,domain=-5:5]({3},{x}); \addplot[asymptote,domain=-5:5]({x},{0}); \end{axis} \end{tikzpicture} \end{shortsolution} \end{subproblem} \begin{subproblem} $y=\dfrac{x+3}{x-5}$ \begin{shortsolution} Vertical intercept $\left( 0,-\frac{3}{5} \right)$; horizontal intercept: $(-3,0)$; vertical asymptote: $x=5$; horizontal asymptote: $y=1$. \begin{tikzpicture} \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-5,ymax=5, xtick={-8,-6,...,8}, minor ytick={-3,-1,...,3}, grid=both, width=\solutionfigurewidth, ] \addplot[pccplot] expression[domain=-10:3.666]{(x+3)/(x-5)}; \addplot[pccplot] expression[domain=7:10]{(x+3)/(x-5)}; \addplot[asymptote,domain=-5:5]({5},{x}); \addplot[asymptote,domain=-10:10]({x},{1}); \addplot[soldot]coordinates{(0,-3/5)(-3,0)}; \end{axis} \end{tikzpicture} \end{shortsolution} \end{subproblem} \begin{subproblem} $y=\dfrac{2x+3}{3x-1}$ \begin{shortsolution} Vertical intercept: $(0,-3)$; horizontal intercept: $\left( -\frac{3}{2},0 \right)$; vertical asymptote: $x=\frac{1}{3}$, horizontal asymptote: $y=\frac{2}{3}$. \begin{tikzpicture}[/pgf/declare function={f=(2*x+3)/(3*x-1);}] \begin{axis}[ framed, xmin=-5,xmax=5, ymin=-5,ymax=5, grid=both, width=\solutionfigurewidth, ] \addplot[pccplot] expression[domain=-5:0.1176]{f}; \addplot[pccplot] expression[domain=0.6153:5]{f}; \addplot[asymptote,domain=-5:5]({1/3},{x}); \addplot[asymptote,domain=-5:5]({x},{2/3}); \addplot[soldot]coordinates{(0,-3)(-3/2,0)}; \end{axis} \end{tikzpicture} \end{shortsolution} \end{subproblem} \begin{subproblem} $y=\dfrac{4-x^2}{x^2-9}$ \begin{shortsolution} Vertical intercept: $\left( 0,-\frac{4}{9} \right)$; horizontal intercepts: $(2,0)$, $(-2,0)$; vertical asymptotes: $x=-3$, $x=3$; horizontal asymptote: $y=-1$. \begin{tikzpicture}[/pgf/declare function={f=(4-x^2)/(x^2-9);}] \begin{axis}[ framed, xmin=-5,xmax=5, ymin=-5,ymax=5, grid=both, width=\solutionfigurewidth, ] \addplot[pccplot] expression[domain=-5:-3.20156]{f}; \addplot[pccplot,samples=50] expression[domain=-2.85774:2.85774]{f}; \addplot[pccplot] expression[domain=3.20156:5]{f}; \addplot[asymptote,domain=-5:5]({-3},{x}); \addplot[asymptote,domain=-5:5]({3},{x}); \addplot[asymptote,domain=-5:5]({x},{-1}); \addplot[soldot] coordinates{(-2,0)(2,0)(0,-4/9)}; \end{axis} \end{tikzpicture} \end{shortsolution} \end{subproblem} \begin{subproblem} $y=\dfrac{(4x+5)(3x-4)}{(2x+5)(x-5)}$ \begin{shortsolution} Vertical intercept: $\left( 0,\frac{4}{5} \right)$; horizontal intercepts: $\left( -\frac{5}{4},0 \right)$, $\left( \frac{4}{3},0 \right)$; vertical asymptotes: $x=-\frac{5}{2}$, $x=5$; horizontal asymptote: $y=6$. \begin{tikzpicture}[/pgf/declare function={f=(4*x+5)*(3*x-4)/((2*x+5)*(x-5));}] \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-20,ymax=20, xtick={-8,-6,...,8}, ytick={-10,0,...,10}, minor ytick={-15,-5,...,15}, grid=both, width=\solutionfigurewidth, ] \addplot[pccplot] expression[domain=-10:-2.73416]{f}; \addplot[pccplot] expression[domain=-2.33689:4.2792]{f}; \addplot[pccplot] expression[domain=6.26988:10]{f}; \addplot[asymptote,domain=-20:20]({-5/2},{x}); \addplot[asymptote,domain=-20:20]({5},{x}); \addplot[asymptote,domain=-10:10]({x},{6}); \addplot[soldot]coordinates{(0,4/5)(-5/4,0)(4/3,0)}; \end{axis} \end{tikzpicture} \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{problem}[Inverse functions] Each of the following rational functions are invertible \[ F(x)=\frac{2x+1}{x-3}, \qquad G(x)= \frac{1-4x}{x+3} \] \begin{subproblem} State the domain of each function. \begin{shortsolution} \begin{itemize} \item The domain of $F$ is $(-\infty,3)\cup(3,\infty)$. \item The domain of $G$ is $(-\infty,-3)\cup(-3,\infty)$. \end{itemize} \end{shortsolution} \end{subproblem} \begin{subproblem} Find the inverse of each function, and state its domain. \begin{shortsolution} \begin{itemize} \item $F^{-1}(x)=\frac{3x+1}{x-2}$; the domain of $F^{-1}$ is $(-\infty,2)\cup(2,\infty)$. \item $G^{-1}(x)=\frac{3x+1}{x+4}$; the domain of $G^{-1}$ is $(-\infty,-4)\cup(-4,\infty)$. \end{itemize} \end{shortsolution} \end{subproblem} \begin{subproblem} Hence state the range of the original functions. \begin{shortsolution} \begin{itemize} \item The range of $F$ is the domain of $F^{-1}$, which is $(-\infty,2)\cup(2,\infty)$. \item The range of $G$ is the domain of $G^{-1}$, which is $(-\infty,-4)\cup(-4,\infty)$. \end{itemize} \end{shortsolution} \end{subproblem} \begin{subproblem} State the range of each inverse function. \begin{shortsolution} \begin{itemize} \item The range of $F^{-1}$ is the domain of $F$, which is $(-\infty,3)\cup(3,\infty)$. \item The range of $G^{-1}$ is the domain of $G$, which is $(-\infty,-3)\cup(-3,\infty)$. \end{itemize}<++> \end{shortsolution} \end{subproblem} \end{problem} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{problem}[Composition] Let $r$ and $s$ be the rational functions that have formulas \[ r(x)=\frac{3}{x^2},\qquad s(x)=\frac{4-x}{x+5} \] Evaluate each of the following. \begin{multicols}{3} \begin{subproblem} $(r\circ s)(0)$ \begin{shortsolution} $\frac{75}{16}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $(s\circ r)(0)$ \begin{shortsolution} $(s\circ r)(0)$ is undefined. \end{shortsolution} \end{subproblem} \begin{subproblem} $(r\circ s)(2)$ \begin{shortsolution} $\frac{147}{4}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $(s\circ r)(3)$ \begin{shortsolution} $192$ \end{shortsolution} \end{subproblem} \begin{subproblem} $(s\circ r)(4)$ \begin{shortsolution} $(s\circ r)(4)$ is undefined. \end{shortsolution} \end{subproblem} \begin{subproblem} $(s\circ r)(x)$ \begin{shortsolution} $\dfrac{4x^2-3}{1+5x^2}$ \end{shortsolution} \end{subproblem} \end{multicols} \end{problem} %=================================== % Author: Hughes % Date: March 2012 %=================================== \begin{problem}[Piecewise rational functions] The function $R$ has formula \[ R(x)= \begin{dcases} \frac{2}{x+3}, & x<-5 \\ \frac{x-4}{x-10}, & x\geq -5 \end{dcases} \] Evaluate each of the following. \begin{multicols}{4} \begin{subproblem} $R(-6)$ \begin{shortsolution} $-\frac{2}{3}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $R(-5)$ \begin{shortsolution} $\frac{3}{5}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $R(-3)$ \begin{shortsolution} $\frac{7}{13}$ \end{shortsolution} \end{subproblem} \begin{subproblem} $R(5)$ \begin{shortsolution} $-\frac{1}{5}$ \end{shortsolution} \end{subproblem} \end{multicols} \begin{subproblem} What is the domain of $R$? \begin{shortsolution} $(-\infty,10)\cup(10,\infty)$ \end{shortsolution} \end{subproblem} \end{problem} \end{exercises} \section{Graphing rational functions (oblique asymptotes)}\label{rat:sec:oblique} \begin{subproblem} $y=\dfrac{x^2+1}{x-4}$ \begin{shortsolution} \begin{enumerate} \item $\left( 0,-\frac{1}{4} \right)$ \item Vertical asymptote: $x=4$. \item A graph of the function is shown below \begin{tikzpicture}[/pgf/declare function={f=(x^2+1)/(x-4);}] \begin{axis}[ framed, xmin=-20,xmax=20, ymin=-30,ymax=30, xtick={-10,10}, minor xtick={-15,-5,...,15}, minor ytick={-10,10}, grid=both, width=\solutionfigurewidth, ] \addplot[pccplot,samples=50] expression[domain=-20:3.54724]{f}; \addplot[pccplot,samples=50] expression[domain=4.80196:20]{f}; \addplot[asymptote,domain=-30:30]({4},{x}); \end{axis} \end{tikzpicture} \end{enumerate} \end{shortsolution} \end{subproblem} \begin{subproblem} $y=\dfrac{x^3(x+3)}{x-5}$ \begin{shortsolution} \begin{enumerate} \item $(0,0)$, $(-3,0)$ \item Vertical asymptote: $x=5$, horizontal asymptote: none. \item A graph of the function is shown below \begin{tikzpicture}[/pgf/declare function={f=x^3*(x+3)/(x-5);}] \begin{axis}[ framed, xmin=-10,xmax=10, ymin=-500,ymax=2500, xtick={-8,-6,...,8}, ytick={500,1000,1500,2000}, grid=both, width=\solutionfigurewidth, ] \addplot[pccplot,samples=50] expression[domain=-10:4]{f}; \addplot[pccplot] expression[domain=5.6068:9.777]{f}; \addplot[asymptote,domain=-500:2500]({5},{x}); \end{axis} \end{tikzpicture} \end{enumerate} \end{shortsolution} \end{subproblem}