
The checkcites∗ script

Enrico Gregorio
Enrico dot Gregorio at univr dot it

Paulo Roberto Massa Cereda
cereda at users dot sf dot net

Contents
1 Introduction 1

2 How the script works 1

3 Usage 2

4 License 6

1 Introduction
checkcites is a Lua script written for the sole purpose of detecting unused or undefined
references from both LATEX auxiliary or bibliography files. We use unused reference to
refer to the reference present the bibliography file – with the .bib extension – but not
cited in the .tex file. The undefined reference is exactly the opposite, that is, the items
cited in the .tex file, but not present in the .bib file.

The original idea came from a question posted in the TeX.sx community about how
to check which bibliography entries were not used. We decided to write a script to check
references. We opted for Lua, since it’s a very straightforward language and it has an
interpreter available on every modern TEX distribution.

Attention!

checkcites is known to run with the most recent texlua and lua interpreters. Un-
fortunately, the code is incompatible with interpreters prior to the Lua 5.1 language
specification.

2 How the script works
checkcites uses the generated .aux file to start the analysis. The first step is to ex-
tract all citations found, in the form of \citation{a}. For every \citation line found,

∗Version 1.0h from March 16, 2012.

1

http://tex.stackexchange.com
http://tex.stackexchange.com/questions/43276
http://tex.stackexchange.com/questions/43276

checkcites will extract the citations and add them to a table, even for multiple citations
separated by commas, like \citation{a,b,c}. Then the citations table has all duplicate
values removed – in other words, the table becomes a set. Let’s call A the set of citations.

Attention!

If \citation{*} is found, checkcites will issue a message telling that \nocite{*}
is in the .tex document, but the script will do the check nonetheless.

At the same time checkcites also looks for bibliography data, in the form of \bibdata{a}.
Similarly, for every \bibdata line found, the script will extract the bibliography data and
add them to a table, even if they are separated by commas, like \bibdata{d,e,f}. The
table has all duplicate values removed.

Attention!

If no \bibdata command is found, the script ends. There’s nothing to do in this
case.

Now, checkcites will extract all entries from the bibliography files found in the
previous step. For every element in the bibliography data table, the script will look for
entries like @BOOK, @ARTICLE and so forth – we actually use pattern matching for this –
and add their identifiers to a table. The script treats all .bib files as if they were only
one. After all files have been analyzed and all entries’ identifiers extracted, the table has
all duplicate values removed. Let’s call B the set of bibliography entries.

Attention!

If checkcites cannot find a certain bibliography file – that is, a .bib file – the
script ends. Make sure to put the correct name of the bibliography file in your
.tex file.

Now we have both sets A and B. In order to get all unused references in the .bib
files, we compute the set difference

B − A = {x : x ∈ B, x /∈ A}.

Similarly, in order to get all undefined references in the .tex file, we compute the set
difference

A−B = {x : x ∈ A, x /∈ B}.

If there are either unused or undefined references, checkcites will print them in a list
format. In Section 3 there’s a more complete explanation on how to use the script.

3 Usage
checkcites is very easy to use. First of all, let’s define two files that will be used here
to explain the script usage. Here’s our sample bibliography file example.bib, with five
fictional entries.

2

Bibliography file

@BOOK{foo:2012a,
title = {My Title One},
publisher = {My Publisher One},
year = {2012},
editor = {My Editor One},
author = {Author One}

}

@BOOK{foo:2012b,
title = {My Title Two},
publisher = {My Publisher Two},
year = {2012},
editor = {My Editor Two},
author = {Author Two}

}

@BOOK{foo:2012c,
title = {My Title Three},
publisher = {My Publisher Three},
year = {2012},
editor = {My Editor Three},
author = {Author Three}

}

@BOOK{foo:2012d,
title = {My Title Four},
publisher = {My Publisher Four},
year = {2012},
editor = {My Editor Four},
author = {Author Four}

}

@BOOK{foo:2012e,
title = {My Title Five},
publisher = {My Publisher Five},
year = {2012},
editor = {My Editor Five},
author = {Author Five}

}

The second file is our main LATEX document, document.tex.

3

Main document

\documentclass{article}

\begin{document}

Hello world \cite{foo:2012a,foo:2012c}, how are you \cite{foo:2012f},
and goodbye \cite{foo:2012d,foo:2012a}.

\bibliographystyle{plain}
\bibliography{example}

\end{document}

Open a terminal and run checkcites:

$ checkcites

checkcites.lua -- a reference checker script (v1.0g)
Copyright (c) 2012 Enrico Gregorio, Paulo Roberto Massa Cereda

Usage: checkcites.lua [--all | --unused | --undefined] file.aux

--all Lists all unused and undefined references.
--unused Lists only unused references in your ’bib’ file.
--undefined Lists only undefined references in your ’tex’ file.

If no flag is provided, ’--all’ is set by default.
Be sure to have all your ’bib’ files in the same directory.

If you don’t have checkcites installed with your TEX distribution, you can run the
standalone script checkcites.lua with either texlua or lua. We recommend to use
texlua, as it’s shipped with all the modern TEX distributions:

$ texlua checkcites.lua

When you run checkcites without providing any argument to it, the script usage will
be printed, as seen in the previous output. The only required argument is the auxiliary
file – with the .aux extension – which is generated when you compile your main .tex file.
For example, if your main document is named foo.tex, you probably have a foo.aux
file too. Let’s compile our sample document document.tex:

$ pdflatex document.tex

After running pdflatex on our .tex file, there’s now a document.aux file in our work
directory.

4

Auxiliary file

\relax
\citation{foo:2012a}
\citation{foo:2012c}
\citation{foo:2012f}
\citation{foo:2012d}
\citation{foo:2012a}
\bibstyle{plain}
\bibdata{example}

Now we can run checkcites on the document.aux file:

$ checkcites document.aux

checkcites.lua -- a reference checker script (v1.0g)
Copyright (c) 2012 Enrico Gregorio, Paulo Roberto Massa Cereda

I found 4 citation(s).
Great, there’s only one ’bib’ file. Let me check it.
I found 5 reference(s).

Unused reference(s) in your bibliography file(s): 2
- foo:2012b
- foo:2012e

Undefined reference(s) in your TeX file: 1
- foo:2012f

As we can see in the script output, checkcites analyzed both .aux and .bib files
and found two unused references in the bibliography file – foo:2012b and foo:2012e –
and one undefined reference in the document – foo:2012f.

checkcites allows a command line switch that will tell it how to behave. For example,

$ checkcites --unused document.aux

The --unused flag will make the script only look for unused references in the .bib
file. The argument order doesn’t matter, you can also run

$ checkcites document.aux --unused

The script will behave the same. Similarly, you can use

$ checkcites --undefined document.aux

The --undefined flag will make the script only look for undefined references in the
.tex file. If you want checkcites to look for both unused and undefined references, run:

5

$ checkcites --all document.aux

If no special argument is provided, the --all flag is set as default.

4 License
This script is licensed under the LaTeX Project Public License. If you want to support
LATEX development by a donation, the best way to do this is donating to the TeX Users
Group.

Official code repository

http://github.com/cereda/checkcites

6

http://www.latex-project.org/lppl/
http://www.tug.org/
http://www.tug.org/
http://github.com/cereda/checkcites

	Introduction
	How the script works
	Usage
	License

