1 Sets

The universal set (\mathcal{U}) contains everything. The empty set (\emptyset) contains nothing. Some assignments:

$$
\mathcal{B}_{1}=\{1,3,5,7\}, \quad \mathcal{B}_{2}=\{2,4,6,8\}, \quad \mathcal{B}_{3}=\{9,10\}
$$

Define:

$$
\mathcal{A}=\bigcup_{i=1}^{3} \mathcal{B}_{i}=\{1, \ldots, 10\}
$$

The cardinality of a set \mathcal{S} is denoted $|\mathcal{S}|$ and is the number of elements in the set.

$$
\left|\mathcal{B}_{1}\right|=4, \quad\left|\mathcal{B}_{2}\right|=4, \quad\left|\mathcal{B}_{3}\right|=2, \quad\left|\mathcal{B}_{1} \cup \mathcal{B}_{2}\right|=8, \quad|\emptyset|=0
$$

2 Spaces

A number space (denoted \mathbb{S}) is characterised by a set of entities with a set of axioms. For example:

$$
\begin{aligned}
\mathbb{N} & =\{x: x \text { is positive integer }\} \\
\mathbb{Z} & =\{x: x \text { is an integer }\} \\
\mathbb{R} & =\{x: x \text { is a real number }\}
\end{aligned}
$$

3 Vectors and Matrices

A matrix (denoted M) is a rectangular array of values. A vector (denoted v) is a column or row of values (that is a one-dimensional matrix).

$$
I x=x, \quad A A^{-1}=I, \quad x^{-1} 1=\sum_{i} x_{i}
$$

Glossary

$\boldsymbol{I} \quad$ the identity matrix. the iden tity matrix. \mathbb{Z}
$\boldsymbol{M}^{-1} \quad$ the inverse of \boldsymbol{M}. the inverse of \boldsymbol{M}.
M
$\boldsymbol{v} \quad$ a vector. a vector. \mathbb{R}
1 the vector of 1 s . the vector of 1 s.
$\sum \sum n$-ary summation. n-ary $|\mathcal{S}|$ summation.
\mathbb{S}
space
the set of integers. the set of integers.
the set of natural numbers. the set of natural numbers.
the set of real numbers. the set of real numbers.
the cardinality of \mathcal{S}. the cardinality of \mathcal{S}.
the empty set. the empty set. a set. a set.
set contents. set contents.
$\{\boldsymbol{x}: \ldots\}$ set membership. set member- \mathcal{U}
\quad ship.
the universal set. the universal set.

