
bib2gls: a command line Java
application to convert .bib files to

glossaries-extra.sty resource files
Nicola Talbot

dickimaw-books.com

2018-04-09

The bib2gls command line application can be used to extract glossary infor-
mation stored in a .bib file and convert it into glossary entry definitions that
can be read using glossaries-extra’s \GlsXtrLoadResources command. When
used in combination with the record package option, bib2gls can select only
those entries that have been used in the document, as well as any dependent
entries, which reduces the TEX resources required by not defining unnecessary
commands.

Since bib2gls can also sort and collate the recorded locations present in the
.aux file, it can simultaneously by-pass the need to use makeindex or xindy,
although bib2gls can be used together with an external indexing application if
required. (For example, if a custom xindy rule is needed.)

An additional build may be required to ensure the locations are up-to-date
as the page-breaking may be slightly different on the first LATEX run due to the
unknown references being replaced with ⁇ which can be significantly shorter
than the actual text produced when the reference is known.

Note that bib2gls is a Java application, and requires at least Java 7 (although
the latest version is recommended). Additionally, glossaries-extra must be at
least version 1.12. (Although again the latest version is recommended.) This
application was developed in response to the question “Is there a program for
managing glossary tags?” on TEX on StackExchange [12]. The .bib file can be
managed in an application such as JabRef.

If you already have a .tex file containing entry definitions using commands
like \newglossaryentry then you can use the supplementary tool convert-
gls2bib to convert the entries to the .bib format required by bib2gls. See
chapter 7 for further details.

https://www.dickimaw-books.com/
http://tex.stackexchange.com/q/342544
http://tex.stackexchange.com/q/342544

Contents
1 Introduction 1

1.1 Example Use . 1
1.2 Defining a New Glossary . 4
1.3 Resource Sets . 5
1.4 Indexing . 8
1.5 Security . 9
1.6 Localisation . 9
1.7 Conditional Document Build . 10
1.8 Manual Installation . 11

2 TEX Parser Library 13

3 Command Line Options 19
--help (or -h) . 19
--version (or -v) . 19
--debug [⟨n⟩] . 19
--no-debug (or --nodebug) . 19
--verbose . 19
--no-verbose (or --noverbose) . 20
--silent . 20
--locale ⟨lang⟩ (or -l ⟨lang⟩) . 20
--log-file ⟨filename⟩ (or -t ⟨filename⟩) . 20
--dir ⟨dirname⟩ (or -d ⟨dirname⟩) . 20
--interpret . 21
--no-interpret . 21
--no-break-space . 21
--break-space . 21
--cite-as-record . 21
--no-cite-as-record . 22
--merge-wrglossary-records . 22
--no-merge-wrglossary-records . 22
--force-cross-resource-refs (or -x) . 22
--no-force-cross-resource-refs . 22
--support-unicode-script . 22
--no-support-unicode-script . 23
--list-known-packages . 23
--packages ⟨list⟩ (or -p ⟨list⟩) . 23

i

Contents

--custom-packages ⟨list⟩ . 24
--ignore-packages ⟨list⟩ (or -k ⟨list⟩) . 24
--mfirstuc-protection ⟨list⟩|all (or -u ⟨list⟩|all) 24
--no-mfirstuc-protection . 25
--mfirstuc-math-protection . 25
--no-mfirstuc-math-protection . 25
--nested-link-check ⟨list⟩|none . 25
--no-nested-link-check . 25
--shortcuts ⟨value⟩ . 26
--map-format ⟨map:value list⟩ (or -m ⟨map:value list⟩) 26
--group (or -g) . 27
--no-group . 30
--tex-encoding ⟨name⟩ . 30
--no-expand-fields . 31
--expand-fields . 31
--trim-fields . 31
--no-trim-fields . 32
--record-count (or -c) . 32
--no-record-count . 33
--record-count-unit (or -n) . 33
--no-record-count-unit . 33

4 .bib Format 34
4.1 Encoding . 34
4.2 Comments . 35
4.3 Fields . 35
4.4 Standard Entry Types . 41

@string . 41
@preamble . 41

4.5 Single Entry Types . 46
@entry . 46
@symbol . 47
@number . 47
@index . 48
@abbreviation . 49
@acronym . 50
@contributor . 50

4.6 Dual Entry Types . 51
@dualentry . 58
@dualindexentry . 59
@dualindexabbreviation . 61
@dualindexsymbol . 61
@dualindexnumber . 65
@dualabbreviationentry . 65

ii

Contents

@dualentryabbreviation . 66
@dualsymbol . 66
@dualnumber . 67
@dualabbreviation . 67
@dualacronym . 72

4.7 Tertiary Entry Types . 72
@tertiaryindexabbreviationentry . 73

4.8 Multi-Entry Types . 74
@bibtexentry . 74

5 Resource File Options 78
5.1 General Options . 81

charset=⟨encoding-name⟩ . 81
interpret-preamble=⟨boolean⟩ . 82
write-preamble=⟨boolean⟩ . 82
set-widest=⟨boolean⟩ . 82
entry-type-aliases=⟨key=value list⟩ . 83
action=⟨value⟩ . 85

5.2 Selection Options . 87
src=⟨list⟩ . 87
selection=⟨value⟩ . 88
match=⟨key=value list⟩ . 89
match-op=⟨value⟩ . 90
not-match=⟨key=value list⟩ . 90
match-action=⟨value⟩ . 90
limit=⟨number⟩ . 91
flatten=⟨boolean⟩ . 91
flatten-lonely=⟨value⟩ . 91
flatten-lonely-rule=⟨value⟩ . 98

5.3 Master Documents . 98
master=⟨name⟩ . 100
master-resources=⟨list⟩ . 102

5.4 Field and Label Options . 102
group=⟨label⟩ . 103
category=⟨value⟩ . 103
type=⟨value⟩ . 104
trigger-type=⟨type⟩ . 105
interpret-label-fields=⟨boolean⟩ . 106
labelify=⟨list⟩ . 106
labelify-list=⟨list⟩ . 107
labelify-replace=⟨list⟩ . 108
strip-missing-parents=⟨boolean⟩ . 109
missing-parents=⟨value⟩ . 109
missing-parent-category=⟨value⟩ . 111

iii

Contents

abbreviation-name-fallback=⟨field⟩ . 111
ignore-fields=⟨list⟩ . 111
field-aliases=⟨key=value list⟩ . 112
replicate-fields=⟨key=value list⟩ . 112
replicate-override={⟨boolean⟩} . 114
bibtex-contributor-fields=⟨list⟩ . 114
contributor-order=⟨value⟩ . 115
date-time-fields=⟨list⟩ . 116
date-fields=⟨list⟩ . 116
time-fields=⟨list⟩ . 116
date-time-field-format=⟨value⟩ . 117
date-field-format=⟨value⟩ . 117
time-field-format=⟨value⟩ . 117
date-time-field-locale=⟨value⟩ . 117
date-field-locale=⟨value⟩ . 117
time-field-locale=⟨value⟩ . 117
counter=⟨value⟩ . 117
label-prefix=⟨tag⟩ . 118
duplicate-label-suffix=⟨value⟩ . 119
record-label-prefix=⟨tag⟩ . 119
cs-label-prefix=⟨tag⟩ . 119
ext-prefixes=⟨list⟩ . 120
short-case-change=⟨value⟩ . 122
name-case-change=⟨value⟩ . 125
description-case-change=⟨value⟩ . 125
post-description-dot=⟨value⟩ . 125
strip-trailing-nopost=⟨value⟩ . 126
check-end-punctuation=⟨list⟩ . 127
copy-action-group-field=⟨value⟩ . 128
save-child-count=⟨value⟩ . 129
save-original-id=⟨value⟩ . 130
copy-alias-to-see=⟨boolean⟩ . 130

5.5 Plurals . 130
short-plural-suffix=⟨value⟩ . 132
dual-short-plural-suffix=⟨value⟩ . 132

5.6 Location List Options . 132
save-locations=⟨boolean⟩ . 135
save-loclist=⟨boolean⟩ . 135
min-loc-range=⟨value⟩ . 135
max-loc-diff=⟨value⟩ . 138
suffixF=⟨value⟩ . 139
suffixFF=⟨value⟩ . 139
see=⟨value⟩ . 139
seealso=⟨value⟩ . 139

iv

Contents

alias=⟨value⟩ . 139
alias-loc=⟨value⟩ . 140
loc-prefix=⟨value⟩ . 140
loc-suffix=⟨value⟩ . 141
loc-counters=⟨list⟩ . 142
save-index-counter=⟨value⟩ . 143

5.7 Supplemental Locations . 146
supplemental-locations=⟨basename⟩ . 146
supplemental-selection=⟨value⟩ . 148
supplemental-category=⟨value⟩ . 149

5.8 Sorting . 150
sort=⟨value⟩ . 150

No Sort . 151
Alphabet . 151
Letter Case (Unicode Order) . 154
Letter-Number . 155
Numerical . 158
Date-Time . 159

shuffle=⟨seed⟩ . 161
sort-field=⟨field⟩ . 161
missing-sort-fallback=⟨field⟩ . 162
abbreviation-sort-fallback=⟨field⟩ . 163
symbol-sort-fallback=⟨field⟩ . 163
bibtexentry-sort-fallback=⟨field⟩ . 163
trim-sort=⟨boolean⟩ . 163
sort-rule=⟨value⟩ . 163
break-at=⟨option⟩ . 166
break-marker=⟨marker⟩ . 167
sort-number-pad=⟨number⟩ . 167
sort-pad-plus=⟨marker⟩ . 167
sort-pad-minus=⟨marker⟩ . 167
identical-sort-action=⟨value⟩ . 168
sort-suffix=⟨value⟩ . 168
sort-suffix-marker=⟨value⟩ . 173
strength=⟨value⟩ . 173
decomposition=⟨value⟩ . 174
letter-number-rule=⟨value⟩ . 175
letter-number-punc-rule=⟨value⟩ . 175
numeric-sort-pattern=⟨value⟩ . 177
numeric-locale=⟨value⟩ . 177
date-sort-locale=⟨value⟩ . 177
date-sort-format=⟨value⟩ . 178
group-formation=⟨value⟩ . 180

v

Contents

5.9 Secondary Glossary . 180
secondary=⟨value⟩ . 180
secondary-missing-sort-fallback=⟨field⟩ 183
secondary-trim-sort=⟨boolean⟩ . 183
secondary-sort-rule=⟨value⟩ . 183
secondary-break-at=⟨value⟩ . 183
secondary-break-marker=⟨marker⟩ . 183
secondary-sort-number-pad=⟨number⟩ 183
secondary-sort-pad-plus=⟨marker⟩ . 183
secondary-sort-pad-minus=⟨marker⟩ . 184
secondary-identical-sort-action=⟨value⟩ 184
secondary-sort-suffix=⟨value⟩ . 184
secondary-sort-suffix-marker=⟨value⟩ 184
secondary-strength=⟨value⟩ . 184
secondary-decomposition=⟨value⟩ . 184
secondary-letter-number-rule=⟨value⟩ 184
secondary-letter-number-punc-rule=⟨value⟩ 184
secondary-numeric-sort-pattern=⟨value⟩ 184
secondary-numeric-locale=⟨value⟩ . 184
secondary-date-sort-locale=⟨value⟩ . 184
secondary-date-sort-format=⟨value⟩ . 185
secondary-group-formation=⟨value⟩ . 185

5.10 Dual Entries . 185
General Dual Settings . 185

dual-prefix=⟨value⟩ . 185
primary-dual-dependency=⟨boolean⟩ 185
combine-dual-locations=⟨value⟩ 185

Dual Fields . 187
dual-type=⟨value⟩ . 187
dual-category=⟨value⟩ . 188
dual-counter=⟨value⟩ . 188
dual-short-case-change=⟨value⟩ 189
dual-field=⟨value⟩ . 189
dual-date-time-field-format=⟨value⟩ 189
dual-date-field-format=⟨value⟩ 189
dual-time-field-format=⟨value⟩ 190
dual-date-time-field-locale=⟨value⟩ 190
dual-date-field-locale=⟨value⟩ 190
date-time-field-locale=⟨value⟩ 190

Dual Sorting . 190
dual-sort=⟨value⟩ . 190
dual-sort-field=⟨field⟩ . 191
dual-missing-sort-fallback=⟨field⟩ 191
dual-trim-sort=⟨boolean⟩ . 191

vi

Contents

dual-sort-rule=⟨value⟩ . 191
dual-break-at=⟨value⟩ . 191
dual-break-marker=⟨marker⟩ . 191
dual-sort-number-pad=⟨number⟩ 191
dual-sort-pad-plus=⟨marker⟩ . 191
dual-sort-pad-minus=⟨marker⟩ 191
dual-identical-sort-action=⟨value⟩ 191
dual-sort-suffix=⟨value⟩ . 191
dual-sort-suffix-marker=⟨value⟩ 191
dual-strength=⟨value⟩ . 192
dual-decomposition=⟨value⟩ . 192
dual-letter-number-rule=⟨value⟩ 192
dual-letter-number-punc-rule=⟨value⟩ 192
dual-numeric-sort-pattern=⟨value⟩ 192
dual-numeric-locale=⟨value⟩ . 192
dual-date-sort-locale=⟨value⟩ 192
dual-date-sort-format=⟨value⟩ 192
dual-group-formation=⟨value⟩ . 192

Dual Mappings . 192
dual-entry-map={{⟨list1⟩},{⟨list2⟩}} 192
dual-abbrv-map={{⟨list1⟩},{⟨list2⟩}} 194
dual-abbrventry-map={{⟨list1⟩},{⟨list2⟩}} 194
dual-symbol-map={{⟨list1⟩},{⟨list2⟩}} 194
dual-indexentry-map={{⟨list1⟩},{⟨list2⟩}} 194
dual-indexsymbol-map={{⟨list1⟩},{⟨list2⟩}} 194
dual-indexabbrv-map={{⟨list1⟩},{⟨list2⟩}} 195

Dual Back-Links . 195
dual-entry-backlink={⟨boolean⟩} 195
dual-abbrv-backlink={⟨boolean⟩} 196
dual-symbol-backlink={⟨boolean⟩} 196
dual-abbrventry-backlink={⟨boolean⟩} 196
dual-entryabbrv-backlink={⟨boolean⟩} 196
dual-indexentry-backlink={⟨boolean⟩} 196
dual-indexsymbol-backlink={⟨boolean⟩} 196
dual-indexabbrv-backlink={⟨boolean⟩} 196
dual-backlink={⟨boolean⟩} . 196

5.11 Tertiary Entries . 197
tertiary-prefix={⟨value⟩} . 197
tertiary-type={⟨value⟩} . 197
tertiary-category={⟨value⟩} . 197

6 Provided Commands 198
6.1 Entry Definitions . 198

\bibglsnewentry . 198

vii

Contents

\bibglsnewsymbol . 198
\bibglsnewnumber . 199
\bibglsnewindex . 199
\bibglsnewabbreviation . 200
\bibglsnewacronym . 200
\bibglsnewdualentry . 200
\bibglsnewdualindexentry . 201
\bibglsnewdualindexentrysecondary . 201
\bibglsnewdualindexsymbol . 201
\bibglsnewdualindexsymbolsecondary 201
\bibglsnewdualindexnumber . 202
\bibglsnewdualindexnumbersecondary 202
\bibglsnewdualindexabbreviation . 202
\bibglsnewdualindexabbreviationsecondary 203
\bibglsnewdualabbreviationentry . 203
\bibglsnewdualabbreviationentrysecondary 203
\bibglsnewdualentryabbreviation . 204
\bibglsnewdualentryabbreviationsecondary 204
\bibglsnewdualsymbol . 204
\bibglsnewdualnumber . 205
\bibglsnewdualabbreviation . 205
\bibglsnewdualacronym . 205
\bibglsnewtertiaryindexabbreviationentry 205
\bibglsnewtertiaryindexabbreviationentrysecondary 206
\bibglsnewbibtexentry . 206
\bibglsnewcontributor . 206

6.2 Location Lists and Cross-References . 207
\bibglsseesep . 207
\bibglsseealsosep . 207
\bibglsaliassep . 207
\bibglsusesee . 208
\bibglsuseseealso . 208
\bibglsusealias . 208
\bibglsdelimN . 208
\bibglslastDelimN . 208
\bibglspassim . 208
\bibglspassimname . 209
\bibglsrange . 209
\bibglsinterloper . 209
\bibglspostlocprefix . 210
\bibglslocprefix . 210
\bibglspagename . 211
\bibglspagesname . 211
\bibglslocsuffix . 211

viii

Contents

\bibglslocationgroup . 212
\bibglslocationgroupsep . 213
\bibglssupplemental . 213
\bibglssupplementalsep . 213

6.3 Letter Groups . 214
\bibglssetlettergrouptitle . 216
\bibglslettergroup . 217
\bibglslettergrouptitle . 217
\bibglssetothergrouptitle . 218
\bibglsothergroup . 219
\bibglsothergrouptitle . 219
\bibglssetemptygrouptitle . 219
\bibglsemptygroup . 219
\bibglsemptygrouptitle . 220
\bibglssetnumbergrouptitle . 220
\bibglsnumbergroup . 220
\bibglsnumbergrouptitle . 220
\bibglsdatetimegroup . 220
\bibglsdatetimegrouptitle . 221
\bibglsdategroup . 221
\bibglsdategrouptitle . 221
\bibglstimegroup . 221
\bibglstimegrouptitle . 221
\bibglssetunicodegrouptitle . 222
\bibglsunicodegroup . 222
\bibglsunicodegrouptitle . 223
\bibglshypergroup . 223

6.4 Flattened Entries . 223
\bibglsflattenedhomograph . 224
\bibglsflattenedchildpresort . 225
\bibglsflattenedchildpostsort . 225

6.5 Other . 225
\bibglshyperlink . 225
\bibglssetwidest . 226
\bibglssetwidestfortype . 226
\bibglssetwidestfallback . 226
\bibglssetwidestfortypefallback . 227
\bibglssetwidesttoplevelfallback . 227
\bibglssetwidesttoplevelfortypefallback 227
\bibglscontributorlist . 227
\bibglscontributor . 228
\bibglshashchar . 228
\bibglsunderscorechar . 228
\bibglsdollarchar . 228

ix

Contents

\bibglsampersandchar . 228
\bibglscircumchar . 229

7 Converting Existing .tex to .bib 230
7.1 \glsexpandfields . 231
7.2 \glsnoexpandfields . 232
7.3 \glssetexpandfield . 232
7.4 \glssetnoexpandfield . 232
7.5 \newglossaryentry . 232
7.6 \provideglossaryentry . 233
7.7 \longnewglossaryentry . 233
7.8 \longprovideglossaryentry . 233
7.9 \newterm . 233
7.10 \newabbreviation . 235
7.11 \newacronym . 235
7.12 \glsxtrnewsymbol . 235
7.13 \glsxtrnewnumber . 236
7.14 \newdualentry . 236

8 Examples 239
no-interpret-preamble.bib . 239
interpret-preamble.bib . 240
interpret-preamble2.bib . 240
constants.bib . 241
chemicalformula.bib . 244
bacteria.bib . 248
baseunits.bib . 250
derivedunits.bib . 252
people.bib . 253
books.bib . 259
films.bib . 262
mathgreek.bib . 268
bigmathsymbols.bib . 273
mathsrelations.bib . 276
binaryoperators.bib . 278
unaryoperators.bib . 279
mathsobjects.bib . 280
miscsymbols.bib . 285
markuplanguages.bib . 288
usergroups.bib . 290
animals.bib . 295
minerals.bib . 297
vegetables.bib . 300
terms.bib . 301

x

Contents

sample-constants.tex . 302
sample-chemical.tex . 306
sample-bacteria.tex . 309
sample-units1.tex . 313
sample-units2.tex . 316
sample-units3.tex . 319
sample-media.tex . 323
sample-people.tex . 327
sample-authors.tex . 335
sample-msymbols.tex . 340
sample-maths.tex . 343
sample-textsymbols.tex . 347
sample-languages.tex . 350
sample-usergroups.tex . 354
sample-multi1.tex . 362
sample-multi2.tex . 374

Command Summary 399

Bibliography 423

Index 424

xi

List of Tables
4.1 Fields Provided by glossaries-extra . 37
4.2 Fields Provided by bib2gls . 37
4.3 Fields Provided by glossaries-prefix . 38
4.4 Fields Provided by glossaries-accsupp . 38
4.5 Fields Set by bib2gls . 39
4.6 Internal Fields Set by glossaries or glossaries-extra or bib2gls 40

5.1 Summary of Available Sort Options: No Actual Sorting 152
5.2 Summary of Available Sort Options: Alphabet 152
5.3 Summary of Available Sort Options: Letter (Unicode Order) 152
5.4 Summary of Available Sort Options: Letter-Number 152
5.5 Summary of Available Sort Options: Numerical 153
5.6 Summary of Available Sort Options: Date-Time 153

xii

List of Figures
5.1 Regular letter comparison vs letter-number comparison 156

8.1 sample-constants.pdf . 307
8.2 sample-chemical.pdf . 310
8.3 sample-bacteria.pdf . 314
8.4 sample-units1.pdf . 317
8.5 sample-units2.pdf . 320
8.6 sample-units3.pdf . 324
8.7 sample-media.pdf . 328
8.8 sample-people.pdf . 336
8.9 sample-authors.pdf . 341
8.10 sample-msymbols.pdf . 344
8.11 sample-maths.pdf . 348
8.12 sample-textsymbols.pdf . 351
8.13 sample-languages.pdf . 355
8.14 sample-usergroups.pdf . 363
8.15 sample-multi1.pdf (pages 1 to 4) . 375
8.16 sample-multi1.pdf (pages 5 to 8) . 376
8.17 sample-multi2.pdf (pages 1 to 4) . 396
8.18 sample-multi2.pdf (pages 5 to 8) . 397
8.19 sample-multi2.pdf (pages 9 and 12) . 398

xiii

1 Introduction
If you have extensively used the glossaries [10] or glossaries-extra [9] package, you may have
found yourself creating a large .tex file containing many definitions that you frequently use
in documents. This file can then simply be loaded using \input or \loadglsentries, but a
large file like this can be difficult to maintain and if the document only actually uses a small
proportion of those entries, the document build is unnecessarily slow due to the time and
resources taken on defining the unwanted entries.

The aim of bib2gls is to allow the entries to be stored in a .bib file, which can be main-
tained using a reference system such as JabRef. The document build process can now be
analogous to that used with bibtex (or biber), where only those entries that have been
recorded in the document (and possibly their dependent entries) will be extracted from the
.bib file. Since bib2gls can also perform hierarchical sorting and can collate location lists,
it doubles as an indexing application, which means that the makeglossaries step can be
skipped.

You can’t use \glsaddall with this method as that command works by iterating over
all defined entries and calling \glsadd{⟨label⟩}. On the first LATEX run there are no entries
defined, so \glsaddall does nothing. If you want to select all entries, just use selection=
{all} instead (which has the advantage over \glsaddall in that it doesn’t create a redun-
dant location for each entry).

Note that bib2gls requires the extension package glossaries-extra and can’t be used with
just the base glossaries package, since it requires some of the extension commands. See the
glossaries-extra user manual [9] for information on the differences between the basic package
and the extended package, as some of the default settings are different.

Since the information used by bib2gls is written to the .aux file, it’s not possible to run
bib2gls through TEX’s shell escape while the .aux file is open for write access. (The .aux
file is closed after the end document hook, so it can’t be deferred with \AtEndDocument.)
This means that if you really want to run bib2gls through \write18 it must be done in the
preamble with \immediate. For example:

\immediate\write18{bib2gls \jobname}

As from version 1.14 of glossaries-extra, this can be done automatically with the automake
option if the .aux file exists. (Remember that this will require the shell escape to be enabled.)

1.1 Example Use
The glossary entries are stored in a .bib file. For example, the file entries.bib might
contain:

1

1 Introduction

@entry{bird,
name={bird},
description = {feathered animal}

}

@abbreviation{html,
short="html",
long={hypertext markup language}

}

@symbol{v,
name={\vec{v}},
text={\vec{v}},
description={a vector}

}

@index{goose,plural="geese"}

Here’s an example document that uses this data:

\documentclass{article}

\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={en-GB}% sort according to 'en-GB' locale

]

\begin{document}
\Gls{bird} and \gls{goose}.
Symbol: \gls{v}.
Abbreviation: \gls{html}.

\printunsrtglossaries
\end{document}

If this document is called myDoc.tex, the build process is:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

(This manual assumes pdflatex for simplicity. Replace with latex, xelatex or lualatex
as appropriate.)

You can have multiple instances of \GlsXtrLoadResources. For example:

2

1 Introduction

\documentclass{article}

\usepackage[record,index,abbreviations,symbols]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={en-GB},% sort according to 'en-GB' locale
match={entrytype={entry}},% only select @entry
type={main}% put these entries in the 'main' glossary

]

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={en-GB},% sort according to 'en-GB' locale
match={entrytype={abbreviation}},% only select @abbreviation
type={abbreviations}% put these entries in the 'abbreviations' glossary

]

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={letter-case},% case-sensitive letter sort
match={entrytype={symbol}},% only select @symbol
type={symbols}% put these entries in the 'symbols' glossary

]

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={en-GB},% sort according to 'en-GB' locale
match={entrytype={index}},% only select @index
type={index}% put these entries in the 'index' glossary

]

\begin{document}
\Gls{bird} and \gls{goose}.
Symbol: \gls{v}.
Abbreviation: \gls{html}.

\printunsrtglossaries
\end{document}

Note that there’s no need to called xindy or makeindex since bib2gls automatically sorts
the entries and collates the locations after selecting the required entries from the .bib file
and before writing the temporary file that’s input with \glsxtrresourcefile (or the more

3

1 Introduction

convenient shortcut \GlsXtrLoadResources).1 This means the entries are already defined
in the correct order, and only those entries that are required in the document are defined, so
\printunsrtglossary (or \printunsrtglossaries) may be used. (The “ unsrt ” part of
the command name indicates that all defined entries should be listed in the order of definition
from glossaries-extra’s point of view.)

If you additionally want to use an indexing application, such as xindy, you need the pack-
age option record={alsoindex} and use \makeglossaries and \printglossary (or the
iterative \printglossaries) as usual. This requires a more complicated build process:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

(The entries aren’t defined until the second LATEX run, so the indexing files required by makeindex
or xindy can’t be created until then.) There are more examples provided in chapter 8.

1.2 Defining a New Glossary
Some of the examples in this manual use \newglossary* to define a new glossary type
and some use \newignoredglossary or \newignoredglossary*. Why define an ignored
glossary?

The base glossaries package was originally designed to work with makeindex. Support
for xindy was later added, but both require three files per glossary type: the transcript file
(created by the indexing application), the file written by LATEX (and input by the indexing
application) and the file input by LATEX (and written by the indexing application). So when a
new glossary is defined with \newglossary, this not only defines internal control sequences
that store the list of entry labels associated with that glossary, the title and the entry format
but also has to define internal control sequences that store the three file extensions. The
starred form \newglossary* is just a shortcut that forms the extensions from the glossary
label. For the purposes of bib2gls, this is simpler than the unstarred version since the
extensions are now irrelevant as they are only applicable to makeindex and xindy. (Unless,
of course, you are using a hybrid method with record={alsoindex}.)

Since some users wanted the ability to define entries that were common enough to not
be worth including in any glossary lists, the concept of an ignored glossary was introduced,
defined with \newignoredglossary. This only requires an internal control sequence to
store the list of entry labels associated with that glossary2 and the associated internal com-
mand that governs the way that commands like \gls are displayed for that glossary type.
Since this type of glossary has no associated files, it can’t be used with \printglossary and
therefore isn’t included in the list of glossary labels that’s iterated over by commands like

1This document will mostly use the more convenient \GlsXtrLoadResources.
2All entries must be assigned to a glossary. If you don’t use the type field the default is used.

4

1 Introduction

\printglossaries. Since there’s no glossary list (and therefore no targets), \newignored-
glossary additionally disables hyperlinks for that glossary type, but it doesn’t disable in-
dexing. The indexing macro is still called, but because there’s no associated file to write to,
it has no effect. With bib2gls, the indexing is written to the .aux file and so does have an
effect.

Although ignored glossaries can’t be used with \printglossary, they can be used with
\printunsrtglossary, which is designed to work without any indexing, but you need to
explicitly set the title in the optional argument to override the default. The ignored glossaries
still can’t be used in \printunsrtglossaries, since they’re not included in the list that this
command iterates over.

So \newignoredglossary is useful with bib2gls if you’re happy to use \printunsrt-
glossary as it reduces the overall number of internal control sequences. Since there is
now the possibility of targets (created within \printunsrtglossary), it’s useful to have an
ignored glossary that doesn’t suppress the hyperlinks. The glossaries-extra package provides
a starred form \newignoredglossary* that doesn’t suppress the hyperlinks.

Some resource options, such as master, secondary and trigger-type, need to ensure
that a required glossary is defined. In this case, bib2gls uses \provideignoredglossary*
in the .glstex file. If you haven’t already defined that glossary in the document with
\newglossary*, you’ll need to set the title in the optional argument of \printunsrtglos-
sary if you don’t want the default. The glossary won’t be defined on the first run (if the
definition is only provided in the .glstex file) but \printunsrtglossary will just give a
warning if the type is undefined so it won’t interrupt the document build.

1.3 Resource Sets
Each instance of \glsxtrresourcefile or \GlsXtrLoadResources in the document rep-
resents a resource set. Each resource set has one or more associated .bib files that provides
the data for that set. Command line switches (chapter 3) are applied to all resource sets.
Resource options (chapter 5) are only applied to that specific resource set. Each resource set
is processed in stages:

Stage 1 (Initialisation) Occurs after the .aux file has been parsed, this stage parses the
resource option list and ensures options are valid and don’t cause a conflict. The tran-
script will show the message

Initialising resource ⟨resource-name⟩

at this point.

Stage 2 (Parsing) All the .bib files associated with the resource set are parsed. Entry
aliases (identified by entry-type-aliases) are performed. Preamble information
(provided by @preamble) is saved but is not interpreted at this stage. The transcript
will show the message

5

1 Introduction

Parsing bib files for resource ⟨resource-name⟩

at this point.

Stage 3 (Processing Entries) The transcript will show the message

Processing resource ⟨resource-name⟩

at this point. For each entry that was found in the corresponding set of .bib files:
• Records are transferred to aliases if required (alias-loc).
• Field checks and modifications are performed:

– field aliases are performed (field-aliases);
– ignored fields (identified by ignore-fields) are removed;
– case-changes (for example, short-case-change) are performed, except for

the name field;
– suffixes are appended if required (for example, with short-plural-suffix);
– field replications are made (replicate-fields);
– the group field is assigned if group is set;
– any variables (identified by @string) are expanded (if not already done in

any of the previous steps);
– any fields that have been identified by bibtex-contributor-fields are

converted;
– any fields that must be converted into a label form (labelify or labelify

-list) are processed;
– any fields whose value must be a label are interpreted if interpret-label

-fields is set;
– the parent field is adjusted according to the label prefix settings (label

-prefix etc);
– \makefirstuc protection is applied according to --mfirstuc-protection

and --mfirstuc-math-protection;
– fields are parsed for commands like \gls or \glshyperlink and also checked

for nested links if --nested-link-check is set;
– the description field is adjusted according to strip-trailing-nopost;
– end punctuation is checked according to check-end-punctuation;
– name case-change is performed if name-case-change is set.

• The dual version (if appropriate) is created.
• Records are added to the entry’s location list (or transferred to the dual/primary
according to combine-dual-locations).

6

1 Introduction

• The type, category and counter fields are set according to type, dual-type,
category, dual-category, counter and dual-counter.

• Filtering is applied (according to options like match but not selection or limit).
• Required fields are checked for existence.
• Dependencies are registered (if selection={recorded and deps} or selection
={recorded and deps and see}).

• Any fields that have been identified by date-time-fields, date-fields or
time-fields are converted.

If selection={recorded and deps and see} then any recorded entries that have
been cross-referenced by an unrecorded entry, will register a dependency with the
unrecorded entry. Finally, supplemental records are added to entries.

Stage 4 (Selection, Sorting, Writing) Entries are selected from the list according to the
selection setting, sorting is performed (if required), truncation is applied (if limit
is set) and the .glstex file is written. The transcript will show the message

Selecting entries for resource ⟨resource-name⟩

or (if master)

Processing master ⟨resource-name⟩

at this point.

Parent entries must always be in the same resource set as their child entries. (They may be
defined in different .bib files as long as all those .bib files are listed in the same src.) Other
forms of dependencies may be in a different resource set under certain circumstances. These
types of dependencies are instances of commands such as \gls being found (for example, in
the description field), or the cross-reference fields (see, seealso or alias) in recorded
entries that reference unrecorded entries.

The “cross-referenced by” dependencies enabled with selection={recorded and deps
and see} (where an unrecorded entry references a recorded entry through the cross-reference
fields) aren’t supported across resource sets (even with --force-cross-resource-refs).

A cross-resource reference is a reference from a recorded entry provided in one resource
set to an unrecorded entry in another resource set. Since the contents of each resource set’s
preamble must be processed before fields can be interpreted and one resource set’s preamble
may contain definitions that override another, cross-resource references can’t be supported
if fields containing cross-referencing information need to be interpreted.

The cross-resource reference mode determines whether or not bib2gls can support cross-
resource references. If enabled, the message

Cross-resource references allowed.

will be written to the transcript otherwise the message is

7

1 Introduction

Cross-resource references disabled.

The mode can only be enabled if the following condition is satisfied:

• the interpreter is off (--no-interpret), or

• every resource set either doesn’t have a preamble (@preamble) or has interpret
-preamble={false} set.

If you know the preamble contents won’t cause a problem, you can force the cross-resource
references mode on with --force-cross-resource-refs.

If you don’t use either selection={recorded and deps} or selection={recorded
and deps and see} then the dependencies aren’t picked up for that resource set (and so
can’t be cross-referenced from another resource set).

Trails don’t workwith cross-resource references. For example, if entryA has been recorded
and depends on entry B that hasn’t been recorded, then B can be picked up from a different
resource set, but if A and B are in the same resource set and B is dependent on C which is
in a different resource set then C won’t be picked up if it hasn’t been recorded because B
hasn’t been recorded and is in a different resource set.

If the cross-resource reference mode is enabled then stage 3 and stage 4 are processed in
separate loops, otherwise they are processed in the same loop.

1.4 Indexing
The dual index entries such as @dualindexentry (described in section 4.6) are designed to
provide a way of including an entry in both a glossary (with a description) and also include
the term (without the description) in an index. Additional terms that should only appear
in the index can be defined with @index. (See, for example, the sample-multi1.tex and
sample-multi2.tex sample files.)

Although bib2gls is designed to create indexes as well as glossary lists using the same
interface (\gls etc), it is possible to have a mixture of bib2gls and \index. For example:

\documentclass{report}

\usepackage{makeidx}
\usepackage[record]{glossaries-extra}

\makeindex
\GlsXtrLoadResources[src={entries}]

\glssetcategoryattribute{general}{dualindex}{true}
\glssetcategoryattribute{symbol}{dualindex}{true}
\glssetcategoryattribute{abbreviation}{dualindex}{true}

\glssetcategoryattribute{general}{indexname}{hyperbf}

8

1 Introduction

\glssetcategoryattribute{symbol}{indexname}{hyperbf}
\glssetcategoryattribute{abbreviation}{indexname}{hyperbf}

\begin{document}
\chapter{Example}
\gls{bird}, \gls{html}, \gls{v} and \glspl{goose}.

\printunsrtglossaries
\printindex
\end{document}

If the document is called myDoc.tex then the document build is:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
makeindex myDoc.idx
pdflatex myDoc

This requires an additional LATEX call between bib2gls and makeindex since the entries must
be defined before they can be indexed (and they can’t be defined until bib2gls creates the
associated .glstex files).

Note that thismethodwill use the sort value obtained by bib2gls as the ⟨sort⟩ partwithin
\index{⟨sort⟩@⟨actual⟩}. Be careful if you use makeindex as this can result in Unicode char-
acters appearing in the sort value, which makeindex doesn’t support. The ⟨actual⟩ part is
given by \glsentryname{⟨label⟩}. (You can change the ⟨sort⟩ and ⟨actual⟩ parts by redefin-
ing \glsxtrautoindexassignsort and \glsxtrautoindexentry. See the glossaries-extra
manual for further details.)

1.5 Security
TEX Live come with security settings openin_any and openout_any that, respectively, gov-
ern read andwrite file access (in addition to the operating system’s file permissions). bib2gls
uses kpsewhich to determine these values and honours them. MikTeX doesn’t use these set-
tings, so if these values are unset, bib2gls will default to a (any) for openin_any and p
(paranoid) for openout_any.

1.6 Localisation
The messages produced by bib2gls are fetched from a resource file called bib2gls-⟨lang⟩
.xml, where ⟨lang⟩ is a valid Internet Engineering Task Force (IETF) language tag.

The appropriate file is searched for in the following order, where ⟨locale⟩ is the operating
system’s locale or the value supplied by the --locale switch:

9

1 Introduction

1. ⟨lang⟩ exactly matches ⟨locale⟩. For example, my locale is en-GB, so bib2glswill first
search for bib2gls-en-GB.xml. This file doesn’t exist, so it will try again.

2. If ⟨locale⟩ has an associated script, the next try is with ⟨lang⟩ set to ⟨lang code⟩-⟨script⟩
where ⟨lang code⟩ is the two letter ISO language code and ⟨script⟩ is the script code. For
example, if ⟨locale⟩ is sr-RS-Latn then bib2glswill search for bib2gls-sr-Latn.xml
if bib2gls-sr-RS-Latn.xml doesn’t exist.

3. The final attempt is with ⟨lang⟩ set to just the two letter ISO language code. For ex-
ample, bib2gls-sr.xml.

If there is no match, bib2gls will fallback on the English resource file bib2gls-en.xml.
(Currently only bib2gls-en.xml exists as my language skills aren’t up to translating it. Any
volunteers who want to provide other language resource files would be much appreciated.)

Note that if you use the loc-prefix={true} option, the textual labels (“Page” and “Pages”
in English) will be taken from the resource file. In the event that the loaded resource file
doesn’t match the document language, you will have to manually set the correct translation
(in English, this would be loc-prefix={Page,Pages}). The default definition of \bibgls-
passim is also obtained from the resource file.

1.7 Conditional Document Build
If you are using a document build method that tries to determine whether or not bib2gls
should be run, you can find the information by searching the .aux file for instances of

\glsxtr@resource{⟨options⟩}{⟨filename⟩}

Each instance corresponds to an instance of \glsxtrresourcefilewhere ⟨filename⟩ is the
base name of the .glstex file that bib2gls needs to create for this resource set. If the
⟨options⟩ part is missing the src option, this also indicates the base name for the .bib file.

So the simplest check to determine if bib2gls needs to be run is to test if the .aux file
contains \glsxtr@resource. For example, with arara version 4.0:

% arara: bib2gls if found("aux", "glsxtr@resource")

A sophisticated method could check if ⟨filename⟩.glstex is missing or is older than the
document .tex file for each instance of \glsxtr@resource found in the .aux file.

It might also be possible, although far more complex, to parse the ⟨options⟩ part in each
instance of \glsxtr@resource for src and determine if the corresponding .bib file or files
are newer than the .tex file.

It’s not possible to determine if the location lists require updating, just as it’s not possible to
do this for the table of contents, list of figures, list of tables etc. (Or, if it could be implemented,
the required code would make the document build far more complicated.)

In general, the basic algorithm is:

1. If \glsxtr@resource is found in the .aux file then:

10

1 Introduction

a) run bib2gls;
b) run LATEX (or PDFLATEX etc).

2. If \@istfilename is found in the .aux file then:

a) run makeglossaries (or makeglossaries-lite);
b) run LATEX (or PDFLATEX etc).

This allows for the record={alsoindex} package option.

1.8 Manual Installation
If you are unable to install bib2gls through your TEX package manager, you can install
manually using the instructions below. Replace ⟨TEXMF⟩ with the path to your local or
home TEXMF tree (for example, /texmf).

Copy the files provided to the following locations:

• ⟨TEXMF⟩/scripts/bib2gls/bib2gls.jar (Java application.)

• ⟨TEXMF⟩/scripts/bib2gls/convertgls2bib.jar (Java application.)

• ⟨TEXMF⟩/scripts/bib2gls/texparserlib.jar (Java library.)

• ⟨TEXMF⟩/scripts/bib2gls/resources/bib2gls-en.xml (English resource file.)

• ⟨TEXMF⟩/doc/support/bib2gls/bib2gls.pdf (This document.)

If you are using a Unix-like system, there are also bash scripts provided called bib2gls.sh
and convertgls2bib.sh. Either copy then directly to somewhere on your path without the
.sh extension, for example:

cp bib2gls.sh ~/bin/bib2gls
cp convertgls2bib.sh ~/bin/convertgls2bib

or copy the files to ⟨TEXMF⟩/scripts/bib2gls/ and create a symbolic link to them called
just bib2gls and convertgls2bib from somewhere on your path, for example:

cp bib2gls.sh ~/texmf/scripts/bib2gls/
cp convertgls2bib.sh ~/texmf/scripts/bib2gls/
cd ~/bin
ln -s ~/texmf/scripts/bib2gls/bib2gls.sh bib2gls
ln -s ~/texmf/scripts/bib2gls/convertgls2bib.sh convertgls2bib

The texparserlib.jar file isn’t an application but is a library used by both bib2gls.jar
and convertgls2bib.jar, and so needs to be in the same class path. (The library is in a
separate GitHub repository [8] as it’s also used by some of my other applications.)

Windows users can create a .bat file that works in a similar way to the bash scripts. To
do this, create a file called bib2gls.bat that contains the following:

11

https://github.com/nlct/texparser

1 Introduction

@ECHO OFF
FOR /F "tokens=*" %%I IN ('kpsewhich --progname=bib2gls --format=texmfscripts
bib2gls.jar') DO SET JARPATH=%%I
java -Djava.locale.providers=CLDR,JRE -jar "%JARPATH%" %*

Save this file to somewhere on your system’s path. (Similarly for convertgls2bib.) Note
that TEX distributions for Windows usually convert .jar files to executables.

You may need to refresh TEX’s database to ensure that kpsewhich can find the .jar files.
To test that the application has been successfully installed, open a command prompt or

terminal and run the following command:

bib2gls --version
convertgls2bib --version

This should display the version information for both applications.

12

2 TEX Parser Library
The bib2gls application requires the TEX Parser Library texparserlib.jar1 which is used
to parse the .aux and .bib files.

With the --interpret switch on (default), this library is also used to interpret the sort
value when it contains a backslash \ or a tilde ~ or a dollar symbol $ or braces { } (and when
the sort option is not unsrt or none or use).2

The other cases that the interpreter is used for are:

• when set-widest is used to determine the width of the name field;

• if labelify or labelify-list are set the identified field values are first interpreted
(if they contain \ { } ~ or $) before being converted to labels;

• if interpret-label-fields={true} is set and the parent, category, type, group,
seealso or alias fields contain \ or { or } the interpreter is used since these fields
must be just a label (other special characters aren’t checked as they won’t expand to
characters allowed in a label).

The --no-interpret switch will turn off the interpreter, but the library will still be used
to parse the .aux and .bib files. Note that the see field doesn’t use the interpreter with
interpret-label-fields={true} as it may legitimately contain LATEX code in the optional
tag part (such as \seealsoname).

The parser has a different concept of expansion to TEX and will expand some things that
aren’t expanded by LATEX (such as \MakeUppercase and \char) andwon’t expand other com-
mands that would be expanded by LATEX (such as commands defined in terms of complicated
internals).

The texparserlib.jar library is not a TEX engine and there are plenty of situations
where it doesn’t work. In particular, in this case it’s being used in a fragmented context
without knowing most of the packages used by the document or any custom commands or
environments provided within the document.
bib2gls can detect from the log file a small number of packages that the parser recog-

nises. Note that in some cases there’s only very limited support. For example, siunitx’s \si
command is recognised but other commands aren’t from that package aren’t. See --list
-known-packages (page 23) for further details.

1https://github.com/nlct/texparser
2Theother special characters are omitted from the check: the comment symbol % is best avoided in field values,

the subscript and superscript characters _ and ^ should either be encapsulated by $ or by \ensuremath,
which will be picked up by the check for $ or \, and the other special characters would indicate something
too complex for the interpreter to handle.

13

https://github.com/nlct/texparser

2 TEX Parser Library

Since the parser doesn’t have a full set of commands available within the LATEX document,
when it encounters \renewcommand it won’t check if the command is undefined. If the com-
mand isn’t defined, it will simply behave like \newcommand. Whereaswith \providecommand
the parser will only define the command if it’s unrecognised.

If a command isn’t recognised, you can provide it in the @preamble and use \char to map
a symbol to the most appropriate Unicode character. For example, suppose your document
loads a package that provides symbols for use on maps, such as \Harbour, \Battlefield
and \Stadium, then you can provide versions of these commands just for bib2gls’s use:3

@preamble{"\providecommand{\Harbour}{\char"2693}
\providecommand{\Battlefield}{\char"2694}
\providecommand{\Stadium}{\char"26BD}"}

Since these use \providecommand, they won’t overwrite the document’s version (provided
these commands have been defined before \GlsXtrLoadResources). Alternatively, you
can instruct bib2gls to not write the @preamble contents to the resource file using write
-preamble={false}. Now you can either sort these symbols by their Unicode values (sort
={letter-case}) or provide a custom rule that recognises these Unicode characters (for ex-
ample, sort={custom}, sort-rule={\glshex2694 < \glshex2693 < \glshex26BD}).

TEX syntax can be quite complicated and, in some cases, far too complicated for simple reg-
ular expressions. The TEX parser library performs better than a simple pattern match, and
that’s the purpose of texparserlib.jar and why it’s used by bib2gls (and by convert-
gls2bib). When the --debugmode is on, anywarnings or errors triggered by the --interpret
mode will be written to the transcript prefixed with texparserlib: (the results of the con-
versionswill be included in the transcript as informationalmessages prefixedwith texparserlib:
even with --no-debug).

For example, suppose the .bib file includes:

@preamble{
"\providecommand{\mtx}[1]{\boldsymbol{#1}}
\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}
\providecommand{\imaginary}{i}"}

@entry{M,
name={{}\mtx{M}},
text={\mtx{M}},
description={a matrix}

}

@entry{v,
name={{}\vec{v}},
text={\vec{v}},

3These commands won’t work with PDFLATEX, as the \char values are too large, but they’re fine for bib2gls.

14

2 TEX Parser Library

description={a vector}
}

@entry{S,
name={{}\set{S}},
text={\set{S}},
description={a set}

}

@entry{card,
name={{}\card{S}},
text={\card{S}},
description={the cardinality of the set \set{S}}

}

@entry{i,
name={{}\imaginary},
text={\imaginary},
description={square root of minus one ($\sqrt{-1}$)}

}

(The empty group at the start of the name fields protects against the possibility that the
glossname category attribute might be set to firstuc, which automatically converts the
first letter of the name to upper case when displaying the glossary. See also --mfirstuc
-protection and --mfirstuc-math-protection.)

None of these entries have a sort field so the name is used. If the entry type had been
@symbol instead, the fallback would be the entry’s label. This means that with @symbol
instead of @entry, and the default sort-field={sort}, and with sort={letter-case},
these entries will be defined in the order: M, S, card, i, v (since this is the case-sensitive letter
order of the labels) whereas with sort-field={letter-nocase}, the order will be: card,
i, M, S, v (since this is the case-insensitive letter order of the labels).

However, with @entry, the fallback field will be taken from the name which in the above
example contains TEX code, so bib2gls will use texparserlib.jar to interpret this code.
The library has several different ways of writing the processed code. For simplicity, bib2gls
uses the library’s HTML output and then strips the HTML markup and trims any leading
or trailing spaces. The library method that writes non-ASCII characters using “ &x⟨hex⟩; ”
markup is overridden by bib2gls to just write the actual Unicode character, which means
that the letter-based sorting options will sort according to the integer value ⟨hex⟩ rather than
the string “ &x⟨hex⟩; ”.

The interpreter is first passed the code provided with @preamble:

\providecommand{\mtx}[1]{\boldsymbol{#1}}
\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}
\providecommand{\imaginary}{i}

15

2 TEX Parser Library

(unless interpret-preamble={false}). This means that the provided commands are now
recognised by the interpreter when it has to parse the fields later.

In the case of the M entry in the example above, the code that’s passed to the interpreter
is:

{}\mtx{M}

The transcript (.glg) file will show the results of the conversion:4

texparserlib: {}\mtx{M} -> M

So the sort value for this entry is set to “ M ”. The font change (caused by math-mode and
\boldsymbol) has been ignored. The sort value therefore consists of a single Unicode char-
acter 0x4D (Latin upper case letter “ M ”, decimal value 77).

For the v entry, the code is:

{}\vec{v}

The transcript shows:

texparserlib: {}\vec{v} -> →
v

So the sort value for this entry is set to “→
v ”, which consists of two Unicode characters 0x76

(Latin lower case letter “ v ”, decimal value 118) and 0x20D7 (combining right arrow above,
decimal value 8407).

For the set entry, the code is:

{}\set{S}

The transcript shows:

texparserlib: {}\set{S} -> S

So the sort value for this entry is set to “ S ” (again ignoring the font change). This consists
of a single Unicode character 0x53 (Latin upper case letter “ S ”, decimal value 83).

For the card entry, the code is:

{}\card{S}

The transcript shows:

texparserlib: {}\card{S} -> |S|

So the sort value for this entry is set to “ |S| ” (the | characters from the definition of \card
provided in @preamble have been included, but the font change has been discarded). In this
case the sort value consists of three Unicode characters 0x7C (vertical line, decimal value
124), 0x53 (Latin upper case letter “ S ”, decimal value 83) and 0x7C again. If interpret
-preamble={false} had been used, \card wouldn’t be recognised and would be discarded
leaving just “ S ” as the sort value.

For the i entry, the code is:
4The --debug mode will show additional information.

16

2 TEX Parser Library

{}\imaginary

The transcript shows:

texparserlib: {}\imaginary -> i

So the sort value for this entry is set to “ i ”.
Thismeans that in the case of the default sort-field={sort}with sort={letter-case},

these entries will be defined in the order: M (M), S (S), i (i), v (v⃗) and card (|S|). In this
case, the entries have been sorted according to the character codes. If you run bib2glswith
--verbose the decimal character codes will be included in the transcript. For this example:

i -> 'i' [105]
card -> '|S|' [124 83 124]
M -> 'M' [77]
S -> 'S' [83]
v -> '→

v' [118 8407]

The --group option (in addition to --verbose) will place the letter group in parentheses
before the character code list:

i -> 'i' (i) [105]
card -> '|S|' [124 83 124]
M -> 'M' (M) [77]
S -> 'S' (S) [83]
v -> '→

v' (v) [118 8407]

(Note that the card entry doesn’t have a letter group since the vertical bar character isn’t
considered a letter.)

If sort={letter-nocase} is used instead then, after conversion by the interpreter, the
sort values will all be changed to lower case. The order is now: i (i), M (M), S (S), v (v⃗) and
card (|S|). The transcript (with --verbose) now shows

i -> 'i' [105]
card -> '|s|' [124 115 124]
M -> 'm' [109]
S -> 's' [115]
v -> '→

v' [118 8407]

With --group (in addition to --verbose) the letter groups are again included:

i -> 'i' (I) [105]
card -> '|s|' [124 115 124]
M -> 'm' (M) [109]
S -> 's' (S) [115]
v -> '→

v' (V) [118 8407]

17

2 TEX Parser Library

Note that the letter groups are upper case not lower case. Again the card entry doesn’t have
an associated letter group.

If a locale-based sort is used, the ordering will follow the locale’s alphabet rules. For
example, with sort={en} (English, no region or variant), the order becomes: card (|S|), i
(i), M (M), S (S) and v (v⃗). The transcript (with --verbose) shows the collation keys instead:

i -> 'i' [0 92 0 0 0 0]
card -> '|S|' [0 66 0 102 0 66 0 0 0 0]
M -> 'M' [0 96 0 0 0 0]
S -> 'S' [0 102 0 0 0 0]
v -> '→

v' [0 105 0 0 0 0]

Again the addition of the --group switch will show the letter groups.5
Suppose I add a new symbol to my .bib file:

@symbol{angstrom,
name={\AA},
description={\AA ngstr\"om}

}

and I also use this entry in the document. Then with sort={en}, the order is: card (|S|),
angstrom (Å), i (i), M (M), S (S), and v (v⃗). The --group switch shows that the angstrom
entry (Å) has been placed in the “A” letter group.

However, if I change the locale to sort={sv}, the angstrom entry is moved to the end of
the list and the --group switch shows that it’s been placed in the “Å” letter group.

If you are using Java 8, you can set the java.locale.providers property [7] to use the
Unicode Common Locale Data Repository (CLDR) locale provider, which has more extensive
support for locales than the native Java Runtime Environment (JRE). For example:

java.locale.providers=CLDR,JRE

This isn’t available for Java 7, and should be enabled by default for the proposed Java 9.
Alternatively, you can provide your own rule using sort={custom} and sort-rule. The
property can either be set in a script that runs bib2gls, for example,

java -Djava.locale.providers=CLDR,JRE,SPI -jar "$jarpath" "$@"

(where $jarpath is the path to the bib2gls.jar file and "$@" is the argument list) or you
can set the property as the default for all Java applications by adding the definition to the
_JAVA_OPTIONS environment variable. For example, in a bash shell:

export _JAVA_OPTIONS='-Djava.locale.providers=CLDR,JRE,SPI'

or in Windows:

set _JAVA_OPTIONS=-Djava.locale.providers=CLDR,JRE,SPI

5For more information on collation keys see the CollationKey class in Java’s API [1].

18

http://docs.oracle.com/javase/8/docs/api/java/text/CollationKey.html

3 Command Line Options
The syntax of bib2gls is:

bib2gls [⟨options⟩] ⟨filename⟩

where ⟨filename⟩ is the name of the .aux file. (The extension may be omitted.) Only one
⟨filename⟩ is permitted.

Available options are listed below.

--help (or -h)
Display the help message and quit.

--version (or -v)
Display the version information and quit.

--debug [⟨n⟩]
Switch on debugging mode. If ⟨n⟩ is present, it must be a non-negative integer indicating
the debugging level. If omitted 1 is assumed. This option also switches on the verbose mode.
A value of 0 is equivalent to --no-debug.

--no-debug (or --nodebug)
Switches off the debugging mode.

--verbose
Switches on the verbose mode. This writes extra information to the terminal and transcript
file.

19

3 Command Line Options

--no-verbose (or --noverbose)
Switches off the verbose mode. This is the default behaviour. Some messages are written to
the terminal. To completely suppress all messages (except errors), switch on the silent mode.
For additional information messages, switch on the verbose mode.

--silent
Suppresses all messages except for errors that would normally be written to the terminal.
Warnings and informational messages are written to the transcript file, which can be in-
spected afterwards.

--locale ⟨lang⟩ (or -l ⟨lang⟩)
Specify the preferred language resource file, where ⟨lang⟩ is a valid IETF language tag. This
option requires an appropriate bib2gls-⟨lang⟩.xml resource file otherwise bib2gls will
fallback on English.

--log-file ⟨filename⟩ (or -t ⟨filename⟩)
Sets the name of the transcript file. By default, the name is the same as the .aux file but with
a .glg extension. Note that if you use bib2gls in combination with xindy or makeindex,
you will need to change the transcript file name to prevent interference.

--dir ⟨dirname⟩ (or -d ⟨dirname⟩)
By default bib2gls assumes that the output files should be written in the current working
directory. The input .bib files are assumed to be either in the current working directory or
on TEX’s path (in which case kpsewhich will be used to find them).

If your .aux file isn’t in the current working directory (for example, you have run TEX
with -output-directory) then you need to take care how you invoke bib2gls.

Suppose I have a file called test-entries.bib that contains my entry definitions and a
document called mydoc.tex that selects the .bib file using:

\GlsXtrLoadResources[src={test-entries}]

(test-entries.bib is in the same directory as mydoc.tex). If I compile this document
using

pdflatex -output-directory tmp mydoc

then the auxiliary file mydoc.aux will be written to the tmp sub-directory. The resource
information is listed in the .aux file as

20

3 Command Line Options

\glsxtr@resource{src={test-entries}}{mydoc}

If I run bib2gls from the tmp directory, then it won’t be able to find the test-entries.bib
file (since it’s in the parent directory).

If I run bib2gls from the same directory as mydoc.tex using

bib2gls tmp/mydoc

then the .aux file is found and the transcript file is tmp/mydoc.glg (since the default is the
same as the .auxfile butwith the extension changed to .glg) but the output file mydoc.glstex
will be written to the current directory.

This works fine from TEX’s point of view as it can find the .glstex file, but it may be that
you’d rather the .glstex file was tidied away into the tmp directory along with all the other
files. In this case you need to invoke bib2gls with the --dir or -d option:

bib2gls -d tmp mydoc

--interpret
Switch on the interpreter mode (default). See chapter 2 for more details.

--no-interpret
Switch off the interpreter mode. See chapter 2 for more details.

--no-break-space
The interpreter treats a tilde character ~ as a non-breakable space (default).

--break-space
The interpreter treats a tilde character ~ as a normal space.

--cite-as-record
Treat instances of \citation{⟨label⟩} found in the .aux file as though it was actually an
ignored record:

\glsxtr@record{⟨label⟩}{}{page}{glsignore}{}

Note that \citation{*}will always be skipped. Use selection={all} to select all entries.
This switch is most useful in conjunction with @bibtexentry (page 74).

21

3 Command Line Options

--no-cite-as-record
Don’t check for instances of \citation in the .aux file (default).

--merge-wrglossary-records
For use with the indexcounter package option (glossaries-extra v1.29+), this switch merges
an entry’s wrglossary records for the same page location. This is the default setting. (See also
save-index-counter.)

--no-merge-wrglossary-records
Don’t merge an entry’s wrglossary records. This means that you may end up with duplicate
page numbers in the entry’s location list, but they will link to different parts of the page.

--force-cross-resource-refs (or -x)
Force cross-resource reference mode on (see section 1.3).

--no-force-cross-resource-refs
Don’t force cross-resource reference mode on (default). The mode will be enabled if applica-
ble (see section 1.3).

--support-unicode-script
Text superscript (\textsuperscript) and subscript (\textsubscript) will use Unicode
super/subscript characters if available (default). For example,

(2)

will be converted to (2), which consists of: 0x207D (superscript left parenthesis) 0x00B2 (su-
perscript two) 0x207E (superscript right parenthesis). If the entire contents of the argument
can’t be represented by Unicode characters, the interpreter uses <sup> and <sub> markup,
which is then stripped by bib2gls. For example,

(2,3)

will be converted to

^(2,3)

22

3 Command Line Options

(since there’s no superscript comma). The markup is stripped leaving just (2,3).
Superscripts and subscripts in maths mode always use markup regardless of this setting.

Some supported packages that use ^ or _ as shortcuts within an encapsulating command
may internally use the same code as \textsuperscript and \textsubscript, in which
case they will be sensitive to this setting.

--no-support-unicode-script
Text superscript (\textsuperscript) and subscript (\textsubscript) won’t use Unicode
super/subscript characters. Note that if other commands are provided that expand to Unicode
superscript or subscript characters, then they won’t be affected by this setting. For example,
if \superiortwo is defined as

\providecommand{\superiortwo}{\char"B2}

then it will be interpreted as 0x00B2 (superscript two) even if this setting is on.

--list-known-packages
This option will list all the packages supported by the TEX parser library and will then exit
bib2gls. The results are divided into two sections: those packages that are searched for
in the .log file and those packages that aren’t searched for in the .log file but have some
support available. Some of the support is very limited. Package options aren’t detected. The
transcript file is always searched for glossaries-extra to ensure that the version is new enough
to support bib2gls.

Packages that fall into the first category are: amsmath, amssymb, bpchem, fontenc, fontspec,
fourier, hyperref, lipsum, MnSymbol, mhchem, natbib, pifont, siunitx (limited), stix, textcase,
textcomp, tipa, upgreek and wasysym. (You can omit checking for specific packages with
--ignore-packages.) These are packages that provide commands that might be needed
within entry fields. The check for fontspec is to simply determine whether or not UTF-8
characters are allowed in labels (for labelify and labelify-list).

Packages that fall into the second category are: booktabs, color, datatool-base (very lim-
ited), datatool (very limited), etoolbox (very limited), graphics, graphicx, ifthen, jmlrutils, prob-
soln, shortvrb, and xspace. These are less likely to be needed within fields and so aren’t
checked for by default. If they are needed then you can instruct bib2gls to support them
with --packages.

(If you’re wondering about the selection, the texparserlib.jar library was originally
written for another application that required support for some of them.)

--packages ⟨list⟩ (or -p ⟨list⟩)
Instruct the interpreter to assume the packages listed in ⟨list⟩ have been used by the docu-
ment. This option has a cumulative action so --packages "wasysym,pifont" is the same

23

3 Command Line Options

as --packages wasysym --packages pifont.
Note that there’s only a limited number of packages supported by the TEX parser library.

This option is provided for cases where you’re using a command from a package that the
interpreter doesn’t support but it happens to have the same name andmeaning as a command
from a package that the interpreter does support. You can also use it to provide support for
known packages that aren’t checked for when the .log file is parsed. If you want bib2gls
to parse an unsupported package use --custom-packages.

--custom-packages ⟨list⟩
Instruct the interpreter to parse the package files identified in ⟨list⟩. The package files need
to be quite simple. When this switch is used, the interpreter can recognise \ProvidesPack-
age, \DeclareOptions (and \DeclareOptions*), \ProcessOptions, \PackageError and
\RequirePackage, but it can’t deal with complicated code. In the case of \RequirePack-
age, support will also be governed by --custom-packages. This option has a cumulative
action.

--ignore-packages ⟨list⟩ (or -k ⟨list⟩)
This option is cumulative. When the document .log file is parsed for known packages,
bib2gls will skip the check for any listed in ⟨list⟩. Note that this option simply instructs
bib2gls to ignore the package information in the log file. Any packages that are identified
with --packageswill be passed to the interpreter if support is available, even if the package
is also listed in --ignore-packages. Note that unknown packages can’t be included in the
ignored ⟨list⟩.

--mfirstuc-protection ⟨list⟩|all (or -u ⟨list⟩|all)
Commands like \Gls use \makefirstuc provided by the mfirstuc package. This command
has limitations and one of the things that can break it is the use of a referencing command at
the start of its argument. The glossaries-extra package has more detail about the problem in
the “Nested Links” section of the user manual [9]. If a glossary field starts with one of these
problematic commands, the recommended method (if the command can’t be replaced) is to
insert an empty group in front of it.

For example, the following definition

\newabbreviation{shtml}{shtml}{\glsps{ssi} enabled \glsps{short}{html}}

will cause a problem for \Gls{shtml} on first use.
The above example, would be written in a .bib file as:

@abbreviation{shtml,
short={shtml},

24

3 Command Line Options

long={\glsps{ssi} enabled \glsps{html}}
}

The argument should either be a comma-separated list of fields or the keyword all (which
indicates all fields). bib2glswill automatically insert an empty group at the start of the listed
fields that start with a problematic command, and a warning will be written to the transcript.
Unknown fields are skipped even if they’re included in the list. An empty argument is equiv-
alent to --no-mfirstuc-protection. The default value is all.

--no-mfirstuc-protection
Switches off the mfirstuc protection mechanism described above.

--mfirstuc-math-protection
This works in the same way as --mfirstuc-protection but guards against fields starting
with inline maths ($…$). For example, if the name field starts with x and the glossary style
automatically tries to convert the first letter of the name to upper case, then this will cause
a problem.

With --mfirstuc-math-protection set, bib2gls will automatically insert an empty
group at the start of the field and write a warning in the transcript. This setting is on by
default.

--no-mfirstuc-math-protection
Switches off the above.

--nested-link-check ⟨list⟩|none
By default, bib2gls will parse certain fields for potential nested links. (See the section
“Nested Links” in the glossaries-extra user manual [9].)

The default set of fields to check are: name, text, plural, first, firstplural, long,
longplural, short, shortplural and symbol.

You can change this set of fields using --nested-link-check ⟨value⟩where ⟨value⟩may
be none (don’t parse any of the fields) or a comma-separated list of fields to be checked.

--no-nested-link-check
Equivalent to --nested-link-check none.

25

3 Command Line Options

--shortcuts ⟨value⟩
Some entries may reference another entry within a field, using commands like \gls, so
bib2gls parses the fields for these commands to determine dependent entries to allow them
to be selected even if they haven’t been used within the document. The shortcuts package
option provided by glossaries-extra defines various synonyms, such as \ac which is equiv-
alent to \gls. By default the value of the shortcuts option will be picked up by bib2gls
when parsing the .aux file. This then allows bib2gls to additionally search for those short-
cut commands while parsing the fields.

You can override the shortcuts setting using --shortcuts ⟨value⟩ (where ⟨value⟩ may
take any of the allowed values for the shortcuts package option), but in general there is
little need to use this switch.

--map-format ⟨map:value list⟩ (or -m ⟨map:value list⟩)
This sets up the rule of precedence for partial location matches (see section 5.6). The argu-
ment may be a comma-separated list of ⟨map⟩:⟨value⟩ pairs. Alternatively, you can have
multiple instances of --map-format ⟨map⟩:⟨value⟩ which have a cumulative effect.

For example,

bib2gls --map-format "emph:hyperbf" mydoc

This essentially means that if there’s a record conflict involving emph, try replacing emph
with hyperbf and see if that resolves the conflict.

Note that if the conflict includes a range formation, the range takes precedence. The map-
ping tests are applied as the records are read. For example, suppose the records are listed in
the .aux file as:

\glsxtr@record{gls.sample}{}{page}{emph}{3}
\glsxtr@record{gls.sample}{}{page}{hypersf}{3}
\glsxtr@record{gls.sample}{}{page}{hyperbf}{3}

and bib2gls is invoked with

bib2gls --map-format "emph:hyperbf,hypersf:hyperit" mydoc

or

bib2gls --map-format emph:hyperbf --map-format hypersf:hyperit mydoc

then bib2gls will process these records as follows:

1. Accept the first record (emph) since there’s currently no conflict. (This is the first record
for page 3 for the entry given by gls.sample.)

2. The second record (hypersf) conflicts with the existing record (emph). Neither has the
format glsnumberformat or glsignore so bib2gls consults the mappings provided
by --map-format.

26

3 Command Line Options

• The hypersf format (from the new record) is mapped to hyperit, so bib2gls
checks if the existing record has this format. In this case it doesn’t (the format is
emph). So bib2gls moves on to the next test:

• The emph format (from the existing record) is mapped to hyperbf, so bib2gls
checks if the new record has this format. In this case it doesn’t (the format is
hypersf).
Since the provided mappings haven’t resolved this conflict, the new record is
discarded with a warning. Note that there’s no look ahead to the next record.
(There may be other records for other entries also used on page 3 interspersed
between these records.)

3. The third record (hyperbf) conflicts with the existing record (emph). Neither has the
format glsnumberformat or glsignore so bib2gls again consults themappings pro-
vided by --map-format.

• The new record’s hyperbf format has no mapping provided, so bib2gls moves
on to the next test:

• The existing record’s emph format has amapping provided (hyperbf). Thismatches
the new record’s format, so the new record takes precedence.
This means that the location list ends up with the hyperbf location for page 3.

If, on the other hand, the mappings are given as

--map-format "emph:hyperit,hypersf:hyperit,hyperbf:hyperit"

then all the three conflicting records (emph, hypersf and hyperbf) will end up being replaced
by a single record with hyperit as the format.

Multiple conflicts will typically be rare as there’s usually little reason for more than two
or three different location formats within the same list. (For example, glsnumberformat as
the default and hyperbf or hyperit for a primary reference.)

--group (or -g)
The glossaries-extra record package option automatically creates a new field called group.
If the --group switch is used then, when sorting, bib2gls will try to determine the letter
group for each entry and add it to the group field. (Some sort options ignore this setting.)
This value will be picked up by \printunsrtglossary if group headings are required (for
example with the indexgroup style) or if group separators are required (for example, the
index style with the default nogroupskip={false}). If you don’t require grouping within
the glossary, there’s no need to use this switch. Note that this switch doesn’t automatically
select an appropriate glossary style.

There are eight types of groups:

27

3 Command Line Options

letter group The first non-ignored character of the sort value is alphabetic. This type of
group occurs when using the alphabetic sort methods listed in table 5.2 or with the
letter sort methods listed in table 5.3 or with the letter-number sort methods listed in
table 5.4. The group label is obtained from \bibglslettergroup.

non-letter group (or symbol group) Thefirst non-ignored character of all the sort values
within this group are non-alphabetical. This type of group occurs when using the
alphabetic sort methods listed in table 5.2 or with the letter sort methods listed in
table 5.3 or with the letter-number sort methods listed in table 5.4. The alphabetic sort
methods ignore many punctuation characters, so an entry that has a non-alphabetic
initial character in the sort value may actually be placed in a letter group. The group
label is obtained from \bibglsothergroup.

empty group The sort value is empty when sorting with an alphabetical, letter or letter-
number method, typically a result of the original value consisting solely of commands
that bib2gls can’t interpret. The group label is obtained from \bibglsemptygroup.

number group The entries were sorted by one of the numeric comparisons listed in ta-
ble 5.5. The group label is obtained from \bibglsnumbergroup.

date-time group The entries were sorted by one of the date-time comparisons listed in
table 5.6 (where both date and time are present). The group label is obtained from
\bibglsdatetimegroup.

date group The entries were sorted by one of the date comparisons (where the time is omit-
ted). The group label is obtained from \bibglsdategroup.

time group The entries were sorted by one of the time comparisons (where the date is omit-
ted). The group label is obtained from \bibglstimegroup.

custom group The group label is explicitly set either in the .bib file or using the group
={⟨label⟩} resource option. You will need to use \glsxtrsetgrouptitle to provide
an associated title if the ⟨label⟩ isn’t the same as the title. Remember that the label
can’t contain any active characters, so you can’t use non-ASCII characters in ⟨label⟩
with inputenc (but you can use non-ASCII alphanumerics with fontspec).

The letter group titles will typically have the first character converted to upper case for
the alphabet sort methods (table 5.2). A “letter” may not necessarily be a single character
(depending on the sort rule), but may be composed of multiple characters, such as a digraph
(two characters) or trigraph (three characters).

For example, if the sort rule recognises the digraph “dz” as a letter, then it will be converted
to “Dz” for the group title. There are some exceptions to this. For example, the Dutch digraph
“ij” should be “IJ” rather than “Ij”. This is indicated by the following line in the language
resource file:

<entry key="grouptitle.case.ij">IJ</entry>

28

3 Command Line Options

If there isn’t a grouptitle.case.⟨lc⟩ key (where ⟨lc⟩ is the lower case version), then only
the first character will be converted to upper case otherwise the value supplied by the re-
source file is used. This resource key is only checked for the alphabetical comparisons listed
in table 5.2. If the initial part of the sort value isn’t recognised as a letter according to the
sort rule, then the entry will be in a non-letter group (even if the character is alphabetical).

The letter (table 5.3) and letter-number (table 5.4) methods only select the first charac-
ter of the sort value for the group. If the character is alphabetical1 then it will be a let-
ter group otherwise it’s a non-letter group. The case-insensitive ordering (such as sort=
{letter-nocase}) will convert the letter group character to upper case. The case-sensitive
ordering (such as sort={letter-case}) won’t change the case.

Glossary styles with navigational links to groups (such as indexhypergroup) require an
extra run for the ordinary \makeglossaries and \makenoidxglossaries methods. For
example, for the document myDoc.tex:
pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc
pdflatex myDoc

On the first pdflatex call, there’s no glossary. On the second pdflatex, there’s a glossary
but the glossary must be processed to find the group information, which is written to the
.aux file as
\@gls@hypergroup{⟨type⟩}{⟨group id⟩}

The third pdflatex reads this information and is then able to create the navigation links.
With bib2gls, if the type is provided (through the type field or via options such as type

and dual-type) then this information can be determined when bib2gls is ready to write
the .glstex file, which means that the extra LATEX run isn’t necessary.

For example:
\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[record,abbreviations,style=indexhypergroup]{glossaries-extra}

\GlsXtrLoadResources[src={entries},% data in entries.bib
type={main}% put these entries in the 'main' glossary

]

\GlsXtrLoadResources[src={abbrvs},% data in abbrvs.bib
type={abbreviations}% put these entries in the 'abbreviations' glossary

]

Here the type is set and bib2gls can detect that hyperref has been loaded, so if the --group
switch is used, then the group hyperlinks can be set (using \bibglshypergroup). This
means that the build process is just:

1according to Java’s Character.isAlphabetic(int) method

29

3 Command Line Options

pdflatex myDoc
bibtex --group myDoc
pdflatex myDoc

Note that this requires glossaries v4.32+. If your version of glossaries is too old then bib2gls
can’t override the default behaviour of glossary-hypernav’s \glsnavhypertarget.

If hyperref isn’t loaded or the --group switch isn’t used or the type isn’t set or your
version of glossaries is too old, then the information isn’t saved.

For example:

\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[record,abbreviations,style=indexhypergroup]{glossaries-extra}

\GlsXtrLoadResources[src={entries}]% data in entries.bib

\GlsXtrLoadResources[src={abbrvs}]% data in abbrvs.bib

This requires the build process:

pdflatex myDoc
bibtex --group myDoc
pdflatex myDoc
pdflatex myDoc

because the group hyperlink information can’t be determined by bib2gls, so it’s best to
always set the type if you want hyper-group styles, and make sure you have an up-to-date
version of glossaries (and glossaries-extra).

--no-group
Don’t use the group field. (Default.) The glossary won’t have groups even if a group style,
such as indexgroup, is used.

--tex-encoding ⟨name⟩
bib2gls tries to determine the character encoding to use for the output files. If the document
has loaded the inputenc package then bib2gls can obtain the value of the encoding from the
.aux file. This is then converted to a name recognised by Java. For example, utf8 will be
mapped to UTF-8. If the fontspec package has been loaded, glossaries-extra will assume the
encoding is utf8 and write that value to the .aux file.

If neither package has been loaded, bib2gls will assume the operating system’s default
encoding. If this is incorrect or if bib2gls can’t work out the appropriate mapping then
you can specify the correct encoding using --tex-encoding ⟨name⟩ where ⟨name⟩ is the
encoding name (such as UTF-8).

30

3 Command Line Options

If you have a problem with non-ASCII characters not displaying correctly in your docu-
ment:

• Check that the file encoding of your document .tex file (or files) has been correctly
set by your text editor.

• Check that your document supports that encoding (for example, through the inputenc
package).

• Check bib2gls’s transcript file (.glg) for the line that starts

TeX character encoding:

This should be followed by the encoding used by bib2glswhen creating the .glstex
files. If this is incorrect use --tex-encoding.

• Check that the encoding of the .bib files (set by your text editor or bibliographic man-
agement system) matches the encoding line in the .bib file or the charset resource
option.

--no-expand-fields
By default, \newglossaryentry and similar commands expand field values (except for name,
symbol and description). This is useful if constructing field values programmatically (for
example in a loop) but can cause a problem if certain fragile commands are included in the
field.

The switch --no-expand-fields makes bib2gls write \glsnoexpandfields to the
.glstex file, which switches off the expansion. Since bib2gls is simply fetching the data
from .bib files, it’s unlikely that this automatic expansion is required and since it can also
be problematic this option is on by default. You can switch it off with --expand-fields.

--expand-fields
Don’t write \glsnoexpandfields to the .glstex file, allowing fields to expand when the
entries are defined. Remember that this doesn’t include the name, symbol or description
fields, which need to have their expansion switched on with \glssetexpandfield before
the entries are defined (that is, before using \GlsXtrLoadResources).

--trim-fields
Trim leading and trailing spaces from field values. For example, if the .bib file contains:

31

3 Command Line Options

@entry{sample,
name = { sample },
description = {

an example
}

}
This will cause spurious spaces. Using --trim-fields will automatically trim the values
before writing the .glstex file.

--no-trim-fields
Don’t trim any leading or trailing spaces from field values. This is the default setting.

--record-count (or -c)
Switch on record counting. This will ensure that when each entry is written to the .glstex
file, bib2gls will additionally set the following fields

• recordcount: set to the total number of records found for the entry;

• recordcount.⟨counter⟩: set to the total number of records found for the entry for the
given counter.

These fields can then be used with the \rgls-like commands. The default behaviour of
\rgls[⟨options⟩]{⟨label⟩}[⟨insert⟩]
is to check the recordcount field against the recordcount attribute value. This attribute can
be set with
\GlsXtrSetRecordCountAttribute{⟨category list⟩}{⟨value⟩}
where ⟨category list⟩ is a comma-separated list of category labels and ⟨value⟩ is a positive
integer. If the value of the recordcount field is greater than ⟨value⟩ then \rgls behaves
like \gls, otherwise it does
\rglsformat{⟨label⟩}[⟨insert⟩]
instead. If the use of \rglsformat is triggered in this way, then \rglswrites a record to the
.aux file with the format set to glstriggerrecordformat. This ensures that the record
count is correct on the next run, but the record isn’t added to the location list as bib2gls
recognises it as a special ignored record. Note that the entry will still appear in the usual
glossary unless you assign it to a different one with trigger-type.

If the recordcount attribute hasn’t been set \rgls behaves like \gls. (That is, \rgls uses
the same internal command used by \gls.) You can use \glsxtrenablerecordcount to
redefine \gls to \rgls, so that you can continue to use \gls without having to switch
command name.

For example:

32

3 Command Line Options

\GlsXtrLoadResources[
src=abbrevs,% entries defined in abbrevs.bib
trigger-type=ignored,
category=abbreviation

]
\glsxtrenablerecordcount
\GlsXtrSetRecordCountAttribute{abbreviation}{1}

See the glossaries-extra user manual [9] for further details.

--no-record-count
Switch off record counting. (Default.)

--record-count-unit (or -n)
Automatically implements --record-count and additionally sets the recordcount.⟨counter⟩.
⟨location⟩ fields. These fields can then be used with the \rgls-like commands.

--no-record-count-unit
Switches off unit record counting. (Default.) Note that you need --no-record-count to
completely switch off record counting.

33

4 .bib Format
bib2gls recognises certain entry types. Any unrecognised types will be ignored and awarn-
ing will be written to the transcript file. Entries are defined in the usual .bib format:

@⟨entry-type⟩{⟨id⟩,
⟨field-name-1⟩ = {⟨text⟩},
...
⟨field-name-n⟩ = {⟨text⟩}

}

where ⟨entry-type⟩ is the entry type (listed below), ⟨field-name-1⟩, …, ⟨field-name-n⟩ are the
field names and ⟨id⟩ is a unique label. The label can’t contain any spaces or commas. In
general it’s best to stick with alpha-numeric labels. The field values may be delimited by
braces {⟨text⟩} or double-quotes "⟨text⟩".

The label-prefix option can be used to instruct bib2gls to insert prefixes to the labels
(⟨id⟩) when the data is read. Remember to use these prefixes when you reference the entries
in the document, but don’t include them when you reference them in the .bib file. There
are some special prefixes that have a particular meaning to bib2gls: “dual.” and “ext⟨n⟩.”
where ⟨n⟩ is a positive integer. In the first case, dual. references the dual element of a dual
entry (see @dualentry). This prefixwill be replaced by the value of the dual-prefix option.
The ext⟨n⟩. prefix is used to reference an entry from a different set of resources (loaded by
another \GlsXtrLoadResources command). This prefix is replaced by the corresponding
element of the list supplied by ext-prefixes, but this is only supported if the cross-resource
reference mode is enabled (see section 1.3).

In the event that the sort value falls back on the label, the original label supplied in the
.bib file is used, not the prefixed label.

4.1 Encoding
Avoid non-ASCII characters in the ⟨id⟩ if your document uses the inputenc package. (This
isn’t a problem for XƎLATEX or LuaLATEX, but you still need to avoid special characters.) You
can set the character encoding in the .bib file using:

% Encoding: ⟨encoding-name⟩

where ⟨encoding-name⟩ is the name of the character encoding. For example:

% Encoding: UTF-8

34

4 .bib Format

You can also set the encoding using the charset option, but it’s simpler to include the above
comment on the first line of the .bib file. (This comment is also searched for by JabRef to
determine the encoding, so it works for both applications.) If you don’t use either method
bib2gls will have to search the entire .bib file, which is inefficient and you may end up
with a mismatched encoding.

4.2 Comments
You may have comments within the .bib file provided they are outside of entry definitions.
The most common type of comment is the encoding comment, described above. Avoid using
comments within field values.

4.3 Fields
Each entry type may have required fields, optional fields and ignored fields. These are set
using a key=value list within @⟨entry-type⟩{⟨id⟩,⟨fields⟩} in the .bib file. Most keys recog-
nised by \newglossaryentry may be used as a field. In general, you shouldn’t need to use
the sort field.

Predefined fields for use in .bib files are listed in Tables 4.1, 4.2, 4.3 and 4.4. If you add
any custom keys in your document using \glsaddkey or \glsaddstoragekey, those com-
mandsmust be placed before the first use of \GlsXtrLoadResources to ensure that bib2gls
recognises them as a field name.

Internal fields that may be set by bib2gls when it creates the .glstex files are listed in
Table 4.5. These typically shouldn’t be set in the .bib file. Some of these fields can be set for
a particular document using a resource option, such as type or category.

There are also some fields that are set and used by glossaries or glossaries-extra listed in Ta-
ble 4.6 that aren’t recognised by bib2gls. In most cases these fields don’t have a designated
key and are only intended for internal use by bib2gls or by the glossaries or glossaries-extra
package. Note that the value of the sort field written to the .bib file doesn’t always exactly
match the sort value used by bib2gls (which is stored in bib2gls@sort). Any special char-
acters found in the sort value are always substituted before writing the .bib file to avoid
syntax errors.

Any unrecognised fields will be ignored by bib2gls. This is more convenient than using
\input or \loadglsentries, which requires all the keys used in the file to be defined,
regardless of whether or not you actually need them in the document.

If an optional field is missing and bib2gls needs to access it for some reason (for example,
for sorting), bib2glswill try to fallback on another value. The actual fallback value depends
on the entry type.

Other entries can be cross-referenced using the see, seealso or alias fields or by using
commands like \gls or \glsxtrp in any of the recognised fields. These will automatically
be selected if the selection setting includes dependencies, but you may need to rebuild the
document to ensure the location lists are correct. Use of the \glssee command will create

35

4 .bib Format

an ignored record and the see field will be set to the relevant information. If an entry has
the see field already set, any instance of \glssee in the document for that entry will be
appended to the see field (provided you have at least v1.14 of glossaries-extra). In general,
it’s best just to use the see field and not use \glssee.

The seealso key was only added to glossaries-extra v1.16, but this field may be used with
bib2gls even if you only have version 1.14 or 1.15. If the key isn’t available, seealso=
{⟨xr-list⟩} will be treated as see={[\seealsoname]⟨xr-list⟩} (the resource option seealso
won’t have an effect). You can’t use both see and seealso for the same entry with bib2gls.
Note that the seealso field doesn’t allow for the optional [⟨tag⟩] part. If you need a differ-
ent tag, either use see or change the definition of \seealsoname or \glsxtruseseealso-
format. Note that, unless you are using xindy, \glsxtrindexseealso just does \glssee
[\seealsoname], and so will be treated as see rather than seealso by bib2gls. Again, it’s
better to just use the seealso field directly.

36

4 .bib Format

Table 4.1: Fields Provided by glossaries-extra

Field Description
alias The entry with this field set is a synonym of the entry whose

label is given by this field.
category The entry’s category label.
description The description displayed in the glossary.
descriptionplural The plural form of the description.
first The text to display on first use of \gls{⟨label⟩}.
firstplural The text to display on first use of \glspl{⟨label⟩}.
long The long form of an abbreviation. (Set internally by commands

like \newabbreviation.)
longplural The plural long form of an abbreviation.
name The name displayed in the glossary.
parent The parent entry’s label.
plural The text to display on subsequent use of \glspl{⟨label⟩}.
see General purpose cross-reference (syntax:

see={[⟨tag⟩]⟨xr-list⟩}).
seealso Cross-reference related entries (syntax: seealso={⟨xr-list⟩}).
short The short form of an abbreviation. (Set internally by commands

like \newabbreviation.)
shortplural The plural short form of an abbreviation.
symbol The associated symbol.
symbolplural The plural form of the associated symbol.
text The text to display on subsequent use of \gls{⟨label⟩}.
user1 A general purpose user field.
user2 A general purpose user field.
user3 A general purpose user field.
user4 A general purpose user field.
user5 A general purpose user field.
user6 A general purpose user field.

Table 4.2: Fields Provided by bib2gls

Field Description
duallong The long form of a dual abbreviation mapped by

@dualabbreviation.
duallongplural The plural long form of a dual abbreviation mapped by

@dualabbreviation.
dualshort The short form of a dual abbreviation mapped by

@dualabbreviation.
dualshortplural The plural short form of a dual abbreviation mapped by

@dualabbreviation.

37

4 .bib Format

Table 4.3: Fields Provided by glossaries-prefix

Field Description
prefix The prefix associated with the text field.
prefixfirst The prefix associated with the first field.
prefixfirstplural The prefix associated with the firstplural field.
prefixplural The prefix associated with the plural field.

Table 4.4: Fields Provided by glossaries-accsupp

Field Description
access The replacement text for the name field.
descriptionaccess The replacement text for the description field.
descriptionpluralaccess The replacement text for the descriptionplural field.
firstaccess The replacement text for the first field.
firstpluralaccess The replacement text for the firstplural field.
longaccess The replacement text for the long field.
longpluralaccess The replacement text for the longplural field.
pluralaccess The replacement text for the plural field.
shortaccess The replacement text for the short field.
shortpluralaccess The replacement text for the shortplural field.
symbolaccess The replacement text for the symbol field.
symbolpluralaccess The replacement text for the symbolplural field.
textaccess The replacement text for the text field.

Don’t load glossaries-accsupp directly (with \usepackage) when using glossaries-extra. Load
using the accsupp package option instead.

\usepackage[record,accsupp]{glossaries-extra}

38

4 .bib Format

Table 4.5: Fields Sometimes Set by bib2gls in the .glstex File

Field Description
bibtexcontributor An internal list field provided when a

@contributor entry is automatically created by
@bibtexentry.

bibtexentry An internal list field created by @bibtexentry.
bibtexentry@⟨entry-type⟩ An internal list field created by @bibtexentry.
bibtextype Used by bib2gls as a substitution for BIBTEX’s

type field when parsing @bibtexentry. Needs to
be defined or aliased to make it available in the
document.

childcount Stores the number of children this entry has had
selected.

counter The default counter used for indexing (assigned by
the counter option).

⟨field⟩endpunc Used with the check-end-punctuation option.
group The letter group determined by the comparator (or

assigned by the group option).
indexcounter Stores the location corresponding to the matching

wrglossary reference.
location The typeset location list.
loclist The internal list of locations.
recordcount Used with record counting to store the total record

count.
recordcount.⟨counter⟩ Used with record counting to store the total

number of records for a given counter.
recordcount.⟨counter⟩.⟨location⟩ Used with record counting to store the total

number of records for a given location.
secondarygroup The letter group determined by the comparator

used with the secondary sort.
secondarysort The sort value determined by the comparator used

with the secondary sort.
sort The sort value obtained by the comparator.
type The glossary this entry belongs to (assigned by the

type option).

39

4 .bib Format

Table 4.6: Internal Fields Set by glossaries or glossaries-extra or bib2gls (don’t use in .bib
files)

Field Description
bib2gls@sort Used by bib2gls to store the actual sort value.
bib2gls@sortfallback Used by bib2gls to store the sort fallback value.
currcount Used with entry counting to store the current total.
currcount@⟨value⟩ Used with unit entry counting (glossaries-extra).
desc Corresponds to description key.
descplural Corresponds to descriptionplural key.
firstpl Corresponds to firstplural key.
flag Boolean that determines if an entry has been used.
index The main part of the indexing code (makeindex or xindy).
level Hierarchical level.
longpl Corresponds to longplural key.
nonumberlist Used to suppress the location list for a specific entry.
prevcount Used with entry counting to store the total from the previous

run.
prevcount@⟨value⟩ Used with unit entry counting (glossaries-extra).
prevunitmax Used with unit entry counting (glossaries-extra).
prevunittotal Used with unit entry counting (glossaries-extra).
shortpl Corresponds to shortplural key.
sortvalue Original sort value (before sanitizing and escaping special

characters).
unitlist Used with unit entry counting (glossaries-extra).
useri Corresponds to user1 key.
userii Corresponds to user2 key.
useriii Corresponds to user3 key.
useriv Corresponds to user4 key.
userv Corresponds to user5 key.
uservi Corresponds to user6 key.

40

4 .bib Format

4.4 Standard Entry Types
@string
The standard @string is available and can be used to define variables that may be used in
field values. Don’t include braces or double-quote delimiters when referencing a variable.
You can use # to concatenate strings. For example:

@string{ssi={server-side includes}}
@string{html={hypertext markup language}}

@abbreviation{shtml,
short="shtml",
long=ssi # " enabled " # html,
see={ssi,html}

}

@abbreviation{html,
short="html",
long=html

}

@abbreviation{ssi,
short="ssi",
long=ssi

}

Note the difference between ="ssi" (a field value delimited by double-quotes), the undelim-
ited =ssi (a reference to the variable), the grouped ={ssi,html} (a field value delimited by
braces) and ssi the entry label.

@preamble
The standard @preamble is available and can be used to provide command definitions used
within field values. For example:

@preamble{"\providecommand{\mtx}[1]{\boldsymbol{#1}}"}

@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values, denoted \mtx{M}}

}

Alternatively you can use \glsxtrprovidecommandwhich behaves the same as \providecommand
within the document but behaves like \renewcommandwithin bib2gls, which allows you to

41

4 .bib Format

change bib2gls’s internal definition of a command without affecting the definition within
the document (if it’s already been defined before the resource file is input). In general, it’s
best to just use \providecommand.

The TEX parser library used by bib2gls will parse the contents of @preamble before try-
ing to interpret the field value used as a fallback when sort is omitted (unless interpret
-preamble={false} is set in the resource options). For example:

@preamble{"\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}"}

@entry{S,
name={{}\set{S}},
text={\set{S}},
description={a set}

}
@entry{card,

name={{}\card{S}},
text={\card{S}},
description={the cardinality of \gls{S}}

}

Neither entry has the sort field, so bib2gls has to fall back on the name field and, since
this contains the special characters \ (backslash), $ (maths shift), { (begin group) and } (end
group), the TEX parser library is used to interpret it. The definitions provided by @preamble
allow bib2gls to deduce that the sort value of the S entry is just S and the sort value of
the card entry is |S| (see chapter 2).

What happens if you also need to use these commands in the document? The definitions
provided in @preamble won’t be available until the .glstex file has been created, which
means the commands won’t be defined on the first LATEX run.

There are several approaches:

1. Just define the commands in the document. This means the commands are available,
but bib2gls won’t be able to correctly interpret the name fields.

2. Define the commands in both the document and in @preamble. For example:

\newcommand{\set}[1]{\mathcal{#1}}
\newcommand{\card}[1]{|\set{#1}|}
\GlsXtrLoadResources[src={my-data}]

Alternatively:

\GlsXtrLoadResources[src={my-data}]
\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}

42

4 .bib Format

If the provided definitions match those given in the .bib file, there’s no difference. If
they don’t match then in the first example the document definitions will take prece-
dence (but the interpreter will use the @preamble definitions) and in the second ex-
ample the @preamble definitions will take precedence.

3. Make use of \glsxtrfmt provided by glossaries-extra which allows you to store the
name of the formatting command in a field. The default is the user1 field, but this can
be changed to another field by redefining \GlsXtrFmtField.
The .bib file can now look like this:

@preamble{"\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}"}

@symbol{S,
name={{}\set{S}},
text={\set{S}},
user1={set},
description={a set}

}
@symbol{cardS,

name={{}\card{S}},
text={\card{S}},
user1={card},
description={the cardinality of \gls{S}}

}

Within the document, you can format ⟨text⟩ using the formatting command provided
in the user1 field with:

\glsxtrfmt[⟨options⟩]{⟨label⟩}{⟨text⟩}

(which internally uses \glslink) or

\glsxtrentryfmt{⟨label⟩}{⟨text⟩}

which just applies the appropriate formatting command to ⟨text⟩. Version 1.23+ of
glossaries-extra also provides a starred form of the linking command:

\glsxtrfmt*[⟨options⟩]{⟨label⟩}{⟨text⟩}[⟨insert⟩]

which inserts additional material inside the link text but outside the formatting com-
mand.
If the entry given by ⟨label⟩ hasn’t been defined, then \glsxtrfmt just does ⟨text⟩
(followed by ⟨insert⟩ for the starred version) and a warning is issued. (There’s no

43

4 .bib Format

warning if the entry is defined but the field hasn’t been set.) The ⟨options⟩ are as for
\glslink but \glslink will actually be using

\glslink[⟨def-options⟩,⟨options⟩]{⟨label⟩}{\⟨csname⟩{⟨text⟩}⟨insert⟩}

where the default options ⟨def-options⟩ are given by \GlsXtrFmtDefaultOptions.
The default definition of this is just noindex which suppresses the automatic index-
ing or recording action. (See the glossaries-extra manual [9] for further details.) The
⟨insert⟩ part is omitted for the unstarred form.
This means that the document doesn’t need to actually provide \set or \card but can
instead use, for example,

\glsxtrfmt{S}{A}
\glsxtrentryfmt{cardS}{B}

instead of

\set{A}
\card{B}

The first LATEX run will simply ignore the formatting and produce a warning.
Since this is a bit cumbersome to write, you can provide shortcut commands. For
example:

\GlsXtrLoadResources[src={my-data}]
\newcommand{\gset}[2][]{\glsxtrfmt[#1]{S}{#2}}
\newcommand{\gcard}[2][]{\glsxtrfmt[#1]{cardS}{#2}}

Whilst this doesn’t seem a great deal different from simply providing the definitions of
\set and \card in the document, this means you don’t have to worry about remem-
bering the names of the actual commands provided in the .bib file (just the entry
labels) and the use of \glsxtrfmt will automatically produce a hyperlink to the glos-
sary entry if the hyperref package has been loaded.

Here’s an alternative .bib that defines entries with a term, a description and a symbol:

@preamble{"\providecommand{\setfmt}[1]{\mathcal{#1}}
\providecommand{\cardfmt}[1]{|\setfmt{#1}|}"}

@entry{set,
name={set},
symbol={\setfmt{S}},
user1={setfmt},
description={collection of values}

44

4 .bib Format

}
@entry{cardinality,

name={cardinality},
symbol={\cardfmt{S}},
user1={cardfmt},
description={the number of elements in the \gls{set} \glssymbol{set}}

}

I’ve changed the entry labels and the names of the formatting commands. The definitions
in the document need to reflect the change in label but not the change in the formatting
commands:

\newcommand{\gset}[2][]{\glsxtrfmt[#1]{set}{#2}}
\newcommand{\gcard}[2][]{\glsxtrfmt[#1]{cardinality}{#2}}

Here’s another approach that allows for a more complicated argument for the cardinality.
(For example, if the argument is an expression involving set unions or intersections.) The
.bib file is now:

@preamble{"\providecommand{\setfmt}[1]{\mathcal{#1}}
\providecommand{\cardfmt}[1]{|#1|}"}

@entry{set,
name={set},
symbol={\setfmt{S}},
user1={setfmt},
description={collection of values}

}
@entry{cardinality,

name={cardinality},
symbol={\cardfmt{\setfmt{S}}},
user1={cardfmt},
description={the number of elements in the \gls{set} \glssymbol{set}}

}

This has removed the \setfmt command from the definition of \cardfmt. Now the defini-
tions in the document are:

\newcommand{\gset}[1]{\glsxtrentryfmt{set}{#1}}
\newcommand{\gcard}[2][]{\glsxtrfmt[#1]{cardinality}{#2}}

This allows for code such as:

\[\gcard{\gset{A} \cap \gset{B}} \]

which will link back to the cardinality entry in the glossary and avoids any hyperlinking
with \gset. Alternatively to avoid links with \gcard as well:

45

4 .bib Format

\newcommand{\gset}[1]{\glsxtrentryfmt{set}{#1}}
\newcommand{\gcard}[1]{\glsxtrentryfmt{cardinality}{#1}}

Now \gset and \gcard are simply formatting commands, but their actual definitions are
determined in the .bib file.

4.5 Single Entry Types
The entry types described in this section create a single glossary definition per entry (from
glossaries-extra’s point of view). For example

@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values}

}

is analogous to

\newglossaryentry{matrix}% label
{% fields

name={matrix},
plural={matrices},
description={rectangular array of values}

}

The secondary option allows the creation of a fake glossary with the entry labels in its
internal list in a different order. This means that the same data can be displayed in two
separate lists without duplicating the resources required by each glossary entry.

Section 4.6 describes bib2gls entry types that create two separate (but related) glossaries-
extra definitions per .bib entry.

@entry
Regular terms are defined by the @entry field. This requires the description field and
either name or parent.

For example:

@preamble{"\providecommand{\mtx}[1]{\boldsymbol{#1}}"}

@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values, denoted \gls{M}},
seealso={vector}

46

4 .bib Format

}

@entry{M,
name={\ensuremath{M}},
description={a \gls{matrix}}

}

@entry{vector,
name = "vector",
description = {column or row of values, denoted \gls{v}},
seealso={matrix}

}

@entry{v,
name={\ensuremath{\vec{v}}},
description={a \gls{vector}}

}

If the name field is omitted it will be set from the parent’s name. If the sort field is missing
the default is obtained from the name field. (This can be overridden with sort-field.)

Terms defined using @entry will be written to the output (.glstex) file using the com-
mand \bibglsnewentry.

@symbol
The @symbol entry type is much like @entry, but it’s designed specifically for symbols, so
in the previous example, the M and v terms would be better defined using the @symbol entry
type instead. For example:

@symbol{M,
name={\ensuremath{M}},
description={a \gls{matrix}}

}

The required fields are name or parent. The description field is required if the name
field is missing. If the sort field is omitted, the default sort is given by the entry label (unless
overridden by symbol-sort-fallback). Note that this is different from @entry where the
sort defaults to name if omitted.

Terms that are defined using @symbolwill be written to the output file using the command
\bibglsnewsymbol.

@number
The @number entry type is like @symbol, but it’s for numbers. The numbers don’t have to be
explicit digits and may have a symbolic representation. There’s no real difference between

47

4 .bib Format

the behaviour of @number and @symbol except that terms defined using @number will be
written to the output file using the command \bibglsnewnumber.

For example, the file constants.bib might define mathematical constants like this:

@number{pi,
name={\ensuremath{\pi}},
description={the ratio of the length of the circumference
of a circle to its diameter},

user1={3.14159}
}

@number{e,
name={\ensuremath{e}},
description={base of natural logarithms},
user1={2.71828}

}

This stores the approximate value in the user1 field. This can be used to sort the entries in
numerical order according to the values rather than the symbols:

\GlsXtrLoadResources[
src={constants},% constants.bib
category={number},% set the category for all selected entries
sort={double},% numerical double-precision sort
sort-field={user1}% sort according to 'user1' field

]

The category={number} option makes it easy to adjust the glossary format to include the
user1 field:

\renewcommand{\glsxtrpostdescnumber}{%
\ifglshasfield{useri}{\glscurrententrylabel}
{ (approximate value: \glscurrentfieldvalue)}%
{}%

}

@index
The @index entry type is designed for entries that don’t have a description. Only the label
is required. If name is omitted, it’s assumed to be the same as the label, even if parent is
present. (Note this is different to the fallback behaviour of @entry, which fetches the name
from the parent entry.) However, this means that if the name contains any characters that
can’t be used in the label, you will need the name field. If the sort field is missing the default
is obtained from the name field.

Example:

48

4 .bib Format

@index{duck}

@index{goose,plural={geese}}

@index{sealion,name={sea lion}}

@index{facade,name={fa\c{c}ade}}

Terms that are defined using @index will be written to the output file using the command
\bibglsnewindex.

@abbreviation
The @abbreviation entry type is designed for abbreviations. The required fields are short
and long. If the sort key is missing, bib2gls will use the field given by abbreviation
-sort-fallback, which defaults to the short field. You can also use short-case-change
to convert the case of the short field.

If you use sort-field={name}, then the fallback for the name field is always the short
field, regardless of the abbreviation-sort-fallback setting.

Note that you must set the abbreviation style before loading the resource file to ensure
that the abbreviations are defined correctly, however bib2gls has no knowledge of the ab-
breviation style so it doesn’t know if the description field must be included or if the default
sort value isn’t simply the value of the short field.

You can instruct bib2gls to sort by the long field instead using abbreviation-sort
-fallback={long}. You can also tell bib2gls to ignore certain fields using ignore-fields,
so you can include a description field in the .bib file if you sometimes need it, and then
instruct bib2gls to ignore it when you don’t want it.

For example:

@abbreviation{html,
short ="html",
long = {hypertext markup language},
description={a markup language for creating web pages}

}

If you want the long-noshort-desc style, then you can put the following in your document
(where the .bib file is called entries-abbrv.bib):

\setabbreviationstyle{long-noshort-desc}
\GlsXtrLoadResources[src={entries-abbrv.bib},
abbreviation-sort-fallback={long}]

Whereas, if you want the long-short-sc style, then you can instead do:

\setabbreviationstyle{long-short-sc}
\GlsXtrLoadResources[src={entries-abbrv.bib},ignore-fields={description}]

49

4 .bib Format

or to convert the short value to upper case and use the long-short-sm style instead:

\setabbreviationstyle{long-short-sm}
\GlsXtrLoadResources[src={entries-abbrv.bib},
short-case-change={uc},% convert short value to upper case
ignore-fields={description}]

(If you want an equivalent of \newdualentry, use @dualabbreviationentry instead.)
Terms defined using @abbreviationwill be written to the output file using the command

\bibglsnewabbreviation.

@acronym
The @acronym entry type is like @abbreviation except that the term is written to the output
file using the command \bibglsnewacronym.

@contributor
The @contributor entry type is primarily provided for use by the @bibtexentry type. You
may use it explicitly if youwant, but you need to take care that it doesn’t clashwith @bibtex-
entry. It behaves much like @index except that the term is written to the output file using
the command \bibglsnewcontributor. There are no required fields. As with @index, if
the name field is missing, the fallback value is the entry’s label. When this entry type is
automatically created by @bibtexentry, the name is set to

\bibglscontributor{⟨forenames⟩}{⟨von⟩}{⟨surname⟩}{⟨suffix⟩}

If you do explicitly use @contributor you need to make sure it’s defined before the first
instance of @bibtexentry that tries to access it, but within the same resource set. If you
ensure that the label of @contributormatches the contributor label generated by @bibtex-
entry then they can have their dependency lists updated, and the bibtexentry and bib-
texentry@⟨entry-type⟩ internal fields can be set for the @contributor entry. For example:

@contributor{KnuthDonaldE,
name={\bibglscontributor{Donald E.}{}{Knuth}{}},
description={Famous mathematician and computer scientist who
created \TeX}

}

@book{texbook,
title = {The {\TeX book}},
author = {Donald E. Knuth},
publisher = {Addison-Wesley},
year = 1986

}

50

4 .bib Format

The resource options then need to include:

entry-type-aliases={
\GlsXtrBibTeXEntryAliases

},
labelify-replace={
{[\string\-\string\.]}{}

}

If the @contributor entry is deferred until after the corresponding @bibtexentry then
you will end up with a label clash.

4.6 Dual Entry Types
The entry types described in this section create two separate (but related) glossaries-extra
entry definitions per .bib entry. The first of these entries is considered the primary entry,
and the second is the dual entry (also referred to as the secondary entry, but is not related to
the secondary option). The naming scheme is @dual⟨entry-type⟩ where both the primary
and dual are considered to have the same type of entry (such as @dualsymbol where both
the primary and dual are functionally like @symbol) or @dual⟨primary⟩⟨dual⟩ where the
primary is functionally like @⟨primary⟩ and the dual is functionally like @⟨dual⟩.

For example

@dualabbreviationentry{svm,
short = {SVM},
long = {support vector machine},
description = {statistical pattern recognition technique}

}

is like

@abbreviation{svm,
short = {SVM},
long = {support vector machine},

}
@entry{dual.svm,

text = {SVM},
name = {support vector machine},
description = {statistical pattern recognition technique}

}

and is analogous to

\newabbreviation{svm}{SVM}{support vector machine}
\newglossaryentry{dual.svm}{name={support vector machine},text={SVM},
description={statistical pattern recognition technique}}

51

4 .bib Format

but both entries are considered dependent on each other. This means that if you only ref-
erence the primary entry (using \gls etc) then the dual entry will still be selected if the
selection setting includes dependencies.

The creation of the dual entry involves mapping or copying fields from the primary entry.
Each dual entry type has a set of mappings. If a field in the set of mappings is missing, its
fallback value is used. Any fields that aren’t listed in the mappings are simply copied, except
for the alias field, which will never be copied to the dual entry, nor can it be mapped. The
alias will only apply to the primary entry. The dual entry is given the label ⟨prefix⟩⟨id⟩where
⟨prefix⟩ is set by the dual-prefix option and ⟨id⟩ is the label supplied in the .bib file.

If dual-sort={combine} then the dual entries will be sorted along with the primary
entries, otherwise the dual-sort indicates how to sort the dual entries and the dual entries
will be appended to the end of the .glstex file. The dual-sort-field determines what
field to use for the sort value if the dual entries should be sorted separately.

Take care if you have a mixture of entry types (such as @dualindexentry, @dualindex-
symbol and @index) and you’re not using the default dual-sort={combine}. Remember
that the primary entries are all sorted together alongwith the single entries types described in
section 4.6 (but they may be assigned to different glossary types), and then the dual entries
are sorted together (but may be assigned to different glossary types). This may result in
an odd ordering if some of the primaries and some of the duals are assigned to the same
glossary. For example, don’t mix @dualindexabbreviation (duals are abbreviations) with
@dualabbreviationentry (primaries are abbreviations) when you aren’t using dual-sort
={combine} (unless you have two different glossaries for the primary vs dual abbreviations).

Remember that bib2gls is designed to take advantage of \printunsrtglossary, which
simply iterates over all defined entries in the order in which they were defined (or, more
precisely, the order of the internal list of entry labels associated with that glossary). The aim
of bib2gls is to write the entry definitions to the .glstex file so that the internal list of
labels is in the appropriate order.

For example, suppose the file entries.bib contains:

@index{aardvark}
@index{mouse}
@index{zebra}
@dualindexabbreviation{xml,
short={XML},
long={extensible markup language}

}
@dualabbreviationentry{ssi,

short={SSI},
long={server-side includes},
description={directives placed in \gls{html} pages
evaluated by the server}

}
@dualindexabbreviation{html,
short={HTML},

52

4 .bib Format

long={hypertext markup language}
}
@dualabbreviationentry{css,
short={CSS},
long={cascading stylesheets},
description={a language that describes the style of an
\gls{html} document}

}

This contains amixture of entry types, including @dualindexabbreviation (where the dual
is the abbreviation) and @dualabbreviationentry (where the primary is the abbreviation).

Now consider the following document:

\documentclass{article}

\usepackage[record,abbreviations]{glossaries-extra}

\GlsXtrLoadResources[selection=all,src=entries]

\begin{document}
\printunsrtglossaries
\end{document}

This uses the default sort={combine}, so all the entries are sorted together, resulting in the
order: aardvark, dual.css, css, html, dual.html, mouse, dual.ssi, ssi, xml, dual.xml,
zebra.

The LATEX code written to the .glstex file is essentially (but not exactly):

% from @index{aardvark}:
\newglossaryentry{aardvark}{name={aardvark},description={}}

% dual of @dualabbreviationentry{css,...}:
\newglossaryentry{dual.css}{name={cascading stylesheets},text={CSS},
description={a language that describes the style of an
\glsxtrshort{html} document}}

% primary of @dualabbreviationentry{css,...}:
\newabbreviation{css}{CSS}{cascading stylesheets}

% primary of @dualindexabbreviation{html,...}:
\newglossaryentry{html}{name={HTML},description={}}

% dual of @dualindexabbreviation{html,...}:
\newabbreviation{dual.html}{HTML}{hypertext markup language}

53

4 .bib Format

% from @index{mouse}:
\newglossaryentry{mouse}{name={mouse},description={}}

% dual of @dualabbreviationentry{ssi,...}:
\newglossaryentry{dual.ssi}{name={server-side includes},text={SSI},
description={directives placed in \glsxtrshort{html} pages
evaluated by the server}}

% primary of @dualabbreviationentry{ssi,...}:
\newabbreviation{ssi}{SSI}{server-side includes}

% primary of @dualindexabbreviation{xml,...}:
\newglossaryentry{xml}{name={XML},description={}}

% dual of @dualindexabbreviation{xml,...}:
\newabbreviation{dual.xml}{XML}{extensible markup language}

% from @index{zebra}:
\newglossaryentry{zebra}{name={zebra},description={}}

Since the document uses the abbreviations package option, \newabbreviation automat-
ically assigns the abbreviation to the abbreviations glossary (created through that package
option). This means that the main (default) glossary contains the entries (in order):

• aardvark (name: aardvark),

• dual.css (name: cascading stylesheets),

• html (name: HTML),

• mouse (name: mouse),

• dual.ssi (name: server-side includes),

• xml (name: XML),

• zebra (name: zebra).

The abbreviations glossary contains:

• css (short: CSS),

• dual.html (short: HTML),

• ssi (short: SSI),

• dual.xml (short: XML).

54

4 .bib Format

Since all the entries were combined and sorted together, the resulting glossaries are both
ordered alphabetically (using short for the abbreviations and name for the rest), but note
that you need to take care when referencing the abbreviations if you want to make use of
the abbreviation style. You need \gls{css} and \gls{ssi} for the primary abbreviations
created with @dualabbreviationentry and \gls{dual.html} and \gls{dual.xml} for
the dual abbreviations created with @dualindexabbreviation. Also the name of the pri-
mary/dual alternative of the abbreviations is also inconsistent (short form for html and xml
and long form for dual.css and dual.ssi), as different field mappings are used.

If the document is changed so that the dual entries are now sorted and written after all the
primary entries have been dealt with:

\GlsXtrLoadResources[
src=entries,
dual-sort={letter-nocase},
selection=all

]

then bib2gls first orders the primaries:

• aardvark (name: aardvark),

• css (short: CSS),

• html (name: HTML),

• mouse (name: mouse),

• ssi (short: SSI),

• xml (name: XML),

• zebra (name: zebra)

and writes them to the .glstex file (functionally like):

% from @index{aardvark}:
\newglossaryentry{aardvark}{name={aardvark},description={}}

% primary of @dualabbreviationentry{css,...}:
\newabbreviation{css}{CSS}{cascading stylesheets}

% primary of @dualindexabbreviation{html,...}:
\newglossaryentry{html}{name={HTML},description={}}

% from @index{mouse}:
\newglossaryentry{mouse}{name={mouse},description={}}

55

4 .bib Format

% primary of @dualabbreviationentry{ssi,...}:
\newabbreviation{ssi}{SSI}{server-side includes}

% primary of @dualindexabbreviation{xml,...}:
\newglossaryentry{xml}{name={XML},description={}}

% from @index{zebra}:
\newglossaryentry{zebra}{name={zebra},description={}}

Then bib2gls orders the duals:

• dual.css (name: cascading stylesheets),

• dual.html (short: HTML),

• dual.ssi (name: server-side includes),

• dual.xml (short: XML)

and writes them to the .glstex file (functionally like):

% dual of @dualabbreviationentry{css,...}:
\newglossaryentry{dual.css}{name={cascading stylesheets},text={CSS},
description={a language that describes the style of an
\glsxtrshort{html} document}}

% dual of @dualindexabbreviation{html,...}:
\newabbreviation{dual.html}{HTML}{hypertext markup language}

% dual of @dualabbreviationentry{ssi,...}:
\newglossaryentry{dual.ssi}{name={server-side includes},text={SSI},
description={directives placed in \glsxtrshort{html} pages
evaluated by the server}}

% dual of @dualindexabbreviation{xml,...}:
\newabbreviation{dual.xml}{XML}{extensible markup language}

When the .glstex file is input (during the next LATEX run) the entries are defined in the
order:

1. aardvark (type: main),

2. css (type: abbreviations),

3. html (type: main),

4. mouse (type: main),

56

4 .bib Format

5. ssi (type: abbreviations),

6. xml (type: main),

7. zebra (type: main),

8. dual.css (type: main),

9. dual.html (type: abbreviations),

10. dual.ssi (type: main),

11. dual.xml (type: abbreviations).

This means that the main glossary’s internal list is in the order:

• aardvark (aardvark),

• html (HTML),

• mouse (mouse),

• xml (XML),

• zebra (zebra),

• dual.css (cascading stylesheets),

• dual.ssi (server-side includes)

and the abbreviations glossary’s internal list is in the order:

• css (CSS),

• ssi (SSI),

• dual.html (HTML),

• dual.xml (XML).

The lists are no longer in alphabetical order as they have a mixture of primary and dual
entries that were separated before sorting.

The above is a fairly contrived example as it wouldn’t make sense in a real document to
have glossary terms (that include a description) mixed with index terms (that don’t include
a description). A better solution would be to use @tertiaryindexabbreviationentry in-
stead of @dualabbreviationentry.

57

4 .bib Format

@dualentry
The @dualentry entry type is similar to @entry but actually defines two entries. The dual
entry contains the same information as the primary entry but some of the fields are swapped
around. The default mappings are:

• name 7→ description

• plural 7→ descriptionplural

• description 7→ name

• descriptionplural 7→ plural

The required fields are as for @entry.
For example:

@dualentry{child,
name={child},
plural={children},
description={enfant}

}

Is like

@entry{child,
name={child},
plural={children},
description={enfant}
descriptionplural={enfants}

}

@entry{dual.child,
description={child},
descriptionplural={children},
name={enfant}
plural={enfants}

}

where dual. is replaced by the value of the dual-prefix option. However, instead of defin-
ing the entries with \bibglsnewentry both the primary and dual entries are defined using
\bibglsnewdualentry. The category and type fields can be set for the dual entry using
the dual-category and dual-type options.

For example:

\newglossary*{english}{English}
\newglossary*{french}{French}

58

4 .bib Format

\GlsXtrLoadResources[
src = {entries-dual},% data in entries-dual.bib
type = {english},% put primary entries in glossary 'english'
dual-type = {french},% put dual entries in glossary 'french'
category = {dictionary},% set the primary category to 'dictionary'
dual-category = {dictionary},% set the dual category to 'dictionary'
sort = {en},% sort primary entries according to language 'en'
dual-sort = {fr}% sort dual entries according to language 'fr'

]

@dualindexentry
There are no required fields. The primary entry behaves like @index and the dual entry
behaves like @entry. The default field mapping is:

• name 7→ name

This doesn’t actually perform any swapping of fields, but it provides the field used for back-
links (if dual-indexentry-backlink is set). The reason that the primary (rather than the
dual) is like @index is to allow the primaries to merge with any @index entries found in the
resource set, since glossary entries with descriptions are likely to be a subset of all indexed
entries.

If no name is given, the dual entry is assigned the (unprefixed) entry label. For example:

@dualindexentry{array,
description={ordered list of values}

}

This is effectively like

@index{array}

@entry{dual.array,
name={array},
description={ordered list of values}

}

The primary entries are defined using \bibglsnewdualindexentry, which by default sets
the category to index (although this may be overridden, for example, by the category
option). The dual entries are defined with \bibglsnewdualindexentrysecondary.

This is the most convenient way of having an entry that’s also automatically indexed. For
example, suppose the file terms.bib contains:

@index{duck}
@index{zebra}
@index{aardvark}

59

4 .bib Format

and suppose the file entries.bib contains:

@dualindexentry{array,
description={ordered list of values}

}

@dualindexentry{vector,
name={vector},
description={column or row of values}

}

@dualindexentry{set,
description={collection of values}

}

@dualindexentry{matrix,
plural={matrices},
description={rectangular array of values}

}

These entries can be used in an example document that has an index and a glossary:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,index,stylemods=mcols]{glossaries-extra}

\GlsXtrLoadResources[
src={terms,entries},
type=index,
label-prefix={idx.},
dual-prefix={gls.},
combine-dual-locations={primary},
dual-type=main

]

\begin{document}
\gls{gls.array}, \gls{gls.vector}, \gls{gls.set}, \gls{gls.matrix}.

\gls{idx.duck}, \gls{idx.aardvark}, \gls{idx.zebra}.

\renewcommand{\glstreenamefmt}[1]{\textsc{#1}}
\printunsrtglossary[type=main,style=index,nogroupskip]

\renewcommand{\glstreenamefmt}[1]{#1}

60

4 .bib Format

\renewcommand{\glstreegroupheaderfmt}[1]{\textbf{#1}}
\printunsrtglossary[type=index,style=mcolindexgroup]
\end{document}

This uses combine-dual-locations to combine the locations for the primary and dual en-
tries so that they only appear in the index.

@dualindexabbreviation
The @dualindexabbreviation entry type is similar to @dualindexentry and again, by
default, the field mapping is:

• name 7→ name

However in this case the required fields are short and long. The name for the primary entry
defaults to short if omitted. (Thismay be changedwith the abbreviation-name-fallback
option) The fallback for the sort field is given by abbreviation-sort-fallback, which
defaults to the short field.

For example:

@dualindexabbreviation{html,
short={html},
long = {hypertext markup language}

}

is like

@index{html}

@abbreviation{dual.html,
short={html},
long = {hypertext markup language}

}

The primary term is defined using \bibglsnewdualindexabbreviation, which encapsu-
lates the name to match the font used by the dual abbreviation. The encapsulation command
depends on the abbreviation-name-fallback value. If it’s the short field then \bibgls-
useabbrvfont is used, otherwise \bibglsuselongfont is used.

The primary definition also by default sets the category to index (although this again
may be overridden). The dual term is defined using \bibglsnewdualindexabbreviation-
secondary.

@dualindexsymbol
The @dualindexsymbol entry type is similar to @dualindexentry, but by default the field
mappings are:

61

4 .bib Format

• symbol 7→ name

• name 7→ symbol

• symbolplural 7→ plural

• plural 7→ symbolplural

The required field is: symbol. If the name field is omitted, the dual entry is assigned a sym-
bol from the original (unprefixed) label. The primary entries are defined using \bibglsnew-
dualindexsymbol, which by default sets the category to index, and the dual entries are de-
fined using \bibglsnewdualindexsymbolsecondary, which by default sets the category
to symbol. For example:

@dualindexsymbol{pi,
symbol={\ensuremath{\pi}},
description={ratio of a circle's circumference to its diameter}

}

is like

@index{pi,symbol={\ensuremath{\pi}}}

@symbol{dual.pi,
name={\ensuremath{\pi}},
symbol={pi},
description={ratio of a circle's circumference to its diameter}

}

For example, suppose I have a file called symbols.bib that contains:

@dualindexsymbol{pi,
symbol={\ensuremath{\pi}},
description={ratio of a circle's circumference to its diameter}

}

@dualindexsymbol{e,
name={Euler's number},
symbol={\ensuremath{e}},
description={base of the natural logarithm}

}

Then the previous example document can be modified to have an index, a glossary and a list
of symbols:

\documentclass{report}

\usepackage[colorlinks]{hyperref}

62

4 .bib Format

\usepackage[record,symbols,index,stylemods=mcols]{glossaries-extra}

\newcommand{\bibglsnewdualindexsymbolsecondary}[5]{%
\longnewglossaryentry*{#1}{name={#3},category=symbol,%

symbol={#4},#2,type={symbols}}{#5}%
}

\newcommand{\indexprimary}[1]{\glsadd[format=hyperbf]{idx.#1}}

\renewcommand{\glsxtrpostdescsymbol}{%
\indexprimary{\glscurrententrylabel}%

}

\renewcommand{\glsxtrpostdescgeneral}{%
\indexprimary{\glscurrententrylabel}%

}

\GlsXtrLoadResources[
src={entries,terms,symbols},
type=index,
set-widest,
label-prefix={idx.},
dual-prefix={},
combine-dual-locations={primary},
dual-sort={letter-case},
dual-type=main

]

\glsxtrnewglslike[hyper=false]{idx.}{\idx}{\idxpl}{\Idx}{\Idxpl}

\begin{document}
\gls{array}, \gls{vector}, \gls{set}, \glspl{matrix}.

\idx{duck}, \idx{aardvark}, \idx{zebra}.

\gls{e} and \gls{pi}.

\newpage
\gls{array}, \idx{vector}, \idx{set}, \gls{matrix}.

\newpage
\gls{array}, \gls{vector}, \gls{set}, \gls{matrix}.

63

4 .bib Format

\renewcommand{\glstreenamefmt}[1]{\textsc{#1}}
\printunsrtglossary[type=main,nogroupskip,style=alttree]

\renewcommand{\glstreenamefmt}[1]{#1}
\printunsrtglossary[type=symbols,nogroupskip,style=index]

\renewcommand{\glstreenamefmt}[1]{#1}
\renewcommand{\glstreegroupheaderfmt}[1]{\textbf{#1}}
\printunsrtglossary[type=index,style=mcolindexgroup]

\end{document}

Here I’ve provided some convenient commands for referencing the primary (index) terms
(\idx, \idxpl, \Idx and \Idxpl). This means I don’t need to worry about the label prefix
and it also switches off the hyperlinks. These custom commands are defined using

\glsxtrnewglslike[⟨options⟩]{⟨prefix⟩}{⟨gls-like cs⟩}{⟨glspl-like cs⟩}{⟨Gls-like
cs⟩}{⟨Glspl-like cs⟩}

which, in this case, essentially does

\newcommand{\idx}[2][]{\gls[hyper=false,#1]{idx.#2}}
\newcommand{\Idx}[2][]{\Gls[hyper=false,#1]{idx.#2}}
\newcommand{\idxpl}[2][]{\glspl[hyper=false,#1]{idx.#2}}
\newcommand{\Idxpl}[2][]{\Glspl[hyper=false,#1]{idx.#2}}

but the new commands will also recognise the \gls modifiers, so \idx+ will behave like
\gls+ which wouldn’t be possible if \idx was defined using \newcommand in the above
manner.

I’ve also redefined \bibglsnewdualindexsymbolsecondary to put the dual entries cre-
ated with @dualindexsymbol into the symbols glossary (which is created with the symbols
package option), so it overrides the dual-type={main} setting.

This command also sets the category to symbol, so I can redefine the post-description
hook for symbols (\glsxtrpostdescsymbol) to automatically index the symbol definition.
Similarly for the general post-description hook \glsxtrpostdescgeneral.

Since the post-description hook isn’t done until the glossary has been created, this requires
a slightly longer build process. If the document file is called myDoc.tex, then the complete
document build is:

pdflatex myDoc
bib2gls -g myDoc
pdflatex myDoc
bib2gls -g myDoc
pdflatex myDoc

64

4 .bib Format

@dualindexnumber
The @dualindexnumber entry type is almost identical to @dualindexsymbol, but the pri-
mary entries are defined using \bibglsnewdualindexnumber, which by default sets the
category to index, and the dual entries are defined using \bibglsnewdualindexnumber-
secondary, which by default sets the category to number.

@dualabbreviationentry
The @dualabbreviationentry entry type is similar to @dualentry, but by default the field
mappings are:

• long 7→ name

• longplural 7→ plural

• short 7→ text

You may need to add a mapping from shortplural to plural if the default is inappropriate.
(In bib2gls version 1.0 this entry type was originally called @dualentryabbreviation. In
version 1.1, it was renamed @dualabbreviationentry which makes for a more consistent
naming scheme @dual⟨primary⟩⟨dual⟩.)

The required fields are: short, long and description. This entry type is designed to
emulate the example \newdualentry command given in the glossaries user manual [10].
The primary entry is an abbreviation with the given short and long fields (but not the
description) and the secondary entry is a regular entry with the name copied from the
long field. The fallback for the sort is given by abbreviation-sort-fallback, which
defaults to the short field.

For example:

@dualabbreviationentry{svm,
long = {support vector machine},
short = {SVM},
description = {statistical pattern recognition technique}

}

is rather like doing

@abbreviation{svm,
long = {support vector machine},
short = {SVM}

}

@entry{dual.svm,
name = {support vector machine},
description = {statistical pattern recognition technique}

}

65

4 .bib Format

but dual.svm will automatically be selected if svm is indexed in the document. If dual.svm
isn’t explicitly indexed, it won’t have a location list.

If the sort field ismissing bib2gls by default falls back on the name field. If this ismissing,
this sort value will fallback on the short field. This means that if name isn’t explicitly given
in @dualabbreviationentry, then the primary entry will be sorted according to short but
the dual will be sorted according its name (which has been copied from the primary long).

Entries provided using @dualabbreviationentry will be defined with

\bibglsnewdualabbreviationentry

(which uses \newabbreviation) for the primary entries and with

\bibglsnewdualabbreviationentrysecondary

(which uses \longnewglossaryentry) for the secondary entries. This means that if the
abbreviations package option is used, thiswill put the primary entry in the abbreviations
glossary and the secondary entry in the main glossary. Use the type and dual-type options
to override this.

@dualentryabbreviation
This entry type is deprecated as from bib2gls version 1.1. It’s functionally equivalent to
@dualabbreviationentry but its name doesn’t fit the general dual entry naming scheme.

@dualsymbol
This is like @dualentry but the default mappings are:

• name 7→ symbol

• plural 7→ symbolplural

• symbol 7→ name

• symbolplural 7→ plural

The name and symbol fields are required. For example:

@dualsymbol{pi,
name={pi},
symbol={\ensuremath{\pi}},
description={the ratio of the length of the circumference
of a circle to its diameter}

}

Entries are defined using \bibglsnewdualsymbol, which by default sets the category
to symbol.

66

4 .bib Format

@dualnumber
This is almost identical to @dualsymbol but entries are defined using \bibglsnewdual-
number, which by default sets the category to number.

The above example could be defined as a number since π is a constant:

@dualnumber{pi,
name={pi},
symbol={\ensuremath{\pi}},
description={the ratio of the length of the circumference
of a circle to its diameter},

user1={3.14159}
}

This has stored the approximate value in the user1 field. The post-description hook could
then be adapted to show this.

\renewcommand{\glsxtrpostdescnumber}{%
\ifglshasfield{useri}{\glscurrententrylabel}
{ (approximate value: \glscurrentfieldvalue)}%
{}%

}

This use of the user1 field means that the dual entries could be sorted numerically accord-
ing to the approximate value:

\usepackage[record,postdot,numbers,style=index]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},% entries.bib
dual-type={numbers},
dual-sort={double},% decimal sort
dual-sort-field={user1}

]

@dualabbreviation
The @dualabbreviation entry type is similar to @dualentry, but by default the field map-
pings are:

• short 7→ dualshort

• shortplural 7→ dualshortplural

• long 7→ duallong

• longplural 7→ duallongplural

67

4 .bib Format

• dualshort 7→ short

• dualshortplural 7→ shortplural

• duallong 7→ long

• duallongplural 7→ longplural

The required fields are: short, long, dualshort and duallong. This includes some new
fields: dualshort, dualshortplural, duallong and duallongplural. If these aren’t al-
ready defined, they will be provided in the .glstex file with

\glsxtrprovidestoragekey{⟨key⟩}{}{}

Note that this use with an empty third argument prevents the creation of a field access com-
mand (analogous to \glsentrytext). The value can be accessed with \glsxtrusefield
instead. Remember that the field won’t be available until the .glstex file has been created.

Note that bib2gls doesn’t know what abbreviation styles are in used, so if the sort field
is missing it will fallback on the short field. If the abbreviations need to be sorted according
to the long field instead, use abbreviation-sort-fallback={long}.

Terms that are defined using @dualabbreviation will be written to the output file using
\bibglsnewdualabbreviation.

If the dual-abbrv-backlink option is on, the default field used for the backlinks is the
dualshort field, so you’ll need to make sure you adapt the glossary style to show that field.
The simplest way to do this is through the category post description hook.

For example, if the entries all have the category set to abbreviation, then this requires
redefining \glsxtrpostdescabbreviation.

Here’s an example dual abbreviation for a document where English is the primary lan-
guage and German is the secondary language:

@dualabbreviation{rna,
short={RNA},
dualshort={RNS},
long={ribonucleic acid},
duallong={Ribonukleinsäure}

}

If the abbreviation is in the file called entries-dual-abbrv.bib, then here’s an example
document:

\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage[ngerman,main=english]{babel}
\usepackage[colorlinks]{hyperref}

68

4 .bib Format

\usepackage[record,nomain]{glossaries-extra}

\newglossary*{english}{English}
\newglossary*{german}{German}

\setabbreviationstyle{long-short}

\renewcommand*{\glsxtrpostdescabbreviation}{%
\ifglshasfield{dualshort}{\glscurrententrylabel}
{%

\space(\glscurrentfieldvalue)%
}%
{}%

}

\GlsXtrLoadResources[
src={entries-dual-abbrv},% entries-dual-abbrv.bib
type=english,% put primary entries in glossary 'english'
dual-type=german,% put primary entries in glossary 'german'
label-prefix={en.},% primary label prefix
dual-prefix={de.},% dual label prefix
sort=en,% sort primary entries according to language 'en'
dual-sort=de-1996,% sort dual entries according to 'de-1996'

% (German new orthography)
dual-abbrv-backlink% add links in the glossary to the opposite

%entry
]

\begin{document}

English: \gls{en.rna}; \gls{en.rna}.

German: \gls{de.rna}; \gls{de.rna}.

\printunsrtglossaries
\end{document}

If the label-prefix is omitted, then only the dual entries will have a prefix:

English: \gls{rna}; \gls{rna}.

German: \gls{de.rna}; \gls{de.rna}.

Another variation is to use the long-short-user abbreviation style and modify the associated
\glsxtruserfield so that the duallong field is selected for the parenthetical material:

69

4 .bib Format

\renewcommand*{\glsxtruserfield}{duallong}

This means that the first use of the primary entry is displayed as

ribonucleic acid (RNA, Ribonukleinsäure)

and the first use of the dual entry is displayed as:

Ribonukleinsäure (RNS, ribonucleic acid)

Here’s an example to be used with the long-short-desc style:

@dualabbreviation{rna,
short={RNA},
dualshort={RNS},
long={ribonucleic acid},
duallong={Ribonukleinsäure}
description={a polymeric molecule},
user1={Ein polymeres Molekül}

}

This stores the dual description in the user1 field, so this needs a mapping. The new example
document is much the same as the previous one, except that the dual-abbrv-map option is
needed to include the mapping between the description and user1 fields:

\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage[ngerman,main=english]{babel}
\usepackage[colorlinks]{hyperref}
\usepackage[record,nomain]{glossaries-extra}

\newglossary*{english}{English}
\newglossary*{german}{German}

\setabbreviationstyle{long-short-desc}

\renewcommand*{\glsxtrpostdescabbreviation}{%
\ifglshasfield{dualshort}{\glscurrententrylabel}
{%

\space(\glscurrentfieldvalue)%
}%
{}%

}

70

4 .bib Format

\GlsXtrLoadResources[
src={entries-dual-abbrv-desc},% entries-dual-abbrv-desc.bib
type=english,% put primary entries in glossary 'english'
dual-type=german,% put primary entries in glossary 'german'
label-prefix={en.},% primary label prefix
dual-prefix={de.},% dual label prefix
sort=en,% sort primary entries according to language 'en'
abbreviation-sort-fallback={long},% fallback on 'long' field
dual-sort=de-1996,% sort dual entries according to 'de-1996'

% (German new orthography)
dual-abbrv-backlink,% add links in the glossary to the opposite

% entry
% dual key mappings:
dual-abbrv-map={%

{short,shortplural,long,longplural,dualshort,dualshortplural,
duallong,duallongplural,description,user1},

{dualshort,dualshortplural,duallong,duallongplural,short,shortplural,
long,longplural,user1,description}

}
]

\begin{document}

English: \gls{en.rna}; \gls{en.rna}.

German: \gls{de.rna}; \gls{de.rna}.

\printunsrtglossaries
\end{document}

Note that since this document uses the long-short-desc abbreviation style, the abbreviation
-sort-fallback needs to be changed to long.

If I change the order of the mapping to:

dual-abbrv-map={%
{long,longplural,short,shortplural,dualshort,dualshortplural,
duallong,duallongplural,description,user1},

{duallong,duallongplural,dualshort,dualshortplural,short,shortplural,
long,longplural,user1,description}

Then the back-link field will switch to duallong. The post-description hook can be modified
to allow for this:

\renewcommand*{\glsxtrpostdescabbreviation}{%
\ifglshasfield{duallong}{\glscurrententrylabel}

71

4 .bib Format

{%
\space(\glscurrentfieldvalue)%

}%
{}%

}

An alternative is to use the long-short-user-desc style without the post-description hook:

\setabbreviationstyle{long-short-user-desc}

\renewcommand*{\glsxtruserfield}{duallong}

However be careful with this approach as it can cause nested hyperlinks. In this case it’s
better to use the long-postshort-user-desc style which defers the parenthetical material until
after the link-text:

\setabbreviationstyle{long-postshort-user-desc}

\renewcommand*{\glsxtruserfield}{duallong}

If the back-link field has been switched to duallong then the post-description hook is no
longer required.

@dualacronym
As @dualabbreviation but defines the entries with \bibglsnewdualacronym.

4.7 Tertiary Entry Types
A tertiary entry type is essentially a dual entry that creates three separate (but related)
glossaries-extra entry definitions per .bib entry. As with dual entries, the first and second of
these are the primary and secondary. The third of these is the tertiary which is effectively an
appendage of the secondary, and is defined by the same associated \bibglsnew…secondary
command that defines the secondary entry. Therefore the secondary and tertiary are both
considered the dual and are treated as a single entry for the purposes of sorting and collating.

The tertiary entry will never have any locations. Any records found will be assigned to
the secondary (and may then be moved to the primary with combine-dual-locations=
{primary}). The tertiary will always have the same order as the secondary and will have
the same group value. You can set the type for the tertiary with tertiary-type and the
category with tertiary-category. The label prefix defaults to tertiary. and can be
changed with tertiary-prefix.

72

4 .bib Format

@tertiaryindexabbreviationentry
This entry type is very similar to @dualindexabbreviation but creates a tertiary entry as
well. The required fields are: short and long (as for @dualindexabbreviation) and also
description. The mappings are shared by both entry types. For example:
@tertiaryindexabbreviationentry{html,

short={HTML},
long = {hypertext markup language},
description={a markup language for creating web pages}

}
is analogous to
\newglossaryentry{html,name={HTML},description={}}

\newabbreviation{dual.html}{HTML}{hypertext markup language}

\newglossaryentry{tertiary.html,
name={hypertext markup language},
description={a markup language for creating web pages}

}
The last two are actually defined using one command:
\bibglsnewtertiaryindexabbreviationentrysecondary

{dual.html}% secondary label
{tertiary.html}% tertiary label
{...}% secondary fields
{...}% tertiary fields
{HTML}% primary name
{HTML}% short
{hypertext markup language}% long
{a markup language for creating web pages}% description

The \bibglsnewtertiaryindexabbreviationentrysecondary command is provided in
the .glstex file as:
\providecommand{\bibglsnewtertiaryindexabbreviationentrysecondary}[8]{%

\newabbreviation[#3]{#1}{#6}{#7}%
\longnewglossaryentry*{#2}%
{name={\protect\bibglsuselongfont{#7}{\glscategory{#1}}},#4}%
{#8}%

}
which defines the secondary as an abbreviation using \newabbreviation and the tertiary
as a regular entry using \longnewglossaryentry. This means that the tertiary entry is
always defined immediately after the corresponding secondary entry. The primary may be
defined earlier or later in the file depending on the way the entries are sorted and on the
dual-sort setting.

73

4 .bib Format

4.8 Multi-Entry Types
A multi-entry type is a primary entry that may spawn multiple primary entries. This means
that both the main entry and the spawned entries are sorted together along with all the other
primary entries.

@bibtexentry
The @bibtexentry typewill typically need to be aliased as it’s designed for converting BIBTEX
entries into bib2gls entries. For example, to make bib2gls treat @article and @book as
though they were both @bibtexentry:

entry-type-aliases={
article=bibtexentry,
book=bibtexentry

}

For convenience, glossaries-extra-bib2gls v1.29+ provides \GlsXtrBibTeXEntryAliases
which covers all the standard BIBTEX entry types. If you use category={same as original
entry}, the category field will be set to the original entry type (for example, article or
book). Similarly you can use type={same as original entry} to set the type field (but
remember that the glossary types will need to be defined in the document).

There are no required fields. The fallback for the sort field is given by bibtexentry-sort
-fallback. If you want to access any of the BIBTEX fields, you will need to alias or define
them. For example:

field-aliases={
title=name

}

Since BIBTEX’s type field conflicts with bib2gls’s type field, when bib2gls parses @bib-
texentry if will convert type to bibtextype, so you must use bibtextype as the identifier
when aliasing.

Alternatively, you can use \GlsXtrProvideBibTeXFieldswhich uses \glsaddstorage-
key to provided all the standard BIBTEX fields. (Remember that new fields must be defined
before the first resource set.)

The @bibtexentry essentially creates an @index form of entry, but it additionally defines
a @contributor entry for each listed author or editor and updates the dependency lists: each
@contributor is added to the main @bibtexentry’s list of dependencies (so if the @bib-
texentry has a record then all its satellite @contributors are selected with the default
selection={recorded and deps}), and each @contributor is treated as having a cross-
reference to the main @bibtexentry (so if a @contributor has a record then all the linked
@bibtexentry termswill be selected if selection={recorded and deps and see}). You
can instruct bib2gls to treat \citation as an ignored record using --cite-as-record.

Each contributor is effectively defined as

74

4 .bib Format

@contributor{⟨label⟩,
name={\bibglscontributor{⟨forenames⟩}{⟨von⟩}{⟨surname⟩}{⟨suffix⟩}}

}

The label is obtained by converting the name to a label, using the same function as labelify
(which means it’s governed by labelify-replace).

The author and editor fields are always checked, even if those fields aren’t recognised
by bib2gls, (which they aren’t by default). These checks are performed before field aliases
are applied. If neither field is present, no additional entries are spawned. If the dependent
@contributor entry has already been defined, it won’t be redefined, but will have the new
@bibtexentry added to its internal bibtexentry field.

The main @bibtexentry is defined using \bibglsnewbibtexentry and is followed by

\glsxtrfieldlistadd{⟨id⟩}{bibtexcontributor}{⟨contributor-id⟩}

where ⟨id⟩ is the label identifying the main @bibtexentry and ⟨contributor-id⟩ is the label
identifier the contributor, for each contributor that has been selected.

Each contributor is defined using \bibglsnewcontributor. The definition is followed
by

\glsxtrfieldlistadd{⟨contributor-id⟩}{bibtexentry}{⟨id⟩}
\glsxtrfieldlistadd{⟨contributor-id⟩}{bibtexentry@⟨entry-type⟩}{⟨id⟩}

for each selected @bibtexentry associated with that contributor. The second line provides
the internal list field bibtexentry@⟨entry-type⟩, where ⟨entry-type⟩ is the original entry
type (before it was aliased to @bibtexentry and converted to lower case). For example
article or book.

You can iterate over these internal list fields using \glsxtrfielddolistloop or \gls-
xtrfieldforlistloop. For example:

\newcommand{\contributorhandler}[1]{\par\glsentryname{#1}}
\newcommand{\glsxtrpostdesccontributor}{%

\glsxtrifhasfield{bibtexentry}{\glscurrententrylabel}%
{%

\glsxtrfieldforlistloop
{\glscurrententrylabel}{bibtexentry}%
{\contributorhandler}%

} {\par No titles.}%
}

(where the resource option field-aliases={title=name} has been used).
Here’s an example that uses the test xampl.bib file that’s provided with TEX distributions:

\documentclass{article}
\usepackage[record,nomain]{glossaries-extra}
\newglossary*{contributors}{Authors/Editors}
\newglossary*{titles}{Titles}

75

4 .bib Format

\newcommand{\bibglsnewbibtexentry}[4]{%
\longnewglossaryentry*{#1}{name=#3,#2,type={titles}}{#4}%

}
\GlsXtrLoadResources[

src={xampl},
write-preamble={false},
entry-type-aliases={
\GlsXtrBibTeXEntryAliases

},
field-aliases={

title=name
},
replicate-fields={

note=name
},
labelify-replace={

{[\string\-\string\.]}{}
},
type={contributors},
category={same as original entry},
sort-field={category},
sort-suffix={name}

]
\glsxtrsetgrouptitle{article}{Articles}
\glsxtrsetgrouptitle{booklet}{Booklets}
\glsxtrsetgrouptitle{book}{Books}
\glsxtrsetgrouptitle{inbook}{Book Chapters}
\glsxtrsetgrouptitle{misc}{Miscellaneous}
\newcommand{\contributorhandler}[1]{\par\glsentryname{#1} (#1)}
\newcommand{\glsxtrpostdesccontributor}%

\glsxtrifhasfield{bibtexentry}{\glscurrententrylabel}%
{%

\glsxtrfieldforlistloop
{\glscurrententrylabel}{bibtexentry}%
{\contributorhandler}%

}%
{\par No titles.}%

\begin{document}
Sample~\cite{book-minimal,article-full,inbook-full,misc-minimal}.
Another sample~\cite{booklet-minimal,misc-full,article-minimal}.
\bibliographystyle{plain}
\bibliography{xampl}
\printunsrtglossary[type=contributors,style=altlist]
\printunsrtglossary*[type=titles,style=indexgroup]

76

4 .bib Format

{%
\renewcommand{\glsxtrgroupfield}category%
\renewcommand{\glstreenamefmt}[1]{\emph{#1}}%
\renewcommand{\glstreegroupheaderfmt}[1]{\textbf{#1}}%

}
\end{document}

If the file is called myDoc.tex then the document build is:

pdflatex myDoc
bib2gls --cite-as-record myDoc
bibtex myDoc
pdflatex myDoc
pdflatex myDoc

77

5 Resource File Options
Make sure that you use glossaries-extra with the record package option. This ensures that
bib2gls can pick up the required information from the .aux file, and it also loads the sup-
plementary glossaries-extra-bib2gls package (from version 1.27 onwards). The option also
switches on the sort={none} package option (if you have a new enough version of the base
glossaries package), which means that there’s no attempt to assign or process the sort key
if it’s omitted from \newglossaryentry (or similar commands). The sort key will be pro-
vided by bib2gls for informational purposes, but there’s no need for LATEX to write it to any
external files (unless you use record={alsoindex}).

The .glstex resource files created by bib2gls are loaded in the document using

\glsxtrresourcefile[⟨options⟩]{⟨filename⟩}

where ⟨filename⟩ is the name of the resource file without the .glstex extension. You can
havemultiple \glsxtrresourcefile commandswithin your document, but each ⟨filename⟩
must be unique, otherwise LATEXwould attempt to input the same .glstex file multiple times
(bib2gls checks for non-unique file names). The associated data for each resource file is
called the resource set (see section 1.3).

There’s a shortcut command that uses \jobname in the ⟨filename⟩:

\GlsXtrLoadResources[⟨options⟩]

The first instance of this command is equivalent to

\glsxtrresourcefile[⟨options⟩]{\jobname}

Any additional use of \GlsXtrLoadResources is equivalent to

\glsxtrresourcefile[⟨options⟩]{\jobname-⟨n⟩}

where ⟨n⟩ is number. For example:

\GlsXtrLoadResources[src=entries-en,sort={en}]
\GlsXtrLoadResources[src=entries-fr,sort={fr}]
\GlsXtrLoadResources[src=entries-de,sort={de-1996}]

This is equivalent to:

\glsxtrresourcefile[src=entries-en,sort={en}]{\jobname}
\glsxtrresourcefile[src=entries-fr,sort={fr}]{\jobname-1}
\glsxtrresourcefile[src=entries-de,sort={de-1996}]{\jobname-2}

78

5 Resource File Options

In general, it’s simplest just to use \GlsXtrLoadResources.
The optional argument ⟨options⟩ is a comma-separated key=value list. Allowed options

are listed below. The option list applies only to that specific ⟨filename⟩.glstex and are not
carried over to the next instance of \glsxtrresourcefile. Only the definitions provided
in @preamble (if the interpreter is on and interpret-preamble={true}) are carried over
to the next resource set and, possibly, cross-resource references if permitted (see section 1.3).
The glossaries-extra package doesn’t parse the options, but just writes the information to the
.aux file. This means that any invalid options will be reported by bib2gls not by glossaries-
extra.

If you have multiple .bib files you can either select them all using src={⟨bib list⟩} in a
single \glsxtrresourcefile call, if they all require the same settings, or you can load them
separately with different settings applied.

For example, if the files entries-terms.bib and entries-symbols.bib have the same
settings:

\GlsXtrLoadResources[src={entries-terms,entries-symbols}]

Alternatively, if they have different settings:

\GlsXtrLoadResources[src={entries-terms},type=main]
\GlsXtrLoadResources[src={entries-symbols},sort=use,type=symbols]

Note that the sorting is applied to each resource set independently of other resource sets.
This means that if you have multiple instances of \glsxtrresourcefile but only one glos-
sary type, the glossary will effectively contain blocks of sorted entries. For example, if
file1.bib contains:

@index{duck}
@index{zebra}
@index{aardvark}

and file2.bib contains:

@index{caterpillar}
@index{bee}
@index{wombat}

then

\GlsXtrLoadResources[src={file1,file2}]

will result in the list: aardvark, bee, caterpillar, duck, wombat, zebra. These six entries are
all defined when \jobname.glstex is read. Whereas

\GlsXtrLoadResources[src={file1}]
\GlsXtrLoadResources[src={file2}]

79

5 Resource File Options

will result in the list: aardvark, duck, zebra, bee, caterpillar, wombat. The first three (aard-
vark, duck, zebra) are defined when \jobname.glstex is read. The second three (bee, cater-
pillar, wombat) are defined when \jobname-1.glstex is read. Since \printunsrtglos-
sary simply iterates over all defined entries, this is the ordering used.

Abbreviation styles must be set (using \setabbreviationstyle) before the resource
command that selects the abbreviations from the appropriate .bib file, since the entries are
defined (through \newabbreviation or \newacronym) when \glsxtrresourcefile in-
puts the .glstex file. (Similarly for any associated abbreviation style commands that must
be set before abbreviations are defined, such as \glsxtrlongshortdescname.)

Note bib2gls allows .bib files that don’t provide any entries. This can be used to provide
commands in @preamble. For example, suppose I have defs.bib that just contains

@preamble{"\providecommand{\strong}[1]{\textbf{\color{red}#1}}
\providecommand{\test}[2]{#2 (#1)}"}

This provides two commands:

\strong{⟨text⟩}

(which sets the font weight and colour) and

\test{⟨first⟩}{⟨second⟩}

(which just displays its second argument followed by the first in parentheses).
Suppose I also have entries.bib that contains:

@index{example,
name={\strong{\test{stuff}{example}}}

}
@index{sample}
@index{test}
@index{foo}
@index{bar}

This contains an entry that requires the commands provided in defs.bib, so to ensure those
commands are defined, I can do:

\GlsXtrLoadResources[src={defs,entries}]

Unfortunately this results in the sort value for example being set to redexample (stuff)
because the interpreter has detected the provided commands and expanded

\strong{\test{stuff}{example}}

to

\textbf{\color{red}example (stuff)}

80

5 Resource File Options

It discards font changes, so \textbf is ignored, but it doesn’t recognise \color and so
doesn’t know that the first argument is just the colour specifier and therefore doesn’t dis-
card it. This means that “example (stuff)” is placed between “foo” and “sample” instead of
between “bar” and “foo”.

I can prevent the interpreter from parsing @preamble:
\GlsXtrLoadResources[src={defs,entries},interpret-preamble=false]
Now when the sort value for example is obtained from
\strong{\test{stuff}{example}}
no expansion occurs (since \strong and \test are unrecognised) so the sort value ends
up as stuffexample which places “example (stuff)” between “sample” and “test”, which is
again incorrect.

The best thing to do in this situation is to split the provided commands into two .bib files:
one that shouldn’t be interpreted and one that should.

For example, defs-nointerpret.bib:
@preamble{"\providecommand{\strong}[1]{\textbf{\color{red}#1}}"}
and defs-interpret.bib:
@preamble{"\providecommand{\test}[2]{#2 (#1)}"}
Now the first one can be loaded with interpret-preamble={false}:
\GlsXtrLoadResources[src={defs-nointerpret},interpret-preamble=false]
This creates a .glstex file that provides \strong but doesn’t define any entries. The other
file defs-interpret.bib can then be loadedwith the default interpret-preamble={true}:
\GlsXtrLoadResources[src={defs-interpret,entries}]
The provided commands are remembered by the interpreter, so you can also do:
\GlsXtrLoadResources[src={defs-interpret}]
\GlsXtrLoadResources[src={entries}]
The contents of @preamble are only written to the associated .glstex file, but the definitions
contained within the @preamble are retained by the interpreter for subsequent resource sets.

5.1 General Options
charset=⟨encoding-name⟩
If the character encoding hasn’t been supplied in the .bib file with the encoding comment
% Encoding: ⟨encoding-name⟩
then you can supply the correct encoding using charset={encoding-name}. In general, it’s
better to include the encoding in the .bib file where it can also be read by a .bibmanaging
systems, such as JabRef.

See --tex-encoding for the encoding used to write the .glstex file.

81

5 Resource File Options

interpret-preamble=⟨boolean⟩
This is a boolean option that determines whether or not the interpreter should parse the
contents of @preamble. The default is true. If false, the preamble contents will still be
written to the .glstex file, but any commands provided in the preamble won’t be recognised
if the interpreter is needed to determine an entry’s sort value.

Related options are set-widest, which uses the interpreter to determine the widest name
for the alttree style, interpret-label-fields, which governs whether or not fields that
must only contain a label should be interpreted, labelify, which converts a field into a
string suitable for use as a label, and labelify-list, which converts a field into a string
suitable for use as a comma-separated list of labels.

write-preamble=⟨boolean⟩
This is a boolean option that determines whether or not the preamble should be written to the
.glstex file. The default is true. Note that the preamble will still be parsed if interpret
-preamble={true} even if write-preamble={false}. This means it’s possible to provide
bib2gls command definitions in @preamble that don’t get seen by LATEX.

set-widest=⟨boolean⟩
The alttree glossary style needs to know the widest name (for each level, if hierarchical). This
can be set using \glssetwidest provided by the glossary-tree package (or similar commands
like \glsupdatewidest provided by glossaries-extra-stylemods), but this requires knowing
which name is the widest. Alternative one of the iterative commands such as \glsFind-
WidestTopLevelName can be used, which slows the document build as it has to iterate over
all defined entries.

The boolean option set-widest={true} will try to calculate the widest names for each
hierarchical level to help remove the need to determine the correct value within the docu-
ment. Since bib2gls doesn’t know the fonts that will be used in the document or if there
are any non-standard commands that aren’t provided in the .bib files preamble, this option
may not work. For example, if one entry has the name defined as

name={some {\Huge huge} text}

and another entry has the name defined as

name={some {\small small} text}

then bib2gls will determine that the second name is the widest although the first will ac-
tually be wider when it’s rendered in the document.

When using this option, the transcript file will include the message

Calculated width of '⟨text⟩': ⟨number⟩

82

5 Resource File Options

where ⟨text⟩ is bib2gls’s interpretation of the contents of the name field and ⟨number⟩ is a
rough guide to the width of ⟨text⟩ assuming the operating system’s default serif font. The
entry that has the largest ⟨number⟩ is the one that will be selected. This will then be imple-
mented as follows:

• If the type is unknown then:
– if the interpreter resolves all name fields to the empty string (that is the name

fields all consist of unknown commands) then
∗ if there are child entries \bibglssetwidestfallback is used,
∗ otherwise \bibglssetwidesttoplevelfallback is used;

– otherwise \bibglssetwidest is used.

• If the type is known then:
– if the interpreter resolves all name fields for that type to the empty string (that is

the name fields all consist of unknown commands) then
∗ if there are child entries \bibglssetwidestfortypefallback is used,
∗ otherwise \bibglssetwidesttoplevelfortypefallback is used;

– otherwise \bibglssetwidestfortype is used.
This leaves TEX to compute the width according to the document fonts. If bib2gls can’t
correctly determine thewidest entry then youwill need to use one of the commands provided
by glossary-tree or glossaries-extra-stylemods to set it.

In general, if you have more than one glossary it’s best to set the type using options like
type and dual-type if you use set-widest.

entry-type-aliases=⟨key=value list⟩
In the .bib file, the data is identified by @⟨entry-type⟩, such as @abbreviation. It may be
that you want to replace all instances of @⟨entry-type⟩ with a different type of entry. For
example, suppose my .bib file contains abbreviations defined in the form:
@abbreviation{html,

short ={html},
long = {hypertext markup language},
description={a markup language for creating web pages}

}

but suppose in one of my documents I actually want all these abbreviations defined with
@dualabbreviationentry instead of @abbreviation. Instead of editing the .bib file I
can just supply a mapping:
\GlsXtrLoadResources[

src=entries,% data in entries.bib
entry-type-aliases={abbreviation=dualabbreviationentry}

]

83

5 Resource File Options

This makes all instances of @abbreviation behave as @dualabbreviationentry. You can
have more than one mapping. For example:

\GlsXtrLoadResources[
src=entries,% data in entries.bib
entry-type-aliases={

% @abbreviation -> @dualabbreviationentry:
abbreviation=dualabbreviationentry,
% @entry -> @index:
entry=index

}
]

This option isn’t cumulative. Multiple instances of entry-type-aliases override previous
instances. If ⟨key=value list⟩ is empty there will be no mappings.

Here’s another example entry in a .bib file:

@foo{html,
name={HTML},
short={HTML},
long={hypertext markup language},
description={hypertext markup language}

}

Ordinarily this entry would be ignored since @foo isn’t recognised, but it can be mapped like
this:

\GlsXtrLoadResources[
src=entries,% data in entries.bib
ignore-fields={short,long},
entry-type-aliases={foo=entry}

]

This treats the entry as though it had been defined as:

@entry{html,
name={HTML},
description={hypertext markup language}

}

whereas

\GlsXtrLoadResources[
src=entries,% data in entries.bib
ignore-fields={name,description},
entry-type-aliases={foo=abbreviation}

]

84

5 Resource File Options

treats the entry as though it had been defined as:

@abbreviation{html,
short={HTML},
long={hypertext markup language}

}

action=⟨value⟩
This governs how the entries are written in the .glstex file. The ⟨value⟩ may be one of:

• define: define the entries;

• copy: copy the entries;

• define or copy: copy existing entries and define non-existing entries.

The default setting is action={define}, which writes the entry definition to the .glstex
file using one of the commands described in section 6.1. Since the record package option au-
tomatically switches on the undefaction={warn} option, any attempt at defining an entry
that’s already been defined will generate a warning rather than an error. The duplicate def-
inition will be ignored. (The warnings can be found in the .log file since they are warnings
produce by glossaries-extra not by bib2gls.)

For example, if you try:

\newglossary*{copies}{Copies}
\GlsXtrLoadResources[src={entries}]
\GlsXtrLoadResources[sort=use,type=copies,src={entries}]

you’ll find that the copies glossary is empty and there will be warnings in the .log file
when the second resource file is loaded.

There are various ways of having the same entries in multiple glossaries. The simplest
method is to use secondary, but another method is to use action={copy} which simply
writes
\glsxtrcopytoglossary{⟨label⟩}{⟨type⟩}

instead of using one of the commands listed in section 6.1. This copies the entries rather
than defining them, which means the entries must already have been defined. The ⟨type⟩ is
determined as follows:

• if the entry has the type field set, that’s used;

• if the entry is a tertiary and tertiary-type is set, that’s used;

• if the entry is a dual and dual-type is set, that’s used;

• otherwise the value of the type option is used.

85

5 Resource File Options

If you’re not sure whether the entries may already be defined, you can use action={define
or copy} which will use \ifglsentryexists in the resource file to determine whether to
define or copy the entry.

Options that set or modify fields, such as category, group, save-locations, flatten or
name-case-change, will be ignored if entries are copied. However the copy-action-group
-field may be used to copy the group field (which may have been locally set by the sort
method) to another field. This ensures that the original group value from the entry definition
in an earlier resource set won’t be overwritten (unless you set copy-action-group-field
={group}).

Remember that \glsxtrcopytoglossary simply copies the entry’s label to the glossary’s
internal list. The only checks that bib2gls performs if action is not define is to ensure
that the master or secondary options have not been used, since they’re incompatible, and
that the type option is set, since it’s required as a fallback for any entries that don’t have
the type field set. (There are too many options that alter field values to check them all and
some may be used to alter the sorting.) The purpose of the copy action is simply to provide
a duplicate list in a different order.

Remember that if you are using hyperref, you need to use target=false in the optional
argument of \printunsrtglossary for the glossary containing the copies to prevent du-
plicate hypertargets. Commands like \gls will link to the original entries. For example, in
the preamble:

\newignoredglossary{copies}

\GlsXtrLoadResources[src={entries}]

\GlsXtrLoadResources[
sort=use,
action={copy},
type=copies,
src={entries}]

and later in the document:

\printunsrtglossary[title={Glossary (Alphabetical)},style=indexgroup]
\printunsrtglossary[type=copies,title={Glossary (Order of Use)},
style=index,nogroupskip,
target=false]

Note also the need to use nogroupskip and a non-group style for the duplicates since the
group field will have been assigned in the first resource set if bib2gls was invoked with
--group. The grouping is appropriate for alphabetical ordering but not for order of use.

If you want different grouping for the duplicates, you can specify the field name to use in
which to store the group information using copy-action-group-field. Unlike secondary,
you will need to redefine \glsxtrgroupfield to the relevant field before you display the
glossary. The simplest way to do this is with the starred form of \printunsrtglossary. For

86

5 Resource File Options

example, if copy-action-group-field={dupgroup} is added to the options for the second
resource set:

\printunsrtglossary*[type=copies,title=Duplicates,style=indexgroup]
{\renewcommand{\glsxtrgroupfield}{dupgroup}}

This just does:

\begingroup
\renewcommand{\glsxtrgroupfield}{dupgroup}%
\printunsrtglossary[type=copies,title={Duplicates},style=indexgroup]

\endgroup

5.2 Selection Options
src=⟨list⟩
This identifies the .bib files containing the entry definitions. The value should be a comma-
separated list of the required .bib files. These may either be in the current working directory
or in the directory given by the --dir switch or on TEX’s path (in which case kpsewhichwill
be used to find them). The .bib extension may be omitted. Remember that if ⟨list⟩ contains
multiple files it must be grouped to protect the comma from the ⟨options⟩ list.

For example

\GlsXtrLoadResources[src={entries-terms,entries-symbols}]

indicates that bib2glsmust read the files entries-terms.bib and entries-symbols.bib
and create the file given by \jobname.glstex on the first instance or \jobname-⟨n⟩.glstex
on subsequent use.

With \glsxtrresourcefile[⟨options⟩]{⟨filename⟩}, if the src option is omitted, the .bib
file is assumed to be ⟨filename⟩.bib. For example:

\glsxtrresourcefile{entries-symbols}

indicates that bib2gls needs to read the file entries-symbols.bib, which contains the
entry data, and create the file entries-symbols.glstex. If the .bib file is different or if
you have multiple .bib files, you need to use the src option.
\GlsXtrLoadResources uses \jobname as the argument of \glsxtrresourcefile on

the first instance, so

\GlsXtrLoadResources[]

will assume src=\jobname. Remember that subsequent uses of \GlsXtrLoadResources
append a suffix, so in general it’s best to always supply src.

87

5 Resource File Options

selection=⟨value⟩
By default all entries that have records in the .aux file will be selected as well as all their
dependent entries. The dependent entries that don’t have corresponding records on the first
LATEX run, may need an additional build to ensure their location lists are updated.

Remember that on the first LATEX run the .glstex files don’t exist. This means that the en-
tries can’t be defined. The record package option additionally switches on the undefaction
={warn} option, which means that you’ll only get warnings rather than errors when you
reference entries in the document. This means that you can’t use \glsaddallwith bib2gls
because the glossary lists are empty on the first run, so there’s nothing for \glsaddall to
iterate over. Instead, if you want to add all defined entries, you need to instruct bib2gls to
do this with the selection option. The following values are allowed:

• recorded and deps: add all recorded entries and their dependencies (default).

• recorded and deps and see: as above but will also add unrecorded entries whose
see or seealso field refers to a recorded entry.

• recorded no deps: add all recorded entries but not their dependencies. The de-
pendencies include those referenced in the see or seealso field, parent entries and
those found referenced with commands like \gls in the field values that are parsed by
bib2gls. With this setting, parents will be omitted unless they’ve been referenced in
the document through commands like \gls.

• recorded and ancestors: this is like the previous setting but parents are added
even if they haven’t been referenced in the document. The other dependent entries
are omitted if they haven’t been referenced in the document.

• all: add all entries found in the .bib files supplied in the src option.

The ⟨value⟩ must be supplied.
For example, suppose the file entries.bib contains:

@index{run}

@index{sprint,see={run}}

@index{dash,see={sprint}}

If the document only references the “run” entry (for example, using \gls{run}) then:

• If selection={recorded and deps}, only the “run” entry is selected. The “run”
entry has a record, so it’s selected, but it has no dependencies. Neither “sprint” nor
“dash” have records, so they’re not selected.

• If selection={recorded and deps and see}, the “run” and “sprint” entries are se-
lected, but not the “dash” entry. The “run” entry is selected because it has a record.
The “sprint” entry doesn’t have a record but its see field includes “run”, which does

88

5 Resource File Options

have a record, so “sprint” is also selected. The “dash” entry doesn’t have a record. Its
see field references “sprint”. Although “sprint” has been selected, it doesn’t have any
records, so “dash” isn’t selected.

The above is just an example. The circuitous redirection of “dash” to “sprint” to “run” is
unhelpful to the reader and is best avoided. A better method would be:

@index{run}

@index{sprint,see={run}}

@index{dash,see={run}}

The selection={recorded and deps and see} in this case will select all three entries,
and the document won’t send the reader on a long-winded detour.

match=⟨key=value list⟩
It’s possible to filter the selection by matching field values. If ⟨key=value list⟩ is empty no
filtering will be applied, otherwise ⟨key=value list⟩ should be a ⟨key⟩=⟨regexp⟩ list, where
⟨key⟩ is the name of a field or id for the entry’s label or entrytype for the entry type (as
in the part after @ identifying the entry not the type field identifying the glossary label). If
you’ve used entry-type-aliases, this refers to the target entry type not the original entry
type specified in the .bib file.

The ⟨regex⟩ part should be a regular expression conforming to Java’s Pattern class [4]. The
pattern is anchored (oo. (regular expression, match any)* (regular expression,
zero or more) matches oops but not loops) and ⟨regexp⟩ can’t be empty. Remember that
TEX will expand the option list as it writes the information to the .aux file so take care with
special characters. For example, to match a literal period use \string\. not \. (backslash
dot).

If the field is missing its value it is assumed to be empty for the purposes of the pattern
match even if it will be assigned a non-empty default value when the entry is defined. If the
field is unrecognised by bib2gls any reference to it in ⟨key=value list⟩ will be ignored.

If a field is listed multiple times, the pattern for that field is concatenated using

(?:⟨pattern-1⟩)|(?:⟨pattern-2⟩)

where ⟨pattern-1⟩ is the current pattern for that field and ⟨pattern-2⟩ is the new pattern. This
means it performs a logical OR. For the non-duplicate fields the logical operator is given by
match-op. For example:

match-op={and},
match={

category=animals,
topic=biology,
category=vegetables

}

89

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

5 Resource File Options

This will keep all the selected entries that satisfy:

• category matches (?:animals)|(?:vegetables)
(the category is either animals or vegetables)

AND

• topic (custom key provided by user) is biology.

and will discard any entries that don’t satisfy this condition. A message will be written to
the log file for each entry that’s discarded.

Patterns for unknown fields will be ignored. If the entire list consists of patterns for un-
known fields it will be treated as match={}. That is, no filtering will be applied. In the above
example, the custom topic key must be provided before the first \GlsXtrLoadResources
with \glsaddkey or \glsaddstoragekey.

match-op=⟨value⟩
If the value of match contains more than one ⟨key⟩=⟨pattern⟩ element, the match-op deter-
mines whether to apply a logical AND or a logical OR. The ⟨value⟩ may be either and or or.
The default is match-op={and}.

not-match=⟨key=value list⟩
If match={⟨key=value list⟩} would cause an entry to be selected then not-match={⟨key=
value list⟩} would cause that entry to be ignored. If ⟨key=value list⟩ is missing, the filtering
is removed. If you have both match and not-match in the same resource set, the last one
listed takes precedence.

match-action=⟨value⟩
The default behaviour with match or not-match is to filter the selection. This may be
changed to append to the selection instead. The ⟨value⟩ may be one of:

• filter: (default) filter selection;

• add: append any matches (with match) or non-matches (with not-match) to the se-
lection. This setting can’t be used with sort={use}.

For example, if I want to select all record entries and their dependencies, but I also want to
make sure that any entries with the category set to important are always selected regardless
of whether or not they have any records:

\GlsXtrLoadResource[
src=entries,% data in entries.bib
match-action={add},
match={category=important}

]

90

5 Resource File Options

limit=⟨number⟩
If ⟨number⟩ is greater than 0 then this will truncate the list of selected entries after sorting
to ⟨number⟩ (if the list size is greater than that value). The transcript will show the message:

Truncating according to limit=⟨number⟩

When used with shuffle, this provides a means of randomly selecting at most ⟨number⟩
entries. The default setting is limit={0} (no truncation). A negative value of ⟨number⟩ is
not permitted.

If you have any dual entries, then the truncation will be applied to the combined list of
primary and duals if dual-sort={combine} otherwise each list will be truncated separately
by ⟨number⟩, which results in a maximum of 2× ⟨number⟩. Remember that tertiary entries
are created when dual entries are defined in the .glstex file, so this will increase the total
number of entries.

flatten=⟨boolean⟩
This is a boolean option. The default value is flatten={false}. If flatten={true}, the
sorting will ignore hierarchy and the parent field will be omitted when writing the defini-
tions to the .glstex file, but the parent entries will still be considered a dependent ancestor
from the selection point of view.

Note the difference between this option and using ignore-fields={parent} which will
remove the dependency (unless a dependency is established through another field).

flatten-lonely=⟨value⟩
This may take one of three values: false (default), presort and postsort. The value must
be supplied.

Unlike the flatten option, which completely removes the hierarchy, the flatten-lonely
option can be used to selectively alter the hierarchy. In this case only those entries that have
a parent but have no siblings are checked. This option is affected by the flatten-lonely
-rule setting. The conditions for moving a child up one hierarchical level are as follows:

• The child must have a parent, and

• the child can’t have any selected siblings, and

• if flatten-lonely-rule={only unrecorded parents} then the parent can’t have
a location list, where the location list includes records and see or seealso cross-
references (for the other rules the parent may have a location list as long as it only
has the one child selected).

If the child is selected for hierarchical adjustment, the parent will be removed if:

• The parent has no location list, and

91

5 Resource File Options

• flatten-lonely-rule isn’t set to no discard.

The value of flatten-lonely determines whether the adjustment should be made before
sorting (presort) or after sorting (postsort). To disable this function use flatten-lonely
={false}.

For example, suppose the file entries.bib contains:

@index{birds}
@index{duck,parent={birds}}
@index{goose,plural={geese},parent={birds}}
@index{swan,parent={birds}}
@index{chicken,parent={birds}}

@index{vegetable}
@index{cabbage,parent={vegetable}}

@index{minerals}
@index{quartz,parent={minerals}}
@index{corundum,parent={minerals}}
@index{amethyst,parent={minerals}}
@index{gypsum,parent={minerals}}

@index{aardvark}
@index{bard}
@index{buzz}

@index{item}
@index{subitem,parent={item}}
@index{subsubitem,parent={subitem}}

and suppose the document contains:

\documentclass{article}

\usepackage[record,style=indexgroup]{glossaries-extra}

\GlsXtrLoadResources[src={entries.bib}]

\begin{document}
\gls{duck}.
\gls{quartz}, \gls{corundum}, \gls{amethyst}.
\gls{aardvark}, \gls{bard}, \gls{buzz}.
\gls{vegetable}, \gls{cabbage}.
\gls{subsubitem}.

92

5 Resource File Options

\printunsrtglossaries
\end{document}

Although the duck entry has siblings in the entries.bib file, none of them have been
recorded (indexed) in the document, nor has the parent birds entry.

This document hasn’t used flatten-lonely, so the default flatten-lonely={false}
is assumed. This results in the hierarchical structure:

A
aardvark 1

B
bard 1
birds

duck 1
buzz 1

I
item

subitem
subsubitem 1

M
minerals

amethyst 1
corundum 1
quartz 1

V
vegetable 1

cabbage 1

(The “1” in the above indicates the page number.) There are some entries here that look a
little odd: duck, cabbage and subsubitem. In each case they are a lone child entry. It would
look better if they could be compressed, but I don’t want to use the flatten option, as I still
want to keep the mineral hierarchy.

If I now add flatten-lonely={postsort}:

93

5 Resource File Options

\GlsXtrLoadResources[src={entries.bib},flatten-lonely=postsort]

the hierarchy becomes:

A
aardvark 1

B
bard 1
birds, duck 1
buzz 1

I
item, subitem, subsubitem 1

M
minerals

amethyst 1
corundum 1
quartz 1

V
vegetable 1

cabbage 1

The name field of the duck entry has been set to

name={\bibglsflattenedchildpostsort{birds}{duck}}

the text field has been set to

text={duck}

the group field is copied over from the parent entry (“B”), and the parent field has been
adjusted, moving duck up one hierarchical level. Finally, the former parent birds entry
has been removed (the default flatten-lonely-rule={only unrecorded parents} is
in effect).

The default definition of \bibglsflattenedchildpostsort formats its arguments so
that they are separated by a comma and space (“birds, duck”). If the text field had been set
in the original @index definition of duck, it wouldn’t have been altered. This adjustment

94

5 Resource File Options

ensures that in the document \gls{duck} still produces “duck” rather than “birds, duck”.
(If the child and parent name fields are identical, the terms are considered homographs. See
below for further details.)

The subsubitem entry has also been adjusted. This was done in a multi-stage process,
starting with sub-items and then moving down the hierarchical levels:

• The subitem entry was adjusted, moving it from a sub-entry to a top-level entry. The
name field was then modified to

name={\bibglsflattenedchildpostsort{item}{subitem}}

This nowmeans that the subsubitem entry is now a sub-entry (rather than a sub-sub-
entry). The subitem entry now has no parent, but at this stage the subsubitem entry
still has subitem as its parent.

• The subsubitem entry is then adjusted moving from a sub-entry to a top-level entry.
The name field was then modified to

name=
{%
\bibglsflattenedchildpostsort
{%

% name from former parent
\bibglsflattenedchildpostsort{item}{subitem}%

}%
{subsubitem}% original name

}

The first argument of \bibglsflattenedchildpostsort is obtained from the name
field of the entry’s former parent (which is removed from the child’s set of ancestors).
This field value was changed in the previous step, and the change is reflected here.
This means that the name for subitem will be displayed as “item, subitem” and the
name for subsubitem will be displayed as “item, subitem, subsubitem”.

• The parent entries item and subitem are removed from the selection as they have no
location lists.

Note that the cabbage sub-entry hasn’t been adjusted. It doesn’t have any siblings but its
parent entry (vegetable) has a location list so it can’t be discarded. If I change the rule:

\GlsXtrLoadResources[src={entries.bib},
flatten-lonely-rule=discard unrecorded,
flatten-lonely=postsort]

then this will move the cabbage entry up a level but the original parent entry vegetable
will remain:

95

5 Resource File Options

A
aardvark 1

B
bard 1
birds, duck 1
buzz 1

I
item, subitem, subsubitem 1

M
minerals

amethyst 1
corundum 1
quartz 1

V
vegetable 1
vegetable, cabbage 1

Remember that flatten-lonely={postsort} performs the adjustment after sorting. This
means that the entries are still in the same relative location that they were in with the orig-
inal flatten-lonely={false} setting. For example, duck remains in the B letter group
before “buzz”.

With flatten-lonely={presort} the adjustments are made before the sorting is per-
formed. For example, using:

\GlsXtrLoadResources[src={entries.bib},
flatten-lonely-rule=discard unrecorded,
flatten-lonely=presort]

the hierarchical order is now:

A
aardvark 1

96

5 Resource File Options

B
bard 1
buzz 1

C
cabbage 1

D
duck 1

M
minerals

amethyst 1
corundum 1
quartz 1

S
subsubitem 1

V
vegetable 1

This method uses a different format for the modified name field. For example, the duck entry
now has:

name={\bibglsflattenedchildpresort{duck}{birds}}

The default definition of \bibglsflattenedchildpresort simply does the first argument
and ignores the second. The sorting is then performed, but the interpreter recognises this
command and can deduce that the sort value for this entry should be duck, so “duck” now
ends up in the D letter group.

If you provide a definition of \bibglsflattenedchildpresort in the @preamble, it will
be picked up by the interpreter. For example:

@preamble{"\providecommand{\bibglsflattenedchildpresort}[2]{#1 (#2)}"}

Note that the text field is only changed if not already set. This option may have unpre-
dictable results for abbreviations as the name field (and sometimes the text field) is typically
set by the abbreviation style. Remember that if the parent entry doesn’t have a location list

97

5 Resource File Options

and the rule isn’t set to no discard then the parent entry will be discarded after all relevant
entries and their dependencies have been selected, so any cross-references within the parent
entry (such as \gls occurring in the description) may end up being selected even if they
wouldn’t be selected if the parent entry didn’t exist.

With both presort and postsort, if the parent name is the same as the child’s name then
the child is considered a homograph and the child’s name is set to

\bibglsflattenedhomograph{⟨name⟩}{⟨parent label⟩}

instead of the corresponding \bibglsflattenedchild...sort. This defaults to just ⟨name⟩.

flatten-lonely-rule=⟨value⟩
This option governs the rule used by flatten-lonely to determine which sub-entries (that
have no siblings) to adjust and which parents to remove. The value may be one of the fol-
lowing:

only unrecorded parents Only the sub-entries that have a parent without a location list
will be altered. The parent entry will be removed from the selection. This value is the
default setting.

discard unrecorded This setting will adjust all sub-entries that have no siblings regard-
less of whether or not the parent has a location list. Only the parent entries that don’t
have a location list will be removed from the selection.

no discard This setting will adjust all sub-entries that don’t have siblings regardless of
whether or not the parent has a location list. No entries will be discarded, so parent
entries that don’t have a location list will still appear in the glossary.

In the above, the location list includes records and cross-references obtained from the see or
seealso fields. See flatten-lonely for further details.

5.3 Master Documents
Suppose you have two documents mybook.tex and myarticle.tex that share a common
glossary that’s shown in mybook.pdf but not in myarticle.pdf. Furthermore, you’d like
to use hyperref and be able to click on a term in myarticle.pdf and be taken to the relevant
page in mybook.pdf where the term is listed in the glossary.

This can be achieved with the targeturl and targetname category attributes. For example,
without bib2gls the file mybook.tex might look like:

\documentclass{book}
\usepackage[colorlinks]{hyperref}
\usepackage{glossaries-extra}

\makeglossaries

98

5 Resource File Options

\newglossaryentry{sample}{name={sample},description={an example}}

\begin{document}
\chapter{Example}
\gls{sample}.

\printglossaries
\end{document}

The other document myarticle.tex might look like:

\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage{glossaries-extra}

\newignoredglossary*{external}
\glssetcategoryattribute{external}{targeturl}{mybook.pdf}
\glssetcategoryattribute{external}{targetname}{\glolinkprefix\glslabel}

\newglossaryentry{sample}{type=external,category=external,
name={sample},description={an example}}

\begin{document}
\gls{sample}.
\end{document}

In this case the main glossary isn’t used, but the category attributes allow a mixture of inter-
nal and external references, so the main glossary could be used for the internal references.
(In which case, \makeglossaries and \printglossaries would need to be added back to
myarticle.tex.)

Note that both documents had to define the common terms. The above documents can be
rewritten to work with bib2gls. First a .bib file needs to be created:

@entry{sample,
name={sample},
description={an example}

}

Assuming this file is called myentries.bib, then mybook.tex can be changed to:

\documentclass{book}
\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[src={myentries}]

99

5 Resource File Options

\begin{document}
\chapter{Example}
\gls{sample}.

\printunsrtglossaries
\end{document}

and myarticle.tex can be changed to:

\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\newignoredglossary*{external}
\glssetcategoryattribute{external}{targeturl}{mybook.pdf}
\glssetcategoryattribute{external}{targetname}{\glolinkprefix\glslabel}

\GlsXtrLoadResources[
src={myentries},
sort=none,
type=external,
category=external]

\begin{document}
\gls{sample}.
\end{document}

Most of the options related to sorting and the glossary format are unneeded here since the
glossary isn’t being displayed. This may be sufficient for your needs, but it may be that
the book has changed various settings that have been written to mybook.glstex but aren’t
present in the .bib file (such as short-case-change={uc}). In this case, you could just
remember to copy over the settings from mybook.tex to myarticle.tex, but another pos-
sibility is to simply make myarticle.tex input mybook.glstex instead of using \GlsXtr-
LoadResources. This can work but it’s not so convenient to set the label prefix, the type
and the category. The master option allows this, but it has limitations (see below), so in
complex cases (in particular different label prefixes combined with hierarchical entries or
cross-references) you’ll have to use the method shown in the example code above.

master=⟨name⟩
This option will disable most of the options that relate to parsing and processing data con-
tained in .bib files (since this option doesn’t actually read any .bib files). It also can’t be
used with action={copy} or action={define or copy}.

100

5 Resource File Options

The use of master isn’t always suitable. In particular if any of the terms cross-reference
each other, such as through the see or seealso field or the parent field or using commands
like \gls in any of the other fields when the labels have been assigned prefixes. In this case
you will need to use the method described in the example above.

The ⟨name⟩ is the name of the .aux file for the master document without the extension
(in this case, mybook). It needs to be relative to the document referencing it or an absolute
path using forward slashes as the directory divider. Remember that if it’s a relative path, the
PDF files (mybook.pdf and myarticle.pdf) will also need to be located in the same relative
position.

When bib2gls detects the master option, it won’t search for entries in any .bib files (for
that particular resource set) but will create a .glstex file that inputs the master document’s
.glstex files, but it will additionally temporarily adjust the internal commands used to de-
fine entries so that the prefix given by label-prefix, the glossary type and the category
type are all automatically inserted. If the type or category options haven’t been used, the
corresponding value will default to master. The targeturl and targetname category attributes
will automatically be set, and the glossary type will be provided using \provideignored-
glossary*{⟨type⟩}.

The above myarticle.tex can be changed to:
\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
label-prefix={book.},
master={mybook}]

\begin{document}
\gls{book.sample}.
\end{document}

There are some settings from the master document that you still need to repeat in the
other document. These include the label prefixes set when the master document loaded the
resource files, and any settings in the master document that relate to the master document’s
entries.

For example, if the master document loaded a resource file with label-prefix={term.}
then you also need this prefix when you reference the entries in the dependent document in
addition to the label-prefix for the dependent document. Suppose mybook.tex loads the
resources using
\GlsXtrLoadResources[src={myentries},label-prefix={term.}]

and myarticle.tex loads the resources using:
\GlsXtrLoadResources[
label-prefix={book.},
master={mybook}]

101

5 Resource File Options

Then the entries referenced in myarticle.tex need to use the prefix book.term. as in:

This is a \gls{book.term.sample} term.

Remember that the category labels will need adjusting to reflect the change in category
label in the dependent document.

For example, if mybook.tex included:

\setabbreviationstyle{long-short-sc}

then myarticle.tex will need:

\setabbreviationstyle[master]{long-short-sc}

(change master to ⟨value⟩ if you have used category={⟨value⟩}). You can, of course, choose
a different abbreviation style for the dependent document, but the category in the optional
argument needs to be correct.

master-resources=⟨list⟩
If the master document has multiple resource files then by default all the master document’s
.glstex files will be input. If you don’t want them all you can use master-resources
to specify only those files that should be included. The value ⟨list⟩ is a comma-separated
list of names, where each name corresponds to the final argument of \glsxtrresource-
file. Remember that \GlsXtrLoadResources is just a shortcut for \glsxtrresourcefile
that bases the name on \jobname. (Note that, as with the argument of \glsxtrresource-
file, the .glstex extension should not be included in ⟨list⟩.) The file \jobname.glstex is
considered the primary resource file and the files \jobname-⟨n⟩.glstex (starting with ⟨n⟩
equal to 1) are considered the supplementary resource files.

For example, to just select the first and third of the supplementary resource files (omitting
the primary mybook.glstex):

\GlsXtrLoadResources[
master={mybook},
master-resources={mybook-1,mybook-3}

]

5.4 Field and Label Options
Theoptions in this sectionmay be used to set or adjust field values or labels. Some field values
are expected to be labels (such as group). These labels must not contain special characters
or commands, but it’s possible to convert a field value into a valid label using options such
as labelify.

102

5 Resource File Options

group=⟨label⟩
The group option may only be used with the --group switch. This will set the group field to
⟨label⟩ unless ⟨label⟩ is auto, in which case the value is set automatically during the sorting
(see also group-formation). The corresponding title can be set with \glsxtrsetgroup-
title if the title is different from the label. The default behaviour is group={auto}.

For example:

\GlsXtrLoadResources[sort=integer,group={Constants},
src={entries-constants}% data in entries-constants.bib

]
\GlsXtrLoadResources[sort=letter-case,group={Variables},
src={entries-variables}% data in entries-variables.bib

]

In this case, if the type field hasn’t been set in the .bib files, these entries will be added to the
same glossary, but will be grouped according to each instance of \GlsXtrLoadResources,
with the provided group label.

category=⟨value⟩
The selected entries may all have their category field changed before writing their defini-
tions to the .glstex file. The ⟨value⟩ may be:

• same as entry: set the category to the .bib entry type used to define it (lower case
and without the initial @) after any aliasing, if applicable;

• same as original entry: (new to v1.4) set the category to the original entry type
(lower case and without the initial @) before it was aliased (behaves like same as
entry if the entry type wasn’t aliased);

• same as base: (new to v1.1) set the category to the base name of the .bib file (with-
out the extension) that provided the entry definition;

• same as type: set the category to the same value as the type field (if that field has
been provided either in the .bib file or through the type option);

• ⟨label⟩: the category is set to ⟨label⟩ (which mustn’t contain any special characters).

This will override any category fields supplied in the .bib file.
When used with entry-type-aliases, the option category={same as entry} refers

to the target entry type whereas category={same as original entry} refers to the orig-
inal entry type given in the .bib file. In both cases, the value is converted to lower case to
ensure consistency.

For example, if the .bib file contains:

103

5 Resource File Options

@entry{bird,
name={bird},
description = {feathered animal}

}

@index{duck}

@index{goose,plural="geese"}

@dualentry{dog,
name={dog},
description={chien}

}

then if the document contains

\GlsXtrLoadResources[category={same as entry},src={entries}]

this will set the category of the bird term to entry (since it was defined with @entry),
the category of the duck and goose terms to index (since they were defined with @index),
and the category of the dog term to dualentry (since it was defined with @dualentry).
Note that the dual entry dual.dog doesn’t have the category set, since that’s governed by
dual-category instead.

If, instead, the document contains

\GlsXtrLoadResources[category={animals},src={entries}]

then the category of all the primary selected entries will be set to animals. Again the dual
entry dual.dog doesn’t have the category set.

Note that the categories may be overridden by the commands, such as \bibglsnewindex,
that are used to actually define the entries.

For example, if the document contains

\newcommand{\bibglsnewdualentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2,category={dual}}{#4}%

}

\GlsXtrLoadResources[category={animals},src={entries}]

then both the dog and dual.dog entries will have their category field set to dual since the
new definition of \bibglsnewdualentry has overridden the category={animals} option.

type=⟨value⟩
The ⟨value⟩ may be one of:

104

5 Resource File Options

• same as entry set the type field to the entry type (lower case and without the initial
@);

• same as original entry set the type to the original entry type (lower case and
without the initial @) before it was aliased (behaves like same as entry if the entry
type wasn’t aliased);
same as base set the type field to the base name of the corresponding .bib file (with-
out the extension);

• same as category set the type field to the same value as the category field (type
unchanged if category not set);

• ⟨label⟩ sets the type field to the glossary identified by ⟨label⟩.

When used with entry-type-aliases, the option type={same as entry} refers to the
target entry type and type={same as original entry} refers to the original entry type
given in the .bib file. It’s not possible to have both category={same as type} and type
={same as category}.

Note that this setting only changes the type field for primary entries. Use dual-type for
dual entries.

For example:

\usepackage[record,symbols]{glossaries-extra}

\GlsXtrLoadResources[src={entries-symbols},type=symbols]

Make sure that the glossary type has already been defined (see section 1.2). In the above,
the symbols option defines the symbols glossary. If you want to use a custom glossary, you
need to provide it. For example:

\usepackage[record,nomain]{glossaries-extra}

\newglossary*{dictionary}{Dictionary}

\GlsXtrLoadResources[src={entries-symbols},type=dictionary]

(The nomain option was added to suppress the creation of the default main glossary.)

trigger-type=⟨type⟩
The record counting commands, such as \rgls, use the special format \glstriggerrecord-
format, which bib2gls also treats as an ignored record. This means the entry will still be
identified as having a record for selection purposes, which is necessary for the entry to be
defined for use in the document, but in order to prevent it from appearing in the glossary
you need to transfer the entry with trigger-type={⟨type⟩}. This will override the type,
dual-type, tertiary-type and the type specification in secondary.

105

5 Resource File Options

The provided value ⟨type⟩ must be a glossary label (not one of the keywords allowed
by type). You can define the glossary before loading the resource, but it’s not required
as bib2gls will write \provideignoredglossary*{⟨type⟩} to the .glstex file (see sec-
tion 1.2).

interpret-label-fields=⟨boolean⟩
This is a boolean option that determineswhether or not the fields thatmay only contain labels
should have their values interpreted (parent, category, type, group, seealso and alias).
Although this option interprets commands within those fields, it doesn’t strip any characters
that can’t be used within a label. The see field isn’t included as it may optionally start with
[⟨tag⟩] where ⟨tag⟩ may legitimately contain LATEX code that shouldn’t be interpreted.

The default setting is interpret-label-fields={false}. Note that if this setting is on,
cross-resource references aren’t permitted. This setting has no effect if the interpreter has
been disabled.

Related settings are labelify and labelify-list which can be used to strip content
that can’t be used in labels and may be used more generally for other fields. The labelify
and labelify-list options are performed before interpret-label-fields.

labelify=⟨list⟩
This option should take a comma-separated list of recognised field names as the value. (If
a field is present in both labelify and labelify-list, then labelify-list takes prece-
dence.) Note that if this setting is on, cross-resource references aren’t permitted.

Each listed field will be converted into a string suitable for use as a label. (Not necessarily a
glossary entry label, but any label that may be used in the construction of a control sequence
name.)

The conversion is performed in the following order:
1. If the interpreter is on and the field value contains any of the characters \ (backslash),

{ (begin group), } (end group), ~ (non-breakable space) or $ (maths shift), then the
value is interpreted.

2. Any substitutions that have been specified with labelify-replace are performed.

3. All characters that aren’t alphanumeric or the space character or any of the follow-
ing punctuation characters . (full stop), - (hyphen), + (plus), : (colon), ; (semi-colon),
| (pipe), / (forward slash), ! (exclamation mark), ? (question mark), * (asterisk), < (less
than), > (greater than), ` (backtick), ' (apostrophe) or @ (at-sign) are stripped. If you
want to retain commas, use labelify-list instead. If you want to strip any of the al-
lowed punctuation, use labelify-replace to remove the unwanted characters. (Re-
member that babel can make some of these punctuation characters active, in which
case they need to be stripped.)

4. If bib2gls hasn’t detected fontspec in the document’s transcript file, the value is then
decomposed and all non-ASCII characters are removed.

106

5 Resource File Options

For example, suppose the .bib file contains:

@index{sample,
name={\AA ngstr\"om, \O stergaard, d'Arcy, and Fotheringay-Smythe}

}

Then

\GlsXtrLoadResources[
src=entries,% data in entries.bib
labelify={name}

]

will convert the name field into

Angstrom stergaard d'Arcy and Fotheringay-Smythe

if the document hasn’t used fontspec otherwise it will be

Ångström Østergaard d'Arcy and Fotheringay-Smythe

Note that Ø is considered an unmodified letter and so can’t be decomposed into a basic Latin
letter with a combining diacritic. It’s therefore removed completely from the non-fontspec
version. Whereas Å can be decomposed into “A” followed by the “combining ring above”
character and ö can be decomposed into “o” followed by the “combining diaresis” character.
You can use labelify-replace to replace non-ASCII characters into the closest match.
Alternatively, switch to using XƎLATEX or LuaLATEX.

You can use this option with replicate-fields if you need to retain the original:

\GlsXtrLoadResources[
src=entries,% data in entries.bib
replicate-fields={name={user1}},
labelify={user1}

]

labelify-list=⟨list⟩
This option is like labelify but it retains commas, as it’s designed for fields that should
be converted into a comma-separated list of labels. Any empty elements are removed. For
example, with the .bib entry from above:

\GlsXtrLoadResources[
src=entries,% data in entries.bib
replicate-fields={name={user1}},
labelify-list={user1}

]

will convert the user1 field into

107

5 Resource File Options

Angstrom, stergaard, d'Arcy, and Fotheringay-Smythe

or
Ångström, Østergaard, d'Arcy, and Fotheringay-Smythe

depending on whether or not fontspec was detected.

labelify-replace=⟨list⟩
This option takes a comma-separated list as a value with each element in the list in the
form {⟨regex⟩}{⟨replacement⟩} where {⟨regex⟩} is a regular expression (that conforms to Java’s
Pattern class [4]) and ⟨replacement⟩ is the replacement text. Remember that the argument of
\GlsXtrLoadResources is expanded when written to the .aux file so take care to protect
any special characters. For example, to match a literal full stop use \string\. rather than
just \. (backslash dot).

Both labelify and labelify-list use this setting to perform substitutions. For exam-
ple, to replace the sub-string “ and ” (including spaces) with a comma:
\GlsXtrLoadResources[
src=entries,% data in entries.bib
replicate-fields={name={user1}},
labelify-replace={{ and }{,}},
labelify-list={user1}

]

The earlier example will now end up as
Angstrom, stergaard, d'Arcy,Fotheringay-Smythe

or
Ångström, Østergaard, d'Arcy,Fotheringay-Smythe

depending on whether or not fontspec was detected.
Note that this produces the same result regardless of whether or not the Oxford comma

is present as ,␣and␣ would first be converted to ,, and then the empty element is removed
resulting in a single comma.

You can have more than one replacement:
\GlsXtrLoadResources[
src=entries,% data in entries.bib
replicate-fields={name={user1}},
labelify-replace={

{ and }{,},% first substitution
{['\string\-]}{},% second substitution
{\string\u00D8}{O}% third substitution

},
labelify-list={user1}

]

108

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

5 Resource File Options

This additionally removes the space, apostrophe and hyphen characters (second substitution)
and replaces “Ø” (0x00D8) with “O” (third substitution) so the string now ends up as

Angstrom,Ostergaard,dArcy,FotheringaySmythe

or

Ångström,Ostergaard,dArcy,FotheringaySmythe

depending on whether or not fontspec was detected.

strip-missing-parents=⟨boolean⟩
The glossaries package requires that all child entries must be defined after the parent entry.
An error occurs otherwise, so bib2gls will omit the parent field if it can’t be found in the
given resource set. However, when the default strip-missing-parents={false} is on,
this omission only occurs while writing the definitions in the .glstex file (after selection
and sorting).

Sorting is performed hierarchically and the group field is set accordingly for the top-level
entries (but not for child entries), which means that an entry with a parent field will be
treated by the sort method as a child entry. This can lead to a strange result, which bib2gls
warns about:

Parent '⟨parent id⟩' not found for entry ⟨child-id⟩

This is the default behaviour as it may simply be a result of a typing mistake in the parent
field. If you actually want missing parents to be stripped before sorting (but after the selec-
tion process) then use strip-missing-parents={true}. If you want all parents stripped
then use flatten or ignore-fields={parent} instead. As from version 1.4, if you want
bib2gls to create the missing parents, then you can use missing-parents={create}.

missing-parents=⟨value⟩
As an alternative to strip-missing-parents, as from version 1.4 you can now use missing
-parents={⟨value⟩} where ⟨value⟩ may be one of:

• strip: this is equivalent to strip-missing-parents={true};

• warn: this is equivalent to the default strip-missing-parents={false};

• create: this will create a new @index entry with the missing parent’s label (after
it’s been processed by options such as labelify) with the name obtained from the
original value of the parent field (before being processed by options like labelify).
If the child entry has the type field set, then the new parent entry will be given the
same value. The category for the new parent entry can be assigned with missing
-parent-category.

For example, consider the books.bib file which contains entries like

109

5 Resource File Options

@entry{ubik,
name={Ubik},
description={novel by Philip K. Dick},
identifier={book},
author={\sortmediacreator{Philip K.}{Dick}},
year={1969}

}

then the field alias

field-aliases={author=parent}

will treat

author={\sortmediacreator{Philip K.}{Dick}},

as though it had been defined as

parent={\sortmediacreator{Philip K.}{Dick}},

This can be converted into a label with the options:

labelify={parent},
labelify-replace={

{[\string\.]}{}
}

If the interpreter has been provided with the definition:

\providecommand*{\sortmediacreator}[2]{#2 #1}

then the parent field for the ubik entry will become DickPhilipK but the original value
is stored internally when missing-parents={create} is set so that it can be used as the
name if the parent needs to be created. Once all the entries have been processed, if ubik has
been selected but no entry can be found with the label DickPhilipK then a new entry will
be added as though it had been defined with:

@index{DickPhilipK,
name={\sortmediacreator{Philip K.}{Dick}}

}

This is an alternative approach to the sample-authors.tex document from the examples
chapter.

110

5 Resource File Options

missing-parent-category=⟨value⟩
If a missing parent entry is created through the use of missing-parents={create} then
the category field can be assigned to the new parent entry with this option. The ⟨value⟩
may be one of:

• same as child: the parent entry’s category field is set to the same value as the
child’s (if set);

• same as base: the parent entry’s category is set to the base name of the .bib file
that provided the child entry’s definition;

• no value: don’t set the category field;

• ⟨label⟩: the parent entry’s category field is set to ⟨label⟩ (which shouldn’t contain
any special characters).

The default setting is missing-parent-category={no value}.

abbreviation-name-fallback=⟨field⟩
The entry types that define abbreviations (such as @abbreviation and @acronym) will, by
default, fallback on the short field if the name field is missing and it’s required for some
reason (for example, with sort-field={name}). If you prefer to fallback on a different
field, then you can use this option to specify the field. For example, abbreviation-name
-fallback={long}. The ⟨field⟩ value must be a known field label.

ignore-fields=⟨list⟩
The ignore-fields key indicates that you want bib2gls to skip the fields listed in the sup-
plied comma-separated ⟨list⟩ of field labels. Remember that unrecognised fields will always
be skipped.

For example, suppose my .bib file contains

@abbreviation{html,
short ="html",
long = {hypertext markup language},
description={a markup language for creating web pages},
seealso={xml}

}

but I want to use the short-long style and I don’t want the cross-referenced term, then I can
use ignore-fields={seealso,description}.

Note that ignore-fields={parent} removes the parent before determining the depen-
dency lists. Thismeans that selection={recorded and deps} and selection={recorded
and ancestors} won’t pick up the label in the parent field.

If you want to maintain the dependency and ancestor relationship but omit the parent
field when writing the entries to the .glstex file, you need to use flatten instead.

111

5 Resource File Options

field-aliases=⟨key=value list⟩
You can instruct bib2gls to treat one field as though it was another using this option. The
value should be a comma-separated list of ⟨field1⟩=⟨field2⟩ pairs, where ⟨field1⟩ and ⟨field2⟩
are field names. Identical mappings and trails aren’t permitted. (That is, ⟨field1⟩ and ⟨field2⟩
can’t be the same nor can you have both ⟨field1⟩=⟨field2⟩ and ⟨field2⟩=⟨field3⟩.) If you want
to swap fields you need to use one of the dual entry types instead. Field aliases are performed
before ignore-fields, so if ⟨field1⟩ is listed in ignore-fields it won’t be ignored (unless
⟨field2⟩ is in ignore-fields).

For example, suppose people.bib contains:

@entry{alexander,
name={Alexander III of Macedon},
description={Ancient Greek king of Macedon},
born={20 July 356 BC},
died={10 June 323 BC},
othername={Alexander the Great}

}

This contains three non-standard fields: born, died and othername. I could define these
fields using \glsaddkey, but another possibility is to map these onto the user keys user1,
user2 and user3, which saves the overhead of providing new keys:

\GlsXtrLoadResources[
src=people,% data in people.bib
field-aliases={born=user1,died=user2,othername=user3}

]

replicate-fields=⟨key=value list⟩
The value of one field can be copied to other fields using this option where each ⟨key⟩=
⟨value⟩ pair is in the form ⟨field1⟩={⟨field2⟩,⟨field3⟩,…} where all values are field names. This
copies the contents of ⟨field1⟩ to ⟨field2⟩, ⟨field3⟩, … (only if the target field isn’t already set
with replicate-override={false}). This action is performed after ignore-fields (see
section 1.3).

For example, suppose people.bib contains:

@entry{alexander,
name={Alexander III of Macedon (Alexander the Great)},
text={Alexander},
description={Ancient Greek king of Macedon}

}

Since the first field hasn’t been supplied, it will default to the value of the text field, but
perhaps for one of my documents I’d like the first field to be the same as the name field.
Rather than editing the .bib file, I can just do:

112

5 Resource File Options

\GlsXtrLoadResources[
src=people,% data in people.bib
replicate-fields={name=first}

]

This copies the contents of the name field into the first field. If you have more than one
field in the list take care to brace the lists to avoid confusion. For example, if for some reason
I want to copy the value of the name field to both first and firstplural and copy the
value of the text field to the plural field, then this requires braces for the inner list:

\GlsXtrLoadResources[
src=people,% data in people.bib
replicate-fields={name={first,firstplural},text=plural}

]

If my people.bib file instead contained:

@entry{alexander,
name={Alexander III of Macedon (Alexander the Great)},
first={Alexander the Great},
text={Alexander},
description={Ancient Greek king of Macedon}

}

then

\GlsXtrLoadResources[
src=people,% data in people.bib
replicate-fields={name=first}

]

won’t alter the first field since replicate-fields never overrides values. However, since
replicate-fields is always performed after ignore-fields it’s possible to ignore the
first field which means that the name value can then be copied into it:

\GlsXtrLoadResources[
src=people,% data in people.bib
ignore-fields={first},
replicate-fields={name=first}

]

Note that the orderingwithin the resource options doesn’t make a difference. The same result
occurs with:

\GlsXtrLoadResources[
src=people,% data in people.bib
replicate-fields={name=first},
ignore-fields={first}

]

113

5 Resource File Options

replicate-override={⟨boolean⟩}
This is a boolean option. The default setting is replicate-override={false}. If true,
replicate-fields will override the existing value if the target field is already set.

bibtex-contributor-fields=⟨list⟩
This option indicates that the listed fields all use BIBTEX’s name syntax (as used in BIBTEX’s
author and editor fields). The values of these fields will be converted into the form:

\bibglscontributorlist{⟨contributor list⟩}{⟨n⟩}

where ⟨n⟩ is the number of names in the list and ⟨contributor-list⟩ is a comma-separated list
of names in the form:

\bibglscontributor{⟨forenames⟩}{⟨von-part⟩}{⟨surname⟩}{⟨suffix⟩}

The \bibglscontributorlist commands is initially defined in bib2gls’s interpreter to
just do the first argument and ignore the second. This means that if you’re sorting on this
field, the “and” part between the final names doesn’t appear in the sort value. The actual
definition of \bibglscontributorlist provided in the .glstex file depends on whether
or not \DTLformatlist is defined. (Note that glossaries automatically loads datatool-base
so this command will be defined if you have at least v2.28 of datatool-base.)

For example, if the name field is specified as:

name={John Smith and Jane Doe and Dickie von Duck}

then bibtex-contributor-fields={name} will convert the name field value to

\bibglscontributorlist{%
\bibglscontributor{John}{}{Smith}{},%
\bibglscontributor{Jane}{}{Doe}{},%
\bibglscontributor{Dickie}{von}{Duck}{}}{3}

With contributor-order={von} the sort value obtained from this field will be:

Smith, John,Doe, Jane,von Duck, Dickie

With one of the locale sort methods and with the default break-at={word}, this will end
up as:

Smith|John|Doe|Jane|von|Duck|Dickie

114

5 Resource File Options

contributor-order=⟨value⟩
The \bibglscontributor command is defined in bib2gls’s interpreter and its definition
is dependent on this setting. The ⟨value⟩ may be one of (where the parts in square brackets
are omitted if that argument is empty):

• surname: \bibglscontributor expands to ⟨surname⟩[, ⟨suffix⟩][, ⟨forenames⟩][, ⟨von-
part⟩];

• von: \bibglscontributor expands to [⟨von-part⟩]⟨surname⟩[, ⟨suffix⟩][, ⟨forenames⟩];

• forenames: \bibglscontributor expands to [⟨forenames⟩][⟨von-part⟩]⟨surname⟩[,
⟨suffix⟩].

The default value is von. Note that if you have multiple resource sets, this option governs the
way bib2gls’s version of \bibglscontributor behaves. The actual definition is written
to the .glstex using \providecommand, which means that LATEX will only pick up the first
definition.

For example:

\newcommand*{\bibglscontributor}[4]{%
#1\ifstrempty{#2}{}{ #2} #3\ifstrempty{#4}{}{, #4}%

}

\GlsXtrLoadResources[
src={entries},% data in entries.bib
bibtex-contributor-fields={name}

]

This will display the names in the glossary with the forenames first, but bib2gls will sort
according to surname.

An alternative approach, if you need an initial resource set such as with the no-interpret
-preamble.bib file:

\GlsXtrLoadResources[
src={no-interpret-preamble},
interpret-preamble=false,
bibtex-contributor-fields={name},
contributor-order={forenames}

]

\GlsXtrLoadResources[
src={entries},% data in entries.bib
bibtex-contributor-fields={name}

]

115

5 Resource File Options

Note the need to use bibtex-contributor-fields={name} in the first resource set even
though there are no entries in the .bib file. This is because the definition of \bibgls-
contributor is only written to the .glstex file if bibtex-contributor-fields has been
set to a non-empty list. The second resource set will use the default bibtex-contributor
-fields={von} setting when obtaining the sort value.

date-time-fields=⟨list⟩
This option indicates that the listed fields all contain date and time information. Primary en-
tries will have these fields parsed according to date-time-field-format and date-time
-field-locale and dual entries will have these fields parsed according to dual-date-time
-field-format and dual-date-time-field-locale. If the field value ismissing or doesn’t
match the given pattern it remains unchanged, otherwise it’s converted into the form

\bibglsdatetime{⟨year⟩}{⟨month⟩}{⟨day-of-month⟩}{⟨day-of-week⟩}{⟨day-of-year⟩}
{⟨era⟩}{⟨hour⟩}{⟨minute⟩}{⟨second⟩}{⟨millisec⟩}{⟨dst⟩}{⟨zone⟩}{original}

where ⟨original⟩ is the value of the field before conversion. If the interpreter is on, the value
will be interpreted before being parsed if it contains \, $, {, } or ~. (Remember that ~ is
converted to the non-breaking space character 0xA0 unless --break-space is used.)

date-fields=⟨list⟩
As date-time-fields but for fields that only contain date (not time) information. If parsed
correctly, the field is converted to

\bibglsdate{⟨year⟩}{⟨month⟩}{⟨day-of-month⟩}{⟨day-of-week⟩}{⟨day-of-year⟩}{⟨era⟩}
{original}

The fields are parsed according to date-field-format and date-field-locale for pri-
mary entries and according to dual-date-field-format and dual-date-field-locale
for dual entries.

time-fields=⟨list⟩
As date-time-fields but for fields that only contain time (not date) information. If parsed
correctly, the field is converted to

\bibglstime{⟨hour⟩}{⟨minute⟩}{⟨second⟩}{⟨millisec⟩}{⟨dst⟩}{⟨zone⟩}{original}

The fields are parsed according to time-field-format and time-field-locale for pri-
mary entries and according to dual-time-field-format and date-time-field-locale
for dual entries.

116

5 Resource File Options

date-time-field-format=⟨value⟩
This option also sets dual-date-time-field-format={⟨value⟩}. The value is the format
pattern used when parsing fields identified by date-time-fields. The ⟨value⟩ is as for
date-sort-format.

date-field-format=⟨value⟩
This option also sets dual-date-field-format={⟨value⟩}. The value is the format pat-
tern used when parsing fields identified by date-fields. The ⟨value⟩ is as for date-sort
-format.

time-field-format=⟨value⟩
This option also sets dual-time-field-format={⟨value⟩}. The value is the format pat-
tern used when parsing fields identified by time-fields. The ⟨value⟩ is as for date-sort
-format.

date-time-field-locale=⟨value⟩
This option also sets dual-date-time-field-locale={⟨value⟩}. The value is the locale
used when parsing fields identified by date-time-fields. The ⟨value⟩ is as for date-sort
-locale.

date-field-locale=⟨value⟩
This option also sets dual-date-field-locale={⟨value⟩}. The value is the locale used
when parsing fields identified by date-fields. The ⟨value⟩ is as for date-sort-locale.

time-field-locale=⟨value⟩
This option also sets date-time-field-locale={⟨value⟩}. The value is the locale used
when parsing fields identified by time-fields. The ⟨value⟩ is as for date-sort-locale.

counter=⟨value⟩
The counter option assigns the default counter to use for the selected entries. (This can
be overridden with the counter key when using commands like \gls.) The value must be
the name of a counter. Since bib2gls doesn’t know which counters are defined within the
document, there’s no check to determine if the value is valid (except for ensuring that ⟨value⟩
is non-empty).

Note that this will require an extra LATEX and bib2gls call since the counter can’t be used
for the indexing until the entry has been defined.

117

5 Resource File Options

label-prefix=⟨tag⟩
The label-prefix option prepends ⟨tag⟩ to each entry’s label. This ⟨tag⟩ will also be in-
serted in front of any cross-references, unless they start with dual. or ext⟨n⟩. (where ⟨n⟩
is an integer). Use dual-prefix to change the dual label prefixes and ext-prefixes to
change the external label prefixes.

For example, if the .bib file contains

@entry{bird,
name={bird},
description = {feathered animal, such as a \gls{duck} or \gls {goose}}

}

@entry{waterfowl,
name={waterfowl},
description={Any \gls{bird} that lives in or about water},
see={[see also]{duck,goose}}

}

@index{duck}

@index{goose,plural="geese"}

Then if this .bib file is loaded with label-prefix={gls.} it’s as though the entries had
been defined as:

@entry{gls.bird,
name={bird},
description = {feathered animal, such as a \gls{gls.duck} or

\gls{gls.goose}}
}

@entry{gls.waterfowl,
name={waterfowl},
description={Any \gls{gls.bird} that lives in or about water},
see={[see also]{gls.duck,gls.goose}}

}

@index{gls.duck,name={duck}}

@index{gls.goose,name={goose},plural="geese"}

Remember to use this prefix when you reference the terms in the document with com-
mands like \gls.

118

5 Resource File Options

duplicate-label-suffix=⟨value⟩
The glossaries package doesn’t permit entries with duplicate labels (even if they’re in dif-
ferent glossaries). If you have multiple resource sets and an entry that’s selected in one re-
source set is also selected in another, by default, bib2glswill issue a warning, but it will still
write the entry definition to the .glstex file, which means you’ll also get a warning from
glossaries-extra and the duplicate definition will be ignored, but associated internal fields set
with commands like \GlsXtrSetField may still be set.

If you actually want the duplicate, you need to specify a suffix with duplicate-label
-suffix. This suffix is only set just before writing the entry definition to the .glstex file,
so it doesn’t affect selection criteria nor can label substitutions be performed in any cross-
references. Options such as set-widest that reference entry labels are incompatible as they
will use the unsuffixed label.

The actual suffix is formed from ⟨value⟩⟨n⟩ where ⟨n⟩ is an integer that’s incremented
in the event of multiple duplicates. For example, duplicate-label-suffix={.copy} will
change the label to ⟨id⟩.copy1 for the first duplicate of the entrywhose label is ⟨id⟩, ⟨id⟩.copy2
for the second duplicate, etc.

record-label-prefix=⟨tag⟩
If set, this option will cause bib2gls to pretend that each record label starts with ⟨tag⟩, if it
doesn’t already. For example, suppose the records in the .aux file are:

\glsxtr@record{bird}{}{page}{glsnumberformat}{1}
\glsxtr@record{waterfowl}{}{page}{glsnumberformat}{1}
\glsxtr@record{idx.duck}{}{page}{glsnumberformat}{1}
\glsxtr@record{idx.goose}{}{page}{glsnumberformat}{1}

The use of record-label-prefix={idx.} makes bib2gls act as though the records were
given as:

\glsxtr@record{idx.bird}{}{page}{glsnumberformat}{1}
\glsxtr@record{idx.waterfowl}{}{page}{glsnumberformat}{1}
\glsxtr@record{idx.duck}{}{page}{glsnumberformat}{1}
\glsxtr@record{idx.goose}{}{page}{glsnumberformat}{1}

cs-label-prefix=⟨tag⟩
If you have commands such as \gls{⟨label⟩} or \glstext{label} in field values (in situations
where nested link text won’t cause a problem) the ⟨label⟩ will be converted as follows:

• if ⟨label⟩ starts with dual. then dual. will be replaced by the dual-prefix value;

• if ⟨label⟩ starts with tertiary. then tertiary. will be replaced by the tertiary
-prefix value;

119

5 Resource File Options

• if ⟨label⟩ starts with ext⟨n⟩. then ext⟨n⟩. will be replaced by the corresponding ext
-prefixes setting (if cross-resource reference mode is enabled, see section 1.3);

• if ⟨label⟩ doesn’t start with one of the above recognised prefixes then, if cs-label
-prefix has been used the supplied valuewill be inserted otherwise the label-prefix
setting will be inserted.

For example, given

@entry{bird,
name={bird},
description = {feathered animal, such as a \gls{duck} or \gls{goose}}

}

then if label-prefix={idx.} is set but cs-label-prefix isn’t included in the resource
option list this will convert the description field to:

description = {feathered animal, such as a \gls{idx.duck} or
\gls{idx.goose}}

However with cs-label-prefix={gls.} the description field will be converted to

description = {feathered animal, such as a \gls{gls.duck} or
\gls{gls.goose}}

regardless of the label-prefix setting. Whereas if the original entry definition is

@entry{bird,
name={bird},
description = {feathered animal, such as a \gls{dual.duck} or

\gls{dual.goose}}
}

then dual. will be replaced by the value of the dual-prefix option regardless of the cs
-label-prefix setting.

The cs-label-prefix setting doesn’t affect labels in the fields that have an entry label
or label list as the value (parent, alias, see and seealso).

ext-prefixes=⟨list⟩
Any cross-references in the .bib file that start with ext⟨n⟩. (where ⟨n⟩ is a positive integer)
will be substituted with the ⟨n⟩th tag listed in the comma-separated ⟨list⟩. If there aren’t
that many items in the list, the ext⟨n⟩. will simply be removed. The default setting is an
empty list, which will strip all ext⟨n⟩. prefixes. Remember that cross-resource reference
mode needs to be enabled for this option to work (see section 1.3).

For example, suppose the file entries-terms.bib contains:

120

5 Resource File Options

@entry{set,
name={set},
description={collection of values, denoted \gls{ext1.set}}

}

and the file entries-symbols.bib contains:

@symbol{set,
name={\ensuremath{\mathcal{S}}},
description={a \gls{ext1.set}}

}

These files both contain an entry with the label set but the description field includes
\gls{ext1.set} which is referencing the entry from the other file. These two files can be
loaded without conflict using:

\usepackage[record,symbols]{glossaries-extra}

\GlsXtrLoadResources[src={entries-terms},
label-prefix={gls.},
ext-prefixes={sym.}

]

\GlsXtrLoadResources[src={entries-symbols},
type=symbols,
label-prefix={sym.},
ext-prefixes={gls.}

]

Now the set entry from entries-terms.bibwill be defined with the label gls.set and
the description will be

collection of values, denoted \gls{sym.set}

The set entry from entries-symbols.bib will be defined with the label sym.set and the
description will be

a \gls{gls.set}

Note that in this case the .bib files have to be loaded as two separate resources. They
can’t be combined into a single src list as the labels aren’t unique.

If you want to allow the flexibility to choose between loading them together or separately,
you’ll have to give them unique labels. For example, entries-terms.bib could contain:

@entry{set,
name={set},
description={collection of values, denoted \gls{ext1.S}}

}

121

5 Resource File Options

and entries-symbols.bib could contain:

@symbol{S,
name={\ensuremath{\mathcal{S}}},
description={a \gls{ext1.set}}

}

Now they can be combined with:

\GlsXtrLoadResources[src={entries-terms,entries-symbols}]

which will simply strip the ext1. prefix from the cross-references. Alternatively:

\GlsXtrLoadResources[src={entries-terms,entries-symbols},
label-prefix={gls.},
ext-prefixes={gls.}

]

which will insert the supplied label-prefix at the start of the labels in the entry definitions
and will replace the ext1. prefix with gls. in the cross-references.

short-case-change=⟨value⟩
The value of the short field may be automatically converted to upper or lower case. This
option may take one of the following values:

• none: don’t apply any case-changing (default);

• lc: convert to lower case (ignoring $⟨maths⟩$, \ensuremath{⟨maths⟩} and \si{⟨text⟩});

• uc: convert to upper case (ignoring $⟨maths⟩$, \ensuremath{⟨maths⟩} and \si{⟨text⟩});

• lc-cs: convert to lower case using \MakeTextLowercase;

• uc-cs: convert to upper case using \MakeTextUppercase;

• firstuc-cs: convert to first letter upper case using \makefirstuc;

• firstuc: convert the first alphabetical letter (or group) to upper case. This uses the
following rules:

1. if $⟨maths⟩$ then stop (no case change);
2. if \NoCaseChange{⟨text⟩} or \ensuremath{⟨maths⟩} or \si{⟨text⟩} or \protect

then skip;
3. if \⟨csname⟩{⟨text⟩} then apply the case change to ⟨text⟩ and stop;
4. if \⟨csname⟩ isn’t followed by a group (and it’s not \protect), then stop (no case

change applied);

122

5 Resource File Options

5. if {⟨text⟩} (a group) then convert the entire contents of ⟨text⟩ to upper case and
stop;

6. if ⟨character⟩ is an alphabetic character then change it to its title case and stop;
7. otherwise skip and move on to the next token.

For example, if the .bib file contains

@abbreviation{html,
short = "html",
long = "hypertext markup language"

}

then short-case-change={uc} would convert the value of the short field into

HTML

whereas short-case-change={uc-cs} would convert it to

\MakeTextUppercase{html}

In the case of short-case-change={uc} and short-case-change={lc} only tokens that
are recognised as characters will be converted. For example, suppose I have a slightly more
eccentric definition:

@abbreviation{html,
short = "ht\emph{ml}",
long = "hypertext markup language"

}

then short-case-change={uc} would convert the value of the short field into:

HT\emph{ML}

Note that \emph isn’t modified as it’s recognised as a command. There’s no attempt at inter-
preting the contents at this point (but the value may later be interpreted during sorting).

For example, suppose an abbreviation is defined using:

short = "z\ae\oe",

then with short-case-change={uc}, this would be converted to

Z\ae\oe

since the interpreter isn’t being used at this stage. If the interpreter is later used during
sorting, the sort value will be set to Zæœ.

However, with short-case-change={uc-cs}, the short value would be converted to

\MakeTextUppercase{z\ae\oe}

123

5 Resource File Options

If the interpreter is used during sorting, the sort value will be set to ZÆŒ.
You can use \NoCaseChange{⟨text⟩} to prevent the given ⟨text⟩ from having the case

changed. For example, if the short field is defined as

short = {a\NoCaseChange{bc}d}

then with short-case-change={uc}, this would be converted to

A\NoCaseChange{bc}D

(This command is provided by textcase, which is automatically loaded by glossaries.)
If you have a command that takes a label or identifier as an argument then it’s best to

hide the label in a custom command. For example, if the short field in the .bib definition
is defined as:

short = "ht\textcolor{red}{ml}",

then with short-case-change={uc} this would end up as:

HT\textcolor{RED}{ML}

which is incorrect. Instead, provide a command that hides the label (such as the \strong
example described on page 80).

The first letter upper casing short-case-change={firstuc} is slightly more compli-
cated. The simplest case is where the field only contains alphabetical characters. For exam-
ple, suppose the short field is defined as:

short={html}

then with short-case-change={firstuc} this would end up as Html whereas

short={{ht}ml}

would end up as HTml since it detects the grouping. (You’ll need to do this for the Dutch
digraph “ij”.) Note that \NoCaseChange is skipped, and the case change is applied to the
material following its argument. For example, suppose the short field is defined as:

short={\NoCaseChange{h}tml}

then the result is

\NoCaseChange{h}Tml

whereas with

short={{}html}

then the result is just html. If a command is followed by a group then the case change is
applied to the group (unless the command is \NoCaseChange, \ensuremath or \si). For
example, suppose the short field is defined as:

124

5 Resource File Options

short={\emph{ht}ml}

then the result is

\emph{Ht}ml

If a command isn’t followed by a group (and it’s not \protect) then no change occurs. For
example, suppose the short field is defined as:

short={\ae html}

then the result is

\ae html

whereas with

short={\protect html}

the result is

\protect Html

See dual-short-case-change to adjust the dualshort field.

name-case-change=⟨value⟩
As short-case-change but is applied to the name field. If the text field hasn’t been set,
the name value is first copied to the text field.

description-case-change=⟨value⟩
As short-case-change but is applied to the description field.

post-description-dot=⟨value⟩
The postdot package option (or nopostdot={false}) can be used to append a full stop (.)
to the end of all the descriptions. This can be awkward if some of the descriptions end with
punctuation characters. This resource option can be used instead. The ⟨value⟩ may be one
of:

• none: don’t append a full stop (default);

• all: append a full stop to all description fields in this resource set;

• check: selectively append a full stop (see below).

125

5 Resource File Options

Note that if you have dual entries and you use this option to append a full stop, then it will
be copied over to the mapped field. This is different to the postdot option which doesn’t add
the dot to the field but incorporates it in the post-description hook. This means that a dot
inserted with post-description-dot will come before the post-description hook whereas
with postdot the punctuation comes after any category-specific hook.

The post-description-dot={check} setting determines whether to append the dot as
follows:

• If the description field ends with \nopostdesc or \glsxtrnopostpunc, then a dot
isn’t appended.

• If the description field doesn’t end with a regular (ungrouped letter or other) char-
acter, then a dot is appended. (For example, if the description ends with a control
sequence or an end group token.)

• If the description field ends with a character that belongs to the Unicode category
Punctuation, Close orPunctuation, Final quote then the token preceding that character
is checked.

• If the description field doesn’t end with a character that belongs to the Unicode
category Punctuation, Other then the dot is added.

Note that the interpreter isn’t used during the check. If the description ends with a com-
mand then a dot will be appended (unless it’s \glsxtrnopostpunc or \nopostdesc) even if
that command expands in such a way that it ends with a terminating punctuation character.
This option only applies to the description field.

strip-trailing-nopost=⟨value⟩
This option is always performed before post-description-dotwhen adjusting the description
field. The default setting is strip-trailing-nopost={false}. If true any trailing un-
grouped \nopostdesc or \glsxtrnopostpunc found in the description field will be re-
moved. Note that the command (possibly followed by ignored space) must be at the very end
of the description for it to be removed. A description should not contain both commands.
This option only applies to the description field.

For example, \nopostdesc will be stripped from:

description={sample\nopostdesc}

since it’s at the end. It will also be stripped from

description={sample\nopostdesc }

since the trailing space is ignored as it follows a control word. It won’t be stripped from

description={sample\nopostdesc{} }

126

5 Resource File Options

because the final space is now significant, but even without the space it still won’t be stripped
as the field ends with an empty group not with \nopostdesc. Similarly it won’t be stripped
from

description={sample\nopostdesc\relax}

because again it’s not at the end.

check-end-punctuation=⟨list⟩
This options checks the end of all the fields given in ⟨list⟩ for end of sentence punctuation.
This is determined as follows, for each ⟨field⟩ in the comma-separated ⟨list⟩:

• if the last character is of type Punctuation, Close or Punctuation, Final quote, check
the character that comes before it;

• if the character is of type Punctuation, Other, then check if it’s listed in the entry given
by sentence.terminators in bib2gls’s language resource file.

If a sentence terminator is found, an internal field is created called ⟨field⟩endpunc that
contains the punctuation character. Fields whose values must be labels (such as parent,
category and type) aren’t checked, even if they’re included in ⟨list⟩.

The default sentence.terminators is defined in bib2gls-en.xml as:

<entry key="sentence.terminators">.?!</entry>

Any character that isn’t of type Punctuation, Other won’t match.
For example, the sample books.bib file contains:

@entry{whydidnttheyaskevans,
name={Why Didn't They Ask Evans?},
description={novel by Agatha Christie},
identifier={book},
author={\sortmediacreator{Agatha}{Christie}},
year={1934}

}

With check-end-punctuation={name}, this entry will be assigned an internal field called
namendpunc set to ? as that’s included in sentence.terminators and is found at the end
of the name field:

\GlsXtrSetField{whydidnttheyaskevans}{nameendpunc}{?}

(Note that check-end-punctuation={first,text} won’t match as there’s no first or
text field supplied.)

If you have a field that ends with an abbreviation followed by a full stop, this will be
considered an end of sentence terminator, but the main purpose of this option is to provide
a way to deal with cases like

127

5 Resource File Options

Agatha Christie wrote \gls{whydidnttheyaskevans}.

where the end of sentence punctuation following \gls needs to be discarded. This is needed
regardless of whether or not the link text ends with an abbreviation or is a complete sentence.

It’s then possible to hook into the post-link hook “discard period” check. By default this
just checks the category attributes that govern whether or not to discard a following period,
but (with glossaries-extra v1.23+) it’s possible to provide an additional check by redefining

\glsxtrifcustomdiscardperiod{⟨true⟩}{⟨false⟩}

This should expand to ⟨true⟩ if the check should be performed otherwise it should expand to
⟨false⟩. You can reference the label using \glslabel. For example:

\renewcommand*{\glsxtrifcustomdiscardperiod}[2]{%
\GlsXtrIfFieldUndef{nameendpunc}{\glslabel}{#2}{#1}%

}

This uses \GlsXtrIfFieldUndef rather than \glsxtrifhasfield* since there’s no need
to access the field’s value. (The unstarred form \glsxtrifhasfield can’t be used as it
introduces implicit scoping, which would interfere with the punctuation lookahead.) The
other difference between \GlsXtrIfFieldUndef and the other \…hasfield tests is the case
where the field is set to an empty value. In this case the field is defined (so \GlsXtrIfField-
Undef does the ⟨false⟩ argument) but it’s considered unset (so commands like \ifglshas-
field do the ⟨false⟩ argument).

copy-action-group-field=⟨value⟩
This option may only be used when invoking bib2gls with the --group (or -g) switch. If
an action other than the default action={define} is set, this option can be used to identify
a field in which to save the letter group information where ⟨value⟩ is the name of the field.
This just uses \GlsXtrSetField. You will need to redefine \glsxtrgroupfield to ⟨value⟩
before displaying the glossary. For example, if copy-action-group-field={dupgroup},
action={copy} and type={copies} are set in the resource options and copies identifies
a custom glossary:

\printunsrtglossary*[type=copies,style=indexgroup]
{\renewcommand{\glsxtrgroupfield}{dupgroup}}

This option is ignored when used with action={define}. This option is not used by
secondary which will always save the group information in the secondarygroup field.
When used with action={define or copy}, entries that are defined will have both group
and the field given by copy-action-group-field set.

Note that youmay do copy-action-group-field={group}whichwill override the group
field from the original definition. This may be useful if you don’t use grouping in the primary
glossary. That is, you use nogroupskip and a non-group style. For example:

\printunsrtglossary[nogroupskip,style=index]
\printunsrtglossary[type=copies,style=indexgroup]

128

5 Resource File Options

save-child-count=⟨value⟩
This is a boolean option. The default setting is save-child-count={false}. If save-child
-count={true}, each entry will be assigned a field called childcount with the value equal
to the number of child entries that have been selected.

The assignment is done using \GlsXtrSetField so there’s no associated key. For exam-
ple, suppose entries.bib contains:
@index{birds}
@index{duck,parent={birds}}
@index{goose,plural={geese},parent={birds}}
@index{swan,parent={birds}}

@index{minerals}
@index{quartz,parent={minerals}}
@index{corundum,parent={minerals}}
@index{amethyst,parent={minerals}}
@index{gypsum,parent={minerals}}
@index{gold,parent={minerals}}

and the document contains:
\documentclass{article}

\usepackage[record,style=indexgroup]{glossaries-extra}

\GlsXtrLoadResources[src={entries},save-child-count]

\begin{document}
\gls{duck} and \gls{goose}.
\gls{quartz}, \gls{corundum}, \gls{amethyst}.

\printunsrtglossaries
\end{document}

Then the .glstex file will contain:
\GlsXtrSetField{birds}{childcount}{2}
\GlsXtrSetField{duck}{childcount}{0}
\GlsXtrSetField{goose}{childcount}{0}
\GlsXtrSetField{minerals}{childcount}{3}
\GlsXtrSetField{amethyst}{childcount}{0}
\GlsXtrSetField{corundum}{childcount}{0}
\GlsXtrSetField{quartz}{childcount}{0}

Note that although birds has three children defined in the .bib file, only two have been
selected, so the child count is set to 2. Similarly the minerals entry has five children defined
in the .bib file, but only three have been selected, so the child count is 3.

129

5 Resource File Options

The following uses the post-description hook to show the child count in parentheses:

\GlsXtrLoadResources[src={entries},category=general,save-child-count]

\renewcommand{\glsxtrpostdescgeneral}{%
\glsxtrifhasfield{childcount}{\glscurrententrylabel}
{ (child count: \glscurrentfieldvalue.)}%
{}%

}

(\glsxtrifhasfield requires at least glossaries-extra v1.19. It’s slightly more efficient that
\ifglshasfield provided by the base glossaries package, and it doesn’t complain if the
entry or field don’t exist, but note that \glsxtrifhasfield implicitly scopes its content.
Use the starred version to omit the grouping.)

save-original-id=⟨value⟩
The ⟨value⟩ may be either the keyword false or the name of an internal field in which
to store the entry’s original label (as given in the .bib file). The default setting is save
-original-id={false}. If ⟨value⟩ is omitted, save-original-id={originalid} is as-
sumed.

If ⟨value⟩ is a known field, it will be set after the field aliases, otherwise it will simply be
added to the .glstex file using \GlsXtrSetField after the entry definition.

copy-alias-to-see=⟨boolean⟩
If set, the value of the alias field is copied to the see field. The default setting is copy-alias
-to-see={false}.

5.5 Plurals
Some languages, such as English, have a general rule that plurals are formed from the sin-
gular with a suffix appended. This isn’t an absolute rule. There are plenty of exceptions (for
example, geese, children, churches, elves, fairies, sheep, mice), so a simplistic approach of
just doing \gls{⟨label⟩}[s] will sometimes produce inappropriate results, so the glossaries
package provides a plural key with the corresponding command \glspl.

In some cases a plural may not make any sense (for example, if the term is a verb or
symbol), so the plural key is optional, but to make life easier for languages where the
majority of plurals can simply be formed by appending a suffix to the singular, the glossaries
package lets the plural field default to the value of the text field with \glspluralsuffix
appended. This command is defined to be just the letter “s”. This means that the majority of
terms in such languages don’t need to have the plural supplied as well, and you only need
to use it for the exceptions.

130

5 Resource File Options

For languages that don’t have this general rule, the plural field will always need to be
supplied for nouns.

There are other plural fields, such as firstplural, longplural and shortplural. Again,
if you are using a language that doesn’t have a simple suffix rule, you’ll have to supply the
plural forms if you need them (and if a plural makes sense in the context).

If these fields are omitted, the glossaries package follows these rules:
• If firstplural is missing, then \glspluralsuffix is appended to the first field,
if that field has been supplied. If the first field hasn’t been supplied but the plural
field has been supplied, then the firstplural field defaults to the plural field. If
the plural field hasn’t been supplied, then both the plural and firstplural fields
default to the text field (or name, if no text field) with \glspluralsuffix appended.

• If the longplural field is missing, then \glspluralsuffix is appended to the long
field, if the long field has been supplied.

• If the shortplural field is missing then, with the base glossaries acronym mechanism,
\acrpluralsuffix is appended to the short field.

The last case is different with the glossaries-extra extension package. The shortplural
field defaults to the short field with \abbrvpluralsuffix appended unless overridden by
category attributes. This suffix command is set by the abbreviation styles. This means that
every time an abbreviation style is implemented, \abbrvpluralsuffix is redefined. Most
styles simply define this command as:
\renewcommand*{\abbrvpluralsuffix}{\glsxtrabbrvpluralsuffix}
where \glsxtrabbrvpluralsuffix expands to \glspluralsuffix. The “sc” styles (such
as long-short-sc) use a different definition:
\renewcommand*{\abbrvpluralsuffix}{\protect\glsxtrscsuffix}
This allows the suffix to be reverted back to the upright font, counter-acting the affect of the
small-caps font.

This means that if you want to change or strip the suffix used for the plural short form, it’s
usually not sufficient to redefine \abbrvpluralsuffix, as the change will be undone the
next time the style is applied. Instead, for a document-wide solution, you need to redefine
\glsxtrabbrvpluralsuffix. Alternatively you can use the category attributes.

There are two attributes that affect the short plural suffix formation. The first is aposplural
which uses the suffix
'\abbrvpluralsuffix
That is, an apostrophe followed by \abbrvpluralsuffix is appended. The second attribute
is noshortplural which suppresses the suffix and simply sets shortplural to the same as
short.

With bib2gls, if you have some abbreviations where the plural should have a suffix and
some where the plural shouldn’t have a suffix (for example, the document has both English
and French abbreviations) then there are two approaches.

The first approach is to use the category attributes. For example:

131

5 Resource File Options

\glssetcategoryattribute{french}{noshortplural}

Now just make sure all the French abbreviations are have their category field set to french:

\GlsXtrLoadResources[src={fr-abbrvs},category={french}]

The other approach is to use the options listed below.

short-plural-suffix=⟨value⟩
Sets the plural suffix for the default shortplural to ⟨value⟩. If this option is omitted or if
short-plural-suffix={use-default}, then bib2gls will leave it to glossaries-extra to
determine the appropriate default. If the ⟨value⟩ is omitted or empty, the suffix is set to
empty.

dual-short-plural-suffix=⟨value⟩
Sets the plural suffix for the default dualshortplural field to ⟨value⟩. If this option is
omitted or if dual-short-plural-suffix={use-default}, then bib2gls will leave it to
glossaries-extra to determine the appropriate default. If the ⟨value⟩ is omitted or empty, the
suffix is set to empty.

5.6 Location List Options
The record package option automatically adds two new keys: loclist and location.
These two fields are set by bib2gls from the information supplied in the .aux file (un-
less the option save-locations={false} is used). The loclist field has the syntax of an
etoolbox internal list and includes every location (except for the discarded duplicates and
ignored records). Each item in the list is provided in the form

\glsseeformat[⟨tag⟩]{⟨label list⟩}{}

for the cross-reference supplied by the see field,

\glsxtruseseealsoformat{⟨label list⟩}

for the cross-reference supplied by the seealso field, and

\glsnoidxdisplayloc{⟨prefix⟩}{⟨counter⟩}{⟨format⟩}{⟨location⟩}

for the locations. You can iterate through the loclist value using one of etoolbox’s internal
list loops (either by first fetching the list using \glsfieldfetch or through glossaries-extra’s
\glsxtrfielddolistloop or \glsxtrfieldforlistloop shortcuts).

The ⟨format⟩ is that supplied by the format key when using commands like \gls or
\glsadd (the encapsulator or encap in makeindex parlance). If omitted, the default format
={glsnumberformat} is assumed (unless this default value is changed with \GlsXtrSet-
DefaultNumberFormat.

132

5 Resource File Options

Ranges can be explicitly formed using the parenthetical encap syntax format={(} and
format={)} or format={(⟨csname⟩} and format={)⟨csname⟩} (where ⟨csname⟩ is the name
of a text-block command without the initial backslash) in the optional argument of com-
mands like \gls or \glsadd. These will always form a range, regardless of min-loc-range,
and will be encapsulated by \bibglsrange. (This command is not used with ranges that are
formed by collating consecutive locations.)

Explicit ranges don’t merge with neighbouring locations, but will absorb any single loca-
tions within the range that don’t conflict. (Conflicts will be moved to the start of the explicit
range.) For example, if \gls{sample} is used on page 1, \gls[format=(]{sample} is used
on page 2, \gls{sample} is used on page 3, and \gls[format=)]{sample} is used on
page 4, then the location list will be 1, 2–4. The entry on page 3 is absorbed into the ex-
plicit range, but the range can’t be expanded to include page 1. If the entry on page 3 had a
different format to the explicit range, for example \gls[format=textbf]{sample} then it
would cause a warning and be moved before the start of the range so that the location list
would then be 1, 3, 2–4.

An ignored record identifies a term that needs to be treated as though it has a record for
selection purposes, but the record should not be included in the location list. The special
format format={glsignore} is provided by the glossaries package for cases where the lo-
cation should be ignored. (The command \glsignore simply ignores its argument.) This
works reasonably well if an entry only has the one location, but if the entry happens to be
indexed again, it can lead to an odd empty gap in the location list with a spurious comma.
If bib2gls encounters a record with this special format, the entry will be selected but the
record will be discarded.

This means that the location list will be empty if the entry was only indexed with the
special ignored format, but if the entry was also indexed with another format then the lo-
cation list won’t include the ignored records. (This format is used by \glsaddallunused
but remember that iterative commands like this don’t work with bib2gls. Instead, just use
selection={all} to select all entries. Those that don’t have records won’t have a location
list.)

For example, suppose you only want main matter locations in the number list, but you
want entries that only appear in the back matter to still appear in the glossary (without a
location list), then you could do:

\backmatter
\GlsXtrSetDefaultNumberFormat{glsignore}

If you also want to drop front matter locations as well:

\frontmatter
\GlsXtrSetDefaultNumberFormat{glsignore}
…
\mainmatter
\GlsXtrSetDefaultNumberFormat{glsnumberformat}
…
\backmatter

133

5 Resource File Options

\GlsXtrSetDefaultNumberFormat{glsignore}

Note that explicit range formations aren’t discarded, so if glsignore is used in a range,
such as

\glsadd[format=(glsignore]{sample}
...
\glsadd[format=)glsignore]{sample}

then the range will be included in the location list (encapsulated with \glsignore), but this
case would be a rather odd use of this special format and is not recommended.

The record counting commands, such as \rgls, use the special format glstriggerrecord-
format, which bib2gls also treats as an ignored record and the same rules as for glsignore
apply.

The locations are always listed in the order in which they were indexed, (except for the
cross-reference whichmay be placed at the start or end of the list or omitted). This is different
to xindy and makeindexwhere you can specify the ordering (such as lower case Roman first,
then digits, etc), but unlike those applications, bib2gls allows any location, although it may
not be able to work out an integer representation. (With xindy, you can define new location
formats, but you need to remember to add the appropriate code to the custom module.)

It’s possible to define a custom glossary style where \glossentry (and the child form
\subglossentry) ignore the final argument (which will be the location field) and instead
parse the loclist field and re-order the locations or process them in some other way. Re-
member that you can also use \glsnoidxloclist provided by glossaries. For example:

\glsfieldfetch{gls.sample}{loclist}{\loclist}% fetch location list
\glsnoidxloclist{\loclist}% iterate over locations

This uses \glsnoidxloclisthandler as the list’s handler macro, which simply displays
each location separated by \delimN. (See also Iteration Tips and Tricks [11].)

Each location is listed in the .aux file in the form:

\glsxtr@record{⟨label⟩}{⟨prefix⟩}{⟨counter⟩}{⟨format⟩}{⟨location⟩}

Exact duplicates are discarded. For example, if cat is indexed twice on page 1:

\glsxtr@record{cat}{}{page}{glsnumberformat}{1}
\glsxtr@record{cat}{}{page}{glsnumberformat}{1}

then the second record is discarded. Only the first record is added to the location list.
Partial duplicates, where all arguments match except for ⟨format⟩, may be discarded de-

pending on the value of ⟨format⟩. For example, if page 1 of the document uses \gls{cat}
and \gls[format=hyperbf]{cat} then the .aux file will contain:

\glsxtr@record{cat}{}{page}{glsnumberformat}{1}
\glsxtr@record{cat}{}{page}{hyperbf}{1}

This is a partial record match. In this case, bib2gls makes the following tests:

134

http://www.dickimaw-books.com/latex/admin/html/foreachtips.shtml

5 Resource File Options

• If one of the formats includes a range formation, the range takes precedence.

• If one of the formats is glsnumberformat (as in the above example) or an ignored
record format such as glsignore, that formatwill be skipped. So in the above example,
the second record will be added to the location list, but not the first. (A message will
only be written to the transcript if the --debug switch is used.) The default gls-
numberformat will take precedence over the ignored record formats (glsignore and
glstriggerrecordformat).

• If amapping has been set with the --map-format switch thatmappingwill be checked.

• Otherwise the duplicate record will be discarded with a warning.

The location field is used to store the formatted location list. The code for this list is
generated by bib2gls based on the information provided in the .aux file, the presence of the
see or seealso field and the various settings described in this chapter. When you display the
glossary using \printunsrtglossary, if the location field is present it will be displayed
according to the glossary style (and other factors, such as whether the nonumberlist option
has been used, either as a package option or supplied in the optional argument of \print-
unsrtglossary). For more information on adjusting the formatting see the glossaries [10]
and glossaries-extra [9] user manuals.

save-locations=⟨boolean⟩
By default, the locations will be processed and stored in the location and loclist fields.
However, if you don’t want the location lists (for example, you are using the nonumberlist
option or you are using xindywith a custom location rule), then there’s no need for bib2gls
to process the locations. To switch this function off, just use save-locations={false}.
Note that with this setting, if you’re not additionally using makeindex or xindy, then the
locations won’t be available even if you don’t have the nonumberlist option set.

save-loclist=⟨boolean⟩
If youwant the locationfield but don’t need loclist, you can use save-loclist={false}.
This can help to save resources and build time.

min-loc-range=⟨value⟩
By default, three or more consecutive locations ⟨loc-1⟩, ⟨loc-2⟩, …, ⟨loc-n⟩ are compressed
into the range ⟨loc-1⟩\delimR ⟨loc-n⟩. Otherwise the locations are separated by \bibgls-
delimN. As mentioned above, these aren’t merged with explicit range formations.

You can change this with the min-loc-range setting where ⟨value⟩ is either none (don’t
form ranges) or an integer greater than one indicating how many consecutive locations
should be converted into a range.

135

5 Resource File Options

bib2gls determines if one location {⟨prefix-2⟩}{⟨counter-2⟩}{⟨format-2⟩}{⟨location-2⟩} is one
unit more than another location {⟨prefix-1⟩}{⟨counter-1⟩}{⟨format-1⟩}{⟨location-1⟩} according
to the following:

1. If ⟨prefix-1⟩ is not equal to ⟨prefix-2⟩ or ⟨counter-1⟩ is not equal to ⟨counter-2⟩ or
⟨format-1⟩ is not equal to ⟨format-2⟩, then the locations aren’t considered consecu-
tive.

2. If either ⟨location-1⟩ or ⟨location-2⟩ are empty, then the locations aren’t considered
consecutive.

3. If both ⟨location-1⟩ and ⟨location-2⟩ match the pattern (line break for clarity only)1

(.*?)(?:\\protect\s*)?(\\[\p{javaAlphabetic}@]+)\s*\{([\p{javaDigit}
\p{javaAlphabetic}]+)\}

then:
• if the control sequence matched by group 2 isn’t the same for both locations, the
locations aren’t considered consecutive;

• if the argument of the control sequence (group 3) is the same for both locations,
then the test is retried with ⟨location-1⟩ set to group 1 of the first pattern match
and ⟨location-2⟩ set to group 1 of the second pattern match;

• otherwise the test is retried with ⟨location-1⟩ set to group 3 of the first pattern
match and ⟨location-2⟩ set to group 3 of the second pattern match.

4. If both ⟨location-1⟩ and ⟨location-2⟩ match the pattern

(.*?)([^\p{javaDigit}]?)(\p{javaDigit}+)

then:
a) if group 3 of both pattern matches are equal then:

i. if group 3 isn’t zero, the locations aren’t considered consecutive;
ii. if the separators (group 2) are different the test is retried with ⟨location-1⟩

set to the concatenation of the first two groups ⟨group-1⟩⟨group-2⟩ of the
first pattern match and ⟨location-2⟩ set to the concatenation of the first two
groups ⟨group-1⟩⟨group-2⟩ of the second pattern match;

iii. if the separators (group 2) are the same the test is retried with ⟨location-1⟩
set to the first group ⟨group-1⟩ of the first pattern match and ⟨location-2⟩ set
to the first group ⟨group-1⟩ of the second pattern match.

1The Java class \p{javaDigit} used in the regular expression will match any digits in the Unicode Number,
Decimal Digit category not just the digits in the Basic Latin set.

136

5 Resource File Options

b) If ⟨group-1⟩ of the first pattern match (of ⟨location-1⟩) doesn’t equal ⟨group-1⟩ of
the second pattern match (of ⟨location-2⟩) or ⟨group-2⟩ of the first pattern match
(of ⟨location-1⟩) doesn’t equal ⟨group-2⟩ of the second patternmatch (of ⟨location-
2⟩) then the locations aren’t considered consecutive;

c) If 0 < l2− l1 ≤ dwhere l2 is ⟨group 3⟩ of the second pattern match, l1 is ⟨group 3⟩
of the first pattern match and d is the value of max-loc-diff then the locations
are consecutive otherwise they’re not consecutive.

5. The next pattern matches for ⟨prefix⟩⟨sep⟩⟨n⟩ where ⟨n⟩ is a lower case Roman nu-
meral, which is converted to a decimal value and the test is performed in the same
way as the above decimal test.

6. The next pattern matches for ⟨prefix⟩⟨sep⟩⟨n⟩ where ⟨n⟩ is an upper case Roman nu-
meral, which is converted to a decimal value and the test is performed in the same way
as the above decimal test.

7. The next pattern matches for ⟨prefix⟩⟨sep⟩⟨c⟩ where ⟨c⟩ is either a lower case letter
from a to z or an upper case letter from A to Z. The character is converted to its code
point and the test is performed in the same way as the decimal pattern above.

8. If none of the above, the locations aren’t considered consecutive.

Examples:

1. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{1}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{2}
These records are consecutive. The prefix, counter and format are identical (so the test
passes step 1), the locations match the decimal pattern and the test in step 4c passes.

2. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{1}
\glsxtr@record{gls.sample}{}{page}{textbf}{2}
These records aren’t consecutive since the formats are different.

3. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{A.i}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{A.ii}
These records are consecutive. The prefix, counter and format are identical (so it passes
step 1). The locations match the lower case Roman numeral pattern, where A is con-
sidered a prefix and the dot is consider a separator. The Roman numerals i and ii are
converted to decimal and the test is retried with the locations set to 1 and 2, respec-
tively. This now passes the decimal pattern test (step 4c).

4. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{i.A}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{ii.A}
These records aren’t consecutive. They match the alpha pattern. The first location is
considered to consist of the prefix i, the separator . (dot) and the number given by the

137

5 Resource File Options

character code of A. The second location is considered to consist of the prefix ii, the
separator . (dot) and the number given by the character code of A.
The test fails because the numbers are equal and the prefixes are different.

5. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{1.0}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{2.0}
These records are consecutive. They match the decimal pattern, and then step 4a fol-
lowed by step 4(a)iii. The .0 part is discarded and the test is retried with the first
location set to 1 and the second location set to 2.

6. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{1.1}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{2.1}
These records aren’t consecutive as the test branches off into step 4(a)i.

7. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{\@alph{1}}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{\@alph{2}}
These records are consecutive. The locations match the control sequence pattern. The
control sequences are the same, so the test is retried with the first location set to 1 and
the second location set to 2. (Note that \glsxtrresourcefile changes the category
code of @ to allow for internal commands in locations.)

max-loc-diff=⟨value⟩
This setting is used to determine whether two locations are considered consecutive. The
value must be an integer greater than or equal to 1. (The default is 1.)

For two locations, ⟨location-1⟩ and ⟨location-2⟩, that have numeric values n1 and n2 (and
identical prefix, counter and format), then the sequence ⟨location-1⟩, ⟨location-2⟩ is consid-
ered consecutive if

0 < n2 − n1 ≤ ⟨max-loc-diff ⟩
The default value of 1 means that ⟨location-2⟩ immediately follows ⟨location-1⟩ if n2 = n1+1.

For example, if ⟨location-1⟩ is “B” and ⟨location-2⟩ is “C”, then n1 = 66 and n2 = 67. Since
n2 = 67 = 66 + 1 = n1 + 1 then ⟨location-2⟩ immediately follows ⟨location-1⟩.

This is used in the range formations within the location lists. So, for example, the list “1,
2, 3, 5, 7, 8, 10, 11, 12, 58, 59, 61” becomes “1–3, 5, 7, 8, 10–12, 58, 59, 61”.

The automatically indexing of commands like \gls means that the location lists can be-
come long and ragged. You could deal with this by switching off the automatic indexing and
only explicitly index pertinent use or you can adjust the value of max-loc-diff so that a
range can be formed even there are one or two gaps in it. By default, any location ranges that
have skipped gaps in this manner will be followed by \bibglspassim. The default defini-
tion of this command is obtained from the resource file. For English, this is ␣passim (space
followed by “passim”).

So with the above set of locations, if max-loc-diff={2} then the list becomes “1–12
passim, 58–61 passim” which now highlights that there are two blocks within the document
related to that term.

138

5 Resource File Options

suffixF=⟨value⟩
If set, a range consisting of two consecutive locations ⟨loc-1⟩ and ⟨loc-2⟩ will be displayed in
the location list as ⟨loc-1⟩⟨value⟩.

Note that suffixF={} sets the suffix to the empty string. To remove the suffix formation
use suffixF={none}.

The default is suffixF={none}.

suffixFF=⟨value⟩
If set, a range consisting of three or more consecutive locations ⟨loc-1⟩ and ⟨loc-2⟩ will be
displayed in the location list as ⟨loc-1⟩⟨value⟩.

Note that suffixFF={} sets the suffix to the empty string. To remove the suffix formation
use suffixFF={none}.

The default is suffixFF={none}.

see=⟨value⟩
If an entry has a see field, this can be placed before or after the location list, or completely
omitted (but the value will still be available in the see field for use with \glsxtrusesee).
This option may take the following values:

• omit: omit the see reference from the location list.

• before: place the see reference before the location list.

• after: place the see reference after the location list (default).

The ⟨value⟩ part is required.
The separator between the location list and the cross-reference is provided by \bibgls-

seesep. This separator is omitted if the location list is empty. The cross-reference is written
to the location field using \bibglsusesee{⟨label⟩}.

seealso=⟨value⟩
This is like see but governs the location of the cross-references provided by the seealso
field. You need at least v1.16 of glossaries-extra for this option. The values are the same as
for see but the separator is given by \bibglsseealsosep. The cross-reference is written to
the location field using \bibglsuseseealso{⟨label⟩}.

alias=⟨value⟩
This is like alias but governs the location of the cross-references provided by the alias
field. The separator is given by \bibglsaliassep. The cross-reference is written to the
location field using \bibglsusealias{⟨label⟩}.

139

5 Resource File Options

alias-loc=⟨value⟩
If an entry has an alias field, the location list may be retained or omitted or transferred to
the target entry. The ⟨value⟩ may be one of:

• keep: keep the location list;

• transfer: transfer the location list;

• omit: omit the location list.

The default setting is alias-loc={transfer}. In all cases, the target entry will be added
to the see field of the entry with the alias field, unless it already has a see field (in which
case the see value is left unchanged).

Note that with alias-loc={transfer}, both the aliased entry and the target entry must
be in the same resource set. (That is, both entries have been selected by the same instance of
\glsxtrresourcefile.) If you have glossaries-extra version 1.12, you may need to redefine
\glsxtrsetaliasnoindex to do nothing if the location lists aren’t showing correctly with
aliased entries. (This was corrected in version 1.13.)

loc-prefix=⟨value⟩
The loc-prefix setting indicates that the location lists should begin with \bibglsloc-
prefix{⟨n⟩}. The ⟨value⟩ may be one of the following:

• false: don’t insert \bibglslocprefix{⟨n⟩} at the start of the location lists (default).

• {⟨prefix-1⟩},{⟨prefix-2⟩},…,{⟨prefix-n⟩}: insert \bibglslocprefix{⟨n⟩} (where ⟨n⟩
is the number of locations in the list) at the start of each location list and the defini-
tion of \bibglslocprefix will be appended to the glossary preamble providing an
\ifcase condition:

\providecommand{\bibglslocprefix}[1]{%
\ifcase#1
\or ⟨prefix-1⟩\bibglspostlocprefix
\or ⟨prefix-2⟩\bibglspostlocprefix
…
\else ⟨prefix-n⟩\bibglspostlocprefix
\fi

}

• comma: essentially equivalent to loc-prefix={, } but avoids confusion with the list
format.

• list: equivalent to loc-prefix={\pagelistname }.

140

5 Resource File Options

• true: equivalent to loc-prefix={\bibglspagename,\bibglspagesname}, where
the definitions of \bibglspagename and \bibglspagesname are obtained from the
tag.page and tag.pages entries in bib2gls’s language resource file. This setting
works best if the document’s language matches the language file. However, you can
redefine these commands within the document’s language hooks or in the glossary
preamble.

If ⟨value⟩ is omitted, true is assumed. Take care not to mix different values of loc-prefix
for entries for the same type setting. It’s okay to mix loc-prefix={false} with another
value, but don’t mix non-false values. See the description of \bibglslocprefix for further
details.

For example:

\GlsXtrLoadResources[type=main,src={entries1},loc-prefix=false]
\GlsXtrLoadResources[type=main,src={entries2},loc-prefix]
\GlsXtrLoadResources[type=symbols,src={entries3},loc-prefix={p.,pp.}]

This works since the conflicting loc-prefix={p.,pp.} and loc-prefix={true} are in
different glossaries (assigned through the type key). The entries fetched from entries1.bib
won’t have a location prefix. The entries fetched from entries2.bib will have the location
prefix obtained from the language resource file. The entries fetched from entries3.bibwill
have the location prefix “p.” or “pp.” (Note that using the type option isn’t the same as setting
the type field for each entry in the .bib file.)

If the type option isn’t used:

\GlsXtrLoadResources[src={entries1},loc-prefix=false]
\GlsXtrLoadResources[src={entries2},loc-prefix]
\GlsXtrLoadResources[src={entries3},loc-prefix={p.,pp.}]

then loc-prefix={true} takes precedence over loc-prefix={p.,pp.} (since it was used
first). The entries fetched from entries1.bib still won’t have a location prefix, but the
entries fetched from both entries2.bib and entries3.bib have the location prefixes ob-
tained from the language resource file.

loc-suffix=⟨value⟩
This is similar to loc-prefix but there are some subtle differences. In this case ⟨value⟩
may either be the keyword false (in which case the location suffix is omitted) or a comma-
separated list ⟨suffix-0⟩,⟨suffix-1⟩,…,⟨suffix-n⟩ where ⟨suffix-0⟩ is the suffix to use when the
location list only has a cross-reference with no locations, ⟨suffix-1⟩ is the suffix to use when
the location list has one location (optionally with a cross-reference), and so on. The final
⟨suffix-n⟩ in the list is the suffix when the location list has ⟨n⟩ or more locations (optionally
with a cross-reference).

This option will append \bibglslocsuffix{⟨n⟩} to location lists that either have a cross-
reference or have at least one location. Unlike \bibglslocprefix, this command isn’t used

141

5 Resource File Options

when the location list is completely empty. Also, unlike \bibglslocprefix, this suffix
command doesn’t have an equivalent to \bibglspostlocprefix.

If ⟨value⟩ omitted, loc-suffix={\@.} is assumed. The default is loc-suffix={false}.
As with loc-prefix, take care not to mix different values of loc-suffix for entries in

the same glossary type.

loc-counters=⟨list⟩
Commands like \gls allow you to select a different counter to use for the location for that
specific instance (overriding the default counter for the entry’s glossary type). This is done
with the counter option. For example, consider the following document:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,style=tree]{glossaries-extra}

\GlsXtrLoadResources[
src={entries}% data in entries.bib

]

\begin{document}

\gls{pi}.
\begin{equation}
\gls[counter=equation]{pi}
\end{equation}
\begin{equation}
\gls[counter=equation]{pi}
\end{equation}

\newpage
\begin{equation}
\gls[counter=equation]{pi}
\end{equation}

\newpage
\gls{pi}.

\newpage
\gls{pi}.

\newpage
\gls{pi}.

142

5 Resource File Options

\newpage
\printunsrtglossaries
\end{document}

This results in the location list “1, 1–3, 3–5”. This looks a little odd and it may seem as
though the range formation hasn’t worked, but the locations are actually: page 1, equation 1,
equation 2, equation 3, page 3, page 4 and page 5. Ranges can’t be formed across different
counters.

The loc-counters={⟨list⟩} option instructs bib2gls to group the locations according to
the counters given in the comma-separated ⟨list⟩. If a location has a counter that’s not listed
in ⟨list⟩, then the location is discarded.

For example:

\GlsXtrLoadResources[
loc-counters={equation,page},% group locations by counter
src={entries}% data in entries.bib

]

This will first list the locations for the equation counter and then the locations for the page
counter. Each group of locations is encapsulated within the command \bibglslocation-
group{⟨n⟩}{⟨counter⟩}{⟨locations⟩}. The groups are separated by \bibglslocationgroup-
sep.

The ⟨list⟩ value must be non-empty. Use loc-counters={as-use} to restore the default
behaviour, where the locations are listed in the document order of use, or save-locations
={false} to omit the location lists. Note that you can’t form counter groups from supple-
mental location lists.

save-index-counter=⟨value⟩
This option requires at least version 1.29 of glossaries-extra. The ⟨value⟩ may be one of:

• false: don’t create the indexcounter field (default);

• true: create the indexcounter field with the value set to the first wrglossary location;

• ⟨encap⟩: create the indexcounter field with the value set to the first wrglossary loca-
tion where the format is ⟨encap⟩.

This setting will have no effect if the indexcounter package option hasn’t been used. In the
case where the ⟨value⟩ is ⟨encap⟩, make sure that this format takes priority in the location
precedence rules (--map-format). If the location with that ⟨encap⟩ format value is discarded
then it can’t be saved.

The indexcounter package option (glossaries-extra v1.29+) creates a new counter called
wrglossary that’s incremented every time a term is indexed (recorded), except for cross-
references such as \glssee. The increment is performed using \refstepcounter and is

143

5 Resource File Options

followed by \label{wrglossary.⟨n⟩} where ⟨n⟩ is the value of the wrglossary counter.
This option is intended for use with the hyperref package to allow locations to link back to
the particular part of the page where the term was referenced rather than to the top of the
page.

The indexcounter package option also automatically implements the option counter=
{wrglossary}, which means that each instance of \gls{⟨id⟩} writes the label information
to the .aux file:

\newlabel{wrglossary.⟨n⟩}{{⟨n⟩}{⟨page⟩}{}{wrglossary.⟨n⟩}{}}

(where ⟨page⟩ is the page number) followed by the record:

\glsxtr@record{⟨id⟩}{}{wrglossary}{glsnumberformat}{⟨n⟩}

The location here is actually the value of the wrglossary counter not the page number, but
bib2gls can pick up the corresponding ⟨page⟩ from the \newlabel command. It then re-
places the record’s location ⟨n⟩ with

\glsxtr@wrglossarylocation{⟨n⟩}{⟨page⟩}

(but it only does this for records that have the wrglossary counter).
The glossaries-extra package (v1.29+) adjusts the definition of \glshypernumber (which

is internally used by \glsnumberformat, \hyperbf etc when hyperref has been loaded) so
that if the counter is wrglossary then \pageref is used instead of \hyperlink. This means
that the page number is displayed in the location list but it links back to the place where the
corresponding \label occurred.

This method works partially with makeindex and xindy but from their point of view the
location is the value of the wrglossary counter, which interferes with their ability to merge
duplicate page numbers and form ranges. Since bib2gls is designed specifically to work
with glossaries-extra, it’s aware of this special counter andwill merge and collate the locations
according to the corresponding page number instead.

With the default --merge-wrglossary-records switch, if a term has multiple wrglossary
records for a given page they will be merged. The reference link will be the dominant record
for that page.

The save-index-counter option allows you to save the first of the wrglossary locations
for a given entry or the first instance of a specific format of the wrglossary locations for a
given entry. This location is stored in the indexcounter internal field using:

\GlsXtrSetField{⟨id⟩}{indexcounter}{\glsxtr@wrglossarylocation{⟨n⟩}
{⟨page⟩}}

Since \glsxtr@wrglossarylocation simply expands to its first argument, the correspond-
ing label can be obtained with

wrglossary.\glsxtr@wrglossarylocation{⟨n⟩}{⟨page⟩}

For convenience, glossaries-extra-bib2gls provides

144

5 Resource File Options

\GlsXtrIndexCounterLink{⟨text⟩}{⟨label⟩}

which will do

\hyperref[wrglossary.⟨value⟩]{⟨text⟩}

where ⟨value⟩ is the value of the indexcounter field if it has been set. If the indexcounter
field hasn’t been set (or if hyperref hasn’t been loaded) then just ⟨text⟩ is done.

This provides a convenient way of encapsulating the name in the glossary so that it links
back to the first wrglossary entry or the first format={⟨encap⟩} wrglossary entry. This en-
capsulation can be done by providing a new glossary style or more simply by redefining
\glsnamefont:

\renewcommand{\glsnamefont}[1]{%
\GlsXtrIndexCounterLink{#1}{\glscurrententrylabel}}

Here’s a complete example:

\documentclass{article}

\usepackage{lipsum}% dummy filler text
\usepackage[colorlinks]{hyperref}
\usepackage[record,indexcounter]{glossaries-extra}

\newcommand{\primary}[1]{\hyperbf{#1}}

\GlsXtrLoadResources[
src={entries},% terms defined in entries.bib
save-index-counter=primary

]

\renewcommand{\glsnamefont}[1]{%
\GlsXtrIndexCounterLink{#1}{\glscurrententrylabel}}

\begin{document}

A \gls{sample}. \lipsum*[1] A \gls{duck}.

An equation:
\begin{equation}
\gls[counter=equation]{pi}
\end{equation}

\lipsum[2]

Another \gls[format=primary]{sample}. \lipsum*[3] Another

145

5 Resource File Options

\gls{duck}.

\gls{pi}. \lipsum[4]

A \gls{sample}. \lipsum*[5] A \gls{duck} and
\gls[format=primary]{pi}.

\lipsum*[6] A \gls[format=primary]{duck}.

\printunsrtglossaries
\end{document}

Note that the counter={equation} entry will have its own independent location. In this
example, it’s difficult to tell the difference between 1 (the equation reference) and 1 (the page
reference) in the location list for the pi entry.

The format={primary} instances indicate primary references. They’re displayed in bold
(since \primary is defined to use \hyperbf) and these are the locations saved in the index-
counterfield because that’s the ⟨encap⟩ identified by the save-index-counter={primary}
setting.

5.7 Supplemental Locations
These options require at least version 1.14 of glossaries-extra.

supplemental-locations=⟨basename⟩
The glossaries-extra package (from v1.14) provides a way of manually adding locations in
supplemental documents through the use of the thevalue option in the optional argument
of \glsadd. Setting values manually is inconvenient and can result in errors, so bib2gls
provides a way of doing this automatically. Both the main document and the supplementary
document need to use the record option. The entries provided in the src set must have the
same labels as those used in the supplementary document. (The simplest way to achieve this
is to ensure that both documents use the same .bib files and the same prefixes.)

For example, suppose the file entries.bib contains:

@entry{sample,
name={sample},
description="an example entry"

}

@abbreviation{html,
short="html",
long={hypertext markup language}

}

146

5 Resource File Options

@abbreviation{ssi,
short="ssi",
long="server-side includes"

}

@index{goose,plural="geese"}

Now suppose the supplementary document is contained in the file suppl.tex:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,counter=section]{glossaries-extra}

\GlsXtrLoadResources[src=entries]

\renewcommand{\thesection}{S\arabic{section}}
\renewcommand{\theHsection}{\thepart.\thesection}

\begin{document}
\part{Sample Part}
\section{Sample Section}
\gls{goose}. \gls{sample}.

\part{Another Part}
\section{Another Section}
\gls{html}.
\gls{ssi}.

\printunsrtglossaries
\end{document}

This uses the section counter for the locations and has a prefix (\thepart.) for the section
hyperlinks.

Now let’s suppose I have another document called main.tex that uses the sample entry,
but also needs to include the location (S1) from the supplementary document. The man-
ual approached offered by glossaries-extra is quite cumbersome and requires setting the ex-
ternallocation attribute and using \glsadd with thevalue={S1}, theHvalue={I.S1} and
format={glsxtrsupphypernumber}.

This can be simplified with bib2gls by using the supplemental-locations option. The
value should be the base name (without the extension) of the supplementary document
(suppl in the above example). For example:

\documentclass{article}

147

5 Resource File Options

\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
supplemental-locations=suppl,% fetch records from suppl.aux
src=entries]

\begin{document}
\Gls{sample} document.

\printunsrtglossaries

\end{document}

The location list for sample will now be “1, S1” (page 1 from the main document and S1
from the supplementary document). Note that the original location format from the sup-
plementary document will be replaced by glsxtrsupphypernumber, which will produce an
external hyperlink if the main document loads the hyperref package. (Note that not all PDF
viewers can handle external hyperlinks, and some that can open the external PDF file may
not recognise the destination within that file.)

The supplementary locations lists are encapsulated within \bibglssupplemental.

supplemental-selection=⟨value⟩
In the above example, only the sample entry is listed in the main document, even though
the supplementary document also references the goose, html and ssi entries. By default,
only those entries that are referenced in the main document will have supplementary lo-
cations added (if found in the supplementary document’s .aux file). You can additionally
include other entries that are referenced in the supplementary document but not in the main
document using supplemental-selection. The ⟨value⟩ may be one of the following:

• all: add all the entries in the supplementary document that have been defined in the
.bib files listed in src for this resource set in the main document.

• selected: only add supplemental locations for entries that have already been selected
by this resource set.

• ⟨label-1⟩,…,⟨label-2⟩: in addition to all those entries that have already been selected by
this resource set, also add the entries identified in the comma-separated list. If a label
in this list doesn’t have a record in the supplementary document’s .aux file, it will be
ignored.

Any records in the supplementary .aux file that aren’t defined by the current resource set
(through the .bib files listed in src) will be ignored. Entry aliases aren’t taken into account
when including supplementary locations.

For example:

148

5 Resource File Options

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
supplemental-locations=suppl,
supplemental-selection={html,ssi},
src=entries]

\begin{document}
\Gls{sample} document.

\printunsrtglossaries

\end{document}

This will additionally add the html and ssi entries even though they haven’t been used in
this document. The goose entry used in the supplementary document won’t be included.

If an entry has both a main location list and a supplementary location list (such as the
sample entry above), the lists will be separated by \bibglssupplementalsep.

supplemental-category=⟨value⟩
The category field for entries containing supplemental location lists may be set using this
option. If unset, ⟨value⟩ defaults to the same as that given by the category option. The
⟨value⟩ may either be a known identifier (as per category) or the category label. For exam-
ple:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
supplemental-locations=suppl,
supplemental-selection={html,ssi},
supplemental-category={supplemental},
src=entries]

\begin{document}
\Gls{sample} document.

\printunsrtglossaries

149

5 Resource File Options

\end{document}

5.8 Sorting
Entries are typically sorted (for example, alphabetically or in order of use), but the glossaries-
extra package is versatile enough to be used in wider contexts than simple terms, symbols
or abbreviations. For example, entries could contain theorems or problems where the name
supplies the title and the description provides a description of the theorem or problem.
Another field might then contain the proof or solution. Therefore, somewhat unusually for
an indexing application, bib2gls also provides the option to shuffle the entries instead of
sorting them.

sort=⟨value⟩
The sort key indicates how entries should be sorted. If the ⟨value⟩ is omitted, sort={doc}
is assumed. If the sort option isn’t used then sort={locale} is assumed. The reverse sort
methods reverse the algorithm used by the comparators. This means that ⟨method⟩-reverse
may not produce a list that’s the exact reverse of the underlying non-reversed ⟨method⟩. The
reverse sorts maintain hierarchy, so sub-entries will still be listed after the parent entry.

Remember that you can have @preamble definitions that can be hidden from bib2gls’s
interpreter. For example, no-interpret-preamble.bib might contain:

@preamble{"\providecommand{\sortop}[2]{#1 #2}"}

which is loaded using

\GlsXtrLoadResources[src={no-interpret-preamble},
interpret-preamble=false]

This provides a custom command

\sortop{⟨text1⟩}{⟨text2⟩}

for internal use in the document. (Remember it won’t be defined on the first LATEX run before
the .glstex file has been created and so is only used within entry fields.)

Another file, say, interpret-preamble.bib may provide a definition for bib2gls:

@preamble{"\providecommand{\sortop}[2]{#2, #1}"}

which can be identified with:

\GlsXtrLoadResources[src={interpret-preamble}]

This definition swaps the two arguments around for the sorting, but doesn’t affect the doc-
ument since LATEX has already defined \sortop from the first resource set.

For example:

150

5 Resource File Options

@entry{caesar,
name={\sortop{Gaius Julius}{Caesar}},
first={Julius Caesar},
text={Caesar},
description={Roman politician and general}

}

If bib2gls only recognises the second definition of \sortop then the sort value becomes
Caesar, Gaius Julius.

No Sort

The sort methods listed in table 5.1 don’t actually perform any sorting. This may cause a
problem for hierarchical entries. In some cases this can lead to detached child entries or an
attempt to define a child entry before its parent.

• none (or unsrt): don’t sort the entries. (The entries will be in the order they were
processed when parsing the data.)

• random: shuffles rather than sorts the entries. This won’t work if there are hierar-
chical entries, so it’s best to use this option with flatten. The seed for the random
generator can be set using shuffle (which also automatically sets sort={random}
and flatten).

• use: order of use. This order is determined by the records written to the .aux file
by the record package option. Dependencies and cross-references (including those
identified with \glssee) come after entries with records.

Alphabet

The sort methods listed in table 5.2 are for alphabets that are defined by a rule. These usually
ignore most punctuation and may ignore modifiers (such as accents). Use with break-at to
determine whether or not to split at word boundaries.

Note that sort={locale} can provide more detail about the locale than sort={doc},
depending on how the document language has been specified. For example, with:

\documentclass{article}
\usepackage[ngerman]{babel}
\usepackage[record]{glossaries}
\GlsXtrLoadResources[src={german-terms}]

the language tag will be de-1996, which doesn’t have an associated region. Whereas with

\documentclass[de-DE-1996]{article}
\usepackage[ngerman]{babel}
\usepackage[record]{glossaries}
\GlsXtrLoadResources[src={german-terms}]

151

5 Resource File Options

Table 5.1: Summary of Available Sort Options: No Actual Sorting

none or unsrt don’t sort
random shuffle entries
use order of use

Table 5.2: Summary of Available Sort Options: Alphabet

⟨lang tag⟩ sort according to this language tag
⟨lang tag⟩-reverse reverse sort according to this language tag
doc sort according to the document language
doc-reverse reverse sort according to the document language
locale sort according to the default locale
locale-reverse reverse sort according to the default locale
custom sort according to sort-rule={⟨custom rule⟩}
custom-reverse reverse sort according to sort-rule={⟨custom rule⟩}

Table 5.3: Summary of Available Sort Options: Letter (Unicode Order)

letter-case case-sensitive letter sort
letter-case-reverse reverse case-sensitive letter sort
letter-nocase case-insensitive letter sort
letter-nocase-reverse reverse case-insensitive letter sort
letter-upperlower upper-lower letter sort
letter-upperlower-reverse reverse upper-lower letter sort
letter-lowerupper lower-upper letter sort
letter-lowerupper-reverse reverse lower-upper letter sort

Table 5.4: Summary of Available Sort Options: Letter-Number

letternumber-case case-sensitive letter-number sort
letternumber-case-reverse reverse case-sensitive letter-number sort
letternumber-nocase case-insensitive letter-number sort
letternumber-nocase-reverse reverse case-insensitive letter-number sort
letternumber-upperlower upper-lower letter-number sort
letternumber-upperlower-reverse reverse upper-lower letter-number sort
letternumber-lowerupper lower-upper letter-number sort
letternumber-lowerupper-reverse reverse lower-upper letter-number sort

152

5 Resource File Options

Table 5.5: Summary of Available Sort Options: Numerical

integer integer sort
integer-reverse reverse integer sort
hex hexadecimal sort
hex-reverse reverse hexadecimal sort
octal octal sort
octal-reverse reverse octal sort
binary binary sort
binary-reverse reverse binary sort
float float sort
float-reverse reverse float sort
double double sort
double-reverse reverse double sort
numeric locale-sensitive numeric sort
numeric-reverse reverse locale-sensitive numeric sort
currency locale-sensitive currency sort
currency-reverse reverse locale-sensitive currency sort
percent locale-sensitive percent sort
percent-reverse reverse locale-sensitive percent sort
numberformat locale-sensitive custom numeric sort
numberformat-reverse reverse locale-sensitive custom numeric sort

Table 5.6: Summary of Available Sort Options: Date-Time

date locale-sensitive date sort
date-reverse reverse locale-sensitive date sort
datetime locale-sensitive date-time sort
datetime-reverse reverse locale-sensitive date-time sort
time locale-sensitive time sort
time-reverse reverse locale-sensitive time sort

153

5 Resource File Options

the language tag will be de-DE-1996 because tracklang has picked up the locale from the
document class options. This is only likely to cause a difference if a language has different
sorting rules according to the region or if the language may be written in multiple scripts.

A multilingual document will need to have the sort specified when loading the resource
to ensure the correct language is chosen. For example:

\GlsXtrLoadResources[src={english-terms},sort={en-GB}]
\GlsXtrLoadResources[src={german-terms},sort={de-DE-1996}]

• ⟨lang tag⟩: sort according to the rules of the locale given by the IETF language tag
⟨lang tag⟩.

• ⟨lang tag⟩-reverse: reverse sort according to the rules of the locale given by the IETF
language tag ⟨lang tag⟩.

• locale: equivalent to sort={⟨lang tag⟩} where ⟨lang tag⟩ is obtained from the JRE
(which usually matches the operating system’s locale).

• locale-reverse: equivalent to sort={⟨lang tag⟩-reverse} where ⟨lang tag⟩ is ob-
tained from the JRE.

• doc: sort the entries according to the document language. This is equivalent to sort=
{⟨lang tag⟩} where ⟨lang tag⟩ is the locale associated with the document language. In
the case of a multi-lingual document, ⟨lang tag⟩ is the locale of the last language re-
source file to be loaded through tracklang’s interface. It’s best to explicitly set the locale
for multi-lingual documents to avoid confusion. If no languages have been tracked,
this option is equivalent to sort={locale}.

• doc-reverse: as doc but in reverse order.

• custom: sort the entries according to the rule provided by sort-rule.

• custom-reverse: reverse sort the entries according to the rule provided by sort
-rule.

Letter Case (Unicode Order)

The sort methods listed in table 5.3 use letter case comparators. These simply compare the
character codes. The -nocase options first convert the sort field to lower case before per-
forming the sort. Punctuation isn’t ignored. Use sort={⟨lang tag⟩}with break-at={none}
to emulate xindy’s locale letter ordering. The examples below show the ordering of the list
antelope, bee, Africa, aardvark and Brazil.

• letter-case: case-sensitive letter sort. Upper case and lower case are in separate
letter groups. Example:
Africa (letter group “A”), Brazil (letter group “B”), aardvark (letter group “a”),
antelope (letter group “a”), bee (letter group “b”).

154

5 Resource File Options

• letter-case-reverse: reverse case-sensitive letter sort.

• letter-nocase: case-insensitive letter sort. (All upper case characters will have first
been converted to lower case.) Example:
aardvark (letter group “A”), Africa (letter group “A”), antelope (letter group “A”),
bee (letter group “B”), Brazil (letter group “B”).

• letter-nocase-reverse: reverse case-insensitive letter sort.

• letter-upperlower: each character pair is first compared according to their lower
case values. If these are equal, then they are compared according to case. This puts
upper and lower case in the same letter group but the upper case comes first. Example:
Africa (letter group “A”), aardvark (letter group “A”), antelope (letter group “A”),
Brazil (letter group “B”), bee (letter group “B”).

• letter-upperlower-reverse: reverse upper-lower letter sort.

• letter-lowerupper: each character pair is first compared according to their lower
case values. If these are equal, then they are compared according to case. This puts
upper and lower case in the same letter group but the lower case comes first. Example:
aardvark (letter group “A”), antelope (letter group “A”), Africa (letter group “A”),
bee (letter group “B”), Brazil (letter group “B”).

• letter-lowerupper-reverse: reverse lower-upper letter sort.

Letter-Number

The sort methods listed in table 5.4 use a letter-integer hybrid. They behave in a similar
way to the above letter sort methods, but if an integer number pattern is detected in the
string then the sub-string containing the number will be compared. This only detects base
10 integers (unlike the numeric methods such as sort={hexadecimal} or sort={float})
but in addition to recognising all the digits in the Unicode Number, Decimal Digit category
it also recognises the subscript and superscript digits, such as 1 (0x00B9) and 2 (0x00B2).

As with the letter sort methods, letters are compared using a character code comparison
not by a locale alphabet. The closest locale-sensitive equivalent is to use sort-number-pad
with a locale sort method.

For example, suppose the first string is abc12foo and the second string is abc6bar. Fig-
ure 5.1(a) shows the regular letter comparison using sort={letter-case}, where the sub-
script indicates the hexadecimal character code. The first three characters from each string
are identical (abc). At this point there’s no difference detected, so the comparator moves on
to the next character, 131 for the first string and 636 for the second string. Since 0x31 is less
than 0x36, the first string (abc12foo) is considered less than the second (abc6bar).

With the letter-number comparison using sort={letternumber-case}, the comparator
starts in much the same way. The first three characters from each string are still identical,
so the comparator moves on to the next character, 1 for the first string and 6 for the second.

155

5 Resource File Options

a61 = a61 a61 = a61

b62 = b62 b62 = b62

c63 = c63 c63 = c63

131 < 636 1 > 6
232 b62 2 b62

f66 a61 f66 a61

o6f r72 o6f r72

o6f o6f

(a) (b)

Figure 5.1: Regular letter comparison vs letter-number comparison. Comparing the strings
abc12foo and abc6bar: (a) letter-case; (b) letternumber-case.

These are now both recognised as digits, so the comparator looks ahead and reads in any
following digits (if present). For the first case, this is the sub-string 12 and, for the second
case, 6 (figure 5.1(b)). These are both compared according to their integer representation
12 > 6, so abc12bar is considered greater than abc6foo (that is, abc12bar comes after
abc6foo).

The same result occurs for other numbering systems, for example if the Basic Latin digits
1, 2 and 6 are replaced with the corresponding Devanagari digits १, २ and ६. (But note that
the letter comparisons will still be based on their Unicode values not according to a particular
locale. This type of sort method is intended primarily for symbolic values, such as chemical
formulae, rather than for words or phrases.)

Signed integers are also recognised, so abc-12foo is less than abc+6bar, which is again
different from the result obtained with a straight letter comparator where the character +
(0x2B) comes before the character - (0x2D). The sign must be followed by at least one digit
for it to be recognised as a number otherwise it’s treated as a punctuation character.

If only one sub-string is numeric then the letter-number-rule is used to determine
the result. Where both sub-strings are non-numeric, then the letter-number-punc-rule
setting is used to determine the result according to the category of the characters, which may
be one of the following:

• white space: belongs to the Unicode Separator, Space category. If both characters are
white space, then they are compared according to their Unicode values otherwise they
are ordered according to the letter-number-punc-rule setting.

156

5 Resource File Options

• letter: belongs to one of the Unicode categories Letter, Uppercase, Letter, Lower-
case, Letter, Titlecase, Letter, Modifier or Letter, Other. If both characters are letters,
then they are compared in the same way as the corresponding letter-⟨modifier⟩ sort
method otherwise they are ordered according to the letter-number-punc-rule set-
ting.

• punctuation: everything else. If both characters are punctuation, then they are com-
pared according to their Unicode value otherwise they are ordered according to the
letter-number-punc-rule setting.

The examples below show the ordering of the list: CH2O, C10H10O4, C5H4NCOOH, CO, Cl,
Co, Co2O3, CoMoO4 and CoCl2, for the setting letter-number-rule={between}, where the
subscripts are the Unicode subscript characters.

• letternumber-case: case-sensitive letter-number sort. Example:
CH2O, CO, C5H4NCOOH, C10H10O4, Cl, Co, CoCl2, CoMoO4, Co2O3.

• letternumber-case-reverse: reverse case-sensitive letter-number sort.

• letternumber-nocase: case-insensitive letter-number sort. The sort value is first
converted to lower case. Note that letter-number-rule={between} doesn’t make
sense in this context as there won’t be any upper case characters in the sort value, so
numbers will always come before letters. Example:
C5H4NCOOH, C10H10O4, CH2O, Cl, Co, CO, Co2O3, CoCl2, CoMoO4.

• letternumber-nocase-reverse: reverse case-insensitive letter-number sort.

• letternumber-upperlower: upper-lower letter-number sort. This behaves slightly
differently to letter-upperlowerwhen usedwith letter-number-rule={between}
as it will segregate the upper and lower case characters if there are any numerical sub-
strings. Example:
CH2O, CO, C5H4NCOOH, C10H10O4, Cl, Co, CoCl2, CoMoO4, Co2O3.
The letter-number-rule={between} setting enforces numbers after upper-case (for
the case-sensitive and upper-lower methods) which makes the 5 come after the upper
case O and forces the lower case characters to come after it.
Compare this with letter-number-rule={before letter}which results in the or-
der:
C5H4NCOOH, C10H10O4, CH2O, Cl, CO, Co, Co2O3, CoCl2, CoMoO4.

• letternumber-upperlower-reverse: reverse upper-lower letter-number sort. Note
that with letter-number-rule={between}, this can result in an order that isn’t the
actual reverse of letternumber-upperlower. Example:
Co2O3, CoMoO4, CoCl2, Co, C10H10O4, C5H4NCOOH, CO, Cl, CH2O.

157

5 Resource File Options

The algorithm is reversed which means that when two letters are compared then, if
both letters have the same lower case version, the upper-lower rule is reversed and
lower case comes before upper case. This means that o comes before O. If their lower
case versions aren’t identical, the letter with the higher lower case Unicode value
comes first. This means that both o and O come before l which comes before H. So
far, this gives the order: o, O, l, H. The letter-number-rule={between} setting in-
serts numbers between upper and lower case letters. This puts the numbers (in reverse
order) between o and O.
Compare this with letter-number-rule={before letter}which results in the or-
der:
CoMoO4, CoCl2, Co2O3, Co, CO, Cl, CH2O, C10H10O4, C5H4NCOOH.
Remember that the associated settings as reversed well. So letter-number-rule=
{before letter} is results in numbers after letters.

• letternumber-lowerupper: lower-upper letter-number sort. As with the upper-
lower version, this behaves slightly differently to the corresponding letter-lowerupper
when used with letter-number-rule={between}. Example:
Cl, Co, Co2O3, CoCl2, CoMoO4, C5H4NCOOH, C10H10O4, CH2O, CO.
The letter-number-rule={between} setting enforces numbers after lower-case (for
the lower-upper method) so the 5 is put after o, and forces the upper case characters
after the numbers.
Compare this with letter-number-rule={before letter}which results in the or-
der:
C5H4NCOOH, C10H10O4, CH2O, Cl, Co, Co2O3, CoCl2, CoMoO4, CO.

• letternumber-lowerupper-reverse: reverse lower-upper letter-number sort. Again
with letter-number-rule={between}, this can result in an order that isn’t the ac-
tual reverse of letternumber-lowerupper, although for this example it does happen
to be the actual reverse:
CO, CH2O, C10H10O4, C5H4NCOOH, CoMoO4, CoCl2, Co2O3, Co, Cl.

Numerical

The sort methods listed in table 5.5 use numeric comparisons. The sort value is expected to
be a numeric value. If it can’t be parsed then it’s treated as 0 (and a warning will be written
to the transcript). These all recognise the digits in the Unicode “Number, Decimal Digit”
category but, unlike the hybrid letter-number comparators above, they don’t recognise the
superscript or subscript digits.

• integer: integer sort. This is for non-locale integer sort values.

• integer-reverse: as above but reverses the order.

158

5 Resource File Options

• hex: hexadecimal integer sort. This is for non-locale hexadecimal sort values.

• hex-reverse: as above but reverses the order.

• octal: octal integer sort. This is for non-locale octal sort values.

• octal-reverse: as above but reverses the order.

• binary: binary integer sort. This is for non-locale binary sort values.

• binary-reverse: as above but reverses the order.

• float: single-precision sort. This is for non-locale decimal sort values.

• float-reverse: as above but reverses the order.

• double: double-precision sort. This is for non-locale decimal sort values.

• float-reverse: as above but reverses the order.

• numeric: locale-sensitive numeric sort. Use numeric-locale to set the locale.

• numeric-reverse: as above but reverses the order.

• currency: locale-sensitive currency sort. Use numeric-locale to set the locale.

• currency-reverse: as above but reverses the order.

• percent: locale-sensitive percent sort. Use numeric-locale to set the locale.

• percent-reverse: as above but reverses the order.

• numberformat: locale-sensitive custom numeric sort. Use numeric-locale to set the
locale and numeric-sort-pattern to set the number pattern.

• numberformat-reverse: as above but reverses the order.

In general, it doesn’t make much sense to have hierarchical entries that need to be sorted
by a number, but it is possible as long as each level uses the same type of numbering.

Date-Time

The sort methods listed in table 5.6 are for dates and times. Use date-sort-format and
date-sort-locale to specify the date format and locale.

• date: sort dates.

• date-reverse: as above but reverses the order.

• datetime: sort date and time information.

159

5 Resource File Options

• datetime-reverse: as above but reverses the order.

• time: sort times.

• time-reverse: as above but reverses the order.

If the field you want to sort by contains a date then the simplest way to sort is to ensure
the date is in ISO format and then just use a letter sort. However it may be that the date is
in the format particular to your locale or you have a mix of ad and bc. In which case you
can use one of the date/time sort options (such as sort={date} or sort={date-reverse}).
The locale is assumed to be your default locale (as given by the Java Virtual Machine (JVM))
but if you are using a different locale this can be set with date-sort-locale. The pattern is
assumed to be the default for that locale but you can change this with date-sort-format.
If you provide your own custom pattern you must make sure that it matches the selected
sort option.

Take care if you switch from using the JRE to the CLDR locale provider as you may find
the default pattern changes.

The locale and pattern information is used by bib2gls to parse the field. If the field value
can’t be parsed then bib2gls will issue a warning and assume the current date (or time).

The actual sort value that’s used by the comparator is numeric. In the case of the time-
based sort={datetime} and sort={time} (or their -reverse versions), this value is the
number of milliseconds since 1st January, 1970. In the case of sort={date} (or sort=
{date-reverse}), this value is obtained from a(y×10000+m×100+d)where y is the year,
m is the month number, d is the day of month number, and a is an integer representation of
the era (−1 for bc and +1 for ad).

Unlike the numeric sort methods (such as sort={integer}) the date-time sort methods
set the sort field to a value that can be more easily parsed within the document and that
shouldmostly achieve the same ordering if a letter comparator were to be used with it (except
for bc dates, where the order needs to be reversed). This has the by-product of providing a
field that you can access within the document that can be more easily parsed by LATEX.

In general, it doesn’t make much sense to have hierarchical entries that need to be sorted
by date, but it is possible as long as each level uses the same date format.

For example, suppose my .bib file contains

@entry{journalentry,
name={10 Jan 2017},
description={an interesting journal entry}

}

The name field uses an abbreviated UK date format. If all my other entries also use this format
in the name then I can sort them chronologically:

\GlsXtrLoadResources[
src=entries,% data in entries.bib
sort=date,
date-sort-locale={en-GB},

160

5 Resource File Options

date-sort-format={medium}
]

(The medium format is actually the default for this locale, and the locale matches my system
locale, so I could omit both date-sort-locale and date-sort-format.)

If --verbose mode is on, the transcript will show the label, sort value and numeric value
for each entry. In this case, the information is:

journalentry -> '+1 2017-01-10' [20170110]

The first value is the label (journalentry), the second value is assigned to the sort field
(+1 2017-01-10) and the number in square brackets is the actual numeric value used by the
comparator. The signed number at the start of the sort field +1 is the numeric representation
of the era as used for the a variable in the computation of the numeric value (as described
earlier).

If I change the format to date-sort-format={short}, then the date can’t be parsed cor-
rectly and bib2gls will issue the following warning:

Warning: Can't parse sort value '10 Jan 2017' for 'journalentry'
(pattern: 'dd/MM/yyyy')

This shows the value that bib2gls is trying to parse (10 Jan 2017) for the entry identified
by the given label (journalentry). The pattern bib2gls expects is also given (dd/MM/yyyy).

shuffle=⟨seed⟩
Automatically sets sort={random} and flatten. The value ⟨seed⟩ may be omitted. If
present, it should be an integer used as a seed for the random number generator.

sort-field=⟨field⟩
The sort-field key indicates which field provides the sort value. The default is the sort
field. For example

\GlsXtrLoadResources[
src={entries-terms},% data in entries-terms.bib
sort-field={category},% sort by 'category' field
sort={letter-case}% case-sensitive letter sort

]

This sorts the entries according to the category field using a case-sensitive letter compari-
son. You may also use sort-field={id} to sort according to the label.

If an entry is missing a value for ⟨field⟩, then the value of the fallback field will be used
instead. If missing-sort-fallback is set, then that’s used as the fallback, otherwise it
depends on the entry type.

161

5 Resource File Options

For example, with the default sort-field={sort}, then for an entry definedwith @entry,
if the sort field is missing the fallback field will be the name (or the parent field if the name
field is missing).

If the entry is instead defined with an abbreviation type (for example, @abbreviation
or @acronym) then if the sort field is missing, bib2gls will fallback on the field given by
abbreviation-sort-fallback. This is only used with sort-field={sort}.

The symbol-like entry types fallback on the field given by symbol-sort-fallback if the
sort is missing. This is only used with sort-field={sort}.

Entries defined using @bibtexentry fallback on the field given by bibtexentry-sort
-fallback, which defaults to the name field. Note that this only applies to the main entry.
The spawned @contributor entries behave like @index.

If no fallback field can be found, the entry’s label will be used.

missing-sort-fallback=⟨field⟩
With sort-field={⟨sort-field⟩}, if the value of the field identified by ⟨sort-field⟩ is missing,
then bib2gls behaves as follows:

1. If missing-sort-fallback={⟨fallback-field⟩} is set, then bib2gls will fallback on
the value provided by the field ⟨fallback-field⟩. If ⟨fallback-field⟩ is missing, then
bib2gls will query the entry type’s fallback for ⟨fallback-field⟩ (not for ⟨sort-field⟩).

2. If the entry type has a fallback rule for ⟨sort-field⟩, then that rule is used. When sort
-field={sort} this means:

• If the entrywas defined using one of the symbol types, then bib2glswill fallback
on the value given by symbol-sort-fallback.

• If the entry was defined using one of the abbreviation types, then bib2gls will
fallback on the value given by abbreviation-sort-fallback.

• If the entrywas defined using @bibtexentry (but not the spawned @contributor
entries), then bib2gls will fallback on the value given by bibtexentry-sort
-fallback.

If ⟨sort-field⟩ is not sort, then there may not be a fallback, in which case the next
condition applies:

3. Otherwise the sort valuewill be set to the entry label and bib2glswill issue awarning.

The default setting is missing-sort-fallback={}, which means that step 1 above is omit-
ted.

Use dual-missing-sort-fallbackwhen sorting dual entries separately from primaries,
and use secondary-missing-sort-fallback for secondary sorting.

162

5 Resource File Options

abbreviation-sort-fallback=⟨field⟩
The entry types that define abbreviations (such as @abbreviation and @acronym) will, by
default, fallback on the short field if the sort field is missing (assuming sort-field=
{sort}). If you prefer to fallback on a different field, then you can use this option to specify
the field. For example, abbreviation-sort-fallback={long}. Note that if you use sort
-field={name}, then the fallback field will be given by abbreviation-name-fallback if
the name field is omitted. The ⟨field⟩ value must be a known field label.

Note that missing-sort-fallback overrides this setting.

symbol-sort-fallback=⟨field⟩
The entry types that define symbols (such as @symbol and @number) will, by default, fallback
on the label if the sort field is missing (assuming the default sort-field={sort}). If you
prefer to fallback on a different field, then you can use this option to specify the field. For
example, symbol-sort-fallback={name}. The ⟨field⟩ value must be a known field label.

Note that missing-sort-fallback overrides this setting.

bibtexentry-sort-fallback=⟨field⟩
Themain @bibtexentry entry types will, by default, fallback on the name if the sort field is
missing (assuming the default sort-field={sort}). If you prefer to fallback on a different
field, then you can use this option to specify the field.

Note that missing-sort-fallback overrides this setting.

trim-sort=⟨boolean⟩
If the interpreter is used to determine the sort value, this setting governs whether or not
the interpreter should trim leading and trailing spaces. The default setting is trim-sort=
{true}.

This option automatically sets dual-trim-sort={⟨boolean⟩} and secondary-trim-sort
={⟨boolean⟩}.

sort-rule=⟨value⟩
If the sort={custom} option is used, the sort rule must be provided with sort-rule. If
sort is not set to custom, the sort-rule setting will be ignored. This setting uses Java’s
RuleBasedCollator class [5], and the rule syntax needs to conform to that format.

Remember that the options will be expanded as they are written to the .aux file, so be
careful of any special characters that occur in the rule. For the special characters # % _ &
{ and } you can use \#, \%, _, \&, \{ and \}. These will be written to the .aux file with
the leading backslash, but bib2gls will remove it for this resource option. Remember that
the glossaries package provides \glsbackslash and \glstildechar which can be used to
produce a literal backslash (\) and tilde (~).

163

http://docs.oracle.com/javase/8/docs/api/java/text/RuleBasedCollator.html

5 Resource File Options

You can also use \string\u⟨hex⟩ (where ⟨hex⟩ is a hexadecimal code) to represent a Uni-
code character. For example:

\GlsXtrLoadResources[
sort={custom},
sort-rule={< a,A < b,B < c,C < ch,Ch,CH < d,D
< dd,Dd,DD < e,E < f,F < ff,Ff,FF
< g,G < ng,Ng,NG < h,H < ij,Ij,IJ
< i,I < j,J < k,K < l,L < ll,Ll,LL < m,M
< n,N < o,O < p,P < ph,Ph,PH < q,Q < r,R < rh,Rh,RH
< s,S < t,T < th,Th,TH < u,U < v,V < w,W < x,X < y,Y < z,Z
< \string\u00E6,\string\u00C6}

]

It’s best to use \string rather than \protect to avoid unwanted spaces interfering with
⟨hex⟩. Note that glossaries-extra v1.21+ provides2 \glshex which just does \string\u so
you can do \glshex 00E6 instead of \string\u00E6. This is only one character different,
but you can redefine \glsxtrresourceinit to locally set \u to \glshexwhile the protected
write is performed. For example:

\renewcommand*{\glsxtrresourceinit}{\let\u\glshex}

Then you can just do \u00E6 instead of \string\u00E6.
The glossaries-extra-bib2gls package (which is automatically loaded by the record option)

provides some commands for common rule blocks that may be used in the construction of
custom rules. For example:

sort-rule={\glsxtrcontrolrules
;\glsxtrspacerules
;\glsxtrnonprintablerules
;\glsxtrcombiningdiacriticrules
,\glsxtrhyphenrules
<\glsxtrgeneralpuncrules
<\glsxtrdigitrules
<\glsxtrfractionrules
<\glsxtrMathItalicGreekIrules
<\glsxtrGeneralLatinIVrules
<\glsxtrLatinAA
<\glsxtrLatinOslash

}

This places the Greek maths symbols (such as \alpha) before the Latin block. See the
glossaries-extra documentation for further details of these commands.

2The command definition was moved to glossaries-extra-bib2gls from version 1.27 since it’s only needed with
bib2gls.

164

5 Resource File Options

You might find it convenient to provide similar commands in a package for rules you may
often need. For example, suppose I have a package called, say, mapsymbols for providing
map symbols:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{mapsymbols}
% some package or font loading stuff here to provide
% the appropriate symbols
\newcommand{\Stadium}{...}
\newcommand{\Battlefield}{...}
\newcommand{\Harbour}{...}
% etc

% Provide a rule block:
\newcommand{\MapSymbolOrder}{%
\glshex 2694 % crossed-swords 0x2694
< \glshex 2693 % anchor 0x2693
< \glshex 26BD % football 0x26BD

}

In addition to mapsymbols.sty, I also need to create mapssymbols.bib to provide the ap-
propriate definitions for bib2gls:

@preamble{"\glsxtrprovidecommand{\Harbour}{\char"2693}
\glsxtrprovidecommand{\Battlefield}{\char"2694}
\glsxtrprovidecommand{\Stadium}{\char"26BD}"}

The use of \glsxtrprovidecommand will override any previous definitions of these com-
mands in bib2gls’s interpreter but will act like \providecommand within the document,
and so won’t interfere with the commands defined in mapsymbols.sty. Now I can just do

\usepackage{mapsymbols}% my custom package
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
src={mapsymbols,% <--- my custom mapsymbols.bib
entries% data in entries.bib

},
sort={custom},
sort-rule={\glsxtrcontrolrules % control codes

;\glsxtrspacerules % space characters
;\glsxtrnonprintablerules % non-printable characters
;\glsxtrcombiningdiacriticrules % combining diacritics
,\glsxtrhyphenrules % hyphens
<\glsxtrgeneralpuncrules % general punctuation
<\glsxtrdigitrules % 0, ..., 9

165

5 Resource File Options

<\glsxtrfractionrules % fraction symbols
<\MapSymbolOrder % <--- custom map symbols
<\glsxtrMathItalicGreekIrules % math-greek symbols
<\glsxtrGeneralLatinIrules % Latin letters
}

]

break-at=⟨option⟩
This option automatically implements dual-break-at={⟨option⟩} and secondary-break
-at={⟨option⟩}.

The alphabet sort options (table 5.2) typically list non-letter characters before alphabetical
characters and spaces are quite often in the ignored set. This means that the alphabet sort
options are naturally in a letter order, similar to xindy’s ord/letorder module. (This isn’t
the same as sort={letter-nocase}, which just sorts according to the Unicode value not
according to a particular alphabet.)

In order to replicate makeindex and xindy’s default word order, bib2gls splits up the
sort value at word boundaries and inserts a marker (identified by break-marker). For ex-
ample, if the sort value is “sea lion” then it’s actually converted to sea|lion| whereas “sea”
becomes sea| and “seal” becomes seal|. The default marker is |which is commonly placed
in collation rules before digits but after the ignored characters, such as spaces and hyphens.

You can change the construction of the break points with break-at={⟨option⟩} where
⟨option⟩ may be one of:

• word: break at word boundaries (default). Note that what constitutes a word varies
according to the locale but usually anything that’s not alphanumeric will designate a
word-boundary. The characters between words are discarded. For example, the sort
value “Tom, Dick, and Harry” becomes Tom|Dick|and|Harry, which has discarded
the comma and space characters.

• character: break after each character.

• sentence: break after each sentence.

• upper-notlower: break after any upper case character that’s not followed by a lower
case character. For example, “MathML” becomes MathM|L| and “W3C” becomes W|3C|.

• upper-upper: break after any upper case character that’s followed by an upper case
character.

• upper-notlower-word: first applies break-points according to upper-notlower and
then according to word.

• upper-upper-word: first applies break-points according to upper-upper and then
according to word.

166

5 Resource File Options

• none: don’t create break points. Use this option to emulate makeindex or xindy’s
letter ordering.

This option is ignored when used with the non-alphabetic sort options. Use the --debug
switch to show the break points. (This will also show the collation rule.)

break-marker=⟨marker⟩
This option automatically implements the dual and secondary settings dual-break-marker
={⟨marker⟩} and secondary-break-marker={⟨marker⟩}.

The break marker can be changed using break-marker={⟨marker⟩}, where ⟨marker⟩ is
the character to use. For example, break-marker={-} will use a hyphen. The marker may
be empty, which effectively strips the inter-word punctuation. For example, with break
-marker={}, “Tom, Dick, and Harry” becomes TomDickandHarry and “sea lion” simply be-
comes sealion. If ⟨marker⟩ is omitted, break-marker={} is assumed.

sort-number-pad=⟨number⟩
This option automatically implements the dual and secondary settings dual-sort-number
-pad={⟨number⟩}, secondary-sort-number-pad={⟨number⟩}.

If ⟨number⟩ is greater than 1, any integer sub-strings found in the sort value will be zero-
padded up to this value. Since the - character is often ignored by rule-based sort methods,
any signs found will be replaced with the markers given by sort-pad-plus and sort-pad
-minus, which should be chosen to ensure that negative numbers are ordered before positive
numbers (if this is desired). An unsigned number will have the sort-pad-plus marker
inserted before it. The default value is sort-number-pad={0}, which doesn’t implement
any padding.

If you use this with a locale sort method, it’s best to also set break-at={none}, as the
default word boundary break points will likely be confused by a mix of alphanumerics.

sort-pad-plus=⟨marker⟩
This option automatically implements the dual and secondary settings dual-sort-pad-plus
={⟨marker⟩}, secondary-sort-pad-plus={⟨marker⟩}.

This option only has an effect when used with sort-number-pad={⟨number⟩} where
⟨number⟩ is greater than 1. Positive numbers will have their sign replaced with ⟨marker⟩.
The default setting is sort-pad-plus={>}.

sort-pad-minus=⟨marker⟩
This option automatically implements the dual and secondary settings dual-sort-pad-minus
={⟨marker⟩}, secondary-sort-pad-minus={⟨marker⟩}.

This option only has an effect when used with sort-number-pad={⟨number⟩} where
⟨number⟩ is greater than 1. Negative numbers will have their sign replaced with ⟨marker⟩.
The default setting is sort-pad-plus={<}.

167

5 Resource File Options

identical-sort-action=⟨value⟩
This option automatically implements the dual and secondary settings dual-identical
-sort-action={⟨value⟩} and secondary-identical-sort-action={⟨value⟩}.

This option determines what the comparator should do if two entries at the same hierar-
chical level are considered equal. The ⟨value⟩ may be one of:

• none: don’t take any further action if sort values are identical;

• id: if sort values are identical, compare the entry labels;

• original id: if sort values are identical, compare the original unprefixed entry labels
(as given in the .bib file);

• ⟨field⟩: if sort values are identical, compare the values from the given ⟨field⟩.

In each case (other than identical-sort-action={none}) a simple case-sensitive string
comparison is used. If ⟨value⟩ isn’t a recognised keyword or valid field an error will occur.
The default setting is identical-sort-action={id}. If you’re using one of the sort rules
listed in table 5.2 and you also want a locale-sensitive sort used on the fallback, then you
need to use sort-suffix instead.
bib2gls allows duplicate sort values, but this can cause a problem for hierarchical entries

where parent entries with duplicate sort fields are clumped together and their children follow.
To prevent this from happening, the identical-sort-action={id} setting will fallback on
comparing the labels. Since all labels must be unique, this means comparisons between two
different entries are all either strictly higher or strictly lower.

This action occurs after any suffixes have been appended through sort-suffix.

sort-suffix=⟨value⟩
This option automatically implements the dual and secondary settings dual-sort-suffix
={⟨value⟩} and secondary-sort-suffix={⟨value⟩}. The value may be one of:

• none: don’t append a suffix to any sort value;

• non-unique: append a numeric suffix to non-unique sort values;

• ⟨field⟩: append the value of the given field (if set) to the sort field. The given field
must be defined (has an associated key for use in \newglossaryentry) but may be
unset. If the interpreter is on, the field contents will be interpreted. If the field is just
a label (such as the category field) you may find it simpler to use identical-sort
-action={⟨field⟩} instead.

The default setting is sort-suffix={none}.
This option only affects the alphabetic (table 5.2), letter (table 5.3) and letter-number (ta-

ble 5.4) sort rules. For the other types of sort methods (not including the no-sort options
listed in table 5.1) you’ll need to use identical-sort-action to prevent problems occur-
ring with duplicate sort values.

168

5 Resource File Options

In the case of sort-suffix={non-unique}, this will only append a suffix to the duplicate
sort values (within the same hierarchical level). The first sort value to be encountered isn’t
given a suffix.

The sort-suffix={⟨field⟩} setting will only append a suffix if that field is set, but (if set)
it will apply the suffix to all sort values, even those that are unique.

If you use --verbose, then bib2gls will write information in the transcript when it ap-
pends a suffix to the sort value. The message:

Sort value '⟨sort⟩' (entry '⟨id⟩') not unique for the entry's
hierarchical level.

indicates that an entry with the given ⟨sort⟩ value has already been found within the same
hierarchical level as the currently processed entry (whose label is given by ⟨id⟩). The same
hierarchical level in this context means that either both entries don’t have a parent or both
entries have the same parent. (That is, the entries are considered siblings.)

This message will then be followed by

Appending suffix '⟨suffix⟩' to the sort value '⟨sort⟩'
for entry '⟨id⟩'.

which indicates that the entry (identified by the label ⟨id⟩) has been assigned the sort value
given by ⟨sort⟩⟨suffix⟩. If any break markers are applied, this is done after the suffix has been
appended.

For example, suppose in my document I want to write about makeglossaries (the appli-
cation) and \makeglossaries (the command). I might decide to define semantic commands:

\newcommand*{\application}[1]{\texttt{#1}}
\newcommand*{\command}[1]{\texttt{\char92 #1}}

In my .bib file I might have:

@entry{cs.makeglossaries,
name={\command{makeglossaries}},
category={command},
description={opens glossary files}

}

@entry{ap.makeglossaries,
name={\application{makeglossaries}},
category={application},
description={Perl script}

}

If bib2gls is provided with the definitions of \application and \command (by interpret-
ing the @preamble) then it will determine that the sort value for cs.makeglossaries is
\makeglossaries and the sort value for ap.makeglossaries is just makeglossaries.
These are two distinct sort values from bib2gls’s point of view although the sort rule may

169

5 Resource File Options

consider them identical if the rule ignores the \ character (such as the locale sort methods),
in which case, bib2gls will then act according to identical-sort-action.

If bib2gls isn’t provided with these custom definitions, then it will ignore them and
both entries will end up with the sort value makeglossaries. The second instance will be
recognised as a duplicate and the sort value will be converted to makeglossaries1 (where
the automated suffix is 1 and the suffix marker, see below, is the empty string). With sort
-suffix-marker={.} then the sort value would become makeglossaries.1.

For comparison, consider the following document:

\documentclass{article}

\usepackage[style=indexgroup]{glossaries}

\makeglossaries

\newcommand*{\application}[1]{\texttt{#1}}
\newcommand*{\command}[1]{\texttt{\char92 #1}}

\newglossaryentry{cs.makeglossaries}{%
name={\command{makeglossaries}},
description={opens glossary files}}

\newglossaryentry{ap.makeglossaries}{%
name={\application{makeglossaries}},
description={Perl script}}

\begin{document}

\gls{cs.makeglossaries} and \gls{ap.makeglossaries}.

\printglossaries
\end{document}

This uses makeindex, which puts both entries in the “Symbols” group (since they both
start with \ from the start of \command and \application, respectively). The ordering
is makeglossaries, \makeglossaries because “a” (second character of \application)
comes before “c” (second character of \command).

The switch to xindy just involves adding the xindy package option:

\usepackage[xindy,style=indexgroup]{glossaries}

This results in a glossary that only contains one entry, \makeglossaries, because xindy
merges entries with duplicate sort values and the sort values end up as duplicates because
xindy discards the control sequences. Although bib2gls also ignores unknown control
sequences, it doesn’t perform this merger.

If I add

170

5 Resource File Options

@preamble{"\providecommand*{\application}[1]{\texttt{#1}}
\providecommand{\command}[1]{\texttt{\char92 #1}}"}

to the earlier .bib file (called, say, entries.bib) then the document can be altered to use
bib2gls:

\documentclass{article}

\usepackage[record,style=indexgroup]{glossaries-extra}

\GlsXtrLoadResources{src=entries.bib,
sort-suffix=non-unique,
identical-sort-action=none

}

\begin{document}

\gls{cs.makeglossaries} and \gls{ap.makeglossaries}.

\printunsrtglossaries
\end{document}

This uses the default sort={locale} which considers \ an ignored (punctuation) character,
so both \makeglossaries and makeglossaries are listed in the “M” letter group, even
though the interpreter has determined that the sort value for cs.makeglossaries is the
literal string \makeglossaries. Note that in this case bib2gls doesn’t detect duplicate
sort values since it only uses a simple string comparison to detect duplicates rather than
using the collator.

If I switch to using a letter-based sort rule instead, for example sort={letter-nocase},
then \makeglossaries will be listed in the “Symbols” letter group since the leading \ from
the sort value \makeglossaries isn’t ignored with this rule.

Now let’s suppose I use interpret-preamble={false} to prevent bib2gls from inter-
preting the preamble:

\GlsXtrLoadResources{src=entries.bib,interpret-preamble=false}

This means that the custom commands won’t be recognised and will therefore be ignored,
so both entries will have their sort values reduced to makeglosssaries.

The first entry to be processed is cs.makeglossaries because it’s the first to be selected.
This is assigned the sort value makeglossaries. (Note that, unless you use sort={unsrt},
the initial selection order is based on the record order. In this example, cs.makeglossaries
has the first record in the .aux file.)

The next entry to be processed is ap.makeglossaries. This also ends up with the sort
value makeglossaries so bib2gls converts this to makeglossaries1 and (with verbose
mode on) the following messages are written to the transcript:

171

5 Resource File Options

Sort value 'makeglossaries' (entry 'ap.makeglossaries') not unique
for the entry's hierarchical level.
Appending suffix '1' to the sort value 'makeglossaries' for entry
'ap.makeglossaries'.

Both entries are listed in the “M” letter group in the order \makeglossaries, makeglossaries.
If the records are reversed:

\gls{ap.makeglossaries} and \gls{cs.makeglossaries}.

then the sort value for cs.makeglossaries is now considered the duplicate and the order
is reversed: makeglossaries, \makeglossaries.

Suppose now I modify the .bib file so that ap.makeglossaries is defined as:

@entry{ap.makeglossaries,
name={\application{makeglossaries}},
category={application},
description={Perl script (must be used with \gls{cs.makeglossaries})}

}

and suppose the document only contains an explicit reference to ap.makeglossaries:

\begin{document}
\gls{ap.makeglossaries}
\printunsrtglossaries
\end{document}

Now ap.makeglossaries is the first entry to be selected because entries with records are
always selected before any (unrecorded) dependencies. In this case cs.makeglossaries is
only selected because it’s required by ap.makeglossaries. Now ap.makeglossaries is
the first to have its sort value assigned, and it’s cs.makeglossaries that has the duplicate.
This means that the ordering in the glossary is now: makeglossaries, \makeglossaries.

An oddity occurs if the glossary is moved to the start of the document:

\begin{document}
\printunsrtglossaries
\gls{ap.makeglossaries}
\end{document}

In this case, the first document build

pdflatex myDoc
bibgls --group --verbose myDoc
pdflatex myDoc

172

5 Resource File Options

leads to the ordering described above: makeglossaries, \makeglossaries. However, the
next document build has a new record for cs.makeglossaries occurring in the glossary
(within the description of ap.makeglossaries) which means it’s now the first entry to be
selected so the ordering switches to: \makeglossaries, makeglossaries. In this type of
situation you might be better off with the identical-sort-action={id} option instead.

Remember that you can temporarily switch off the indexing by locally setting

\GlsXtrSetDefaultGlsOpts{noindex}

Since the glossary preamble is scoped, you can simply do

\appto\glossarypreamble{\GlsXtrSetDefaultGlsOpts{noindex}}

to switch off the indexing within the glossary (or use \apptoglossarypreamble). Note that
this is different to using

\GlsXtrSetDefaultNumberFormat{glsignore}

which creates an ignored record. Even though the record is ignored (and so won’t show in
the location list) the record still influences the selection order and the record count.

sort-suffix-marker=⟨value⟩
This automatically implements the dual and secondary settings dual-sort-suffix-marker
={⟨value⟩} and secondary-sort-suffix-marker={⟨value⟩}.

If a suffix is appended to the sort value (see above) then it will be separated by the suffix
marker, which can be set with sort-suffix-marker={⟨value⟩}where ⟨value⟩ is themarker.
By default the marker is empty. You can use \string\u⟨hex⟩ to indicate Unicode characters
outside the ASCII range. If, for some reason, you want to use a special character, such as #,
you will need to precede it with \string (for example \string#). If you use \# it will be
treated as a literal string containing a backslash followed by a hash character.

strength=⟨value⟩
This option automatically implements dual-strength={⟨value⟩} and secondary-strength
={⟨value⟩}.

The collation strength used by the alphabet sort methods (table 5.2) can be set to the fol-
lowing values: primary (default), secondary, tertiary or identical. These indicate the
difference between two characters, but the exact assignment is locale dependent. See the
documentation for Java’s Collator class [2] for further details.

For example, suppose the file entries.bib contains:

@index{resume}

@index{RESUME}

173

http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html

5 Resource File Options

@index{resumee,
name={r\'esum\'e}}

@index{rat}

@index{rot}

@index{aardvark}

@index{zoo}

and the document contains:
\documentclass{article}

\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[sort={en},src={entries}]

\begin{document}
\gls{resumee}, \gls{resume}, \gls{RESUME},
\gls{aardvark}, \gls{rat}, \gls{rot}, \gls{zoo}.

\printunsrtglossaries
\end{document}

then this uses the default strength={primary}, so the entries are listed as aardvark, rat,
résumé, resume, RESUME, rot, zoo.

If the strength is changed to secondary:
\GlsXtrLoadResources[sort={en},src={entries},strength=secondary]

then the entries are listed as aardvark, rat, resume, RESUME, résumé, rot, zoo.
If the strength is changed to tertiary or identical, there’s no difference from strength

={secondary} for this particular example.
This option is ignored by non-alphabet sorts (such as letter or numeric).

decomposition=⟨value⟩
This option automatically implements the dual and secondary settings dual-decomposition
={⟨value⟩} and secondary-decomposition={⟨value⟩}.

The collation decomposition used by alphabet sort methods (table 5.2) can be set to the
following values: canonical (default), full or none. This determines how Unicode com-
posed characters are handled. The fastest mode is none but is only appropriate for languages
without accents. The slowest mode is full but is the most complete for languages with non-
ASCII characters. See the documentation for Java’s Collator class [2] for further details.
This option is ignored by non-alphabet sorts (such as letter or numeric).

174

http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html

5 Resource File Options

letter-number-rule=⟨value⟩
This automatically implements the dual and secondary settings dual-letter-number-rule
={⟨value⟩} and secondary-letter-number-rule={⟨value⟩}.

If you use one of the letter-number sort methods (table 5.4), then you can determine the
comparison between a number and letter. The ⟨value⟩ may be one of:

• before letter: numbers are considered less than any letter.

• after letter: numbers are considered greater than any letter.

• between: (default) numbers come between letter cases. With the -case or -upperlower
sort options, this will put numbers after upper case and before lower case. With the
-lowerupper sort option, this will put numbers after lower case and before upper case.
This setting doesn’t make much sense with the -nocase option but, if used, this will
put numbers before letters.

• first: numbers are considered less than all characters (including punctuation and
spaces).

• last: numbers are considered greater than all characters (including punctuation and
spaces).

Note that the reverse sort methods will invert this setting. Remember also that the case-
insensitive letter-number sort methods always first convert the sort field to lower case,
which means that if you use one of them then there won’t be any upper case characters.

Use letter-number-punc-rule to determine the relative position of white space and
punctuation.

letter-number-punc-rule=⟨value⟩
This automatically implements the dual and secondary dual-letter-number-punc-rule=
{⟨value⟩} and secondary-letter-number-punc-rule={⟨value⟩}.

If you use one of the letter-number sort methods (table 5.4), then you can determine the
order of white space and punctuation. In this context, punctuation means any character
that’s not considered a letter, a number or white space. This means that characters such as
combining marks are considered punctuation.

The ⟨value⟩ may be one of the following:

• punc-space-first: punctuation comes first, followed by white space (then letters
and optionally numbers according to the letter-number rule);

• punc-space-last: punctuation followed by white space come last (after letters and
optionally numbers according to the letter-number rule);

• space-punc-first: white space comes first, followed by punctuation (then letters
and optionally numbers according to the letter-number rule);

175

5 Resource File Options

• space-punc-last: white space followed by punctuation come last (after letters and
optionally numbers according to the letter-number rule);

• space-first-punc-last: white space comes first (followed by letters and optionally
numbers according to the letter-number rule) and punctuation comes last;

• punc-first-space-last: punctuation comes first (followed by letters and optionally
numbers according to the letter-number rule) and white space comes last;

• punc-first-space-zero: punctuation comes first (although numbers may come be-
fore) and white space is replaced by the digit 0 (0x30);

• punc-last-space-zero: punctuation comes last (although numbers may come after)
and white space is replaced by the digit 0 (0x30).

• punc-first-space-zero-match-next: punctuation comes first (although numbers
may come before) and white space is replaced by zero;

• punc-last-space-zero-match-next: punctuation comes last (although numbers
may come after) and white space is replaced by zero.

Remember that the reverse sort methods will invert order governed by this setting.
For the space-zero-match-next settings, the sort value will have all spaces replaced

with a digit that represents zero. If the space isn’t followed by a digit, the basic Latin 0 (0x30)
will be used, otherwise bib2gls will try to match the zero with the following digit group.
For example, if the space is followed by 1 (0xB9) the space will be replaced by 0 (0x2070),
resulting in the sub-string 01 (0xB9 0x2070).

If just the space-zero (without the -match-next) is used then the space will just be
replaced with 0 resulting in the sub-string 01 (0x30 0x2070). In this case, the 0will be distinct
from 1 (rather than being considered a leading zero). However, for other numbering systems
the 0will be treated as a leading zero. For example, if the space is followed by the Devanagari
digit one (0x0967) then the sub-string will be 0x30 0x0967 but here the mixture is allowed
to form a number (with a leading zero) as both characters belong to the Unicode category
Number, Decimal Digit.

This means that the -match-next settings are only really needed if the sort string con-
tains the superscript or subscript digits that don’t belong to the “Number, Decimal Digit”
category. The plain space-zero alternatives are more efficient as they just perform a sim-
ple substitution.

The TEX parser library used by bib2gls recognises the standard LATEX text-mode com-
mands ⟨text⟩ and \textsubscript{⟨text⟩} and will use the Unicode
superscript or subscript characters if they cover every character in ⟨text⟩, otherwise HTML
markup is used, but that’s then stripped by bib2gls. This means that

C\textsubscript{10}H\textsubscript{10}O\textsubscript{4}

will be converted to C10H10O4 but

176

5 Resource File Options

X\textsubscript{1, 2}

will be converted to

X_{1, 2}

which ends up as X1, 2.
Note that letter-number-rule={first} and letter-number-rule={last} overrides

this option when comparing a number with white space or punctuation.

numeric-sort-pattern=⟨value⟩
If you use the custom sort={numberformat} or sort={numberformat-reverse}, you
need to specify the format pattern with this option where ⟨value⟩ is a pattern recognised
by Java’s java.text.DecimalFormat class [3]. You can use \string\u⟨hex⟩ to indicate
Unicode characters by their hexadecimal code. You can also use \#, \%, _, \&, \{ and \} to
indicate #, %, _, &, { and }.

Where the dual or secondary sort uses numberformat or numberformat-reverse, use
dual-numeric-sort-pattern for dual-sort and secondary-numeric-sort-pattern for
secondary.

numeric-locale=⟨value⟩
If you use any of the locale-sensitive numeric sortmethods (table 5.5), such as sort={numeric},
use this option to set the locale. The value may be:

• locale: use Java’s default locale (which is usually the operating system’s locale);

• doc: use the document’s locale or, if not set, assume numeric-locale={locale};

• ⟨lang-tag⟩: set to the locale identified by the given a valid language tag ⟨lang-tag⟩.

Use dual-numeric-locale for dual-sort and secondary-numeric-locale for secondary.

date-sort-locale=⟨value⟩
If you use a date/time sort method (table 5.6), then you can set the locale used by Java’s
date-time parser. The default setting is date-sort-locale={locale}.

The value may be locale (use Java’s default locale), doc (use the document’s locale) or a
valid language tag ⟨lang-tag⟩ identifying the locale.

Use dual-date-sort-locale and secondary-date-sort-locale for the dual and sec-
ondary.

177

http://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html

5 Resource File Options

date-sort-format=⟨value⟩
If you use a date/time sort method (table 5.6), then you can set the format used by Java’s
date-time parser. If omitted, date-sort-format={default} is assumed. The ⟨value⟩ may
be one of:

• default: use the locale’s default format.

• short: use the locale’s short format.

• medium: use the locale’s medium format.

• long: use the locale’s long format.

• full: use the locale’s full format.

• ⟨pattern⟩: provide a custom pattern. This should match the specifications for Java’s
SimpleDateFormat class [6]. You may use \string\u⟨hex⟩ to indicate Unicode char-
acters or \#, \%, _, \&, \{ and \} to indicate #, %, _, &, { and }.

With the custom setting, if the pattern only contains date (but not time) information, then
it must be used with sort={date} or sort={date-reverse}. If the pattern only con-
tains time (but not date) information, then it must be used with sort={time} or sort=
{time-reverse}. If the pattern contains date and time information, then it must be used
with sort={datetime} or sort={datetime-reverse}.

For example, suppose each entry provides information about a person and the user1 field
is used to store their date of birth:

@entry{caesar,
name={Gaius Julius Caesar},
first={Julius Caesar},
text={Caesar},
description={Roman politician and general},
user1={13 July 100 BC}

}

@entry{wellington,
name={Arthur Wellesley, 1st Duke of Wellington},
first={Arthur Wellesley (Duke of Wellington)},
text={Wellington},
description={Anglo-Irish soldier and statesman},
user1={1 May 1769 AD}

}

Then the entries can be sorted by date of birth using:

178

http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

5 Resource File Options

\GlsXtrLoadResources[
src={entries}, % data in entries.bib
sort-field={user1},
sort={date},
date-sort-format={d MMM y G}

]

The G (era) date pattern specifier expects a string, such as “AD”. It will match lower case
forms, such as “ad”, so if you have \textsc{ad} the interpreter will convert this to ad (strip-
ping the text-block command). However, in general it’s best to supply a semantic command
that ensures that the interpreted result matches the required format.

For example, if \era is provided with:

@preamble{"\providecommand{\era}[1]{\textsc{\MakeLowercase{#1}}}"}

If the definition is hidden from the interpreter (interpret-preamble={false}) and the
field value contains \era{AD} then the custom command will simply be stripped leaving AD
which can be matched by G.

If the definition is picked up by the interpreter then the field value will contain ad (from
\MakeLowercase) but this can be matched by G, so it isn’t a problem. However, if the def-
inition of \era is changed so that the era label supplied in the argument is converted to
something that doesn’t match G then the definition should be hidden from the interpreter.

Here’s a complete document that changes the group fields to use the year and era:

\documentclass{article}

\usepackage[record,style=indexgroup]{glossaries-extra}

\newcommand{\bibglsdategroup}[7]{#1#4#7}
\newcommand{\bibglsdategrouptitle}[7]{\number#1\ #4}

\GlsXtrLoadResources[
src={entries},
sort-field={user1},
sort={date},
date-sort-format={d MMM y G},
selection=all

]

\begin{document}
\printunsrtglossaries
\end{document}

(The use of \number strips the leading zero from the year.)

179

5 Resource File Options

group-formation=⟨value⟩
If the group field hasn’t been set in the .bib file or through options like group, then it is
assigned according to this option’s setting during sorting. Permitted values:

• default: the group is assigned according to the sort method’s default group forma-
tion. This is the default setting.

• codepoint: the group is set to \bibglsunicodegroup{⟨label⟩}{⟨character⟩}{⟨id⟩}{⟨type⟩},
where the first argument is the first significant character (converted to lower case and
decomposed, if applicable) of the sort value.

• unicode category: the group is set to \bibglsunicodegroup{⟨label⟩}{⟨character⟩}
{⟨id⟩}{⟨type⟩}, where the first argument is the label identifying the Unicode category
of the first significant character of the sort value. For example, the label Ll signifies a
lower case letter and Lu signifies an upper case letter.

• unicode script: the group is set to \bibglsunicodegroup{⟨label⟩}{⟨character⟩}{⟨id⟩}
{⟨type⟩}, where the first argument is the label identifying the Unicode script of the first
significant character of the sort value. For example, the label LATIN indicates Latin,
GREEK indicates Greek and COMMON indicates common characters (such as mathemati-
cal Greek characters that are often used with non-Greek scripts).

• unicode category and script: the group is set to \bibglsunicodegroup{⟨label⟩}
{⟨character⟩}{⟨id⟩}{⟨type⟩}, where the first argument is the label corresponding to the
Unicode category and script of the first significant character of the sort value. For
example, the label Ll.LATIN indicates a lower case Latin letter.

This option has no effect with --no-group or if no sorting is applied. Use secondary-group
-formation for secondary sorting and dual-group-formation for dual entries.

5.9 Secondary Glossary
The secondary glossary may only be used with action={define} (within the same resource
set) since it’s incompatible with the copy actions. You may use secondary in the first re-
source set and a copy action in a subsequent resource set.

secondary=⟨value⟩
It may be that you want to display a glossary twice but with a different order. For exam-
ple, the first time alphabetically and the second time by category. One way to do this is to
have two \GlsXtrLoadResources that both load the same .bib file with different label
-prefix and sort settings, but this is only possible with selection={all} or by ensuring
you reference each entry with both label prefixes. Another method is to use action={copy}
but this requires a second resource command with the same selection criteria.

180

5 Resource File Options

A simpler method is to use a single \GlsXtrLoadResources with the secondary option.
The value (which must be supplied) should be in the format

⟨sort⟩:⟨field⟩:⟨type⟩

or
⟨sort⟩:⟨type⟩

If the ⟨field⟩ is omitted, the value of sort-field is used. Remember that when the primary
entries are sorted, the sort field will be set, which means that the fallback field (such as
name) won’t be used in the secondary sort. In general it’s best to supply the field unless one
type is sorted and the other isn’t. (The actual sort value obtained by the secondary sort will
be saved in the secondarysort field in case you require it.)

The value of ⟨sort⟩ is as for sort, but note that in this case the sort value unsrt or
none means to use the same ordering as the primary entries. For example, with sort=
{de-CH-1996}, secondary={none:copies} the copies list will be ordered according to
de-CH-1996 and not according to the order in which they were read when the .bib file or
files were parsed. If ⟨sort⟩ is custom, then the rule should be provided with secondary-sort
-rule.

This option will copy all the selected entries into the glossary labelled ⟨type⟩ sorted ac-
cording to ⟨sort⟩ (using ⟨field⟩ as the sort value). Note that this just copies the entry’s label
to the second glossary list rather than creating a duplicate entry, which saves resources but
it means that all the fields will be identical. If you want groups in your glossary, the group
information for the secondary glossary will be stored in the internal secondarygroup field.
The group field will contain the group for the primary glossary.

In order to switch fields in \printunsrtglossary, you need at least v1.21 of glossaries-
extra which provides \glsxtrgroupfield to keep track of the appropriate field label. If
this command is defined, the preamble for the secondary glossary will be adjusted to locally
change the field to secondarygroup. With older versions, the group information in the
secondary glossary will be the same as for the primary glossary.

(If the glossary ⟨type⟩ doesn’t exist, it will be defined with \provideignoredglossary*
{⟨type⟩}.) Note that if the glossary already exists and contains entries, the existing entries
aren’t re-ordered. The new entries are simply appended to the list.

For example, suppose the .bib file contains entries like:

@entry{quartz,
name={quartz},
description={hard mineral consisting of silica},
category={mineral}

}

@entry{cabbage,
name={cabbage},
description={vegetable with thick green or purple leaves},
category={vegetable}

181

5 Resource File Options

}

@entry{waterfowl,
name={waterfowl},
description={any bird that lives in or about water},
category={animal}

}

and the document preamble contains:

\GlsXtrLoadResources[src={entries},sort={en-GB},
secondary={en-GB:category:topic}

]

This sorts the primary entries according to the default sort-field and then sorts the entries
according to the category field and copies this list to the topic glossary (which will be
provided if not defined.)

The secondary list can be displayed with the hypertargets switched off to prevent dupli-
cates. The cross-references will link to the original glossary.

For example:

\printunsrtglossary[title={Summary (alphabetical)}]
\printunsrtglossary[title={Summary (by topic)},target=false]

The alternative (or if more than two lists are required) is to reload the same .bib file with
different label prefixes. For example, if the entries are stored in entries.bib:

\newglossary*{nosort}{Symbols (Unsorted)}
\newglossary*{byname}{Symbols (Letter Order)}
\newglossary*{bydesc}{Symbols (Ordered by Description)}
\newglossary*{byid}{Symbols (Ordered by Label)}

\GlsXtrLoadResources[
src={entries},% entries.bib
sort={unsrt},
type={nosort}

]

\GlsXtrLoadResources[
src={entries},% entries.bib
sort={letter-case},
type={byname},
label-prefix={byname.}

]

\GlsXtrLoadResources[

182

5 Resource File Options

src={entries},% entries.bib
sort={locale},
sort-field={description},
type={bydesc},
label-prefix={bydesc.}

]

\GlsXtrLoadResources[
src={entries},% entries.bib
sort={letter},
sort-field={id},
type={byid},
label-prefix={byid.}

]

secondary-missing-sort-fallback=⟨field⟩
As missing-sort-fallback but for secondary sorting.

secondary-trim-sort=⟨boolean⟩
As trim-sort but for secondary sorting.

secondary-sort-rule=⟨value⟩
As sort-rule but for secondary custom sorting.

secondary-break-at=⟨value⟩
As break-at but for secondary entries.

secondary-break-marker=⟨marker⟩
As break-marker but for secondary entries.

secondary-sort-number-pad=⟨number⟩
As sort-number-pad but for secondary entries.

secondary-sort-pad-plus=⟨marker⟩
As sort-pad-plus but for secondary entries.

183

5 Resource File Options

secondary-sort-pad-minus=⟨marker⟩
As sort-pad-minus but for secondary entries.

secondary-identical-sort-action=⟨value⟩
As identical-sort-action but for secondary entries.

secondary-sort-suffix=⟨value⟩
As sort-suffix but for secondary entries.

secondary-sort-suffix-marker=⟨value⟩
As sort-suffix-marker but for secondary entries.

secondary-strength=⟨value⟩
As strength but for secondary entries.

secondary-decomposition=⟨value⟩
As decomposition but for secondary entries.

secondary-letter-number-rule=⟨value⟩
As letter-number-rule but for secondary letter-number sorting.

secondary-letter-number-punc-rule=⟨value⟩
As letter-number-punc-rule but for secondary letter-number sorting.

secondary-numeric-sort-pattern=⟨value⟩
As numeric-sort-pattern but for secondary locale-sensitive numeric sorting.

secondary-numeric-locale=⟨value⟩
As numeric-locale but for secondary locale-sensitive numeric sorting.

secondary-date-sort-locale=⟨value⟩
As date-sort-locale but for secondary date-time sorting.

184

5 Resource File Options

secondary-date-sort-format=⟨value⟩
As date-sort-format but for secondary date-time sorting.

secondary-group-formation=⟨value⟩
As group-formation but for secondary sorting.

5.10 Dual Entries
General Dual Settings
dual-prefix=⟨value⟩

This option indicates the prefix to use for the dual entries. The default value is dual. (in-
cluding the terminating period). Any references to dual entries within the .bib file should
use the prefix dual. which will be replaced by ⟨value⟩ when the .bib file is parsed.

primary-dual-dependency=⟨boolean⟩

This is a boolean setting that determines whether or not primary and dual entries should be
considered mutual dependencies. The default value is primary-dual-dependency={true},
which means that if a primary has records then the dual is added as a dependency and vice
versa. The setting primary-dual-dependency={false} can’t be used with dual-sort=
{none} or dual-sort={use} (but may be used with dual-sort={combine} and sort=
{none} or sort={use}).

combine-dual-locations=⟨value⟩

You can merge the location lists for each primary entry with that of the corresponding dual
entry. This setting allows you to specify this and determine whether both primary and dual
entries should have the combined location list or whether only the primary or the dual should
be assigned the combined list.

The ⟨value⟩ may be one of:

• false This is the default setting. The location lists aren’t combined.

• both Both the primary and dual are given the combined location list.

• dual Only the dual is given the combined location list. The primary’s location list is
emptied.

• primary Only the primary is given the combined location list. The dual’s location list
is emptied.

For example, suppose the file entries.bib contains:

185

5 Resource File Options

@dualindexentry{array,
description={ordered list of values}

}

@dualindexentry{vector,
name={vector},
description={column or row of values}

}

@dualindexentry{set,
description={collection of values}

}

@dualindexentry{matrix,
plural={matrices},
description={rectangular array of values}

}

and the document contains:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,index,style=indexgroup]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},
type=index,
label-prefix={idx.},
dual-prefix={gls.},
dual-type=main

]

\begin{document}
\gls{gls.array}, \gls{gls.vector}, \gls{gls.set}, \gls{gls.matrix}.

\newpage
\gls{gls.array}, \gls{idx.vector}, \gls{idx.set}, \gls{gls.matrix}.

\newpage
\gls{gls.array}, \gls{gls.vector}, \gls{gls.set}, \gls{gls.matrix}.

\printunsrtglossaries
\end{document}

186

5 Resource File Options

In this case, the primary entries are placed in the index glossary type and are assigned the
prefix idx. but only two of the primary entries have been used in the document (both on
page 2).

The dual entries are assigned the prefix gls. and are placed in the main glossary. The
gls.array and gls.matrix entries have been indexed on pages 1, 2 and 3. The gls.vector
and gls.set entries have been indexed on pages 1 and 3.

With the default setting, some of the locations are in the main glossary (corresponding
to \gls{gls.array}, \gls{gls.vector}, \gls{gls.set} and \gls{gls.matrix}) and
some of the locations are in the index glossary (corresponding to \gls{idx.vector} and
\gls{idx.set}).

If the option combine-dual-locations={primary} is added to the resource set, then all
the locations are moved to the index glossary. The entries in the main glossary no longer
have locations. This is actually preferable for this type of document and it’s best not to
reference the primary (index) entries as the hyperlink created by \glswill point to the index,
but these entries don’t have descriptions, so it’s less useful than referencing the dual (main)
entries as then the hyperlink can point to the definition in the main glossary.

Dual Fields
dual-type=⟨value⟩

This option sets the type field for all dual entries. (The primary entries obey the type option.)
This will override any value of type provided in the .bib file (or created through amapping).
The ⟨value⟩ is required.

The ⟨value⟩ may be:

• same as entry: sets the type to the entry type (lower case and without the initial
@). For example, if the entry was defined with @dualentry, the type will be set to
dualentry. If you’ve used entry-type-aliases, this refers to the target entry type
not the original entry type provided in the .bib file.

• same as original entry: set the type field to the original entry type (lower case
and without the initial @) before it was aliased (behaves like same as entry if the
entry type wasn’t aliased).

• same as base: sets the type to the base name of the .bib file (without the extension)
that provided the entry definition (new to v1.1);

• same as primary: sets the type to the same as the corresponding primary entry’s
type (which may have been set with type). If the primary entry doesn’t have the type
field set, the dual’s type will remain unchanged.

• ⟨label⟩: sets the type field to ⟨label⟩.

Remember that the glossary with that label must have already been defined (see sec-
tion 1.2).

For example:

187

5 Resource File Options

\newglossary*{english}{English}
\newglossary*{french}{French}

\GlsXtrLoadResources[src={entries},sort={en},dual-sort={fr},
type=english,
dual-type=french]

Alternatively:

\newglossary*{dictionary}{Dictionary}

\GlsXtrLoadResources[src={entries},sort={en},dual-sort={fr},
type=dictionary,
dual-type={same as primary}]

dual-category=⟨value⟩

This option sets the categoryfield for all dual entries. (The primary entries obey the category
option.) This will override any value of category provided in the .bib file (or created
through a mapping). The ⟨value⟩ may be empty.

The ⟨value⟩ may be:

• same as entry: sets the category to the entry type (lower case and without the
initial @). For example, if the entry was defined with @dualentry, the category will
be set to dualentry. If you’ve used entry-type-aliases, this refers to the target
entry type not the original entry type provided in the .bib file.

• same as original entry: set the category field to the original entry type (lower
case and without the initial @) before it was aliased (behaves like same as entry if
the entry type wasn’t aliased).

• same as base: sets the category to the base name of the .bib file (without the
extension) that provided the entry definition (new to v1.1);

• same as primary: sets the category to the same as the corresponding primary en-
try’s category (whichmay have been set with category). If the primary entry doesn’t
have the category field set, the dual’s category will remain unchanged.

• same as type: sets the category to the same as the value of the entry’s type field
(which may have been set with dual-type). If the entry doesn’t have the type field
set, the category will remain unchanged.

• ⟨label⟩: sets the category field to ⟨label⟩.

dual-counter=⟨value⟩

As counter but for the dual entries. In this case ⟨value⟩ may be the name of the counter or
same as primary which uses the counter for the primary entry.

188

5 Resource File Options

dual-short-case-change=⟨value⟩

As short-case-change but applies to the dualshort field instead.

dual-field=⟨value⟩

If this option is used, this will add \glsxtrprovidestoragekey to the start of the .glstex
file providing the key given by ⟨value⟩. Any entries defined using @dualentrywill bewritten
to the .glstex file with an extra field called ⟨value⟩ that is set to the mirror entry. If ⟨value⟩
is omitted dual is assumed.

For example, if the .bib file contains

@dualentry{child,
name={child},
plural={children},
description={enfant}

}

Then with dual-field={dualid} this will first add the line

\glsxtrprovidestoragekey{dualid}{}{}

at the start of the file and will include the line

dualid={dual.child},

for the primary entry (child) and the line

dualid={child},

for the dual entry (dual.child). It’s then possible to reference one entry from the other.
For example, the post-description hook could contain:

\ifglshasfield{dualid}{\glscurrententrylabel}
{%

\space
(\glshyperlink{\glsxtrusefield{\glscurrententrylabel}{dualid}})%

}%
{}%

Note that this new field won’t be available for use within the .bib file (unless it was previ-
ously defined in the document before \glsxtrresourcefile).

dual-date-time-field-format=⟨value⟩

As date-time-field-format but is used for dual entries.

dual-date-field-format=⟨value⟩

As date-field-format but is used for dual entries.

189

5 Resource File Options

dual-time-field-format=⟨value⟩

As time-field-format but is used for dual entries.

dual-date-time-field-locale=⟨value⟩

As date-time-field-locale but is used for dual entries.

dual-date-field-locale=⟨value⟩

As date-field-locale but is used for dual entries.

date-time-field-locale=⟨value⟩

As time-field-locale but is used for dual entries.

Dual Sorting
dual-sort=⟨value⟩

This option indicates how to sort the dual entries. The primary entries are sorted with the
normal entries according to sort, and the dual entries are sorted according to dual-sort
unless dual-sort={combine} in which case the dual entries will be combined with the
primary entries and all the entries will sorted together according to the sort option.

If ⟨value⟩ isn’t set to combine then the dual entries are sorted separately according to
⟨value⟩ (as per sort) and the dual entries will be appended at the end of the .glstex file.
The field used by the comparator is given by dual-sort-field. If dual-sort={custom},
then the dual entries according to the rule provided by dual-sort-rule.

For example:

\GlsXtrLoadResources[
src={entries-dual},
sort={en},
dual-sort={de-CH-1996}

]

This will sort the primary entries according to en (English) and the secondary entries accord-
ing to de-CH-1996 (Swiss German new orthography) whereas:

\GlsXtrLoadResources[
src={entries-dual},
sort={en-GB},
dual-sort={combine}

]

will combine the dual entries with the primary entries and sort them all according to the
en-GB locale (British English).

If not set, dual-sort defaults to combine. If ⟨value⟩ is omitted, locale is assumed.

190

5 Resource File Options

dual-sort-field=⟨field⟩

This option indicates the field to use when sorting dual entries (when they haven’t been
combined with the primary entries). The default value is the same as the sort-field value.

dual-missing-sort-fallback=⟨field⟩

As missing-sort-fallback but for dual sorting.

dual-trim-sort=⟨boolean⟩

As trim-sort but for dual sorting.

dual-sort-rule=⟨value⟩

As sort-rule but for dual-sort={custom}.

dual-break-at=⟨value⟩

As break-at but for dual entries.

dual-break-marker=⟨marker⟩

As break-marker but for dual entries.

dual-sort-number-pad=⟨number⟩

As sort-number-pad but for dual entries.

dual-sort-pad-plus=⟨marker⟩

As sort-pad-plus but for dual entries.

dual-sort-pad-minus=⟨marker⟩

As sort-pad-minus but for dual entries.

dual-identical-sort-action=⟨value⟩

As identical-sort-action but for dual entries.

dual-sort-suffix=⟨value⟩

As sort-suffix but for dual entries.

dual-sort-suffix-marker=⟨value⟩

As sort-suffix-marker but for dual entries.

191

5 Resource File Options

dual-strength=⟨value⟩

As strength but for dual entries.

dual-decomposition=⟨value⟩

As decomposition but for dual entries.

dual-letter-number-rule=⟨value⟩

As letter-number-rule but for dual entries that use a letter-number sort.

dual-letter-number-punc-rule=⟨value⟩

As letter-number-punc-rule but for dual entries that use a letter-number sort.

dual-numeric-sort-pattern=⟨value⟩

As numeric-sort-pattern but for dual entries that use a locale-sensitive numeric sort.

dual-numeric-locale=⟨value⟩

As numeric-locale but for dual entries that use a locale-sensitive numeric sort.

dual-date-sort-locale=⟨value⟩

As date-sort-locale but for dual entries that use a date/time sort.

dual-date-sort-format=⟨value⟩

As date-sort-format but for dual entries that use a date/time sort.

dual-group-formation=⟨value⟩

As group-formation but for dual sorting.

Dual Mappings
dual-entry-map={{⟨list1⟩},{⟨list2⟩}}

This setting governs the behaviour of @dualentry definitions. The value consists of two
comma-separated lists of equal length identifying the field mapping used to create the dual
entry from the primary one. Note that the alias field can’t be mapped.

The default setting is:

192

5 Resource File Options

dual-entry-map=
{

{name,plural,description,descriptionplural},
{description,descriptionplural,name,plural}

}

The dual entry is created by copying the value of the field in the first list ⟨list1⟩ to the field
in the corresponding place in the second list ⟨list2⟩. Any additional fields are copied over to
the same field.

For example:

@dualentry{cat,
name={cat},
description={chat},
see={dog}

}

defines two entries. The primary entry is essentially like

@entry{cat,
name={cat},
plural={cat\glspluralsuffix },
description={chat},
descriptionplural={chat\glspluralsuffix },
see={dog}

}

and the dual entry is essentially like

@entry{dual.cat,
description={cat},
descriptionplural={cat\glspluralsuffix },
name={chat},
plural={chat\glspluralsuffix },
see={dog}

}

(except they’re defined using \bibglsnewdualentry instead of \bibglsnewentry, and each
is considered dependent on the other.)

The see field isn’t listed in dual-entry-map so its value is simply copied directly over to
the seefield in the dual entry. Note that themissing plural fields (plural and descriptionplural)
have been filled in.

In general bib2gls doesn’t try to supply missing fields, but in the dual entry cases it needs
to do this for themapped fields. This is because the shuffled fieldsmight have different default
values from the glossaries-extra package’s point of view. For example, \longnewglossary-
entry doesn’t provide a default for descriptionplural if if hasn’t been set.

193

5 Resource File Options

dual-abbrv-map={{⟨list1⟩},{⟨list2⟩}}

This is like dual-entry-map but applies to @dualabbreviation rather than @dualentry.
Note that the alias field can’t be mapped. The default setting is:

dual-abbrv-map=
{

{short,shortplural,long,longplural,dualshort,dualshortplural,
duallong,duallongplural},

{dualshort,dualshortplural,duallong,duallongplural,short,shortplural,
long,longplural}

}

This essentially flips the short field with the dualshort field and the long field with the
duallong field. See @dualabbreviation for further details.

dual-abbrventry-map={{⟨list1⟩},{⟨list2⟩}}

This is like dual-entry-map but applies to @dualabbreviationentry rather than @dual-
entry. Note that the alias field can’t be mapped. The default setting is:

dual-abbrventry-map=
{

{long,short,shortplural},
{name,text,plural}

}

See @dualabbreviationentry for further details.

dual-symbol-map={{⟨list1⟩},{⟨list2⟩}}

This is like dual-entry-map but applies to @dualsymbol rather than @dualentry. Note
that the alias field can’t be mapped. The default setting is:

dual-symbol-map=
{

{name,plural,symbol,symbolplural},
{symbol,symbolplural,name,plural}

}

This essentially flips the name field with the symbol field.

dual-indexentry-map={{⟨list1⟩},{⟨list2⟩}}

This is like dual-entry-map but applies to @dualindexentry rather than @dualentry.

dual-indexsymbol-map={{⟨list1⟩},{⟨list2⟩}}

This is like dual-entry-map but applies to both @dualindexsymbol and @dualindexnumber.

194

5 Resource File Options

dual-indexabbrv-map={{⟨list1⟩},{⟨list2⟩}}

This is like dual-entry-map but applies to both the dual @dualindexabbreviation and
tertiary @tertiaryindexabbreviationentry entry types.

Dual Back-Links
dual-entry-backlink={⟨boolean⟩}

This is a boolean setting. If ⟨boolean⟩ is missing true is assumed.
When used with @dualentry, if ⟨boolean⟩ is true, this will wrap the contents of the first

mapped field with \bibglshyperlink. The field is obtained from the first mapping listed in
dual-entry-map.

For example, if the document contains:
\GlsXtrLoadResource[dual-entry-backlink,

dual-entry-map={
{name,plural,description,descriptionplural},
{description,descriptionplural,name,plural}

},
src={entries-dual}]

and if the .bib file contains
@dualentry{child,

name={child},
plural={children},
description={enfant}

}

Then the definition of the primary entry (child) in the .glstex filewill set the description
field to
\bibglshyperlink{enfant}{dual.child}

and the dual entry (dual.child) will have the description field set to
\bibglshyperlink{child}{child}

This use of the wrapper \bibglshyperlink (rather than explicitly using \glshyperlink)
and inserting the actual field value (rather than using commands like \glsentryname) allows
it to work with \makefirstuc if the field requires a case-change.

The reason the description field is chosen for the modification is because the first field
listed in ⟨list1⟩ of dual-entry-map is the name field which maps to description (the first
field in the second list ⟨list2⟩). This means that the hyperlink for the dual entry should be
put in the description field.

For the primary entry, the name field is looked up in the second list from the dual-entry
-map setting. This is the third item in this second list, so the third item in the first list is
selected, which also happens to be the description field, so the hyperlink for the primary
entry is put in the description field.

195

5 Resource File Options

dual-abbrv-backlink={⟨boolean⟩}

This is analogous to dual-entry-backlink but for entries defined with @dualabbrevia-
tion instead of @dualentry.

dual-symbol-backlink={⟨boolean⟩}

This is analogous to dual-entry-backlink but for entries defined with @dualsymbol in-
stead of @dualentry.

dual-abbrventry-backlink={⟨boolean⟩}

Analogous to dual-entry-backlink but for entries defined with @dualabbreviation-
entry instead of @dualentry.

dual-entryabbrv-backlink={⟨boolean⟩}

Analogous to dual-entry-backlink but for entries defined with @dualentryabbrevia-
tion instead of @dualentry.

dual-indexentry-backlink={⟨boolean⟩}

This is analogous to dual-entry-backlink but for entries defined with @dualindexentry
instead of @dualentry.

dual-indexsymbol-backlink={⟨boolean⟩}

This is analogous to dual-entry-backlink but for entries definedwith @dualindexsymbol
and @dualindexnumber.

dual-indexabbrv-backlink={⟨boolean⟩}

This is analogous to dual-entry-backlink but for entries defined with @dualindexabbre-
viation and @tertiaryindexabbreviationentry.

dual-backlink={⟨boolean⟩}

Shortcut for:

dual-entry-backlink={⟨boolean⟩},
dual-abbrventry-backlink={⟨boolean⟩},
dual-abbrv-backlink={⟨boolean⟩},
dual-symbol-backlink={⟨boolean⟩},
dual-indexentry-backlink={⟨boolean⟩},
dual-indexsymbol-backlink={⟨boolean⟩},
dual-indexabbrv-backlink={⟨boolean⟩}

196

5 Resource File Options

5.11 Tertiary Entries
tertiary-prefix={⟨value⟩}
This option indicates the prefix to use for the tertiary entries. The default value is tertiary.
(including the terminating period).

tertiary-type={⟨value⟩}
This option indicates that the tertiary entries should have their type field set to ⟨value⟩. If
⟨value⟩ is empty the type is left unchanged. Unlike the type and dual-type options, there
are no recognised keywords.

tertiary-category={⟨value⟩}
This option indicates that the tertiary entries should have their category field set to ⟨value⟩.
If ⟨value⟩ is empty the category is left unchanged. Unlike the category and dual-category
options, there are no recognised keywords.

197

6 Provided Commands
When bib2gls creates the .glstex file, it writes some definitions for custom commands
in the form \bibgls... which may be changed as required. The command definitions all
use \providecommand which means that you can define the command with \newcommand
before the resource file is loaded.

6.1 Entry Definitions
This section lists the commands (\bibglsnew...) used to define entries. Note that the entry
definition commands are actually used when TEX inputs the resource file, so redefining them
after the resource file is loaded won’t have an effect on the entries defined in that resource
file (but will affect entries defined in subsequent resource files). Each provided command is
defined in the .glstex file immediately before the first entry that requires it, so only the
commands that are actually needed are provided.

After each entry is defined, if it has any associated locations, the locations are added using

\glsxtrfieldlistadd{⟨label⟩}{⟨field⟩}{⟨item⟩}

\bibglsnewentry

\bibglsnewentry{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}

This command is used to define terms identified with the @entry type. The definition pro-
vided in the .glstex file is:

\providecommand{\bibglsnewentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

This uses the starred form of \longnewglossaryentry that doesn’t automatically append
\nopostdesc (which interferes with the post-description hooks provided by category at-
tributes).

\bibglsnewsymbol

\bibglsnewsymbol{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}

198

6 Provided Commands

This command is used to define terms identified with the @symbol type. The definition pro-
vided in the .glstex file is:

\providecommand{\bibglsnewsymbol}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category={symbol},#2}{#4}%

}

Note that this sets the sort field to the label, but this may be overridden by the ⟨options⟩
if the sort field was supplied or if bib2gls has determined the value whilst sorting the
entries.

This also sets the category to symbol, but again this may be overridden by ⟨options⟩ if
the entry had the category field set in the .bib file or if the categorywas overridden with
category={⟨value⟩}.

\bibglsnewnumber

\bibglsnewnumber{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}

This command is used to define terms identified with the @number type. The definition pro-
vided in the .glstex file is:

\providecommand{\bibglsnewnumber}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category={number},#2}{#4}%

}

This is much the same as \bibglsnewsymbol above but sets the category to number. Again
the sort and category keys may be overridden by ⟨options⟩.

\bibglsnewindex

\bibglsnewindex{⟨label⟩}{⟨options⟩}

This command is used to define terms identified with the @index type. The definition pro-
vided in the .glstex file is:

\providecommand*{\bibglsnewindex}[2]{%
\newglossaryentry{#1}{name={#1},category={index},description={},#2}%

}

This makes the name default to the ⟨label⟩, assigns the the category to index and sets an
empty description. These settings may be overridden by ⟨options⟩.

Note that the description doesn’t include \nopostdesc to allow for the post-description
hook used by category attributes.

199

6 Provided Commands

\bibglsnewabbreviation

\bibglsnewabbreviation{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}

This command is used to define terms identified with the @abbreviation type. The defini-
tion provided in the .glstex file is:

\providecommand{\bibglsnewabbreviation}[4]{%
\newabbreviation[#2]{#1}{#3}{#4}%

}

Since this uses \newabbreviation, it obeys the abbreviation style for its given category
(which may have been set in ⟨options⟩, either from the category field in the .bib file or
through the category option). Similarly the type will obey \glsxtrabbrvtype unless the
value is supplied in the .bib file or through the type option.

\bibglsnewacronym

\bibglsnewacronym{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}

This command is used to define terms identified with the @acronym type. The definition
provided in the .glstex file is:

\providecommand{\bibglsnewacronym}[4]{%
\newacronym[#2]{#1}{#3}{#4}%

}

This works in much the same way as \bibglsnewabbreviation. Remember that with the
glossaries-extra package \newacronym is redefined to just use \newabbreviation with the
default type set to \acronymtype and the default category set to acronym.

\bibglsnewdualentry

\bibglsnewdualentry{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}

This command is used to define terms identified with the @dualentry type. The definition
provided in the .glstex file is:

\providecommand{\bibglsnewdualentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

200

6 Provided Commands

\bibglsnewdualindexentry

\bibglsnewdualindexentry{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}

This command is used to define primary terms identified with the @dualindexentry type.
The definition provided in the .glstex file is:
\providecommand{\bibglsnewdualindexentry}[4]{%

\longnewglossaryentry*{#1}{name={#3},category={index},#2}{}%
}

Note that this definition ignores the ⟨description⟩ argument.

\bibglsnewdualindexentrysecondary

\bibglsnewdualindexentrysecondary{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}

This command is used to define secondary terms identified with the @dualindexentry type.
The definition provided in the .glstex file is:
\providecommand{\bibglsnewdualindexentrysecondary}[4]{%

\longnewglossaryentry*{#1}{name={#3},#2}{#4}%
}

\bibglsnewdualindexsymbol

\bibglsnewdualindexsymbol{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨symbol⟩}{⟨description⟩}

This command is used to define primary terms identified with the @dualindexsymbol type.
The definition provided in the .glstex file is:
\providecommand{\bibglsnewdualindexsymbol}[5]{%

\longnewglossaryentry*{#1}{name={#3},category={index},symbol={#4},#2}{}%
}

Note that this definition ignores the ⟨description⟩ argument.

\bibglsnewdualindexsymbolsecondary

\bibglsnewdualindexsymbolsecondary{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}

This command is used to define secondary terms identified with the @dualindexsymbol
type. The definition provided in the .glstex file is:
\providecommand{\bibglsnewdualindexsymbolsecondary}[5]{%

\longnewglossaryentry*{#1}{name={#3},category={symbol},symbol={#4},#2}%
{#5}%

}

201

6 Provided Commands

\bibglsnewdualindexnumber

\bibglsnewdualindexnumber{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨symbol⟩}{⟨description⟩}

This command is used to define primary terms identified with the @dualindexnumber type.
The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualindexnumber}[5]{%
\longnewglossaryentry*{#1}{name={#3},category={index},symbol={#4},#2}{}%

}

Note that this definition ignores the ⟨description⟩ argument.

\bibglsnewdualindexnumbersecondary

\bibglsnewdualindexnumbersecondary{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}

This command is used to define secondary terms identified with the @dualindexnumber
type. The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualindexnumbersecondary}[5]{%
\longnewglossaryentry*{#1}{name={#3},category={number},symbol={#4},#2}%
{#5}%

}

\bibglsnewdualindexabbreviation

\bibglsnewdualindexabbreviation{⟨label⟩}{⟨dual-label⟩}{⟨options⟩}{⟨name⟩}
{⟨short⟩}{⟨long⟩}{⟨description⟩}

This command is used to define primary terms identified with the @dualindexabbrevia-
tion type. The default definition provided in the .glstex file is:

\providecommand{\bibglsnewdualindexabbreviation}[7]{%
\longnewglossaryentry*{#1}{%

name={\protect\bibglsuseabbrvfont{#4}{\glscategory{#2}}},%
category={index},#3}{}%

In this case ⟨dual-label⟩ is the dual entry’s label, which is used to fetch the category label
in \bibglsuseabbrvfont. (The category field for the dual isn’t used as a custom defini-
tion of \bibglsnewdualindexabbreviationsecondary may override the value known to
bib2gls.)

Note that (as shown above) with the default abbreviation-name-fallback={short}
the name uses
\bibglsuseabbrvfont{⟨text⟩}{⟨category⟩}

202

6 Provided Commands

to format the name, which ensures that it uses the same font as the short form for the dual
abbreviation. This will use \glsuseabbrvfont if it’s defined otherwise it will be defined to
replicate that command. If abbreviation-name-fallback is set to some other field then
the name uses
\bibglsuselongfont{⟨text⟩}{⟨category⟩}

instead, which ensures that it uses the same font as the long form for the dual abbreviation.

\bibglsnewdualindexabbreviationsecondary

\bibglsnewdualindexabbreviationsecondary{⟨label⟩}{⟨options⟩}{⟨name⟩}
{⟨short⟩}{⟨long⟩}{⟨description⟩}

This command is used to define secondary terms identified with the @dualindexabbrevia-
tion entry type. The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualindexabbreviationsecondary}[6]{%
\ifstrempty{#6}%
{\newabbreviation[#2]{#1}{#4}{#5}}%
{\newabbreviation[#2,description={#6}]{#1}{#4}{#5}}%

}

This ensures that a missing or empty description doesn’t interfere with the abbreviation
style.

\bibglsnewdualabbreviationentry

\bibglsnewdualabbreviationentry{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}
{⟨description⟩}

This command is used to define primary terms identified with the @dualabbreviation-
entry type. The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualabbreviationentry}[5]{%
\newabbreviation[#2]{#1}{#3}{#4}%

}

Note that this definition ignores the ⟨description⟩ argument.

\bibglsnewdualabbreviationentrysecondary

\bibglsnewdualabbreviationentrysecondary{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}
{⟨description⟩}

This command is used to define secondary terms identified with the @dualabbreviation-
entry type. The definition provided in the .glstex file is:

203

6 Provided Commands

\providecommand{\bibglsnewdualabbreviationentrysecondary}[5]{%
\longnewglossaryentry*{#1}{#2}{#5}%

}

Note that this definition ignores the ⟨short⟩ and ⟨long⟩ arguments (which will typically be
empty unless the default mappings are changed).

\bibglsnewdualentryabbreviation

\bibglsnewdualentryabbreviation{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}
{⟨description⟩}

This command is used to define primary terms identified with the (now deprecated) entry
type @dualentryabbreviation. The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualentryabbreviation}[5]{%
\newabbreviation[#2]{#1}{#3}{#4}%

}

Note that this definition ignores the ⟨description⟩ argument.

\bibglsnewdualentryabbreviationsecondary

\bibglsnewdualentryabbreviationsecondary{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}
{⟨description⟩}

This command is used to define secondary terms identified with the (now deprecated) entry
type @dualentryabbreviation. The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualentryabbreviationsecondary}[5]{%
\longnewglossaryentry*{#1}{#2}{#5}%

}

Note that this definition ignores the ⟨short⟩ and ⟨long⟩ arguments (which will typically be
empty unless the default mappings are changed).

\bibglsnewdualsymbol

\bibglsnewdualsymbol{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}

This command is used to define terms identified with the @dualsymbol type. The definition
provided in the .glstex file is:

\providecommand{\bibglsnewdualsymbol}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category={symbol},#2}{#4}}

204

6 Provided Commands

\bibglsnewdualnumber

\bibglsnewdualnumber{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}

This command is used to define terms identified with the @dualnumber type. The definition
provided in the .glstex file is:

\providecommand{\bibglsnewdualnumber}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category={symbol},#2}{#4}}

\bibglsnewdualabbreviation

\bibglsnewdualabbreviation{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}

This command is used to define terms identified with the @dualabbreviation type where
the duallong field is swapped with the long field and the dualshort field is swapped with
the short field. The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualabbreviation}[4]{%
\newabbreviation[#2]{#1}{#3}{#4}%

}

\bibglsnewdualacronym

\bibglsnewdualacronym{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}

This command is used to define terms identified with the @dualacronym type. The definition
provided in the .glstex file is:

\providecommand{\bibglsnewdualacronym}[4]{%
\newacronym[#2]{#1}{#3}{#4}%

}

This works in much the same way as \bibglsnewdualabbreviation. Remember that with
the glossaries-extra package \newacronym is redefined to just use \newabbreviation with
the default type set to \acronymtype and the default category set to acronym.

\bibglsnewtertiaryindexabbreviationentry

\bibglsnewtertiaryindexabbreviationentry{⟨label⟩}{⟨dual-label⟩}{⟨options⟩}
{⟨name⟩}{⟨short⟩}{⟨long⟩}{⟨description⟩}

This is used to define primary terms identified with the @tertiaryindexabbreviation-
entry type. It’s essentially the same as \bibglsnewdualindexabbreviation. The defini-
tion provided in the .glstex file is:

205

6 Provided Commands

\providecommand{\bibglsnewtertiaryindexabbreviationentry}[7]{%
\longnewglossaryentry*{#1}{%

name={\protect\bibglsuseabbrvfont{#4}{\glscategory{#2}}},%
category={index},#3}{}%

}

\bibglsnewtertiaryindexabbreviationentrysecondary

\bibglsnewtertiaryindexabbreviationentrysecondary{⟨label⟩}{⟨tertiary-label⟩}
{⟨options⟩}{⟨tertiary-opts⟩}{⟨primary-name⟩}{⟨short⟩}{⟨long⟩}{⟨description⟩}

This command is used to define both the secondary and tertiary terms identified with the
@tertiaryindexabbreviationentry type. The secondary term is an abbreviation and the
tertiary term is a regular entry. The definition written to the .glstex file is:

\providecommand{\bibglsnewtertiaryindexabbreviationentrysecondary}[8]{%
\newabbreviation[#3]{#1}{#6}{#7}%
\longnewglossaryentry*{#2}%
{name={\protect\bibglsuselongfont{#7}{\glscategory{#1}}},#4}%
{#8}%

}

The ⟨label⟩ is the label for the secondary (abbreviation) entry and ⟨tertiary-label⟩ is the label
for the tertiary (regular) entry. The fifth argument (⟨primary name⟩) isn’t used but is provided
if required for a custom redefinition. The namefield for the tertiary is obtained from the ⟨long⟩
argument encapsulated by \bibglsuselongfont to format the name, which ensures that it
uses the same font as the long form for the dual abbreviation. This will use \glsuselong-
font if it’s defined otherwise it will be defined to replicate that command.

\bibglsnewbibtexentry

\bibglsnewbibtexentry{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}

This command is used to define the main term identified with @bibtexentry.

\bibglsnewcontributor

\bibglsnewcontributor{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}

This command is used to define terms identified with @contributor (typically implicitly
created through @bibtexentry).

206

6 Provided Commands

6.2 Location Lists and Cross-References
These commands deal with the way the location lists and cross references are formatted. The
commands typically aren’t used until the entry information is displayed in the glossary, so
you may redefine these commands after the resource file has been loaded.

\bibglsseesep

\bibglsseesep

Any entries that provide a see field (and that field hasn’t be omitted from the location list
with see={omit}) will have \bibglsseesep inserted between the see part and the location
list (unless there are no locations, in which case just the see part is displayed without \bib-
glsseesep).

This command is provided with:

\providecommand{\bibglsseesep}{, }

You can define this before you load the .bib file:

\newcommand{\bibglsseesep}{; }
\GlsXtrLoadResources[src={entries}]

Or you can redefine it afterwards:

\GlsXtrLoadResources[src={entries}]
\renewcommand{\bibglsseesep}{; }

\bibglsseealsosep

\bibglsseealsosep

This is like \bibglsseesep but is used with cross-reference lists provided with the seealso
field, if supported.

\bibglsaliassep

\bibglsaliassep

This is like \bibglsseesep but is used with cross-reference lists provided with the alias
field.

207

6 Provided Commands

\bibglsusesee

\bibglsusesee{⟨label⟩}

Displays the formatted cross-reference list stored in the see field for the given entry. This
just defaults to \glsxtrusesee{⟨label⟩}.

\bibglsuseseealso

\bibglsuseseealso{⟨label⟩}

Displays the formatted cross-reference list stored in the seealso field for the given entry.
This just defaults to \glsxtruseseealso{⟨label⟩}.

\bibglsusealias

\bibglsusealias{⟨label⟩}

Displays the formatted cross-reference stored in the alias field for the given entry. This is
defined to use \glsseeformat.

\bibglsdelimN

\bibglsdelimN

Separator between individual locations, except for the last. This defaults to \delimN.

\bibglslastDelimN

\bibglslastDelimN

Separator between penultimate and final individual locations. This defaults to ,~ to discour-
age lonely locations.

\bibglspassim

\bibglspassim

If max-loc-diff is greater than 1, then any ranges that have skipped over gaps will be
followed by \bibglspassim, which is defined as:

\providecommand{\bibglspassim}{ \bibglspassimname}

You can define this before you load the .bib file:

208

6 Provided Commands

\newcommand{\bibglspassim}{}
\GlsXtrLoadResources[src={entries}]

Or you can redefine it afterwards:

\GlsXtrLoadResources[src={entries}]
\renewcommand{\bibglspassim}{}

\bibglspassimname

\bibglspassimname

Thedefault definition is obtained from the language resource file. For example, with bib2gls-en.xml
the provided definition is

\providecommand{\bibglspassimname}{passim}

\bibglsrange

\bibglsrange{⟨start⟩\delimR ⟨end⟩}

Explicit ranges formed using format={(} and format={)} or format={(⟨csname⟩} and
format={)⟨csname⟩} (where ⟨csname⟩ matches and is a text-block command without the
initial backslash) in the optional argument of commands like \gls or \glsadd are encapsu-
lated within the argument of \bibglsrange. By default this simply does its argument. This
command is not used with ranges that are formed by collating consecutive locations.

\bibglsinterloper

\bibglsinterloper{⟨location⟩}

If an explicit range conflicts with a record, a warning will be issued and the conflicting record
will be shifted to the front of the range inside the argument of \bibglsinterloper. The
default definition just does ⟨location⟩\bibglsdelimN so that it fits neatly into the list.

For example, suppose on page 4 of my document I start a range with

\glsadd[format={(}]{sample}

and end it on page 9 with

\glsadd[format={)}]{sample}

This forms an explicit range, but let’s suppose on page 6 I have

\gls[format={hyperbf}]{sample}

209

6 Provided Commands

This record conflicts with the explicit range (which doesn’t include hyperbf in the format).
This causes a warning and the conflicting entry will be moved before the start of the explicit
range resulting in 6, 4–9.

Note that implicit ranges can’t be formed from interlopers (nor can implicit ranges be
mergedwith explicit ones), so if \gls[format={hyperbf}]{sample} also occurs on pages 7
and 8 then the result will be 6, 7, 8, 4–9. Either remove the explicit range or remove the con-
flicting entries. (Alternatively, redefine \bibglsinterloper to ignore its argument, which
will discard the conflicting entries.)

\bibglspostlocprefix

\bibglspostlocprefix

If the loc-prefix option is on, \bibglslocprefix will be inserted at the start of location
lists. The command \bibglspostlocprefix is placed after the prefix text. This command
is provided with:

\providecommand{\bibglspostlocprefix}{\ }

which puts a space between the prefix text and the location list. You can define this before
you load the .bib file:

\newcommand{\bibglspostlocprefix}{: }
\GlsXtrLoadResources[src={entries},loc-prefix]

Or you can redefine it afterwards:

\GlsXtrLoadResources[src={entries},loc-prefix]
\renewcommand{\bibglspostlocprefix}{: }

\bibglslocprefix

\bibglslocprefix{⟨n⟩}

If the loc-prefix option is on, this command will be provided. If the glossary type has
been provided by type (and dual-type if there are any dual entries) then the definition of
\bibglslocprefix will be appended to the glossary preamble for the given type (or types
if there are dual entries). For example, if the document has

\GlsXtrLoadResources[type=main,loc-prefix={p.,pp.},src={entries}]

and there are no dual entries, then the following will be added to the .glstex file:

\apptoglossarypreamble[main]{%
\providecommand{\bibglslocprefix}[1]{%
\ifcase##1

210

6 Provided Commands

\or p.\bibglspostlocprefix
\else pp.\bibglspostlocprefix
\fi

}%
}

However, if the type key is missing, then the following will be added instead:

\appto\glossarypreamble{%
\providecommand{\bibglslocprefix}[1]{%
\ifcase#1
\or p.\bibglspostlocprefix
\else pp.\bibglspostlocprefix
\fi

}%
}

\bibglspagename

\bibglspagename

If loc-prefix={true} is used, then this command is provided using the value of tag.page
from the language resource file. For example with bib2gls-en.xml the definition is:

\providecommand{\bibglspagename}{Page}

\bibglspagesname

\bibglspagesname

If loc-prefix={true} is used, then this command is provided using the value of tag.pages
from the language resource file. For example with bib2gls-en.xml the definition is:

\providecommand{\bibglspagesname}{Pages}

\bibglslocsuffix

\bibglslocsuffix{⟨n⟩}

If the loc-suffix option is on, this command will be provided. If the glossary type has
been provided by type (and dual-type if there are any dual entries) then the definition of
\bibglslocsuffix will be appended to the glossary preamble for the given type (or types
if there are dual entries).

This commands definition depends on the value provided by loc-suffix. For example,
with loc-suffix={\@.} the command is defined as:

211

6 Provided Commands

\providecommand{\bibglslocsuffix}[1]{\@.}

(which ignores the argument).
Whereas with loc-suffix={⟨A⟩,⟨B⟩,⟨C⟩} the command is defined as:

\providecommand{\bibglslocsuffix}[1]{\ifcase#1 A\or B\else C\fi}

Note that this is slightly different from \bibglslocprefix as it includes the 0 case, which
in this instance means that there were no locations but there was a cross-reference. This
command isn’t added when the location list is empty.

\bibglslocationgroup

\bibglslocationgroup{⟨n⟩}{⟨counter⟩}{⟨list⟩}

When the loc-counters option is used, the locations for each entry are grouped together
according to the counter (in the order specified in the value of loc-counters). Each group
of locations is encapsulated within \bibglslocationgroup, where ⟨n⟩ is the number of
locations within the group, ⟨counter⟩ is the counter name and ⟨list⟩ is the formatted location
sub-list. By default, this simply does ⟨list⟩, but may be defined (before the resources are
loaded) or redefined (after the resources are loaded) as required.

For example:

\newcommand*{\bibglslocationgroup}[3]{%
\ifnum#1=1
#2:

\else
#2s:

\fi
#3%

}

\GlsXtrLoadResources[
loc-counters={equation,page},% group locations by counter
src={entries}% data in entries.bib

]

This will prefix each group with the counter name, if there’s only one location, or the counter
name followed by “s”, if there are multiple locations within the group.

There are various ways to adapt this to translate the counter name to a different textual
label, such as:

\providecommand{\pagename}{Page}
\providecommand{\pagesname}{Pages}
\providecommand{\equationname}{Equation}
\providecommand{\equationsname}{Equations}

212

6 Provided Commands

\newcommand*{\bibglslocationgroup}[3]{%
\ifnum#1=1
\ifcsdef{#2name}{\csuse{#2name}}{#2}:

\else
\ifcsdef{#2sname}{\csuse{#2sname}}{#2s}:

\fi
#3%

}

\bibglslocationgroupsep

\bibglslocationgroupsep

When the loc-counters option is set, this command is used to separate each location sub-
group. It may be defined before the resources are loaded:

\newcommand*{\bibglslocationgroupsep}{; }

\GlsXtrLoadResources[
loc-counters={equation,page},% group locations by counter
src={entries}% data in entries.bib

]

or redefined after the resources are loaded:

\GlsXtrLoadResources[
loc-counters={equation,page},% group locations by counter
src={entries}% data in entries.bib

]

\renewcommand*{\bibglslocationgroupsep}{; }

\bibglssupplemental

\bibglssupplemental{⟨n⟩}{⟨list⟩}

When the supplemental-locations option is used, the locations from a supplementary
document are encapsulated within the ⟨list⟩ part of \bibglssupplemental. The first argu-
ment ⟨n⟩ (ignored by default) is the number of supplementary locations.

\bibglssupplementalsep

\bibglssupplementalsep

213

6 Provided Commands

The separator between the main location list and the supplementary location list. By default
this is just \bibglsdelimN. This may be defined before the resources are loaded:

\newcommand{\bibglssupplementalsep}{; }

\GlsXtrLoadResources[
supplemental-locations=supplDoc,
src={entries}]

or redefined after the resources are loaded:

\GlsXtrLoadResources[
supplemental-locations=supplDoc,
src={entries}]

\renewcommand{\bibglssupplementalsep}{; }

6.3 Letter Groups
The commands listed in this section are provided for use with the --group switch and
glossary styles that display the letter group title. If these need their definitions altered,
they should be defined before the resource file is loaded if field expansion is on (--expand
-fields) otherwise they may be redefined afterwards.

The base glossaries package determines group titles through a fairly simplistic rule. Both
makeindex and xindy write the line

\glsgroupheading{⟨label⟩}

to the associated glossary file at the start of each new letter group. For example, the “A” letter
group will be written as:

\glsgroupheading{A}

This is quite straightforward and the heading title can just be “A”. The “Symbols” group is
written as

\glsgroupheading{glssymbols}

To allow for easy translation, the base glossaries package has the simple rule:

• if \⟨heading⟩groupname exists use that;

• otherwise just use ⟨heading⟩.

There’s no \Agroupname provided, but \glssymbolsgroupname is provided and is sup-
ported by the associated language modules, such as glossaries-french. (Similarly for the
“Numbers” group.)

214

6 Provided Commands

The glossary styles that provide hyperlinks to the groups (such as indexhypergroup) use
⟨heading⟩ to form the target name. A problem ariseswhen active characters occur in ⟨heading⟩,
which happens with extended characters and inputenc.

The glossaries-extra package (as from version 1.14) provides

\glsxtrsetgrouptitle{⟨group label⟩}{⟨group title⟩}

to set the title for a group with the given label. The internal workings of \glsgroupheading
are modified to use a slightly altered rule:

• if a title has been set using \glsxtrsetgrouptitle{⟨heading⟩}{⟨title⟩} for the given
⟨heading⟩, use that;

• if \⟨heading⟩groupname exists, use that;

• just use ⟨heading⟩ for the title.

So if \glsxtrsetgrouptitle hasn’t been used, it falls back on the original rule.
The problem is now how to make the indexing application use the desired label in the

argument of \glsgroupheading instead of selecting the heading based on the first character
of each sort value for each top-level entry in that group. This can’t be done with makeindex,
and with xindy it requires a custom language module, which isn’t a trivial task.

With bib2gls, a different approach is used. The .glstex file created isn’t comparable
to the \gls file created by makeindex or xindy. There’s nowhere for bib2gls to write the
\glsgroupheading line as it isn’t creating the code that typesets the glossary list. Instead
it’s creating the code that defines the entries. The actual group heading is inserted by \print-
unsrtglossary and it’s only able to do this by checking if the entry has a group field and
comparing it to the previous entry’s group field.

The default behaviour of the group formation implemented by the sort methods may be
changedwith group-formation. With any setting other than group-formation={default},
the group label is set to \bibglsunicodegroup and the title is set to \bibglsunicode-
grouptitle (see below) otherwise the label and title are determined by the sort method.

The collators used by the locale and letter-based rules save the following information for
each entry based on the first significant letter of the sort field (if the letter is recognised as
alphabetical, according to the rule):

• ⟨title⟩The group’s title. This is typically title-cased. For example, if the rule recognises
the digraph “dz”, then the title is “Dz”. Exceptions to this are included in the language
resource file. If the key grouptitle.case.⟨lc⟩ exists, where ⟨lc⟩ is the lower case
version of ⟨title⟩, then the value of that key is used instead. For example, the Dutch
digraph “ij” should be converted to “IJ”, so bib2gls-en.xml includes:

<entry key="grouptitle.case.ij">IJ</entry>

(See the --group switch for more details.)

215

6 Provided Commands

• ⟨letter⟩ This is the actual letter at the start of the given entry’s sort field, which may
be lower case or may contain diacritics that don’t appear in ⟨title⟩.

• ⟨id⟩ A numeric identifier. This may be the collation key or the code point for the given
letter, depending on the sort method.

• ⟨type⟩ The entry’s glossary type. If not known, this will be empty. (bib2gls won’t
know if you’ve modified the associated \bibglsnew... command to set the type. It
can only know the type if it’s in the original .bib definition or is set using resource
options such as type.)

The group field is then set using:

group={\bibglslettergroup{⟨title⟩}{⟨letter⟩}{⟨id⟩}{⟨type⟩}}

This field needs to expand to a simple label, which \bibglslettergroup is designed to do.
Note that non-letter groups are dealt with separately (see below).

\bibglssetlettergrouptitle
For each letter group that’s detected, bib2gls will write the line:

\bibglssetlettergrouptitle{{⟨title⟩}{⟨letter⟩}{⟨id⟩}{⟨type⟩}}

in the .glstex file, which sets the group’s title using \glsxtrsetgrouptitle{⟨group label⟩}
{⟨group title⟩} where the ⟨group label⟩ part matches the corresponding group value.

Note that \bibglssetlettergrouptitle only has a single argument, but that argument
contains the four arguments needed by \bibglslettergroup and \bibglslettergroup-
title. These arguments are as described above.

If \glsxtrsetgrouptitle has been defined (glossaries-extra version 1.14 onwards), then
\bibglssetlettergrouptitle will be defined as

\providecommand{\bibglssetlettergrouptitle}[1]{%
\glsxtrsetgrouptitle{\bibglslettergroup#1}{\bibglslettergrouptitle#1}}

If an earlier version of glossaries-extra is used, then this function can’t be supported and the
command will be defined to simply ignore its argument. This will fall back on the original
method of just using ⟨title⟩ as the label.

Since \bibglssetlettergrouptitle is used in the .glstex file to set the group titles,
the associated commands need to be defined before the resource file is loaded if their defini-
tions require modification. After the resource file has been loaded, you can adjust the title
of a specific group, but you’ll need to check the .glstex file for the appropriate arguments.
For example, if the .glstex file contains:

\bibglssetlettergrouptitle{{Æ}{æ}{7274496}{}}

but you actually want the group title to appear as “Æ (AE)” instead of just “Æ”, then after the
resource file has been loaded you can do:

216

6 Provided Commands

\glsxtrsetgrouptitle
{\bibglslettergroup{Æ}{æ}{7274496}{}}% label
{Æ (AE)}% title

\bibglslettergroup

\bibglslettergroup{⟨title⟩}{⟨letter⟩}{⟨id⟩}{⟨type⟩}

This command is used to determine the letter group label. The default definition is ⟨type⟩⟨id⟩,
which ensures that no problematic characters occur in the label since ⟨type⟩ can’t contains
special characters and ⟨id⟩ is numeric. The ⟨type⟩ is included in case there are multiple
glossaries, since the hyperlink name must be unique.

\bibglslettergrouptitle

\bibglslettergrouptitle{⟨title⟩}{⟨letter⟩}{⟨id⟩}{⟨type⟩}

This command is used to determine the letter group title. The default definition is \unexpanded
{⟨title⟩}, which guards against any expansion issues that may arise with characters outside
the basic Latin set.

For example:

@entry{angstrom,
name={\AA ngstr\"om}
description={a unit of length equal to one hundred-millionth

of a centimetre}
}

The sort value is “ Ångström ”. With sort={en} the ⟨title⟩ part will be A but with sort=
{sv} the ⟨title⟩ part will be Å. In both cases the ⟨letter⟩ argument will be Å.

Take care if you are using a script that needs encapsulating. For example, with the CJKutf8
package the CJK characters need to be placed within the CJK environment, so any letter
group titles that contain CJK characters will need special attention.

For example, suppose the .bib file contains entries in the form:

@dualentry{⟨label⟩,
name = {\cjkname{⟨CJK characters⟩}},
description = {⟨English description⟩}

}

and the document contains:

\usepackage{CJKutf8}
\usepackage[record,style=indexgroup,nomain]{glossaries-extra}

217

6 Provided Commands

\newglossary*{japanese}{Japanese to English}
\newglossary*{english}{English to Japanese}

\newrobustcmd{\cjkname}[1]{\begin{CJK}{UTF8}{min}#1\end{CJK}}
\glsnoexpandfields

\GlsXtrLoadResources[
src=testcjk,% bib file
sort={ja-JP},% locale used to sort primary entries
dual-sort={en-GB},% locale used to sort secondary entries
type=japanese,% put the primary entries in the 'japanese' glossary
dual-type=english,% put the primary entries in the 'english' glossary
dual-prefix={en.}

]

thenCJK characterswill appear in the ⟨title⟩ argument of \bibglslettergrouptitlewhich
causes a problem because they need to be encapsulated within the CJK environment. This
can be more conveniently done with the user supplied \cjkname, but the CJK characters
need to be protected from expansion so \unexpanded is also needed. The new definition
of \bibglslettergrouptitle needs to be defined before \GlsXtrLoadResources. For
example:

\newcommand{\bibglslettergrouptitle}[4]{\unexpanded{\cjkname{#1}}}

There’s a slight problem here in that the English letter group titles also end up encapsulated.
An alternative approach is to use the ⟨type⟩ part to provide different forms. For example:

\newcommand*{\englishlettergroup}[1]{#1}
\newcommand*{\japaneselettergroup}[1]{\cjkname{#1}}
\newcommand{\bibglslettergrouptitle}[4]{%
\unexpanded{\csuse{#4lettergroup}{#1}}}

(\csuse is provided by etoolbox, which is automatically loaded by the glossaries package.)

\bibglssetothergrouptitle
The label and title for symbol groups are dealt with in a similar way to the letter groups, but
in this case the title is set using

\bibglssetothergrouptitle{{⟨character⟩}{⟨id⟩}{⟨type⟩}}

This is defined in an analogous manner:

\providecommand{\bibglssetothergrouptitle}[1]{%
\glsxtrsetgrouptitle{\bibglsothergroup#1}{\bibglsothergrouptitle#1}}

218

6 Provided Commands

where the group label is obtained using \bibglsothergroup and the group title is obtained
from \bibglsothergrouptitle. Note that since non-alphabetic characters don’t have up-
per or lower case versions, there are only three arguments. The other difference between this
and the letter group version is that the ⟨id⟩ is given in hexadecimal format (corresponding
to the character code).

For example, suppose my .bib file contains:
@entry{sauthor,

name={/Author},
description = {author string}

}

If a locale sort is used, the leading slash / will be ignored and this entry will belong to the
“A” letter group using the letter commands described above. If, instead, one of the character
code sort methods are used, such as sort={letter-case}, then this entry will be identified
as belonging to a symbol (or “other”) group and the title will be set using:
\bibglssetothergrouptitle{{/}{2F}{}}

\bibglsothergroup

\bibglsothergroup{⟨character⟩}{⟨id⟩}{⟨type⟩}

This expands to the label for symbol groups. This just defaults to glssymbols (ignoring all
arguments), which replicates the label used when makeindex or xindy generate the glossary
files.

\bibglsothergrouptitle

\bibglsothergrouptitle{⟨character⟩}{⟨id⟩}{⟨type⟩}

This expands to the title for symbol groups. This just expands to \glssymbolsgroupname
by default.

\bibglssetemptygrouptitle
Used when the sort value devolves to an empty string. This command sets the label and title.

\bibglssetemptygrouptitle{{⟨type⟩}}

\bibglsemptygroup

\bibglsemptygroup{⟨type⟩}

This expands to the label for empty groups. This defaults to glssymbols tomake it consistent
with non-letter groups (since the sort value likely contained unknown symbol commands).

219

6 Provided Commands

\bibglsemptygrouptitle

\bibglsemptygrouptitle{⟨type⟩}

This expands to the group title for empty group. This just expands to \glssymbolsgroup-
name by default.

\bibglssetnumbergrouptitle
The numeric sort methods (table 5.5) all create number groups instead of letter or symbol
groups. These behave in an analogous way to the above.

\bibglssetnumbergrouptitle{{⟨value⟩}{⟨id⟩}{⟨type⟩}}

In this case ⟨value⟩ is the actual numeric sort value, and ⟨id⟩ is a decimal number obtained
from converting ⟨value⟩ to an integer. This command is defined as

\providecommand{\bibglssetnumbergrouptitle}[1]{%
\glsxtrsetgrouptitle{\bibglsnumbergroup#1}{\bibglsnumbergrouptitle#1}}

\bibglsnumbergroup
The number group label is obtained from:

\bibglsnumbergroup{⟨value⟩}{⟨id⟩}{⟨type⟩}

This just defaults to glsnumbers.

\bibglsnumbergrouptitle
The number group title is obtained from:

\bibglsnumbergrouptitle{⟨value⟩}{⟨id⟩}{⟨type⟩}

This just defaults to \glsnumbersgroupname.

\bibglsdatetimegroup

\bibglsdatetimegroup{⟨YYYY⟩}{⟨MM⟩}{⟨DD⟩}{⟨hh⟩}{⟨mm⟩}{⟨ss⟩}{⟨zone⟩}
{⟨title⟩}{⟨group-id⟩}{⟨type⟩}

This command is used for date-time group labels with datetime sorting (table 5.6). This
has ten arguments, which means a little trickery is needed to deal with the tenth argument.
The default definition is

\providecommand{\bibglsdatetimegroup}[9]{#1#2#3\@firstofone}

This forms the group label from the year, month, day and ⟨type⟩.

220

6 Provided Commands

\bibglsdatetimegrouptitle

\bibglsdatetimegrouptitle{⟨YYYY⟩}{⟨MM⟩}{⟨DD⟩}{⟨hh⟩}{⟨mm⟩}{⟨ss⟩}{⟨zone⟩}
{⟨title⟩}{⟨group-id⟩}{⟨type⟩}

This command is used for date-time group titles with datetime sorting (table 5.6). The
default definition is

\providecommand{\bibglsdatetimegrouptitle}[9]{#1-#2-#3\@gobble}

This sets the title to the numeric ⟨YYYY⟩-⟨MM⟩-⟨DD⟩ but may be redefined as appropriate.

\bibglsdategroup

\bibglsdategroup{⟨YYYY⟩}{⟨MM⟩}{⟨DD⟩}{⟨G⟩}{⟨title⟩}{⟨group-id⟩}{⟨type⟩}

This command is used for date group labels with date (no time) sorting (table 5.6). The
default definition is

\providecommand{\bibglsdategroup}[7]{#1#2#4#7}

This forms the group label from the year, month, era and type. In this case, the era is a textual
representation not the numeric value used in calculating the sort value.

\bibglsdategrouptitle

\bibglsdategrouptitle{⟨YYYY⟩}{⟨MM⟩}{⟨DD⟩}{⟨G⟩}{⟨title⟩}{⟨group-id⟩}
{⟨type⟩}

This command is used for date group titles with date (no time) sorting (table 5.6). The default
definition is

\providecommand{\bibglsdategrouptitle}[7]{#1-#2}

This just sets the title to the numeric year-month form ⟨YYYY⟩-⟨MM⟩.

\bibglstimegroup

\bibglstimegroup{⟨hh⟩}{⟨mm⟩}{⟨ss⟩}{⟨zone⟩}{⟨title⟩}{⟨group-id⟩}{⟨type⟩}

This command is used for time group labels with time (no date) sorting (table 5.6).

\bibglstimegrouptitle

\bibglstimegrouptitle{⟨hh⟩}{⟨mm⟩}{⟨ss⟩}{⟨zone⟩}{⟨title⟩}{⟨group-id⟩}{⟨type⟩}

This command is used for time group titles with time (no date) sorting (table 5.6).

221

6 Provided Commands

\bibglssetunicodegrouptitle

\bibglssetunicodegrouptitle{{⟨label⟩}{⟨character⟩}{⟨id⟩}{⟨type⟩}}

This command is used to assign the group titles when the group formation is set to any value
other than the default. For example, this command will be used with group-formation=
{codepoint}. The label is obtained from \bibglsunicodegroup and the title is obtained
from \bibglsunicodegrouptitle.

\bibglsunicodegroup

\bibglsunicodegroup{⟨label⟩}{⟨character⟩}{⟨id⟩}{⟨type⟩}

The ⟨label⟩ depends on the group-formation setting:

• group-formation={codepoint}: the ⟨label⟩ is the Unicode value of ⟨character⟩ (con-
verted to lower case and decomposed, if applicable);

• group-formation={unicode category}: the ⟨label⟩ is the Unicode category of ⟨character⟩
(for example, Lu means an upper case letter);

• group-formation={unicode script}: the ⟨label⟩ is the Unicode script associated
with ⟨character⟩ (for example, LATIN);

• group-formation={unicode category and script}: the ⟨label⟩ identifies both
the Unicode category and script associated with ⟨character⟩ (for example, Lu.LATIN).

(Similarly for secondary-group-formation and dual-group-formation.) By default this
command expands to ⟨type⟩⟨label⟩.

The ⟨character⟩ is the first significant character of the sort value. The ⟨id⟩ is the hexadec-
imal code of (possibly decomposed) ⟨character⟩.

For example, with group-formation={codepoint}, an unset type and a sort value of
“Ångström” with “Å” as a significant character distinct from “A” then the group field will be
assigned using:

group={\bibglsunicodegroup{å}{Å}{C5}{}}

whereas with group-formation={unicode category and script} it will be:

group={\bibglsunicodegroup{Lu.LATIN}{Å}{C5}{}}

(upper case Latin letter).
If instead “Å” is considered equivalent to “A” according to the collator, then with group

-formation={codepoint}, the value will be:

group={\bibglsunicodegroup{a}{Å}{61}{}}

Note that the ⟨id⟩ is now 0x61 (the decomposed “A”) not 0xC5.

222

6 Provided Commands

\bibglsunicodegrouptitle

\bibglsunicodegrouptitle{⟨label⟩}{⟨character⟩}{⟨id⟩}{⟨type⟩}

The title for Unicode group formations by default simply expands to \unexpanded{⟨label⟩}
so you will need to change it to something more appropriate. For example (before the re-
source set):

\newcommand{\bibglsunicodegrouptitle}[4]{%
\ifnum"#3>64
\ifnum"#3 < 91

A--Z%
\else
\ifnum"#3 > 96
\ifnum"#3 < 123
A--Z%

\fi
\fi

\fi
\fi

}

This will make the title “A–Z” if ⟨id⟩ is greater than 64 and less than 91 or greater than 96
and less than 123 (and will be empty otherwise).

Note that this setting can create an odd effect if the sorting causes the groups to be split
up. For example, if some of the sort values start with extended or non-Latin characters this
can break up the groups. First check how the group labels are assigned using:

\newcommand{\bibglsunicodegrouptitle}{\bibglsunicodegroup}

then adjust the definition of \bibglsunicodegroup until the grouping is correct, and then
change the definition of \bibglsunicodegrouptitle so that the title is correct.

\bibglshypergroup

\bibglshypergroup{⟨type⟩}{⟨group-id⟩}

If the .log file indicates that hyperref has been loaded and the --group switch is used,
then this command will be used to create the navigation information for glossary styles such
as indexhypergroup.

6.4 Flattened Entries
These commands relate to the way the name field is altered when flattening lonely child
entries with the flatten-lonely option.

223

6 Provided Commands

\bibglsflattenedhomograph

\bibglsflattenedhomograph{⟨name⟩}{⟨parent label⟩}

The default definition simply does ⟨name⟩.
This command is used if the child and parent name’s are identical. For example, suppose

the .bib file contains:

@index{super.glossary, name={glossary}}

@entry{glossarycol,
parent={super.glossary},
description={collection of glosses}

}

@entry{glossarylist,
parent={super.glossary},
description={list of technical words}

}

Thechild entries don’t have a name field, so the value is assumed to be the same as the parent’s
name field. Here’s an example document where both child entries are used:

\documentclass{article}

\usepackage[record,subentrycounter,style=treenoname]{glossaries-extra}

\GlsXtrLoadResources[src={entries}]

\begin{document}
\gls{glossarycol} (collection) vs \gls{glossarylist} (list).

\printunsrtglossary
\end{document}

This uses one of the glossary styles designed for homographs and the glossary has the struc-
ture:

glossary
1) collection of glosses 1
2) list of technical words 1

If only one child entry is selected, then the result looks a little odd. For example:

glossary
1) collection of glosses 1

224

6 Provided Commands

With the flatten-lonely option, the parent is removed and the child is moved up a hier-
archical level. With flatten-lonely={postsort} this would normally adjust the name so
that it appears as ⟨parent name⟩, ⟨child name⟩ but in this case it would look a little odd for
the name to appear as “glossary, glossary” so instead the name is set to
\bibglsflattenedhomograph{glossary}{super.glossary}
(where the first argument is the original name and the second argument is the label of the
parent entry).

This means that the name simply appears as “glossary”, even if the flatten-lonely=
{postsort} option is used. Note that if the parent entry is removed, the parent label won’t
be of much use. You can test for existence using \ifglsentryexists in case you want to
vary the way the name is displayed according to whether or not the parent is still present.

\bibglsflattenedchildpresort

\bibglsflattenedchildpresort{⟨child name⟩}{⟨parent name⟩}

Used by the flatten-lonely={presort} option. This defaults to just ⟨child name⟩. If
you want to change this, remember that you can let the interpreter know by adding the
definition to @preamble. For example:
@preamble{"\providecommand{\bibglsflattenedchildpresort}[2]{#1 (#2)}"}

\bibglsflattenedchildpostsort

\bibglsflattenedchildpostsort{⟨parent name⟩}{⟨child name⟩}

Used by the flatten-lonely={postsort} option. This defaults to ⟨parent name⟩, ⟨child
name⟩.

Note that the arguments are in the reverse order to those of the previous command. This
is done to assist the automated first letter upper-casing. If either command is redefined to
alter the ordering, then this can confuse the case-changing mechanism, in which case you
may want to consider switching on the expansion of the name field using:
\glssetexpandfield{name}
(before \GlsXtrLoadResources).

6.5 Other
\bibglshyperlink

\bibglshyperlink{⟨text⟩}{⟨label⟩}

Used by the back link options, this just defaults to
\glshyperlink[⟨text⟩]{⟨label⟩}

225

6 Provided Commands

\bibglssetwidest

\bibglssetwidest{⟨level⟩}{⟨name⟩}

This is used by set-widest to set the widest name for the given hierarchical level where the
glossary type can’t be determined. This is defined as:

\providecommand*{\bibglssetwidest}[2]{\glsupdatewidest[#1]{#2}}

if \glsupdatewidest is defined, otherwise it will be defined to use \glssetwidest:

\providecommand*{\bibglssetwidest}[2]{\glssetwidest[#1]{#2}}

Since this isn’t scoped, this will affect other glossaries. In general, if you have more than one
glossary it’s best to set the type using options like type.

\bibglssetwidestfortype

\bibglssetwidestfortype{⟨type⟩}{⟨level⟩}{⟨name⟩}

This is used by set-widest to set the widest name for the given hierarchical level where the
glossary type is known. This is defined as:

\providecommand*{\bibglssetwidestfortype}[3]{%
\apptoglossarypreamble[#1]{\glsupdatewidest[#2]{#3}}%

}

if \glsupdatewidest is defined, otherwise it will be defined to use \glssetwidest:

\providecommand*{\bibglssetwidestfortype}[3]{%
\apptoglossarypreamble[#1]{\glssetwidest[#2]{#3}}%

}

Since the glossary preamble is scoped, this won’t affect other glossaries.

\bibglssetwidestfallback

\bibglssetwidestfallback{⟨glossary list⟩}

This is used by set-widest instead of \bibglssetwidest when all name fields end up as
an empty string when interpreted by bib2gls. This typically means that all the name fields
contain unknown commands. This fallback command will use \glsFindWidestLevelTwo,
which sets the widest name for the top-level and first two sub-levels.

226

6 Provided Commands

\bibglssetwidestfortypefallback

\bibglssetwidestfortypefallback{⟨type⟩}

This is used by set-widest instead of \bibglssetwidestfortype when all name fields
end up as an empty string when interpreted by bib2gls. This typically means that all the
name fields contain unknown commands. This fallback command will append \bibglsset-
widestfallback to the glossary preamble for the given type.

\bibglssetwidesttoplevelfallback

\bibglssetwidesttoplevelfallback{⟨glossary list⟩}

This is used by set-widest instead of \bibglssetwidest when all name fields end up as
an empty string when interpreted by bib2gls. This typically means that all the name fields
contain unknown commands. This fallback command will use \glsFindWidestTopLevel-
Name, which sets the widest name for the top-level.

\bibglssetwidesttoplevelfortypefallback

\bibglssetwidesttoplevelfortypefallback{⟨type⟩}

This is used by set-widest instead of \bibglssetwidestfortype when all name fields
end up as an empty string when interpreted by bib2gls. This typically means that all the
name fields contain unknown commands. This fallback command will append \bibglsset-
widesttoplevelfallback to the glossary preamble of the given type.

\bibglscontributorlist

\bibglscontributorlist{⟨list⟩}{⟨number⟩}

This is used when bibtex-contributor-fields is set. The definition depends on whether
or not \DTLformatlist has been defined:

\ifdef\DTLformatlist
{% datatool v2.28+
\providecommand*{\bibglscontributorlist}[2]{\DTLformatlist{#1}}

}
{% datatool v2.27 or earlier
\providecommand*{\bibglscontributorlist}[2]{%
\def\bibgls@sep{}%
\@for\bibgls@item:=#1\do{\bibgls@sep\bibgls@item\def\bibgls@sep{, }}%

}
}

227

6 Provided Commands

The second argument allows you to provide definitions like:

\newcommand*{\bibglscontributorlist}[2]{%
\ifcase#2
\or
name:

\else
names:

\fi
\DTLformatlist{#1}%

}

\bibglscontributor

\bibglscontributor{⟨forenames⟩}{⟨von-part⟩}{⟨surname⟩}{⟨suffix⟩}

This is usedwhen bibtex-contributor-fields is set. The definition depends on contributor
-order. Note that if you have multiple resource sets, that option governs the way bib2gls’s
version of \bibglscontributor behaves. The definition is written to the .glstex using
\providecommand, so LATEX will only pick up the first definition.

\bibglshashchar

\bibglshashchar

Expands to a literal hash character (#).

\bibglsunderscorechar

\bibglsunderscorechar

Expands to a literal underscore character (_).

\bibglsdollarchar

\bibglsdollarchar

Expands to a literal dollar character ($).

\bibglsampersandchar

\bibglsampersandchar

Expands to a literal ampersand character (&).

228

6 Provided Commands

\bibglscircumchar

\bibglscircumchar

Expands to a literal circumflex character (^).

229

7 Converting Existing .tex to .bib
If you have already been using the glossaries or glossaries-extra package with a large file con-
taining all your definitions using commands like \newglossaryentry, then you can use the
supplementary tool convertgls2bib to convert the definitions to the .bib format required
by bib2gls. The syntax is:

convertgls2bib [⟨options⟩] ⟨tex file⟩ ⟨bib file⟩

where ⟨tex file⟩ is the .tex file and ⟨bib file⟩ is the .bib file. This application is less secure
than bib2gls as it doesn’t use kpsewhich to check openin_any and openout_any. Take
care not to accidentally overwrite existing .bib files as there’s no check to determine if ⟨bib
file⟩ already exists.

The ⟨options⟩ are:

--texenc ⟨encoding⟩ The character encoding of the .tex file. If omitted, the operating
system’s default encoding is assumed (or the JVM’s).

--bibenc ⟨encoding⟩ The character encoding of the .bib file. If omitted, the same encoding
as the .tex file is assumed.

--space-sub ⟨replacement⟩ The .bib format doesn’t allow spaces in labels. If your original
definitions in your .tex file have spaces, use this option to replace spaces in labels.
Each space will be substituted with ⟨replacement⟩. The cross-referencing fields, see,
seealso and alias, will also be adjusted, but any references using \gls etc will have
to be substituted manually (or use a global search and replace in your text editor). If
you want to strip the spaces, use an empty string for ⟨replacement⟩. You’ll need to
delimit this according to your operating system. For example:

gls2bib --space-sub '' entries.tex entries.bib

--ignore-sort Ignore the sort field. This is the default since bib2gls can work out a
more intuitive sort value than either makeindex or xindy.

--no-ignore-sort Don’t ignore the sort field.

--silent Suppress all messages except for errors.

--verbose Display messages and warnings (default).

--debug Display debugging messages (stack traces and other information in addition to
--verbose).

230

7 Converting Existing .tex to .bib

--help or -h Display help message and quit.

--version or -v Display version information and quit.

This application recognises the commands listed below. Avoid any overly complicated
code within the .tex file. The TEX parser library isn’t a TEX engine! The .tex file doesn’t
need to be a complete document, but if you want certain commands recognised from pack-
ages that the TEX parser library supports, you’ll need to include \usepackage in the .tex
file. In all cases below, if ⟨key=value list⟩ contains

see=[\seealsoname]{⟨label(s)⟩}

this will be substituted with

seealso={⟨label(s)⟩}

For example:

\newterm[see={[\seealsoname]goose}]{duck}

will be written as

@index{duck,
seealso = {goose}

}

(The seealso key is provided by glossaries-extra v1.16+.)
Additionally, if ⟨key=value list⟩ contains

type={\glsdefaulttype}

then this field will be ignored. (This type value is recommended in ⟨key=value list⟩ when
loading files with \loadglsentries[⟨type⟩]{⟨file⟩} to allow the optional argument to set the
type. With bib2gls you can use the type option instead.)

7.1 \glsexpandfields
The base glossaries package provides:

\glsexpandfields

If present, this instructs convertgls2bib to expand all fields except for those explicitly
identified by \glssetnoexpandfield. Remember that there aremany commands that aren’t
recognised by convertgls2bib so it may not be possible to correctly expand field values.
Conversely, there are some commands that will be expanded by convertgls2bib that aren’t
expandable in TEX (such as \MakeUppercase and \char).

231

7 Converting Existing .tex to .bib

7.2 \glsnoexpandfields
The base glossaries package provides:

\glsnoexpandfields

If present, this instructs convertgls2bib to not expand fields unless explicitly identified by
\glssetexpandfield.

7.3 \glssetexpandfield
The base glossaries package provides:

\glssetexpandfield{⟨field⟩}

If present, this instructs convertgls2bib to expand the given field, even if \glsnoexpand-
fields has been used.

7.4 \glssetnoexpandfield
The base glossaries package provides:

\glssetnoexpandfield{⟨field⟩}

If present, this instructs convertgls2bib to not expand the given field, even if \glsexpand-
fields has been used. Unlike the default behaviour with the glossaries package, there are
no fields switched explicitly switched off by default with convertgls2bib.

7.5 \newglossaryentry
The base glossaries package provides:

\newglossaryentry{⟨label⟩}{⟨key=value list⟩}

This is converted to:

@entry{⟨label⟩,
⟨key=value list⟩

}

\newentry is recognised as a synonym of \newglossaryentry.

232

7 Converting Existing .tex to .bib

7.6 \provideglossaryentry
The base glossaries package provides:

\provideglossaryentry{⟨label⟩}{⟨key=value list⟩}

This is converted to:

@entry{⟨label⟩,
⟨key=value list⟩

}

but only if ⟨label⟩ hasn’t already been defined.

7.7 \longnewglossaryentry
The base glossaries package provides:

\longnewglossaryentry{⟨label⟩}{⟨key=value list⟩}{⟨description⟩}

This is converted to:

@entry{⟨label⟩,
⟨key=value list⟩,
description = {⟨description⟩}

}

The starred version provided by the glossaries-extra package is also recognised. The un-
starred version strips trailing spaces from ⟨description⟩. (This doesn’t add \nopostdesc, but
glossaries-extra defaults to nopostdot.)

7.8 \longprovideglossaryentry
The base glossaries package provides:

\longprovideglossaryentry{⟨label⟩}{⟨key=value list⟩}{⟨description⟩}

As above, but only if ⟨label⟩ hasn’t already been defined.

7.9 \newterm
The base glossaries package provides:

\newterm[⟨key=value list⟩]{⟨label⟩}

(when the index option is used).
This is converted to:

233

7 Converting Existing .tex to .bib

@index{⟨label⟩,
⟨key=value list⟩

}

if the optional argument is present, otherwise it’s just converted to:

@index{⟨label⟩}

If --space-sub is used and ⟨label⟩ contains one or more spaces, then name will be set if
not included in ⟨key=value list⟩. For example, if entries.bib contains

\newterm{sea lion}
\newterm[seealso={sea lion}]{seal}

then

gls2bib --space-sub '-' entries.bib entries.tex

will write the terms to entries.tex as

@index{sea-lion,
name = {sea lion}

}

@index{seal,
seealso = {sea-lion}

}

whereas just

gls2bib entries.bib entries.tex

will write the terms to entries.tex as

@index{sea lion}

@index{seal,
seealso = {sea lion}

}

which will cause a problem when the .bib file is parsed by bib2gls (and will probably also
cause a problem for bibliographic management systems).

234

7 Converting Existing .tex to .bib

7.10 \newabbreviation
The glossaries-extra package provides:

\newabbreviation[⟨key=value list⟩]{⟨label⟩}{⟨short⟩}{⟨long⟩}

This is converted to:

@abbreviation{⟨label⟩,
short = {⟨short⟩},
long = {⟨long⟩},
⟨key=value list⟩

}

if the optional argument is present, otherwise it’s converted to:

@abbreviation{⟨label⟩,
short = {⟨short⟩},
long = {⟨long⟩}

}

7.11 \newacronym
The base glossaries package provides:

\newacronym[⟨key=value list⟩]{⟨label⟩}{⟨short⟩}{⟨long⟩}

(which is redefined by glossaries-extra to use \newabbreviation).
As above but uses @acronym instead.

7.12 \glsxtrnewsymbol
The glossaries-extra package provides:

\glsxtrnewsymbol[⟨key=value list⟩]{⟨label⟩}{⟨symbol⟩}

(when the symbols option is used). This is converted to:

@symbol{⟨label⟩,
name = {⟨symbol⟩}

}

if the optional argument is missing, otherwise it’s converted to:

@symbol{⟨label⟩,
name = {⟨symbol⟩},
⟨key=value list⟩

}

235

7 Converting Existing .tex to .bib

unless ⟨key=value list⟩ contains the name field, in which case it’s converted to:

@symbol{⟨label⟩,
⟨key=value list⟩

}

\newsym is recognised as a synonym for \glsxtrnewsymbol.

7.13 \glsxtrnewnumber
The glossaries-extra package provides:

\glsxtrnewnumber[⟨key=value list⟩]{⟨label⟩}

(when the numbers option is used). This is converted to:

@number{⟨label⟩,
name = {⟨label⟩}

}

if the optional argument is missing, otherwise it’s converted to:

@number{⟨label⟩,
name = {⟨label⟩},
⟨key=value list⟩

}

if name isn’t listed in ⟨key=value list⟩, otherwise it’s converted to:

@number{⟨label⟩,
⟨key=value list⟩

}

\newnum is recognised as a synonym for \glsxtrnewnumber.

7.14 \newdualentry

\newdualentry[⟨key=value list⟩]{⟨label⟩}{⟨short⟩}{⟨long⟩}{⟨description⟩}

This command isn’t provided by either glossaries or glossaries-extra but is used as an example
in the glossaries user manual [10] and in the sample file sample-dual.tex that accompanies
the glossaries package. Since this command seems to be used quite a bit (given the number
of times it crops up on sites like TEX on StackExchange), convertgls2bib also supports it
unless this command is defined using \newcommand or \renewcommand in the input file. In
which case the default definition will be overridden.

If the command definition isn’t overridden, then it’s converted to

236

https://tex.stackexchange.com/

7 Converting Existing .tex to .bib

@dualabbreviationentry{⟨label⟩,
short = {⟨short⟩},
long = {⟨long⟩},
description = {⟨description⟩},
⟨key=value list⟩

}

if ⟨key=value list⟩ is supplied, otherwise it’s converted to:

@dualabbreviationentry{⟨label⟩,
short = {⟨short⟩},
long = {⟨long⟩},
description = {⟨description⟩}

}

For example, if the original .tex file contains

\newcommand*{\newdualentry}[5][]{%
\newglossaryentry{main-#2}{name={#4},%
text={#3\glsadd{#2}},%
description={#5},%
#1
}%
\newacronym{#2}{#3\glsadd{main-#2}}{#4}

}

\newdualentry{svm}% label
{SVM}% abbreviation
{support vector machine}% long form
{Statistical pattern recognition technique}% description

then the .bib file will contain

@entry{main-svm,
name = {support vector machine},
description = {Statistical pattern recognition technique},
text = {SVM\glsadd{svm}}

}

@acronym{svm,
short = {SVM\glsadd{main-svm}},
long = {support vector machine}

}

since \newdualentry was defined with \newcommand. However, if the original file uses
\providecommand or omits the definition of \newdualentry, then the .bib file will contain:

237

7 Converting Existing .tex to .bib

@dualabbreviationentry{svm,
short = {SVM},
description = {Statistical pattern recognition technique},
long = {support vector machine}

}

238

8 Examples
The example files described here can be found in the examples sub-directory. The .bib files
are listed first and then sample files that use the .bib data. Make sure you have the latest
versions of glossaries, mfirstuc, glossaries-extra and bib2gls if youwant to try these out. (The
sample-media.tex file requires at least datatool v2.28.) If you get any undefined control
sequence or undefined style errors then you need to update your TEX distribution. Use the
--group switch when invoking bib2gls for all these examples if you want the glossaries
divided into groups. The set of system calls for the document build in the examples below
may require an extra LATEX run to ensure the PDF bookmarks are up-to-date when hyperref
is used.

These files are just examples of how to use bib2gls. There are other ways of defining
similar entries and sometimes alternatives are suggested. Use the code here as a starting
point if you need data like this and adapt it to a format appropriate for your requirements.

no-interpret-preamble.bib
The no-interpret-preamble.bib file contains command definitions used in some of the
name fields. Although these commands aren’t used explicitly in the document, they need to
be defined when the names are displayed in the document (typically in the glossary). These
commands aremuch like the \sortop command described on 150 and need to be hidden from
bib2gls’s interpreter. This file doesn’t contain any entry definitions and must be loaded
first with interpret-preamble={false}. The interpret-preamble.bib or interpret
-preamble2.bib file can then be loaded to provide alternative definitions for bib2gls’s
interpreter.

The first command is

\sortname{⟨first name(s)⟩}{⟨surname⟩}

This is used in the name fields for entries containing information about a person. The aim
here is for bib2gls to sort according to ⟨surname⟩, ⟨first name(s)⟩ but for the glossary to
display ⟨first name(s)⟩ ⟨surname⟩. For names with a “von” part, there’s another command:

\sortvonname{⟨first name(s)⟩}{⟨von⟩}{⟨surname⟩}

which has a similar purpose. The third command is

\sortart{⟨article⟩}{⟨text⟩}

239

8 Examples

This is the same as \sortname but is designed for titles, phrases or sentences that start with
an article (such as “a” or “the”). Although it has the same definition as \sortname in this file,
in the interpreted files the article part is omitted to completely ignore them in the sorting.
The fourth command is

\sortmediacreator{⟨first name(s)⟩}{⟨surname⟩}

which again is functionally the same as \sortname.
The names could be specified using BIBTEX’s syntax instead with bibtex-contributor

-fields to convert it, but the aim here is to show a variety of ways to use bib2gls. For
an example of bibtex-contributor-fields, see the way the cast field in films.bib is
dealt with.

Although the file only contains ASCII characters, it starts with an encoding line to prevent
bib2gls from searching the entire file for it. (That’s not so much of an issue with a short
file, but may cause an unnecessary delay for much longer files.)

The contents of no-interpret-preamble.bib are as follows:
% Encoding: UTF-8

@preamble{"\providecommand{\sortname}[2]{#1 #2}
\providecommand{\sortvonname}[3]{#1 #2 #3}
\providecommand{\sortart}[2]{#1 #2}
\providecommand{\sortmediacreator}[2]{#1 #2}"}

interpret-preamble.bib
This provides definitions of \sortname, \sortvonname, \sortart and \sortmediacreator
in @preamble that can be picked up by the interpreter and used during sorting. Note that in
this case \sortart is defined to ignore the article to completely ignore it from sorting. If you
happen to have “a ⟨something⟩” and “the ⟨something⟩” where the ⟨something⟩s are identical,
you may want to append the article to disambiguate them.

The contents of interpret-preamble.bib are as follows:
% Encoding: UTF-8

@preamble{"\providecommand{\sortname}[2]{#2, #1}
\providecommand{\sortvonname}[3]{#2 #3, #1}
\providecommand{\sortart}[2]{#2}
\providecommand{\sortmediacreator}[2]{#2, #1}"}

interpret-preamble2.bib
An alternative to interpret-preamble.bib with a different definition of \sortmedia-
creator. This uses \renewcommand instead of \providecommand so write-preamble=
{false} is required to prevent LATEX from picking up the definitions.

240

8 Examples

The contents of interpret-preamble2.bib are as follows:
% Encoding: UTF-8

@preamble{"\providecommand{\sortname}[2]{#2, #1}
\providecommand{\sortvonname}[3]{#2 #3, #1}
\providecommand{\sortart}[2]{#2}
\renewcommand{\sortmediacreator}[2]{\MakeLowercase{#2}}"}

constants.bib
The constants.bib file contains mathematical constants. These all use a custom entry type
@constant, which must be aliased otherwise the entries will all be ignored. The entries all
have custom fields, which also need to be aliased. For example

entry-type-aliases={constant=entry},
field-aliases={

constantname=name,
constantsymbol=symbol,
definition=description,
identifier=category,
value=user1

}

This setting means that, for example,

@constant{root2,
constantname={Pythagoras' constant},
constantsymbol={\ensuremath{\surd2}},
definition={the square root of 2},
value={1.41421},
identifier={constant}

}

is treated as though it was defined as

@entry{root2,
name={Pythagoras' constant},
symbol={\ensuremath{\surd2}},
description={the square root of 2},
user1={1.41421},
category={constant}

}

This use of custom fields and entry types allows more flexibility. For example, I may have
another document that uses the same .bib file but requires a different definition, for example:

241

8 Examples

@number{root2,
description={Pythagoras' constant},
name={\ensuremath{\surd2}}

}

which can be obtained with

entry-type-aliases={constant=number},
field-aliases={

constantname=description,
constantsymbol=name

}

Since the other custom fields haven’t be aliased, they’re ignored.
The custom fields are: identifier (set to constant for all the entries), constantname

(the constant’s name), definition (a definition of the constant), value (the approximate
numeric value of the constant), constantsymbol (the symbolic representation of the con-
stant) and alternative (alternative symbol). There are three entries that don’t have the
custom value field: zero and one (the exact value is in the constantsymbol field in both
cases) and imaginary (where there’s no real number value).

I’ve provided some commands in the @preamble for constants that are represented by
Latin and Greek letters. These can be defined in the document before the resource set if
different notation required. The upright Greek commands require the upgreek package.

If it’s likely that there may be a need to sort according to definition, then it would be
better to use \sortart describe above:

@constant{root2,
constantname={Pythagoras' constant},
constantsymbol={\ensuremath{\surd2}},
definition={\sortart{the}{square root of 2}},
value={1.41421},
identifier={constant}

}

Remember that this would need no-interpret-preamble.bib to ensure the command is
recognised in the document.

The contents of constants.bib are as follows:
% Encoding: UTF-8

% Requires upgreek.sty

@preamble{"\providecommand{\constanti}{\mathrm{i}}
\providecommand{\constantj}{\mathrm{j}}
\providecommand{\constante}{\mathrm{e}}
\providecommand{\constantpi}{\uppi}
\providecommand{\constantgamma}{\upgamma}

242

8 Examples

\providecommand{\constantphi}{\upphi}
\providecommand{\constantlambda}{\uplambda}"}

@constant{pi,
constantname={pi},
constantsymbol={\ensuremath{\constantpi}},
definition={the ratio of the length of the circumference

of a circle to its diameter},
value={3.14159},
identifier={constant}

}

@constant{eulercons ,
constantname={Euler's constant},
constantsymbol={\ensuremath{\constantgamma}},
definition={the limit of \[\sum_{r=1}^n\frac{1}{r}-\ln n\]

as $n\to\infty$},
value={0.57721},
identifier={constant}

}

@constant{e,
constantname={Euler's number},
constantsymbol={\ensuremath{\constante}},
definition={base of natural logarithms},
value={2.71828},
identifier={constant}

}

@constant{root2,
constantname={Pythagoras ' constant},
constantsymbol={\ensuremath{\surd2}},
definition={the square root of 2},
value={1.41421},
identifier={constant}

}

@constant{goldenratio ,
constantname={golden ratio},
constantsymbol={\ensuremath{\constantphi}},
definition={the ratio $\frac{1+\surd5}{2}$},
value={1.61803},
identifier={constant}

}

@constant{aperysconstant ,

243

8 Examples

constantname={Ap\'ery's constant},
constantsymbol={\ensuremath{\zeta(3)}},
definition={a special value of the Riemann zeta function},
value={1.2020569},
identifier={constant}

}

@constant{conwaysconstant ,
constantname={Conway's constant},
constantsymbol={\ensuremath{\constantlambda}},
definition={the invariant growth rate of all derived strings},
value={1.30357},
identifier={constant}

}

@constant{zero,
constantname={zero},
constantsymbol={\ensuremath{0}},
definition={nothing or nil},
identifier={constant}

}

@constant{one,
constantname={one},
constantsymbol={\ensuremath{1}},
definition={single entity, unity},
identifier={constant}

}

@constant{imaginary ,
constantname={imaginary unit},
constantsymbol={\ensuremath{\constanti}},
definition={defined as $\constanti^2 = -1$},
identifier={constant},
alternative={\ensuremath{\constantj}}

}

chemicalformula.bib
The chemicalformula.bib file contains chemical formulae. Each entry has a field that uses
\ce provided by mhchem so the document will need to load that package. Since all resource
files must be loaded in the preamble, it’s possible to ensure that the package is loaded using:

@preamble{"\usepackage{mhchem}"}

However, it’s best just to load it in the document otherwise it won’t be available before the

244

8 Examples

.glstex file has been loaded. Also, glossaries (and therefore glossaries-extra) must be loaded
after hyperref, which usually needs to be loaded last somost packages should be loaded before
glossaries-extra. Instead, I’ve just put a comment in the .bib file as a reminder.

All entries are defined using a custom entry type @chemical. This must be aliased us-
ing entry-type-aliases or the entries will be ignored. For example, to make @chemical
behave like @symbol:

entry-type-aliases={chemical=symbol}

Remember that with the @symbol type, if the sort field is omitted bib2gls will fallback on
the label by default. It can be changed to fallback on the name field instead using symbol
-sort-fallback={name}. This will require the use of the interpreter if the name contains a
command but bib2gls recognises the mhchem package and has a limited ability to interpret
\ce. If @chemical is changed to @entry instead then the fallback for the sort will be the
entry’s name.

All entries only contain custom fields, which will all be ignored by bib2gls unless defined
or aliased: identifier, which is set to chemical for all entries, formula, which set to the
chemical formula, and chemicalname, which set to the chemical name. This allows the
flexibility of determining whether the name or symbol field should contain the chemical
formula on a per-resource basis. For example:

field-aliases={formula=name,chemicalname=description}

or

field-aliases={chemicalname=name,formula=symbol}

The contents of chemicalformula.bib are as follows:
% Encoding: UTF-8

% requires mhchem.sty

@chemical{H2O,
formula={\ce{H2O}},
chemicalname={water},
identifier={chemical}

}

@chemical{Al2SO43,
formula={\ce{Al2(SO4)3}},
chemicalname={aluminium sulfate},
identifier={chemical}

}

@chemical{CH3CH2OH,
formula={\ce{CH3CH2OH}},
chemicalname={ethanol},

245

8 Examples

identifier={chemical}
}

@chemical{C6H12O6,
formula={\ce{C6H12O6}},
chemicalname={glucose},
identifier={chemical}

}

@chemical{CH2O,
formula={\ce{CH2O}},
chemicalname={formaldehyde},
identifier={chemical}

}

@chemical{H3O+,
formula={\ce{H3O+}},
chemicalname={hydronium},
identifier={chemical}

}

@chemical{SO42-,
formula={\ce{SO4^{2-}}},
chemicalname={sulfate},
identifier={chemical}

}

@chemical{O2,
formula={\ce{O2}},
chemicalname={dioxygen},
identifier={chemical}

}

@chemical{O,
formula={\ce{O}},
chemicalname={oxygen},
identifier={chemical}

}

@chemical{OF2,
formula={\ce{OF2}},
chemicalname={oxygen difluoride},
identifier={chemical}

}

@chemical{O2F2,

246

8 Examples

formula={\ce{O2F2}},
chemicalname={dioxygen difluoride},
identifier={chemical}

}

@chemical{OH-,
formula={\ce{OH-}},
chemicalname={hydroxide ion},
identifier={chemical}

}

@chemical{AlF3,
formula={\ce{AlF3}},
chemicalname={aluminium trifluoride},
identifier={chemical}

}

@chemical{Al2CoO4,
formula={\ce{Al2CoO4}},
chemicalname={cobalt blue},
identifier={chemical}

}

@chemical{As4S4,
formula={\ce{As4S4}},
chemicalname={tetraarsenic tetrasulfide},
identifier={chemical}

}

@chemical{C5H4NCOOH,
formula={\ce{C5H4NCOOH}},
chemicalname={niacin},
identifier={chemical}

}

@chemical{C10H10O4,
formula={\ce{C10H10O4}},
chemicalname={ferulic acid},
identifier={chemical}

}

@chemical{C8H10N4O2,
formula={\ce{C8H10N4O2}},
chemicalname={caffeine},
identifier={chemical}

}

247

8 Examples

@chemical{SO2,
formula={\ce{SO2}},
chemicalname={sulfur dioxide},
identifier={chemical}

}

@chemical{S2O72-,
formula={\ce{S2O7^{2-}}},
chemicalname={disulfate ion},
identifier={chemical}

}

@chemical{SbBr3,
formula={\ce{SbBr3}},
chemicalname={antimony(III) bromide},
identifier={chemical}

}

@chemical{Sc2O3,
formula={\ce{Sc2O3}},
chemicalname={scandium oxide},
identifier={chemical}

}

@chemical{Zr3PO44,
formula={\ce{Zr3(PO4)4}},
chemicalname={zirconium phosphate},
identifier={chemical}

}

@chemical{ZnF2,
formula={\ce{ZnF2}},
chemicalname={zinc fluoride},
identifier={chemical}

}

bacteria.bib
The bacteria.bib file contains bacteria abbreviations. These all use the @abbreviation
entry type with a short and long field.

The entries all have a custom field identifier set to bacteria. This will be ignored by
bib2gls unless it’s defined using \glsaddkey or \glsaddstoragekey or if it’s aliased with
field-aliases.

The contents of bacteria.bib are as follows:

248

8 Examples

% Encoding: UTF-8

@abbreviation{cbotulinum ,
short={C.~botulinum},
long={Clostridium botulinum},
identifier={bacteria}

}

@abbreviation{pputida,
short={P.~putida},
long={Pseudomonas putida},
identifier={bacteria}

}

@abbreviation{cperfringens ,
short={C.~perfringens},
long={Clostridium perfringens},
identifier={bacteria}

}

@abbreviation{bsubtilis ,
short={B.~subtilis},
long={Bacillus subtilis},
identifier={bacteria}

}

@abbreviation{ctetani,
short={C.~tetani},
long={Clostridium tetani},
identifier={bacteria}

}

@abbreviation{pcomposti ,
short={P.~composti},
long={Planifilum composti},
identifier={bacteria}

}

@abbreviation{pfimeticola ,
short={P.~fimeticola},
long={Planifilum fimeticola},
identifier={bacteria}

}

@abbreviation{cburnetii ,
short={C.~burnetii},

249

8 Examples

long={Coxiella burnetii},
identifier={bacteria}

}

@abbreviation{raustralis ,
short={R.~australis},
long={Rickettsia australis},
identifier={bacteria}

}

@abbreviation{rrickettsii ,
short={R.~rickettsii},
long={Rickettsia rickettsii},
identifier={bacteria}

}

baseunits.bib
The baseunits.bib file contains base SI units. The entries are all defined using the custom
@unit entry type. This must be aliased with entry-type-aliases otherwise bib2gls will
ignore all the entries. For example

entry-type-aliases={unit=symbol}

will make bib2gls treat the entries as though they were defined using @symbol. (Remember
that @symbol entry types use the label as the fallback field for sort.)

The entries all have custom fields unitname, unitsymbol and measurement, one of which
must be aliased or copied to name. The others may be aliased or copied to symbol and
description as required. The unitsymbol fields all use \si provided by the siunitx pack-
age, so that package must be loaded in the document. This is one of the small number of
packages recognised by bib2gls, so it’s possible to sort according to the symbol if required.

The entries also all have a custom field identifier set to baseunit. This will be ignored
by bib2gls unless it’s defined using \glsaddkey or \glsaddstoragekey or if it’s aliased
with field-aliases.

The contents of baseunits.bib are as follows:
% Encoding: UTF-8

% requires siunix.sty

@unit{ampere,
unitname={ampere},
unitsymbol={\si{\ampere}},
measurement={electric current},
identifier={baseunit}

}

250

8 Examples

@unit{kilogram ,
unitname={kilogram},
unitsymbol={\si{\kilogram}},
measurement={mass},
identifier={baseunit}

}

@unit{metre,
unitname={metre},
unitsymbol={\si{\metre}},
measurement={length},
identifier={baseunit}

}

@unit{second,
unitname={second},
unitsymbol={\si{\second}},
measurement={time},
identifier={baseunit}

}

@unit{kelvin,
unitname={kelvin},
unitsymbol={\si{\kelvin}},
measurement={thermodynamic temperature},
identifier={baseunit}

}

@unit{mole,
unitname={mole},
unitsymbol={\si{\mole}},
measurement={amount of substance},
identifier={baseunit}

}

@unit{candela,
unitname={candela},
unitsymbol={\si{\candela}},
measurement={luminous intensity},
identifier={baseunit}

}

251

8 Examples

derivedunits.bib
The derivedunits.bib file is much like baseunits.bib but contains derived units and in
this case the custom entry type is @measurement must be aliased otherwise the entries will
all be ignored. The entries all have a custom field identifier set to derivedunit. This will
be ignored by bib2gls unless it’s defined using \glsaddkey or \glsaddstoragekey or if
it’s aliased with field-aliases.

The contents of derivedunits.bib are as follows:
% Encoding: UTF-8

% requires siunitx.sty

@measurement{area,
unitname={square metre},
unitsymbol={\si{\metre\squared}},
measurement={area},
identifier={derivedunit}

}

@measurement{volume,
unitname={cubic metre},
unitsymbol={\si{\metre\cubed}},
measurement={volume},
identifier={derivedunit}

}

@measurement{velocity ,
unitname={metre per second},
unitsymbol={\si{\metre\per\second}},
measurement={velocity},
identifier={derivedunit}

}

@measurement{acceleration ,
unitname={metre per second squared},
unitsymbol={\si{\metre\per\square\second}},
measurement={acceleration},
identifier={derivedunit}

}

@measurement{density,
unitname={ampere per square metre},
unitsymbol={\si{\ampere\per\square\metre}},
measurement={density},
identifier={derivedunit}

}

252

8 Examples

@measurement{luminance ,
unitname={candela per square metre},
unitsymbol={\si{\candela\per\square\metre}},
measurement={luminance},
identifier={derivedunit}

}

@measurement{specificvolume ,
unitname={cubic metre per kilogram},
unitsymbol={\si{\cubic\metre\per\kilogram}},
measurement={specific volume},
identifier={derivedunit}

}

@measurement{concentration ,
unitname={mole per cubic metre},
unitsymbol={\si{\mole\per\cubic\metre}},
measurement={concentration},
identifier={derivedunit}

}

@measurement{wavenumber ,
unitname={per metre},
unitsymbol={\si{\per\metre}},
measurement={wave number},
identifier={derivedunit}

}

people.bib
The people.bib file contains details about people. The name fields contain custom com-
mands provided in no-interpret-preamble.bib and interpret-preamble.bib. Remem-
ber that if no-interpret-preamble.bib is loaded first, the definitions provided in that file
will be the one in use in the document. The interpret-preamble.bib file then needs to be
loaded to provide the definitions for bib2gls’s interpreter.

The information for each person is supplied in an @entry type. There are some non-
standard fields: born, died and othername. These fields will be ignored unless keys are
provided (using \glsaddkey or \glsaddstoragekey) or the fields are aliased (using field
-aliases). The born and died fields have dates that are almost in the default en-GB locale
format with the JRE locale provider, but they include a tilde ~ to prevent awkward line breaks.
By default bib2gls’s interpreter converts ~ to the non-breaking space character 0xA0 which
isn’t recognised by the date format. This can easily be fixed with the --break-space switch
which will interpret ~ as a normal breakable space (0x20), so with that switch sort={date}

253

8 Examples

or sort={date-reverse} can be used on either of those fields. However, the CLDR has a
slightly different default format than the JRE for dates with en-GB, so it’s probably simplest
to actually specify the required format.

An alternative approach would be to provide a command that can be modified in the doc-
ument to adjust the date style. For example, the born field could be specified as:

born={\formatdate{13}{7}{100}{BC}}

The definition provided for the document could then be, for example:

\providecommand{\formatdate}[4]{\DTMdisplaydate{#3}{#2}{#1}{-1} #4}

(where \DTMdisplaydate is provided by the datetime2 package) and a definition could be
provided for bib2gls’s interpreter, for example:

\providecommand{\formatdate}[4]{#1/#2/#3 #4}

This would need the date format set. For example, date-sort-format={d/M/y G}.
Some of the entries, such as caesar, have a first field. In those cases the first field

is slightly different from the name field (for example, “Gaius” is omitted in caesar’s first
field). The other entries don’t have a first field. They can simply have the name copied to
first with the replicate-fields option (so that the full name is shown on first use) or
the first field can be ignored with ignore-fields (so all entries will use the text field on
first use). The replicate-override option can be used to force the name field to be copied
to the first field, even if the first field is already set. Alternatively, with replicate
-override={true} and replicate-fields={first=name}, the first field be copied to
the name field. For consistency, the first fields use the same custom commands as used in
the name field.

There’s one name with a “von” part. In this case the name field is set to

\sortvonname{Manfred}{von}{Richthofen}

whichwill come under the “V” letter group since \sortvonname is defined as ⟨von⟩ ⟨surname⟩,
⟨first name(s)⟩

If you prefer that this name should come under “R” instead, then you need to adjust the
definition of \sortvonname:

@preamble{"\providecommand{\sortname}[2]{#2, #1}
\providecommand{\sortvonname}[3]{#3, #1 #2}"}

An alternative approach would be to format the names using BIBTEX’s contributor syntax and
use bibtex-contributor-fields={name} to convert them.

There are also some synonyms provided with @index entry types that have the alias
field to redirect to the main entry. These don’t include a description or any of the other
fields as that would be redundant. All the information can be found in the main entry.

Except for the aliases, the entries have a custom field identifier set to person. This will
be ignored by bib2gls unless it’s defined using \glsaddkey or \glsaddstoragekey or if
it’s aliased with field-aliases.

The contents of people.bib are as follows:

254

8 Examples

% Encoding: UTF-8

@entry{caesar,
name={\sortname{Gaius Julius}{Caesar}},
first={\sortname{Julius}{Caesar}},
text={Caesar},
description={Roman politician and general},
born={13~July 100 BC},
died={15~March 44 BC},
identifier={person}

}

@entry{wellesley ,
name={\sortname{Arthur}{Wellesley}},
text={Wellington},
description={Anglo-Irish soldier and statesman},
born={1~May 1769 AD},
died={14~September 1852 AD},
othername={1st Duke of Wellington},
identifier={person}

}

@index{wellington ,
name={Wellington},
alias={wellesley},
identifier={person}

}

@entry{bonaparte ,
name={\sortname{Napoleon}{Bonaparte}},
text={Bonaparte},
description={French military and political leader},
born={15~July 1769 AD},
died={5~May 1821 AD},
identifier={person}

}

@entry{alexander ,
name={Alexander III of Macedon},
text={Alexander},
description={Ancient Greek king of Macedon},
born={20~July 356 BC},
died={10~June 323 BC},
othername={Alexander the Great},
identifier={person}

}

255

8 Examples

@index{alexanderthegreat ,
name={Alexander the Great},
alias={alexander},
identifier={person}

}

@entry{vonrichthofen ,
name={\sortvonname{Manfred}{von}{Richthofen}},
text={von Richthofen},
description={Prussian ace fighter pilot in the German Air Force

during World War~I},
born={2~May 1892 AD},
died={21~April 1918 AD},
othername={The Red Baron},
identifier={person}

}

@index{redbaron ,
name={\sortart{The}{Red Baron}},
alias={vonrichthofen},
identifier={person}

}

@entry{dickens,
name={\sortname{Charles}{Dickens}},
text={Dickens},
description={English writer and social critic},
born={7~February 1812 AD},
died={9~June 1870 AD},
identifier={person}

}

@entry{chandler ,
name={\sortname{Raymond}{Chandler}},
text={Chandler},
description={American-British novelist and screenwriter},
born={23~July 1888 AD},
died={26~March 1959 AD},
identifier={person}

}

@entry{hammett,
name={\sortname{Samuel Dashiell}{Hammett}},
first={\sortname{Dashiell}{Hammett}},
text={Hammett},

256

8 Examples

description={American author, screenwriter and political
activist},
born={27~May 1894 AD},
died={10~January 1961 AD},
identifier={person}

}

@entry{christie ,
name={\sortname{Dame Agatha Mary Clarissa}{Christie}},
first={\sortname{Agatha}{Christie}},
text={Christie},
othername={Lady Mallowan},
description={English crime novelist and playwright},
born={15~September 1890 AD},
died={12~January 1976 AD},
identifier={person}

}

@entry{landon,
name={\sortname{Christopher Guy}{Landon}},
first={\sortname{Christopher}{Landon}},
text={Landon},
description={British novelist and screenwriter},
born={29~March 1911 AD},
died={26~April 1961 AD},
identifier={person}

}

@entry{tolkien,
name={\sortname{John Ronald Reuel}{Tolkien}},
first={\sortname{J.R.R.}{Tolkien}},
text={Tolkien},
description={English writer, poet, philologist , and
university professor},
born={3~January 1892 AD},
died={2~September 1973 AD},
identifier={person}

}

@entry{baum,
name={\sortname{Lyman Frank}{Baum}},
first={\sortname{L.~Frank}{Baum}},
text={Baum},
description={American author},
born={15~May 1856 AD},
died={6~May 1919 AD},

257

8 Examples

identifier={person}
}

@entry{mackenzie ,
name={\sortname{Compton}{Mackenzie}},
text={Mackenzie},
description={English-born Scottish writer, cultural

commentator , raconteur and Scottish nationalist},
born={17~January 1883 AD},
died={30~November 1972 AD},
identifier={person}

}

@entry{maclean,
name={\sortname{Alistair}{MacLean}},
text={MacLean},
description={Scottish novelist},
born={21~April 1922 AD},
died={2~February 1987 AD},
identifier={person}

}

@entry{dick,
name={\sortname{Philip K.}{Dick}},
text={Dick},
description={American science fiction writer},
born={16~December 1928 AD},
died={2~March 1982 AD},
identifier={person}

}

@entry{story,
name={\sortname{Jack Trevor}{Story}},
text={Story},
description={British novelist},
born={30~March 1917 AD},
died={5~December 1991 AD},
identifier={person}

}

@entry{greene,
name={\sortname{Henry Graham}{Green}},
first={\sortname{Graham}{Greene}},
text={Green},
description={English novelist},
born={2~October 1904 AD},

258

8 Examples

died={3~April 1991 AD},
identifier={person}

}

books.bib
The books.bib file contains details about books. As above, the entries use custom commands
provided in no-interpret-preamble.bib and interpret-preamble.bib or interpret
-preamble2.bib. The entries all have a custom field identifier set to book and other
custom fields author and year. These will be ignored by bib2gls unless they’re defined
using \glsaddkey or \glsaddstoragekey or if they’re aliased with field-aliases.

There are other ways in which this data could be specified. For example, the description
field could contain a brief summary (or “log line”). The author field could use BIBTEX’s syntax
instead with bibtex-contributor-fields to convert it. Alternatively, the entries could be
defined using standard BIBTEX entry types that are all aliased to @bibtexentry.

The contents of books.bib are as follows:
% Encoding: UTF-8

@entry{ataleoftwocities ,
name={\sortart{A}{Tale of Two Cities}},
description={novel by Charles Dickens},
identifier={book},
author={\sortmediacreator{Charles}{Dickens}},
year={1859}

}

@entry{bleakhouse ,
name={Bleak House},
description={novel by Charles Dickens},
identifier={book},
author={\sortmediacreator{Charles}{Dickens}},
year={1852}

}

@entry{thebigsleep ,
name={\sortart{The}{Big Sleep}},
description={novel by Raymond Chandler},
identifier={book},
author={\sortmediacreator{Raymond}{Chandler}},
year={1939}

}

@entry{thelonggoodbye ,
name={\sortart{The}{Long Goodbye}},

259

8 Examples

description={novel by Raymond Chandler},
identifier={book},
author={\sortmediacreator{Raymond}{Chandler}},
year={1953}

}

@entry{redharvest ,
name={Red Harvest},
description={novel by Dashiell Hammett},
identifier={book},
author={\sortmediacreator{Dashiell}{Hammett}},
year={1929}

}

@entry{murderontheorientexpress ,
name={Murder on the Orient Express},
description={novel by Agatha Christie},
identifier={book},
author={\sortmediacreator{Agatha}{Christie}},
year={1934}

}

@entry{whydidnttheyaskevans ,
name={Why Didn't They Ask Evans?},
description={novel by Agatha Christie},
identifier={book},
author={\sortmediacreator{Agatha}{Christie}},
year={1934}

}

@entry{icecoldinalex ,
name={Ice Cold in Alex},
description={novel by Christopher Landon},
identifier={book},
author={\sortmediacreator{Christopher}{Landon}},
year={1957}

}

@entry{thehobbit ,
name={\sortart{The}{Hobbit}},
description={novel by J.R.R. Tolkien},
identifier={book},
author={\sortmediacreator{J.R.R.}{Tolkien}},
year={1937}

}

260

8 Examples

@entry{thelordoftherings ,
name={\sortart{The}{Lord of the Rings}},
description={novel by J.R.R. Tolkien},
identifier={book},
author={\sortmediacreator{J.R.R.}{Tolkien}},
year={1954}

}

@entry{thewonderfulwizardofoz ,
name={\sortart{The}{Wonderful Wizard of Oz}},
description={novel by L. Frank Baum},
identifier={book},
author={\sortmediacreator{L. Frank}{Baum}},
year={1900}

}

@entry{whiskygalore ,
name={Whisky Galore},
description={novel by Compton Mackenzie},
identifier={book},
author={\sortmediacreator{Compton}{Mackenzie}},
year={1947}

}

@entry{whereeaglesdare ,
name={Where Eagles Dare},
description={novel by Alistair MacLean},
identifier={book},
author={\sortmediacreator{Alistair}{MacLean}},
year={1967}

}

@entry{icestationzebra ,
name={Ice Station Zebra},
description={novel by Alistair MacLean},
identifier={book},
author={\sortmediacreator{Alistair}{MacLean}},
year={1963}

}

@entry{ubik,
name={Ubik},
description={novel by Philip K. Dick},
identifier={book},
author={\sortmediacreator{Philip K.}{Dick}},
year={1969}

261

8 Examples

}

@entry{doandroidsdreamofelectricsheep ,
name={Do Androids Dream of Electric Sheep?},
description={novel by Philip K. Dick},
identifier={book},
author={\sortmediacreator{Philip K.}{Dick}},
year={1968}

}

@entry{thetroublewithharry ,
name={\sortart{The}{Trouble with Harry}},
description={novel by Jack Trevor Story},
identifier={book},
author={\sortmediacreator{Jack Trevor}{Story}},
year={1950}

}

@entry{brightonrock ,
name={Brighton Rock},
description={novel by Graham Greene},
identifier={book},
author={\sortmediacreator{Graham}{Greene}},
year={1938}

}

films.bib
The films.bib file contains details about films. As above, the entries use custom commands
provided in no-interpret-preamble.bib and interpret-preamble.bib. The entries all
have a custom field identifier set to film and other custom fields cast, director and
year. These will be ignored by bib2gls unless they’re defined using \glsaddkey or \gls-
addstoragekey or if they’re aliased with field-aliases.

This example file references entries defined in books.bib through the use of the special
ext1. prefix. To avoid a label conflict films.bib prefixes all labels with film. rather than
relying on label-prefix. This ensures that both books.bib and films.bib can be loaded
in the same resource set (otherwise they’d have to be loaded in separate resource sets with
different prefixes). Remember that you can use \glsxtrnewgls. For example:

\glsxtrnewgls{film.}{\film}

This means you can do, for example, just \film{bladerunner} if you want to reference a
film without worrying about the prefix.

As with all the example files, there are other ways in which to specify the data, depending
on your requirements. For example, the director field could use BIBTEX’s contributor syntax

262

8 Examples

(as the cast field does). Some of the films actually had more than one director but only one
is listed per film in this sample file for simplicity. Similarly, the cast field only contains the
principle actors rather than the complete list. The book on which the film is based could be
contained in a cross-reference field or a custom basedon field.

The book “Do Androids Dream of Electric Sheep?” referenced at the end of the “Blade
Runner” film’s description ends with a question mark. (Similarly for “Why Didn’t They
Ask Evans?”) If the description field is simply set as:

description={a film starring Harrison Ford, Rutger Hauer
and Sean Young loosely based on the novel
\gls{ext1.doandroidsdreamofelectricsheep}},

then the postdot package option will produce an odd result as the inserted full stop immedi-
ately follows the question mark. This is an awkward situation. One possibility is to explicitly
put the full stop at the end of the description field for all the other entries and omit it for
the problematic entries, but this interferes with the possibility of a category-dependent post-
description hook.

Another option is to put \nopostdesc in the problematic entries. For example:

description={a film starring Harrison Ford, Rutger Hauer
and Sean Young loosely based on the novel
\gls{ext1.doandroidsdreamofelectricsheep}\nopostdesc},

Be careful with this as it will completely suppress the post-description hook. A third possi-
bility is to use \glsxtrnopostpunc instead:

description={a film starring Harrison Ford, Rutger Hauer
and Sean Young loosely based on the novel
\gls{ext1.doandroidsdreamofelectricsheep}\glsxtrnopostpunc},

This doesn’t interfere with the post-description hook but if a hook is provided the post-
punctuationmay then be required. In both of the above two cases, strip-trailing-nopost
could be used to remove the suppression commands from the description fields if a hook
is defined. However this doesn’t deal with hooks that only conditionally append text.

The best solution is with glossaries-extra v1.23+ which provides \glsxtrrestorepost-
punc for use in the category post-description hooks that counter-acts \glsxtrnopostpunc.
This can be placed inside a conditional, as used in sample-media.tex, and does nothing if
\glsxtrnopostpunc doesn’t occur in the description field. (Note that \glsxtrrestore-
postpunc can’t be used to counter-act \nopostdesc, since that completely suppresses the
hook.)

The contents of films.bib are as follows:
% Encoding: UTF-8

@entry{film.thebigsleep ,
name={\sortart{The}{Big Sleep}},
description={a film based on the novel

263

8 Examples

\gls{ext1.thebigsleep}},
cast={Humphrey Bogart and Lauren Bacall},
identifier={film},
year={1946},
director={\sortmediacreator{Howard}{Hawks}}

}

@entry{film.thelonggoodbye ,
name={\sortart{The}{Long Goodbye}},
description={a film based on the novel
\gls{ext1.thelonggoodbye}},

cast={Elliott Gould and Nina van Pallandt},
identifier={film},
year={1973},
director={\sortmediacreator{Robert}{Altman}}

}

@entry{film.murderontheorientexpress ,
name={Murder on the Orient Express},
description={a film based on the novel
\gls{ext1.murderontheorientexpress}},

cast={Albert Finney and Lauren Bacall and Ingrid Bergman},
identifier={film},
director={\sortmediacreator{Sidney}{Lumet}},
year={1974}

}

@entry{film.whydidnttheyaskevans ,
name={Why Didn't They Ask Evans?},
description={a film based on the novel
\gls{ext1.whydidnttheyaskevans}\glsxtrnopostpunc},

cast={Francesca Annis and John Gielgud and Bernard Miles},
identifier={film},
director={\sortmediacreator{John}{Davies}},
year={1980}

}

@entry{film.icecoldinalex ,
name={Ice Cold in Alex},
description={a film based on the novel
\gls{ext1.icecoldinalex}},

cast={John Mills and Anthony Quayle and Sylvia Sims},
identifier={film},
year={1958},
director={\sortmediacreator{J. Lee}{Thompson}}

}

264

8 Examples

@entry{film.anunexpectedjourney ,
name={\sortart{The}{Hobbit}:
\sortart{An}{Unexpected Journey}},

description={a film based on the novel \gls{ext1.thehobbit}},
cast={Martin Freeman and Ian McKellen and Richard Armitage},
identifier={film},
year={2012},
director={\sortmediacreator{Peter}{Jackson}}

}

@entry{film.desolationofsmaug ,
name={\sortart{The}{Hobbit}:
\sortart{The}{Desolation of Smaug}},

description={a film based on the novel
\gls{ext1.thehobbit}},

cast={Ian McKellen and Martin Freeman and Richard Armitage},
identifier={film},
year={2013},
director={\sortmediacreator{Peter}{Jackson}}

}

@entry{film.thebattleoffivearmies ,
name={\sortart{The}{Hobbit}:
\sortart{The}{Battle of Five Armies}},

description={a film based on the novel
\gls{ext1.thehobbit}},

cast={Ian McKellen and Martin Freeman and Richard Armitage},
identifier={film},
year={2014},
director={\sortmediacreator{Peter}{Jackson}}

}

@entry{film.thefellowshipofthering ,
name={\sortart{The}{Lord of the Rings}:
\sortart{The}{Fellowship of the Ring}},

description={a film based on the novel
\gls{ext1.thelordoftherings}},

cast={Elijah Wood and Ian McKellen and Orlando Bloom},
identifier={film},
year={2001},
director={\sortmediacreator{Peter}{Jackson}}

}

@entry{film.thetwotowers ,
name={\sortart{The}{Lord of the Rings}:

265

8 Examples

\sortart{The}{Two Towers}},
description={a film based on the novel
\gls{ext1.thelordoftherings}},

cast={Elijah Wood and Ian McKellen and Viggo Mortensen},
identifier={film},
year={2002},
director={\sortmediacreator{Peter}{Jackson}}

}

@entry{film.thereturnoftheking ,
name={\sortart{The}{Lord of the Rings}:
\sortart{The}{Return of the King}},

description={a film based on the novel
\gls{ext1.thelordoftherings}},

cast={Elijah Wood and Viggo Mortensen and Ian McKellen},
identifier={film},
year={2003},
director={\sortmediacreator{Peter}{Jackson}}

}

@entry{film.thewizardofoz ,
name={\sortart{The}{Wizard of Oz}},
description={a film based on the novel
\gls{ext1.thewonderfulwizardofoz}},
cast={Judy Garland},
identifier={film},
year={1939},
director={\sortmediacreator{Victor}{Fleming}}

}

@entry{film.whiskygalore ,
name={Whisky Galore!},
description={a film based on the novel
\gls{ext1.whiskygalore}},

cast={Basil Radford and Joan Greenwood},
identifier={film},
year={1949},
director={\sortmediacreator{Alexander}{Mackendrick}}

}

@entry{film.whereeaglesdare ,
name={Where Eagles Dare},
description={a film based on the novel
\gls{ext1.whereeaglesdare}},

cast={Richard Burton and Clint Eastwood and Mary Ure},
identifier={film},

266

8 Examples

year={1968},
director={\sortmediacreator{Brian G.}{Hutton}}

}

@entry{film.icestationzebra ,
name={Ice Station Zebra},
description={a film based on the novel
\gls{ext1.icestationzebra}},

cast={Rock Hudson and Ernest Borgnine},
identifier={film},
year={1968},
director={\sortmediacreator{John}{Sturges}}

}

@entry{film.bladerunner ,
name={Blade Runner},
description={a film loosely based on the novel
\gls{ext1.doandroidsdreamofelectricsheep}\glsxtrnopostpunc},

cast={Harrison Ford and Rutger Hauer and Sean Young},
identifier={film},
year={1982},
director={\sortmediacreator{Ridley}{Scott}}

}

@entry{film.thetroublewithharry ,
name={\sortart{The}{Trouble with Harry}},
description={a film based on the novel
\gls{ext1.thetroublewithharry}},

cast={John Forsythe and Shirley MacLaine},
identifier={film},
year={1955},
director={\sortmediacreator{Alfred}{Hitchcock}}

}

@entry{film.brightonrock ,
name={Brighton Rock},
description={a film based on the novel
\gls{ext1.brightonrock}},

cast={Richard Attenborough and Hermione Baddeley
and William Hartnell},

identifier={film},
year={1947},
director={\sortmediacreator{John}{Boutling}}

}

267

8 Examples

mathgreek.bib
The mathgreek.bib file contains Greek letters for use in maths mode. These are all defined
use @symbol, which means that by default the sort field will be obtained from the label
not from the name field. However, if you want to sort by the name field (for example, with
sort-field={name}) the TEX parser library recognises all the mathematical Greek letter
commands provided in the LATEX kernel. Additionally it recognises \omicron which isn’t
provided by LATEX (the symbol can be reproduced with a lower case Latin “o”). Note that
glossaries-extra-bib2gls (glossaries-extra v1.27+) provides all the missing Greek letters (such
as \omicron).

The .bib file could just use o:

@symbol{omicron,
name={\ensuremath{o}},
description={omicron},
identifier={mathgreek}

}

but this means that if bib2gls sorts according to the name field using a letter sort, this entry
will come before all the other Greek letters since the character “o” has Unicode value 0x6F
whereas, for example, mathematical italic small alpha (α) has Unicode value 0x1D6FC. This
means that for sorting purposes it’s better to use \omicron:

@symbol{omicron,
name={\ensuremath{\omicron}},
description={omicron},
identifier={mathgreek}

}

but LATEX needs a definition for this, so it’s provided in the @preamble:

@preamble{"\providecommand{\omicron}{o}"}

(With glossaries-extra v1.27+, this is no longer needed.) The TEX parser library and glossaries
-extra-bib2gls similarly provide the missing upper case Greek letters, and these can be dealt
with in the same way.

The contents of mathgreek.bib are as follows:
% Encoding: UTF-8

@preamble{"\providecommand{\omicron}{o}"}

@symbol{alpha,
name={\ensuremath{\alpha}},
description={alpha},
identifier={mathgreek}

}

268

8 Examples

@symbol{beta,
name={\ensuremath{\beta}},
description={beta},
identifier={mathgreek}

}

@symbol{gamma,
name={\ensuremath{\gamma}},
description={gamma},
identifier={mathgreek}

}

@symbol{delta,
name={\ensuremath{\delta}},
description={delta},
identifier={mathgreek}

}

@symbol{varepsilon ,
name={\ensuremath{\varepsilon}},
description={epsilon (variant)},
identifier={mathgreek}

}

@symbol{zeta,
name={\ensuremath{\zeta}},
description={zeta},
identifier={mathgreek}

}

@symbol{eta,
name={\ensuremath{\eta}},
description={eta},
identifier={mathgreek}

}

@symbol{theta,
name={\ensuremath{\theta}},
description={theta},
identifier={mathgreek}

}

@symbol{iota,
name={\ensuremath{\iota}},

269

8 Examples

description={iota},
identifier={mathgreek}

}

@symbol{kappa,
name={\ensuremath{\kappa}},
description={kappa},
identifier={mathgreek}

}

@symbol{lambda,
name={\ensuremath{\lambda}},
description={lambda},
identifier={mathgreek}

}

@symbol{mu,
name={\ensuremath{\mu}},
description={mu},
identifier={mathgreek}

}

@symbol{nu,
name={\ensuremath{\nu}},
description={nu},
identifier={mathgreek}

}

@symbol{xi,
name={\ensuremath{\xi}},
description={xi},
identifier={mathgreek}

}

@symbol{omicron,
name={\ensuremath{\omicron}},
description={omicron},
identifier={mathgreek}

}

@symbol{pi,
name={\ensuremath{\pi}},
description={pi},
identifier={mathgreek}

}

270

8 Examples

@symbol{rho,
name={\ensuremath{\rho}},
description={rho},
identifier={mathgreek}

}

@symbol{varsigma ,
name={\ensuremath{\varsigma}},
description={sigma (variant)},
identifier={mathgreek}

}

@symbol{sigma,
name={\ensuremath{\sigma}},
description={sigma},
identifier={mathgreek}

}

@symbol{tau,
name={\ensuremath{\tau}},
description={tau},
identifier={mathgreek}

}

@symbol{upsilon,
name={\ensuremath{\upsilon}},
description={upsilon},
identifier={mathgreek}

}

@symbol{varphi,
name={\ensuremath{\varphi}},
description={phi (variant)},
identifier={mathgreek}

}

@symbol{chi,
name={\ensuremath{\chi}},
description={chi},
identifier={mathgreek}

}

@symbol{psi,
name={\ensuremath{\psi}},
description={psi},
identifier={mathgreek}

271

8 Examples

}

@symbol{omega,
name={\ensuremath{\omega}},
description={omega},
identifier={mathgreek}

}

@symbol{epsilon,
name={\ensuremath{\epsilon}},
description={epsilon},
identifier={mathgreek}

}

@symbol{vartheta ,
name={\ensuremath{\vartheta}},
description={theta (variant)},
identifier={mathgreek}

}

@symbol{varkappa ,
name={\ensuremath{\varkappa}},
description={kappa (variant)},
identifier={mathgreek}

}

@symbol{phi,
name={\ensuremath{\phi}},
description={phi},
identifier={mathgreek}

}

@symbol{varrho,
name={\ensuremath{\varrho}},
description={rho (variant)},
identifier={mathgreek}

}

@symbol{varpi,
name={\ensuremath{\varpi}},
description={pi (variant)},
identifier={mathgreek}

}

272

8 Examples

bigmathsymbols.bib
The bigmathsymbols.bib file contains mathematical symbols that have a large version in
display mode. As with mathgreek.bib the entries are defined using @symbol. This example
file requires the stix package as not all of the commands are provided by the LATEX kernel.
This file also has a preamble:

@preamble{"\providecommand{\bigoperatornamefmt}[1]{%
$\displaystyle#1\textstyle#1$}

\providecommand{\nary}[1]{$#1$-ary}"}

The first command \bigoperatornamefmt is used in the name field to display both the in-
line and display versions of the symbol. The TEX parser library only has a limited ability to
interpret this as not all the symbols have Unicode in-line and large versions. In some cases,
such as the integral symbol

∫
only has a small version. (A large version would require con-

struction from 0x2320, 0x23AE and 0x2321, which is too complicated in this context.) How-
ever, the interpreter works well enough to guess at the widest name if set-widest is used.
There’s no advantage in sorting according to the name field here, as the Unicode symbols are
scattered about different blocks. Better approaches are to sort according to document use
(sort={use}) or to sort according to the description field.

The other custom command is \nary to provide semantic markup for “n-ary”. This could
be defined without an argument:

\providecommand{\nary}{n-ary}

but providing an argument will allow \nary{n} to work with first letter uppercasing in the
event that the description field has a case-change applied (otherwise it would end up as
“N -ARY”).

As with the other sample .bib files, each entry is given a custom identifier field, which
by default will be ignored. In this case, identifier is either set to naryoperator (for n-ary
operators) or integral for integrals.

The contents of bigmathsymbols.bib are as follows:
% Encoding: UTF-8

% requires stix.sty

@preamble{"\providecommand{\bigoperatornamefmt}[1]{%
$\displaystyle#1\textstyle#1$}

\providecommand{\nary}[1]{$#1$-ary}"}

@symbol{bigsqcap ,
name={\bigoperatornamefmt{\bigsqcap}},
text={\bigsqcap},
description={\nary{n} square intersection operator},
identifier={naryoperator}

}

273

8 Examples

@symbol{bigsqcup ,
name={\bigoperatornamefmt{\bigsqcup}},
text={\bigsqcup},
description={\nary{n} square union operator},
identifier={naryoperator}

}

@symbol{sum,
name={\bigoperatornamefmt{\sum}},
text={\sum},
description={\nary{n} summation},
identifier={naryoperator}

}

@symbol{prod,
name={\bigoperatornamefmt{\prod}},
text={\prod},
description={\nary{n} product},
identifier={naryoperator}

}

@symbol{coprod,
name={\bigoperatornamefmt{\coprod}},
text={\coprod},
description={\nary{n} coproduct},
identifier={naryoperator}

}

@symbol{bigcap,
name={\bigoperatornamefmt{\bigcap}},
text={\bigcap},
description={\nary{n} intersection},
identifier={naryoperator}

}

@symbol{bigcup,
name={\bigoperatornamefmt{\bigcup}},
text={\bigcup},
description={\nary{n} union},
identifier={naryoperator}

}

@symbol{bigodot,
name={\bigoperatornamefmt{\bigodot}},
text={\bigodot},

274

8 Examples

description={\nary{n} circled dot operator},
identifier={naryoperator}

}

@symbol{bigoplus ,
name={\bigoperatornamefmt{\bigoplus}},
text={\bigoplus},
description={\nary{n} circled plus operator},
identifier={naryoperator}

}

@symbol{bigotimes ,
name={\bigoperatornamefmt{\bigotimes}},
text={\bigotimes},
description={\nary{n} circled times operator},
identifier={naryoperator}

}

@symbol{biguplus ,
name={\bigoperatornamefmt{\biguplus}},
text={\biguplus},
description={\nary{n} union operator with plus},
identifier={naryoperator}

}

@symbol{bigvee,
name={\bigoperatornamefmt{\bigvee}},
text={\bigvee},
description={\nary{n} logical or},
identifier={naryoperator}

}

@symbol{bigwedge ,
name={\bigoperatornamefmt{\bigwedge}},
text={\bigwedge},
description={\nary{n} logical and},
identifier={naryoperator}

}

@symbol{int,
name={\bigoperatornamefmt{\int}},
text={\int},
description={integral},
identifier={integral}

}

275

8 Examples

@symbol{iint,
name={\bigoperatornamefmt{\iint}},
text={\iint},
description={double integral},
identifier={integral}

}

@symbol{iiint,
name={\bigoperatornamefmt{\iiint}},
text={\iiint},
description={triple integral},
identifier={integral}

}

@symbol{oint,
name={\bigoperatornamefmt{\oint}},
text={\oint},
description={contour integral},
identifier={integral}

}

@symbol{oiint,
name={\bigoperatornamefmt{\oiint}},
text={\oiint},
description={surface integral},
identifier={integral}

}

@symbol{oiiint,
name={\bigoperatornamefmt{\oiiint}},
text={\oiiint},
description={volume integral},
identifier={integral}

}

mathsrelations.bib
The mathsrelations.bib file contains mathematical relational symbols. These use the
maths shift character $ in the name field and just the symbol in the text field. This just il-
lustrates an alternative way of defining symbols. Since \ensuremath isn’t used, commands
\gls must be explicitly placed in maths mode. For example, \gls{leq} rather than sim-
ply \gls{leq}. The custom identifier field is set to relation.

The contents of mathsrelations.bib are as follows:
% Encoding: UTF-8

276

8 Examples

@symbol{leq,
name={\leq},
text={\leq},
description={less than or equal to},
identifier={relation}

}

@symbol{less,
name={$<$},
text={<},
description={less than},
identifier={relation}

}

@symbol{ll,
name={\ll},
text={\ll},
description={much less than},
identifier={relation}

}

@symbol{geq,
name={\geq},
text={\geq},
description={greater than or equal to},
identifier={relation}

}

@symbol{greater,
name={$>$},
text={>},
description={greater than},
identifier={relation}

}

@symbol{gg,
name={\gg},
text={\gg},
description={much greater than},
identifier={relation}

}

@symbol{equals,
name={$=$},
text={=},
description={equals},

277

8 Examples

identifier={relation}
}

@symbol{neq,
name={\neq},
text={\neq},
description={not equals},
identifier={relation}

}

@symbol{approx,
name={\approx},
text={\approx},
description={approximately},
identifier={relation}

}

@symbol{in,
name={\in},
text={\in},
description={in},
identifier={relation}

}

@symbol{ni,
name={\ni},
text={\ni},
description={not in},
identifier={relation}

}

binaryoperators.bib
The binaryoperators.bib file containsmathematical binary operators. The format ismuch
like the above mathsrelations.bibfile. The custom identifierfield is set to binaryoperator.

The contents of binaryoperators.bib are as follows:
% Encoding: UTF-8

@symbol{plus,
name={$+$},
text={+},
description={addition},
identifier={binaryoperator}

}

278

8 Examples

@symbol{minus,
name={$-$},
text={-},
description={subtraction},
identifier={binaryoperator}

}

@symbol{times,
name={\times},
text={\times},
description={multiplication},
identifier={binaryoperator}

}

@symbol{div,
name={\div},
text={\div},
description={division},
identifier={binaryoperator}

}

unaryoperators.bib
The unaryoperators.bibfile containsmathematical unary operators. This again uses @symbol
to define the symbols, but in this case \ensuremath is used in the name field and there’s no
text field. I’ve also used \mathord to ensure the symbol is treated as a unary (rather than
binary) operator, except for the \forall entry which is already defined as an ordinary maths
symbol.

The contents of unaryoperators.bib are as follows:
% Encoding: UTF-8

@symbol{factorial ,
name={\ensuremath{\mathord{!}}},
description={factorial},
identifier={unary}

}

@symbol{unaryplus ,
name={\ensuremath{\mathord{+}}},
description={plus},
identifier={unary}

}

@symbol{unaryminus ,
name={\ensuremath{\mathord{-}}},

279

8 Examples

description={minus},
identifier={unary}

}

@symbol{forall,
name={\ensuremath{\forall}},
description={for all},
identifier={unary}

}

mathsobjects.bib
The mathsobjects.bib file contains entries related to mathematical objects (sets, spaces,
vectors and matrices). This provides some custom formatting commands in the preamble:

\setfmt{⟨symbol⟩}

which is used to format ⟨symbol⟩ as a set,

\setcontentsfmt{⟨contents⟩}

which is used to format the set contents,

\setmembershipfmt{⟨variable(s)⟩}{⟨condition⟩}

which is used to format the set membership criteria,

\setcardfmt{⟨maths⟩}

which is used to format the cardinality of a set,

\numspacefmt{⟨symbol⟩}

which is used to format ⟨symbol⟩ as a number space,

\transposefmt{⟨maths⟩}

which is used to format matrix and vector transposes,

\invfmt{⟨maths⟩}

which is used to format inverses,

\vecfmt{⟨symbol⟩}

which is used to format ⟨symbol⟩ as a vector and

\mtxfmt{⟨symbol⟩}

280

8 Examples

which is used to format ⟨symbol⟩ as a matrix. These commands are intended for use with
\glsxtrfmt, but \setmembershipfmt causes a problem as it has two arguments and \gls-
xtrfmt requires the control sequence to have exactly one argument. This means employing
a little trick. A command with just one argument is provided:

\setmembershiponeargfmt{{⟨variable(s)⟩}{⟨condition⟩}}

that requires the actual two arguments to be supplied inside #1. The outer grouping is re-
moved and the two-argument \setmembershipfmt command is applied:

\providecommand{\setmembershiponeargfmt}[1]{\setmembershipfmt#1}

This means that the entry needs to be referenced in the document using:

\glsxtrfmt{setmembership}{{⟨variable(s)⟩}{⟨condition⟩}}

The simplest thing to do here is to provide a wrapper command in the document, for example:

\newcommand*{\setmembership}[2]{\glsxtrfmt{setmembership}{{#1}{#2}}}

Now this can be used as

\setmembership{⟨variable(s)⟩}{⟨condition⟩}

There are essentially two types of entry defined in this file: entries that demonstrate the
formatting for the objects and entries that represent specific objects. In the first case there’s
a custom format field that’s set to the control sequence name of the relevant semantic com-
mand. If this field is defined or aliased then it can be usedwith \glsxtrfmt (as in the example
above).

In both cases there’s a custom identifierfield that reflects the type of object: numberspace
for number spaces, set for sets, matrix for matrices or vectors.

Be careful with the set cardinality example. Remember that nested links cause problems
and the glossaries-extra manual advises against using commands like \gls or \glsxtrfmt
within link text and that includes within the ⟨text⟩ argument of \glsxtrfmt. See sample
-maths.tex for suggested usage.

Some of the description fields use \sortart, so no-interpret-preamble.bib and
interpret-preamble.bib are also needed.

The contents of mathsobjects.bib are as follows:
% Encoding: UTF-8

% requires amssymb.sty

@preamble{"\providecommand{\setfmt}[1]{\mathcal{#1}}
\providecommand{\setcontentsfmt}[1]{\{#1\}}
\providecommand{\setmembershipfmt}[2]{\setcontentsfmt{#1: #2}}
\providecommand{\setmembershiponeargfmt}[1]{\setmembershipfmt#1}
\providecommand{\setcardfmt}[1]{\lvert#1\rvert}
\providecommand{\numspacefmt}[1]{\mathbb{#1}}

281

8 Examples

\providecommand{\transposefmt}[1]{#1^T}
\providecommand{\invfmt}[1]{#1^{-1}}
\providecommand{\vecfmt}[1]{\boldsymbol{#1}}
\providecommand{\mtxfmt}[1]{\boldsymbol{#1}}"}

@symbol{set,
name={\ensuremath{\setfmt{S}}},
description={\sortart{a}{set}},
format={setfmt},
identifier={set}

}

@symbol{setcontents ,
name={\ensuremath{\setcontentsfmt{\ldots}}},
description={set contents},
format={setcontentsfmt},
identifier={set}

}

@symbol{setmembership ,
name={\ensuremath{\setmembershipfmt{\vecfmt{x}}{\ldots}}},
description={set membership},
format={setmembershiponeargfmt},
identifier={set}

}

@symbol{setcard,
name={\ensuremath{\setcardfmt{\setfmt{S}}}},
description={\sortart{the}{cardinality of \setfmt{S}}},
format={setcardfmt},
identifier={set}

}

@symbol{numberspace ,
name={\ensuremath{\numspacefmt{S}}},
description={\sortart{a}{number space}},
format={numspacefmt},
identifier={numberspace}

}

@symbol{naturalnumbers ,
name={\ensuremath{\numspacefmt{N}}},
description={\sortart{the}{set of natural numbers}},
identifier={numberspace}

}

282

8 Examples

@symbol{integernumbers ,
name={\ensuremath{\numspacefmt{Z}}},
description={\sortart{the}{set of integers}},
identifier={numberspace}

}

@symbol{rationalnumbers ,
name={\ensuremath{\numspacefmt{Q}}},
description={\sortart{the}{set of rational numbers}},
identifier={numberspace}

}

@symbol{algebraicnumbers ,
name={\ensuremath{\numspacefmt{A}}},
description={\sortart{the}{set of algebraic numbers}},
identifier={numberspace}

}

@symbol{realnumbers ,
name={\ensuremath{\numspacefmt{R}}},
description={\sortart{the}{set of real numbers}},
identifier={numberspace}

}

@symbol{imaginarynumbers ,
name={\ensuremath{\numspacefmt{I}}},
description={\sortart{the}{set of imaginary numbers}},
identifier={numberspace}

}

@symbol{complexnumbers ,
name={\ensuremath{\numspacefmt{C}}},
description={\sortart{the}{set of complex numbers}},
identifier={numberspace}

}

@symbol{emptyset ,
name={\ensuremath{\emptyset}},
description={\sortart{the}{empty set}},
identifier={set}

}

@symbol{universalset ,
name={\ensuremath{\setfmt{U}}},
description={\sortart{the}{universal set}},
identifier={set}

283

8 Examples

}

@symbol{transpose ,
name={\ensuremath{\transposefmt{\vecfmt{x}}}},
description={\sortart{the}{transpose of \vecfmt{x}}},
format={transposefmt},
identifier={matrix}

}

@symbol{inverse,
name={\ensuremath{\invfmt{\mtxfmt{M}}}},
description={\sortart{the}{inverse of \mtxfmt{M}}},
format={invfmt},
identifier={matrix}

}

@symbol{vector,
name={\ensuremath{\vecfmt{v}}},
description={\sortart{a}{vector}},
format={vecfmt},
identifier={matrix}

}

@symbol{matrix,
name={\ensuremath{\mtxfmt{M}}},
description={\sortart{a}{matrix}},
format={mtxfmt},
identifier={matrix}

}

@symbol{0vec,
name={\ensuremath{\vecfmt{0}}},
description={\sortart{the}{vector of 0s}},
identifier={matrix}

}

@symbol{1vec,
name={\ensuremath{\vecfmt{1}}},
description={\sortart{the}{vector of 1s}},
identifier={matrix}

}

@symbol{identitymatrix ,
name={\ensuremath{\mtxfmt{I}}},
description={\sortart{the}{identity matrix}},
identifier={matrix}

284

8 Examples

}

miscsymbols.bib
The miscsymbols.bib file contains text symbols provided by the marvosym and ifsym pack-
ages. The ifsym package needs to be loaded with the weather option to provide the weather
commands. Unfortunately both packages define \Sun and \Lightning, which causes a con-
flict. See sample-textsymbols.tex for a workaround. Alternatively, you can load ifsym
without the weather option and use the internal definition of ifsym’s \Sun and \Lightning
commands:

@icon{sun,
icon={\textweathersymbol{16}},
description={sunny},
identifier={weather}

}

@icon{lightning,
icon={\textweathersymbol{26}},
description={thunderstorm},
identifier={weather}

}

This removes the conflict, and \Sun and \Lightning are as defined by marvosym.
This file uses a custom entry type @icon, which must be aliased to a recognised entry

identifier otherwise the entries will all be ignored. For example:

entry-type-aliases={icon=symbol}

There are three types of symbols defined: media controls, information and weather. They
have the custom identifier field set to mediacontrol, information and weather, re-
spectively. There are two other custom fields: icon and icondescription. These will need
to be aliased to name and description.

Neither of these packages are recognised by bib2gls, which means that set-widest
won’t be able to determine the widest name nor is this data suitable for sorting according to
the icon field (or its alias). Instead, either sort by label (which is the default for @symbol) or
by the description. If youwant to use one of the alttree styles you can still use set-widest,
but it will have to use the fallback command. Alternatively, you can omit set-widest and
explicitly use \glsFindWidestTopLevelName.

The contents of miscsymbols.bib are as follows:
% Encoding: UTF-8

% requires marvosym.sty and ifsym.sty

285

8 Examples

@icon{forward,
icon={\Forward},
icondescription={play},
identifier={mediacontrol}

}

@icon{forwardtoindex ,
icon={\ForwardToIndex},
icondescription={next track},
identifier={mediacontrol}

}

@icon{rewindtoindex ,
icon={\RewindToIndex},
icondescription={back to start of track},
identifier={mediacontrol}

}

@icon{rewind,
icon={\Rewind},
icondescription={rewind},
identifier={mediacontrol}

}

@icon{bicycle,
icon={\Bicycle},
icondescription={bicycle route},
identifier={information}

}

@icon{coffeecup ,
icon={\Coffeecup},
icondescription={caf\'e},
identifier={information}

}

@icon{info,
icon={\Info},
icondescription={information centre},
identifier={information}

}

@icon{gentsroom ,
icon={\Gentsroom},
icondescription={Gents},
identifier={information}

286

8 Examples

}

@icon{ladiesroom ,
icon={\Ladiesroom},
icondescription={Ladies},
identifier={information}

}

@icon{wheelchair ,
icon={\Wheelchair},
icondescription={wheelchair access provided},
identifier={information}

}

@icon{football ,
icon={\Football},
icondescription={football stadium},
identifier={information}

}

@icon{recycling ,
icon={\Recycling},
icondescription={recycling centre},
identifier={information}

}

@icon{cloud,
icon={\Cloud},
icondescription={cloudy},
identifier={weather}

}

@icon{fog,
icon={\Fog},
icondescription={foggy},
identifier={weather}

}

@icon{thinfog,
icon={\ThinFog},
icondescription={misty},
identifier={weather}

}

@icon{hail,
icon={\Hail},

287

8 Examples

icondescription={hail},
identifier={weather}

}

@icon{sun,
icon={\Sun},
icondescription={sunny},
identifier={weather}

}

@icon{lightning ,
icon={\Lightning},
icondescription={thunderstorm},
identifier={weather}

}

@icon{suncloud ,
icon={\SunCloud},
icondescription={overcast},
identifier={weather}

}

@icon{raincloud ,
icon={\RainCloud},
icondescription={rain},
identifier={weather}

}

@icon{weakraincloud ,
icon={\WeakRainCloud},
icondescription={drizzle},
identifier={weather}

}

@icon{snowcloud ,
icon={\SnowCloud},
icondescription={snow},
identifier={weather}

}

markuplanguages.bib
The markuplanguages.bib file includes a mixture of @entry and @abbreviation defini-
tions. A custom command is provided in @preamble to tag the letters in the long field that
are used to form the abbreviation. This simply does its argument and is provided in case it’s

288

8 Examples

not set up in the document. If you dowant to enable tagging using \GlsXtrEnableInitial-
Tagging, remember that this command must be used before the abbreviations are defined,
which means before the resource file is input with \GlsXtrLoadResources. Similarly, the
abbreviation style must be set before the abbreviations are defined.

For convenience @string is also used to define a .bib variable, whichmay be appended to
fields using the .bib concatenation character #. As with the other sample .bib files, there’s
a custom field identifier which will be ignored unless defined or aliased.

The empty braces at the start some of the fields are there to protect against first letter
uppercasing, where it might cause a problem.

The contents of markuplanguages.bib are as follows:
% Encoding: UTF-8

@preamble{"\providecommand{\abbrvtag}[1]{#1}"}
@string{markuplang="\abbrvtag{m}arkup \abbrvtag{l}anguage"}

@entry{TeX,
name={{}\TeX},
description={a format for describing complex type and page layout

often used for mathematics , technical , and academic publications},
identifier={markuplanguage}

}

@entry{LaTeX,
name={{}\LaTeX},
description={a format of \glstext{TeX} designed to separate
content from style},

identifier={markuplanguage}
}

@entry{markdown ,
name={markdown},
description={a lightweight markup language with plain text

formatting syntax},
identifier={markuplanguage}

}

@abbreviation{xml,
short={XML},
long={e\abbrvtag{x}tensible }#markuplang ,
description={a markup language that defines a set of rules for

encoding documents},
identifier={markuplanguage}

}

@abbreviation{html,

289

8 Examples

short={HTML},
long={\abbrvtag{h}yper\abbrvtag{t}ext }#markuplang ,
description={the standard markup language for creating web pages},
identifier={markuplanguage}

}

@abbreviation{mathml,
short={MathML},
long={\abbrvtag{m\NoCaseChange{ath}}ematical }#markuplang ,
description={the standard markup language for creating web pages},
identifier={markuplanguage}

}

@abbreviation{xhtml,
short={XHTML},
long={e\abbrvtag{x}tensible \abbrvtag{h}yper\abbrvtag{t}ext }

markuplang ,
description={{}\glstext{xml} version of \glstext{html}},
identifier={markuplanguage}

}

@abbreviation{svg,
short={SVG},
long={\abbrvtag{s}calable \abbrvtag{v}ector \abbrvtag{g}raphics},
description={{}\glstext{xml}-based vector image format},
identifier={markuplanguage}

}

usergroups.bib
The usergroups.bib file requires either XƎLATEX or LuaLATEX as some of the entry labels use
non-ASCII characters. This file has a mixture of @abbreviation and @index entries. It also
uses @string for convenience and provides a custom command \dash in @preamble. Each
entry is the name of a TEX user group: the international TEXUsers Group (TUG) and all the lo-
cal groups. Most of them have an abbreviated name, so they’re definedwith @abbreviation.
There are a few without an abbreviation, so they’re defined with @index instead. There’s one
alias. (The information was obtained from TUG’s user groups page [13].)

As with the other examples, there are some custom fields which will be ignored if they
aren’t defined or aliased: identifier (set to texusergroup), language (a comma-separated
list of language tags) and translation (provides a translation if the user group name isn’t
in English).

Not all entries have a translation field. It it’s omitted, then the user group name is in
English, otherwise it’s in the first language listed in the language field. Most of the language
tags are just the ISO 639-1 language code, but a few of them include the ISO 3166-1 region

290

http://tug.org/usergroups.html

8 Examples

code as well.
The contents of usergroups.bib are as follows:

% Encoding: UTF-8

% Requires XeLaTeX/LuaLaTeX for non-ASCII labels

@string{tug={\TeX\ Users Group}}

@preamble{"\providecommand{\dash}{\,---\,}"}

@abbreviation{TUG,
short={TUG},
long=tug,
language={en},
identifier={texusergroup}

}

@abbreviation{bgTeX,
short={bgTeX},
long={Bulgarian \LaTeX\ Users Group},
language={bg},
identifier={texusergroup}

}

@abbreviation{latex-br,
short={latex-br},
long={Grupo de Usuários},
language={pt-BR},
identifier={texusergroup},
translation={Brazilian }#tug

}

@abbreviation{CTeX,
short={CTeX},
long={Chinese \TeX\ Society},
identifier={texusergroup},
language={zh}

}

@abbreviation{CSTUG,
short={CSTUG},
long={Československé sdružení uživatelů TeXu, z.~s.},
language={cs},
identifier={texusergroup},
translation={Czech Republic }#tug

}

291

8 Examples

@abbreviation{DANTE,
short={DANTE e.V.},
long={Deutschsprachige Anwendervereinigung \TeX\ e.V.},
language={de},
identifier={texusergroup},
translation={German Speaking }#tug

}

@abbreviation{DKTUG,
short={DK-TUG},
long={Danish }#tug,
language={da},
identifier={texusergroup}

}

@index{EUG,
name={Estonian User Group},
language={et},
identifier={texusergroup}

}

@abbreviation{CervanTeX ,
short={CervanTeX},
long={Grupo de Usuarios de \TeX\ Hispanohablantes},
language={es},
identifier={texusergroup},
translation={Spanish Speaking }#tug

}

@abbreviation{TirantloTeX ,
short={Tirant lo \TeX},
long={Catalan }#tug,
language={ca},
identifier={texusergroup}

}

@abbreviation{GUTenberg ,
short={GUTenberg},
long={Groupe francophone des utilisateurs de \TeX},
language={fr},
identifier={texusergroup},
translation={French Speaking }#tug

}

@abbreviation{UKTUG,

292

8 Examples

short={UK-TUG},
long={UK }#tug,
language={en-GB},
identifier={texusergroup}

}

@abbreviation{ɛϕτ,
short={ɛϕτ},
long={Σύλλογος Ελλήνων Φίλων του \TeX},
language={el},
identifier={texusergroup},
translation={Greek \TeX\ Friends}

}

@abbreviation{MaTeX,
short={MaTeX},
long={Magyar \TeX\ Egyesület},
language={hu},
identifier={texusergroup},
translation={Hungarian }#tug

}

@abbreviation{ITALIC,
short={ITALIC},
long={Irish \TeX\ and \LaTeX\ In-print Community},
language={en-GB,en-IE},
identifier={texusergroup}

}

@abbreviation{ÍsTeX,
short={ÍsTeX},
long={Vefur íslenskra \TeX\ notenda},
language={is},
identifier={texusergroup},
translation={Icelandic }#tug

}

@abbreviation{GuIT,
short={GuIT},
long={Gruppo Utilizzatori Italiani di \TeX},
language={it},
identifier={texusergroup},
translation={Italian }#tug

}

@abbreviation{KTS,

293

8 Examples

short={KTS},
identifier={texusergroup},
long={Korean \TeX\ Society},
language={ko}

}

@index{KTUG,
alias={KTS},
identifier={texusergroup}

}

@index{LTVG,
name={Lietuvos \TeX'o Vartotojų Grupė},
language={lt},
identifier={texusergroup},
translation={Lithuanian }#tug

}

@index{mxTeX,
name={\TeX\ México},
language={es-MX},
identifier={texusergroup},
translation={Mexican }#tug

}

@abbreviation{NTG,
short={NTG},
long={Nederlandstalige \TeX\ Gebruikersgroep},
language={nl},
identifier={texusergroup},
translation={Netherlands }#tug

}

@index{NTUG,
name={Nordic \TeX\ Users Group},
language={da,et,fi,fo,is,nb,nn,sv},
identifier={texusergroup}

}

@abbreviation{GUST,
short={GUST},
long={Polska Grupa Użytkowników Systemu \TeX},
language={pl},
identifier={texusergroup},
translation={Polish }#tug

}

294

8 Examples

@abbreviation{GUTpt,
short={GUTpt},
long={Grupo de Utilizadores de \TeX},
language={pt},
identifier={texusergroup},
translation={Portuguese }#tug

}

@abbreviation{VietTUG,
short={VietTUG},
long={Vietnamese }#tug,
language={vi},
identifier={texusergroup}

}

@abbreviation{LUGSA,
short={LUGSA},
long={\LaTeX\ User Group\dash South Africa},
language={en-ZA},
identifier={texusergroup}

}

animals.bib
The animals.bib file contains entries defined using @entry. As with the above example
.bib files, there’s a custom identifier field that will be ignored unless defined or aliased.

The contents of animals.bib are as follows:
% Encoding: UTF-8

@entry{duck,
name={duck},
description={a waterbird with webbed feet},
identifier={animal}

}

@entry{parrot,
name={parrot},
description={mainly tropical bird with bright plumage},
identifier={animal}

}

@entry{goose,
name={goose},
plural={geese},

295

8 Examples

description={a large waterbird with a long neck, short legs,
webbed feet and a short broad bill},

identifier={animal}
}

@entry{swan,
name={swan},
description={a large waterbird with a long flexible neck,
short legs, webbed feet and a broad bill},

identifier={animal}
}

@entry{chicken,
name={chicken},
description={a domestic fowl},
identifier={animal}

}

@entry{aardvark ,
name={aardvark},
description={nocturnal African burrowing mammal},
identifier={animal}

}

@entry{zebra,
name={zebra},
description={wild African horse with black-and-white stripes},
identifier={animal}

}

@entry{armadillo ,
name={armadillo},
description={nocturnal insectivore with large claws},
identifier={animal}

}

@entry{zander,
name={zander},
description={large freshwater perch},
identifier={animal}

}

@entry{hedgehog ,
name={hedgehog},
description={small nocturnal mammal with a spiny coat and
short legs},

296

8 Examples

identifier={animal}
}

@entry{seal,
name={seal},
description={sea-dwelling fish-eating mammal with flippers},
identifier={animal}

}

@entry{sealion,
name={sea lion},
description={a large type of \gls{seal}},
identifier={animal}

}

minerals.bib
The minerals.bib file contains entries defined using @entry. As with the above example
.bib files, there’s a custom identifier field that will be ignored unless defined or aliased.

The contents of minerals.bib are as follows:
% Encoding: UTF-8

@entry{quartz,
name={quartz},
description={hard mineral consisting of silica},
identifier={mineral}

}

@entry{corundum ,
name={corundum},
description={crystalline form of aluminium oxide},
identifier={mineral}

}

@entry{beryl,
name={beryl},
description={composed of beryllium aluminium cyclosilicate},
identifier={mineral}

}

@entry{amethyst ,
name={amethyst},
description={purple variety of \gls{quartz}},
identifier={mineral}

}

297

8 Examples

@entry{chalcedony ,
name={chalcedony},
description={cryptocrystalline variety of \gls{quartz}},
identifier={mineral}

}

@entry{citrine,
name={citrine},
description={yellow variety of \gls{quartz}},
identifier={mineral}

}

@entry{aquamarine ,
name={aquamarine},
description={light blue variety of \gls{beryl}},
identifier={mineral}

}

@entry{aragonite ,
name={aragonite},
description={a crystal form of calcium carbonate},
identifier={mineral}

}

@entry{calcite,
name={calcite},
description={a crystal form of calcium carbonate},
identifier={mineral}

}

@entry{vaterite ,
name={vaterite},
description={a crystal form of calcium carbonate},
identifier={mineral}

}

@entry{bakerite ,
name={bakerite},
description={a borosilicate mineral},
identifier={mineral}

}

@entry{bilinite ,
name={bílinite},
description={an iron sulfate mineral},

298

8 Examples

identifier={mineral}
}

@entry{biotite,
name={biotite},
description={a common phyllosilicate mineral},
identifier={mineral}

}

@entry{cobaltite ,
name={cobaltite},
description={a sulfide mineral composed of cobalt, arsenic and
sulfur},
identifier={mineral}

}

@entry{cyanotrichite ,
name={cyanotrichite},
description={a hydrous copper aluminium sulfate mineral},
identifier={mineral}

}

@index{lettsomite ,
alias={cyanotrichite},
identifier={mineral}

}

@entry{diamond,
name={diamond},
description={a metastable allotrope of carbon},
identifier={mineral}

}

@entry{dolomite ,
name={dolomite},
description={an anhydrous carbonate mineral},
identifier={mineral}

}

@entry{quetzalcoatlite ,
name={quetzalcoatlite},
description={a rare tellurium oxysalt mineral},
identifier={mineral}

}

@entry{vulcanite ,

299

8 Examples

name={vulcanite},
description={a rare copper telluride mineral},
identifier={mineral}

}

vegetables.bib
The vegetables.bib file contains entries defined using @entry and an entry defined with
@index with just the alias field. As with the above example .bib files, there’s a custom
identifier field that will be ignored unless defined or aliased.

The contents of vegetables.bib are as follows:
% Encoding: UTF-8

@entry{cabbage,
name={cabbage},
description={vegetable with thick green or purple leaves},
identifier={vegetable}

}

@entry{brussels -sprout,
name={Brussels sprout},
description={small leafy green vegetable buds},
identifier={vegetable}

}

@entry{artichoke ,
name={artichoke},
description={a variety of thistle cultivated as food},
identifier={vegetable}

}

@entry{cauliflower ,
name={cauliflower},
description={type of cabbage with edible white flower head},
identifier={vegetable}

}

@entry{spinach,
name={spinach},
description={green, leafy vegetable},
identifier={vegetable}

}

@entry{marrow,
name={marrow},

300

8 Examples

description={long white-fleshed gourd with green skin},
identifier={vegetable}

}

@entry{courgette ,
name={courgette},
description={immature fruit of a vegetable \gls{marrow}},
identifier={vegetable}

}

@index{zucchini ,
name={zucchini},
alias={courgette},
identifier={vegetable}

}

terms.bib
The terms.bib file contains entries defined using @index. Unlike the above sample .bib
files, there are no custom fields here.

The contents of terms.bib are as follows:
% Encoding: UTF-8

@index{mineral}
@index{vegetable}
@index{animal}
@index{film}
@index{book}
@index{bacteria ,

text={bacterium},
plural={bacteria}

}
@index{chemical ,

name={chemical formula},
plural={chemical formulae}

}
@index{baseunit ,
name={base SI unit}

}
@index{derivedunit ,
name={derived SI unit}

}
@index{person,

plural={people}
}

301

8 Examples

@index{markuplanguage ,
name={markup language}

}

@index{mediacontrol ,
name={media control}

}

@index{information}

@index{weather}

@index{measurement}

sample-constants.tex
This example uses the constants.bib file. The aim here is to just have a list of all the
constants defined in the .bib file. (There are no references in the document.) This means I
need to use

selection={all}

in order to select all entries. I also need to alias the custom @constant entry type other-
wise all the entries will be ignored. I decided to make @constant behave like @number for
semantic reasons:

entry-type-aliases={constant=number}

The custom fields also need aliasing:

field-aliases={
identifier=category,
constantsymbol=name,
constantname=description,
value=user1,
definition=user2,
alternative=user3,

}

I decided to use the altlist style, so I’ve instructed bib2gls to determine the widest name:

set-widest

It’s always a good idea to specify the glossary type when using set-widest, although in
this example there’s only one glossary so it doesn’t make much difference.

type={main}

302

8 Examples

I decided to order the constants according to their (approximate) numerical value. I’ve aliased
the custom value field to user1, so I can sort by that field using a numerical comparison:

sort-field={user1},
sort={double}

There are three entries without the user1 field (as the custom value field is missing in the
.bib file): zero, one and imaginary. In the case of zero and one the exact value can be
obtained from the name field. Since I’ve change the default sort-field, I can’t use symbol
-sort-fallback. Instead I need to use

missing-sort-fallback={name}

What happens with the imaginary entry? It has no real representation. The transcript
(.glg) file shows the message:

Warning: Can't parse sort value 'i' for: imaginary

With the numerical sort methods, if the field can’t be parsed the value defaults to 0. This
means that both zero and imaginary have 0 as the sort value, so the identical-sort
-action is implemented. The default settingmeans that bib2glswill fallback on comparing
the entry labels, so imaginary comes before zero.

Since I’m just using the alttree style, I only need glossary-tree. I can improve efficiency
in the document build by preventing the other glossary style packages from being loaded
using the nostyles package option. This also prevents glossary-tree from being loaded, but
I can both load it and patch the styles with glossaries-extra-stylemods through the option
stylemods={tree}. Since the default list style is no longer available, I need to set a new
default with style={alttree}. I also want to automatically insert a full stop after the de-
scription, which can be done with postdot. Don’t forget that the record option is always
needed when using bib2gls. This means that the glossaries-extra package needs to be loaded
as follows:

\usepackage[record,nostyles,postdot,stylemods={tree},style=alttree]
{glossaries-extra}

I’ve assigned the custom constantname field to the description field and the custom
constantsymbol field to the name field. This means that by default the glossary list will
just show the symbolic representation and the constant’s name. I’d like to append the value
and definition after the description. With the base glossaries package this would require
defining a new glossary style but with glossaries-extra it can easily be achieved through the
post-description hook.

I’ve aliased the custom identifier field to category, which means that all the entries
will have the category set to constant. The post-description hook is obtained from \gls-
xtrpostdesc⟨category⟩, so I need to define the command \glsxtrpostdescconstant. A
simple definition is

303

8 Examples

\newcommand{\glsxtrpostdescconstant}{%
\space (approximately \glsentryuseri{\glscurrententrylabel})%
: \glsentryuserii{\glscurrententrylabel}%

}

This is fine if all entries have the user1 and user2 fields set. A more generic approach tests
for the existence of these fields. This can either be done with \ifglshasfield:

\newcommand{\glsxtrpostdescconstant}{%
\ifglshasfield{user1}{\glscurrententrylabel}%
{ (approximately \glscurrentfieldvalue)}%
{}%
\ifglshasfield{user2}{\glscurrententrylabel}%
{: \glscurrentfieldvalue}%
{}%

}

or with \glsxtrifhasfield:

\newcommand{\glsxtrpostdescconstant}{%
\glsxtrifhasfield{useri}{\glscurrententrylabel}%
{ (approximately \glscurrentfieldvalue)}%
{}%
\glsxtrifhasfield{userii}{\glscurrententrylabel}%
{: \glscurrentfieldvalue}%
{}%

}

(Note the need to use the internal field label useri and userii with \glsxtrifhasfield.)
A modification can be made to also show the alternative representation (obtained from the

custom alternative field which has been aliased to user3):

\newcommand{\glsxtrpostdescconstant}{%
\glsxtrifhasfield{useriii}{\glscurrententrylabel}%
{ (also denoted \glscurrentfieldvalue

\glsxtrifhasfield{useri}{\glscurrententrylabel}%
{, approximately \glscurrentfieldvalue}%
{}%

)%
}%
{%

\glsxtrifhasfield{useri}{\glscurrententrylabel}%
{ (approximately \glscurrentfieldvalue)}%
{}%

}%
\glsxtrifhasfield{userii}{\glscurrententrylabel}%

304

8 Examples

{: \glscurrentfieldvalue}%
{}%

}

The complete code is listed below. The document build is:

pdflatex sample-constants
bib2gls sample-constants
pdflatex sample-constants

The complete document is shown in figure 8.1.
\documentclass[12pt,a4paper]{article}

\usepackage[T1]{fontenc}
\usepackage{upgreek}

\usepackage[record,% use bib2gls
nostyles ,% don't load default styles
postdot,% add dot after descriptions

% load glossary-tree.sty and patch styles:
stylemods={tree},
style=alttree]{glossaries -extra}

\GlsXtrLoadResources[
src={constants},% data in constants.bib
% make @constant behave like @number
entry-type-aliases={constant=number},
field-aliases={

identifier=category ,
constantsymbol=name,
constantname=description ,
value=user1,
definition=user2,
alternative=user3

},
type=main,
set-widest,
sort-field=user1,
missing-sort-fallback=name,
sort=double,
selection=all

]

\newcommand{\glsxtrpostdescconstant}{%
\glsxtrifhasfield{useriii}{\glscurrententrylabel}%
{ (also denoted \glscurrentfieldvalue

\glsxtrifhasfield{useri}{\glscurrententrylabel}%

305

8 Examples

{, approximately \glscurrentfieldvalue}%
{}%

)%
}%
{%

\glsxtrifhasfield{useri}{\glscurrententrylabel}%
{ (approximately \glscurrentfieldvalue)}%
{}%

}%
\glsxtrifhasfield{userii}{\glscurrententrylabel}%
{: \glscurrentfieldvalue}%
{}%

}

\begin{document}
\printunsrtglossary[title={Constants}]
\end{document}

sample-chemical.tex
This example just uses the chemicalformula.bib file. The aim here is to have a list of
chemical formulae referenced in the document but not have a number list. I could use the
nonumberlist package option to suppress the number list display, but it’s more efficient to
instruct bib2gls to not save the number list with:

save-locations={false}

All entries are defined in chemicalformula.bib using a custom entry type @chemical
which needs to be aliased in order for the entries to be recognised:

entry-type-aliases={chemical=symbol}

Additionally, the entries only have custom fields, so these also need to be aliased. In this case
I want the formula in the name field and the chemical name in the description field:

field-aliases={formula=name,chemicalname=description}

The @symbol entry type falls back on the label for the sort value by default, but I’ve decided
to fallback on the name field for sorting:

symbol-sort-fallback={name}

An alternative approach would simply be to alias @chemical to @entry instead.
Since the name field contains chemical formulae rather than words, it makes more sense

to use one of the letter sort methods rather than a locale collator. In this case the names
contain mixtures of letters and numbers, so one of the letter-number sort methods (listed in
table 5.4) would be appropriate.

306

8 Examples

Constants

i imaginary unit (also denoted j): defined as i2 = −1.
0 zero: nothing or nil.
γ Euler’s constant (approximately 0.57721): the limit of

n∑
r=1

1

r
− lnn

as n→∞.
1 one: single entity, unity.
ζ(3) Apéry’s constant (approximately 1.2020569): a special value of the Rie-

mann zeta function.
λ Conway’s constant (approximately 1.30357): the invariant growth rate

of all derived strings.√
2 Pythagoras’ constant (approximately 1.41421): the square root of 2.

φ golden ratio (approximately 1.61803): the ratio 1+
√
5

2
.

e Euler’s number (approximately 2.71828): base of natural logarithms.
π pi (approximately 3.14159): the ratio of the length of the circumference

of a circle to its diameter.

1

Figure 8.1: sample-constants.pdf

307

8 Examples

I want to use the alttreegroup style (provided by glossary-tree). Since I don’t require the
other style packages, I’ve used nostyles to suppress the automatic loading and stylemods
={tree} to both load glossary-tree and patch it. The alttreegroup style needs to know the
widest name, so I’ve use set-widest for convenience. The default behaviour of the tree
styles is to format the name in bold. This is done through the command \glstreenamefmt
which is defined as:

\newcommand*{\glstreenamefmt}[1]{\textbf{#1}}

The group headings use \glstreegroupheaderfmt which defaults to \glstreenamefmt.
Since I want to keep bold headings, I need to redefine this as well:

\renewcommand*{\glstreenamefmt}[1]{#1}
\renewcommand*{\glstreegroupheaderfmt}[1]{\textbf{#1}}

(For a more compact layout, you could use mcolalttreegroup instead.)
The complete code is listed below. The document build is:

pdflatex sample-chemical
bib2gls --group sample-chemical
pdflatex sample-chemical

The complete document is shown in figure 8.2.
\documentclass[a4paper]{article}

\usepackage[T1]{fontenc}
\usepackage[version=4]{mhchem}
\usepackage[record,% use bib2gls
nostyles ,% don't load default styles
stylemods={tree},% load glossary-tree and patch styles
style=alttreegroup]{glossaries -extra}

\GlsXtrLoadResources[
src={chemicalformula},% definitions in chemicalformula.bib
entry-type-aliases={chemical=symbol},
field-aliases={formula=name,chemicalname=description},
symbol-sort-fallback=name,% use name field as fallback for sort
sort=letternumber -case,% case-sensitive letter-number sort
set-widest,% needed for alttree styles
save-locations=false% don't create location lists

]

\renewcommand*{\glstreenamefmt}[1]{#1}
\renewcommand*{\glstreegroupheaderfmt}[1]{\textbf{#1}}

\begin{document}
\section{Sample}

308

8 Examples

Reference Entries: \gls{Al2SO43}, \gls{H2O}, \gls{C6H12O6},
\gls{CH3CH2OH}, \gls{CH2O}, \gls{OF2}, \gls{O2F2}, \gls{SO42-},
\gls{H3O+}, \gls{OH-}, \gls{O2}, \gls{AlF3}, \gls{O},
\gls{Al2CoO4}, \gls{As4S4}, \gls{C10H10O4}, \gls{C5H4NCOOH},
\gls{C8H10N4O2}, \gls{SO2}, \gls{S2O72-}, \gls{SbBr3},
\gls{Sc2O3}, \gls{Zr3PO44}, \gls{ZnF2}.

\printunsrtglossary
\end{document}

sample-bacteria.tex
This example just uses the bacteria.bib file. The aim here is to have a simple list of the
bacteria referenced in the document. Bacteria names are often shown in the long form on
first use (without the short form) and then the short form on subsequent use. This can easily
be done with the long-only-short-only style. Bacteria are usually typeset in italic. It’s best to
create a semantic command for this:
\newcommand{\bacteriafont}[1]{\emph{#1}}

There are two methods to apply this to the bacteria entries. The first is to redefine the for-
matting commands used by the long-only-short-only style:
\renewcommand*{\glsabbrvonlyfont}[1]{\bacteriafont{#1}}
\renewcommand*{\glslongonlyfont}[1]{\bacteriafont{#1}}

This is fine if I don’t intend to use this style for other types of abbreviations. However, I may
decide to extend the document at a later date to include other abbreviations that need long-
only-short-only but shouldn’t be emphasized. This can be done through the use of category
attributes. The font used for the name in the glossary is governed by the glossnamefont
attribute, the font used for the description in the glossary is governed by the glossdescfont
attribute and the font used by commands like \gls in the document is governed by the
textformat attribute (glossaries-extra v1.21+). So if I set the category to bacteria then I
can do:
\setabbreviationstyle[bacteria]{long-only-short-only}
\glssetcategoryattribute{bacteria}{textformat}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossnamefont}{bacteriafont}

and (if the description field is displayed in the glossary):
\glssetcategoryattribute{bacteria}{glossdescfont}{bacteriafont}

(Note that the attribute value is the control sequence name without the initial backslash.)
I’d like to use the bookindex style, which is provided by the glossary-bookindex package.1

This isn’t loaded automatically, but it can be loaded through the stylemods package option:
1glossary-bookindex is distributed with glossaries-extra v1.21+.

309

8 Examples

1 Sample
Reference Entries: Al2(SO4)3, H2O, C6H12O6, CH3CH2OH, CH2O, OF2, O2F2,
SO4

2– , H3O+, OH– , O2, AlF3, O, Al2CoO4, As4S4, C10H10O4, C5H4NCOOH,
C8H10N4O2, SO2, S2O7

2– , SbBr3, Sc2O3, Zr3(PO4)4, ZnF2.

Glossary

A

AlF3 aluminium trifluoride
Al2(SO4)3 aluminium sulfate
Al2CoO4 cobalt blue
As4S4 tetraarsenic tetrasulfide

C

CH2O formaldehyde
CH3CH2OH ethanol
C5H4NCOOH niacin
C6H12O6 glucose
C8H10N4O2 caffeine
C10H10O4 ferulic acid

H

H2O water
H3O+ hydronium

O

O oxygen
OF2 oxygen difluoride
OH– hydroxide ion
O2 dioxygen
O2F2 dioxygen difluoride

S

SO2 sulfur dioxide
SO4

2– sulfate
S2O7

2– disulfate ion
SbBr3 antimony(III) bromide
Sc2O3 scandium oxide

Z

ZnF2 zinc fluoride
Zr3(PO4)4 zirconium phosphate

1

Figure 8.2: sample-chemical.pdf

310

8 Examples

\usepackage[record,% use bib2gls
nostyles,% don't load default style packages
stylemods={bookindex},% load glossary-bookindex.sty and patch styles
style=mcolindexgroup]{glossaries-extra}

I’ve used the nostyles package option to suppress loading the default style packages, since
I’m not using them. If you inspect the .log file, you may notice that glossary-tree is still
loaded. This is because it’s required by glossary-bookindex as the bookindex style is based on
the index style provided by glossary-tree.

The bookindex style doesn’t show the description field (which means I don’t need the
glossdescfont attribute) and, since the long-only-short-only style sets the name to the short
form by default, only the short form will show in the glossary. I’d rather it was just the long
form. This could simply be done using replicate-fields to copy the long field to the
name field:

replicate-fields={long=name}

Again, I want to consider the possibility of adding other types of abbreviations and this might
not be appropriate for them (for example, I mightwant some abbreviationswith the long form
followed by the short form in parentheses). Another approach is to redefine \glsxtrbook-
indexname which is used by the bookindex style to display the name. This takes the entry’s
label as the argument. The default definition is:

\newcommand*{\glsxtrbookindexname}[1]{\glossentryname{#1}}

This can be changed to test for the entry’s category:

\renewcommand*{\glsxtrbookindexname}[1]{%
\glsifcategory{#1}{bacteria}
{\glossentrynameother{#1}{long}}%
{\glossentryname{#1}}%

}

Note that I’ve used \glossentrynameother here rather than \glsentrylong. This ensures
that it follows the same formatting as \glossentryname (so it will use \glsnamefont or the
glossnamefont attribute, the glossname attribute, and the post-name hook, if set). In this case
it picks up the glossnamefont attribute, which is used instead of \glsnamefont.

If the sort field is missing for abbreviation styles, the fallback value is the short field (not
the name field). In this case it would be better to fallback on the long field instead, which
can be done with the abbreviation-sort-fallback option:

abbreviation-sort-fallback=long

If I do add other types of abbreviations, they will all be sorted according to the long form,
but at least this way I can have some ⟨long⟩ (⟨short⟩) names as well.

The complete code is listed below. The document build is:

311

8 Examples

pdflatex sample-bacteria
bib2gls --group sample-bacteria
pdflatex sample-bacteria

This simple example only references entries on the first page so all entries just have 1 in the
number list. The complete document is shown in figure 8.3.
\documentclass[12pt,a4paper]{article}

\usepackage[T1]{fontenc}

\usepackage[record,% use bib2gls
nostyles ,% don't load default styles

% load glossary-bookindex.sty and patch styles:
stylemods={bookindex},
style=bookindex]{glossaries -extra}

% abbreviation style must be set before \GlsXtrLoadResources
\setabbreviationstyle[bacteria]{long-only-short-only}

\GlsXtrLoadResources[
src=bacteria ,% data in bacteria.bib
category=bacteria,
abbreviation -sort-fallback=long

]

\newcommand{\bacteriafont}[1]{\emph{#1}}

\glssetcategoryattribute{bacteria}{textformat}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossnamefont}{bacteriafont}

\renewcommand*{\glsxtrbookindexname}[1]{%
\glsifcategory{#1}{bacteria}
{\glossentrynameother{#1}{long}}%
{\glossentryname{#1}}%

}

\begin{document}
\section{First Use}

\gls{cbotulinum}, \gls{pputida}, \gls{cperfringens},
\gls{bsubtilis}, \gls{ctetani}, \gls{pcomposti},
\gls{pfimeticola}, \gls{cburnetii}, \gls{raustralis},
\gls{rrickettsii}.

\section{Next Use}

312

8 Examples

\gls{cbotulinum}, \gls{pputida}, \gls{cperfringens},
\gls{bsubtilis}, \gls{ctetani}, \gls{pcomposti},
\gls{pfimeticola}, \gls{cburnetii}, \gls{raustralis},
\gls{rrickettsii}.

\printunsrtglossary[title={Bacteria Index}]
\end{document}

sample-units1.tex
This example uses the baseunits.bib and derivedunits.bib files. The aim here is to have
a glossary in two blocks: base units and derived units. This can be achieved by first loading
baseunits.bibwith group set to the desired group title (“Base Units” in this case) and then
load derivedunits.bibwith the group set to the desired title (“Derived Units” in this case).
Remember that the group field needs to be used as a label. If the group title contains any
problematic characters or commands, then it’s better to use labels:

group={baseunits}

for the first resource set and

group={derivedunits}

for the second, and then set the group titles:

\glsxtrsetgrouptitle{baseunits}{Base Units}
\glsxtrsetgrouptitle{derivedunits}{Derived Units}

I’ve used this method to make it easier to adapt to other languages that may need extended
characters in the group titles.

The baseunits.bib file use a custom entry type @unit, which must be aliased otherwise
bib2gls will ignore the entries. I decided to use @symbol for semantic reasons:

entry-type-aliases={unit=symbol}

Similarly for the custom @measurement entry type in derivedunits.bib:

entry-type-aliases={measurement=symbol}

Remember that @symbol uses the label as the default sort fallback, so I’ve changed it to use
name instead:

symbol-sort-fallback={name}

313

8 Examples

1 First Use
Clostridium botulinum, Pseudomonas putida, Clostridium perfringens , Bacil-
lus subtilis , Clostridium tetani , Planifilum composti , Planifilum fimeticola,
Coxiella burnetii , Rickettsia australis , Rickettsia rickettsii .

2 Next Use
C. botulinum, P. putida, C. perfringens , B. subtilis , C. tetani , P. composti ,
P. fimeticola, C. burnetii , R. australis , R. rickettsii .

Bacteria Index

B

Bacillus subtilis , 1

C

Clostridium botulinum, 1
Clostridium perfringens , 1
Clostridium tetani , 1
Coxiella burnetii , 1

P

Planifilum composti , 1
Planifilum fimeticola, 1
Pseudomonas putida, 1

R

Rickettsia australis , 1
Rickettsia rickettsii , 1

1

Figure 8.3: sample-bacteria.pdf

314

8 Examples

An alternative approach would be to alias @unit and @measurement to @entry instead.
Since there’s no type set, all entries end up in the main glossary, but since there are two

resource commands the glossary ends up with sorted blocks.
The document doesn’t include any commands like \gls, so I’ve use selection={all}

to select all entries in the .bib files. There won’t be any number lists since there are no
records. I need a glossary style that shows the symbol field so I’ve used mcolindexgroup.
Again I’ve suppressed the automatic loading of the default styles with nostyles and used
stylemods={mcols} to load glossary-mcols and patch the styles. Note that although I’ve
used nostyles, the glossary-tree style is loaded as it’s required by glossary-mcols.

As with the previous example, the custom fields need to be aliased:

field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

}

The complete document code is listed below. The document build is:

pdflatex sample-units1
bib2gls --group sample-units1
pdflatex sample-units1

The complete document is shown in figure 8.4.
\documentclass[a4paper]{report}

\usepackage{siunitx}
\usepackage[record,% use bib2gls
nostyles ,% don't load default styles
stylemods={mcols},% load glossary -mcols.sty and patch
style=mcolindexgroup]{glossaries -extra}

\GlsXtrLoadResources[
src={baseunits},
% make @unit act like @symbol:
entry-type-aliases={unit=symbol},
field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

},
symbol-sort-fallback=name,
selection={all},
group={baseunits}

]

315

8 Examples

\GlsXtrLoadResources[
src={derivedunits},
% make @measurement act like @symbol:
entry-type-aliases={measurement=symbol},
field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

},
symbol-sort-fallback=name,
selection={all},
group={derivedunits}

]

\glsxtrsetgrouptitle{baseunits}{Base Units}
\glsxtrsetgrouptitle{derivedunits}{Derived Units}

\begin{document}

\printunsrtglossaries

\end{document}

sample-units2.tex
This example is provided for comparison with sample-units1.tex. Instead of having a
single glossary with sorted blocks this example has two glossaries:

\newglossary*{baseunits}{Base Units}
\newglossary*{derivedunits}{Derived Units}

I’ve used the section package option to use \section* for the glossary titles. This overrides
the default \chapter* which is used with book or report type of classes. I’ve also used the
nomain option to suppress the creation of the main glossary as I want to define my own
glossary types instead.

As before the custom entry types need to be aliased:

entry-type-aliases={unit=symbol}

for the first resource set and

entry-type-aliases={measurement=symbol}

for the second. Similarly for the custom entry fields:

316

8 Examples

Glossary

Base Units

ampere (A) electric current
candela (cd) luminous intensity
kelvin (K) thermodynamic tempera-

ture
kilogram (kg) mass
metre (m) length
mole (mol) amount of substance
second (s) time

Derived Units

ampere per square metre (A m−2)
density

candela per square metre (cd m−2)
luminance

cubic metre (m3) volume
cubic metre per kilogram

(m3 kg−1) specific volume
metre per second (m s−1) velocity
metre per second squared (m s−2)

acceleration
mole per cubic metre (mol m−3)

concentration
per metre (m−1) wave number
square metre (m2) area

1

Figure 8.4: sample-units1.pdf

317

8 Examples

field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

}

The complete document code is listed below. The document build is:

pdflatex sample-units2
bib2gls --group sample-units2
pdflatex sample-units2

The complete document is shown in figure 8.5.
\documentclass[a4paper]{report}

\usepackage{siunitx}
\usepackage[record,% use bib2gls
nomain,% don't define 'main' glossary
section,% use \section* for glossary headings
nostyles ,% don't load default styles
stylemods={mcols},% load glossary -mcols.sty and patch
style=mcolindex]{glossaries -extra}

\newglossary*{baseunits}{Base Units}
\newglossary*{derivedunits}{Derived Units}

\GlsXtrLoadResources[
src={baseunits},
type=baseunits ,
% make @unit act like @symbol:
entry-type-aliases={unit=symbol},
field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

},
symbol-sort-fallback=name,
selection={all}

]

\GlsXtrLoadResources[
src={derivedunits},
type=derivedunits ,
% make @measurement act like @symbol:
entry-type-aliases={measurement=symbol},
field-aliases={
unitname=name,

318

8 Examples

unitsymbol=symbol,
measurement=description

},
symbol-sort-fallback=name,
selection={all}

]

\begin{document}
\chapter*{Glossaries}

\printunsrtglossary[type=baseunits ,nogroupskip]
\printunsrtglossary[type=derivedunits ,style=indexgroup]
\end{document}

sample-units3.tex
This is another example that uses the baseunits.bib and derivedunits.bib files. As
before the custom fields need to be aliased:

field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

}

This time I want two glossaries containing all the units (base and derived) where the first glos-
sary is ordered by name and the second is ordered by symbol. This can be done with a single
resource command that instructs bib2gls to make the custom @unit and @measurement
entry types behave like @dualsymbol:

entry-type-aliases={
unit=dualsymbol,
measurement=dualsymbol

}

This causes the name and symbol fields to be swapped in the dual list. Remember that the
fallback for the sort field is the label for the symbol entry types so I need symbol-sort
-fallback={name} to fallback on name field instead. (Alternative, I could just sort by the
name field instead using sort-field={name}.)

The primary entries can still be sorted according to the default locale collator, but the dual
entries need a sort method that’s better suited to symbols. Fortunately, bib2gls has some
(very limited) support for siunitx and is able to interpret the \si commands in the sample
.bib files. Since SI units are a mix of letters and numbers I’ve used one of the letter-number
methods listed in table 5.4.

319

8 Examples

Glossaries

Base Units

ampere (A) electric current
candela (cd) luminous intensity
kelvin (K) thermodynamic tempera-

ture

kilogram (kg) mass
metre (m) length
mole (mol) amount of substance
second (s) time

Derived Units

A

ampere per square metre (A m−2) density

C

candela per square metre (cd m−2) luminance
cubic metre (m3) volume
cubic metre per kilogram (m3 kg−1) specific volume

M

metre per second (m s−1) velocity
metre per second squared (m s−2) acceleration
mole per cubic metre (mol m−3) concentration

P

per metre (m−1) wave number

S

square metre (m2) area

1

Figure 8.5: sample-units2.pdf

320

8 Examples

I’ve decided to define a custom style for the first glossary. Since it’s based on the long3col
-booktabs style I need to load glossary-longbooktabs, which can conveniently be done with
the stylemods option. This uses longtable (provided by longtable, which is automatically
loaded) which means an extra LATEX call is required in the build process to ensure the column
widths are correct. Again I’m using nostyles to suppress the automatic loading of the
default styles, however glossary-tree will be loaded as it’s listed in the value of stylemods
and glossary-long will be loaded as it’s required by glossary-longbooktabs. I can’t use my
custom style in the style package option as it hasn’t been defined at that point. The default
list style is now unavailable since nostyles has prevented it from being defined, so I’ve used
style={alttree} to ensure there’s a valid default style.

Since my custom style is based on one of the long styles, I need to set the length register
\glsdescwidth to adjust the width of the description column:

\setlength{\glsdescwidth}{.4\hsize}

The long3col-booktabs style sets up a three column longtable so I just need to adjust the table
header (to rename the column headers) and the way each row is formatted:

\newglossarystyle{units}% style name
{% base it on long3col-booktabs

\setglossarystyle{long3col-booktabs}%
\renewcommand*{\glossaryheader}{%

\toprule
\bfseries Name &
\bfseries Measurement &
\bfseries Symbol
\tabularnewline\midrule\endhead
\bottomrule\endfoot}%

% main entries:
\renewcommand{\glossentry}[2]{%

\glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}} &
\glossentrydesc{##1}\glspostdescription &
\glossentrysymbol{##1}\tabularnewline

}%
}

There are no sub-entries in this document so I haven’t bothered to redefine \subglossentry.
(The tabular styles aren’t appropriate for hierarchical glossaries.) This puts the symbol into
the third column (rather than the location list, which is ignored).

I also need to make sure I’ve defined a glossary for the dual entries:

\newglossary*{units}{Units of Measurement (by SI unit)}

and specify the glossary types for the primary and dual entries:

type={main},
dual-type={units}

321

8 Examples

The complete document code is listed below. The document build is:

pdflatex sample-units3
bib2gls --group sample-units3
pdflatex sample-units3
pdflatex sample-units3

The two pages of the document are shown in figure 8.6.
\documentclass[12pt,a4paper]{report}

\usepackage{siunitx}
\usepackage[record,% use bib2gls
nostyles ,% don't load default styles

% load glossary-tree.sty and glossary-longbooktabs.sty and patch:
stylemods={tree,longbooktabs},
style=alttree]{glossaries -extra}

\newglossary*{units}{Units of Measurement (by SI unit)}

\GlsXtrLoadResources[
% data in baseunits.bib and derivedunits.bib:
src={baseunits ,derivedunits},
field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

},
symbol-sort-fallback={name},
selection=all,% select all entries
% make @measurement and @unit act like @dualsymbol:
entry-type-aliases={
measurement=dualsymbol ,
unit=dualsymbol ,

},
set-widest,% needed for alttree style
dual-sort={letternumber -upperlower},
type=main,% put primary entries in 'main' glossary
dual-type={units}% put dual entries in 'units' glossary

]

\setlength{\glsdescwidth}{.4\hsize}

% define custom glossary style
\newglossarystyle{units}% style name
{% base it on long3col-booktabs

\setglossarystyle{long3col-booktabs}%
\renewcommand*{\glossaryheader}{%

322

8 Examples

\toprule
\bfseries Name &
\bfseries Measurement &
\bfseries Symbol
\tabularnewline\midrule\endhead
\bottomrule\endfoot}%

% main entries:
\renewcommand{\glossentry}[2]{%

\glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}} &
\glossentrydesc{##1}\glspostdescription &
\glossentrysymbol{##1}\tabularnewline

}%
}

\begin{document}

\printunsrtglossary[title={SI Units of Measurement},
style={units}]

\printunsrtglossary[type=units]

\end{document}

sample-media.tex
This example uses the sample files books.bib, films.bib, no-interpret-preamble.bib
and interpret-preamble.bib. The aim is to produce a combined list of books and films in
a single glossary. The films are based on some of the books so some of the entries have the
same name. The default setting for identical sort values is identical-sort-action={id},
which means that the ordering for the duplicate names is based on the entry labels. This can
lead to the odd effect of sometimes having the film listed first (film.thebigsleep comes be-
fore thebigsleep) and sometimes having the book listed first (brightonrock comes before
film.brightonrock).

One possible solution would be to also assign prefixes for the book labels, but label
-prefix is applied to all primary entries for the given resource set and can’t be applied
selectively, so this would require editing the books.bib file.

A more consistent approach would be to fallback on the category. This means that the
category field needs to be set. There are two simple ways to achieve this: use category=
{same as base} (which sets the category to books for entries in books.bib and to films
for entries in films.bib) or alias the custom identifier field to category. I’ve chosen
the later method and also provided aliases for the custom year and cast fields:

field-aliases={identifier=category,year=user1,cast=user2},
identical-sort-action={category}

323

8 Examples

SI Units of Measurement

Name Measurement Symbol

ampere electric current A
ampere per square metre density A m−2

candela luminous intensity cd
candela per square metre luminance cd m−2

cubic metre volume m3

cubic metre per kilogram specific volume m3 kg−1

kelvin thermodynamic temperature K
kilogram mass kg

metre length m
metre per second velocity m s−1

metre per second squared acceleration m s−2

mole amount of substance mol
mole per cubic metre concentration mol m−3

per metre wave number m−1

second time s
square metre area m2

1

Units of Measurement (by SI
unit)

A (ampere) electric current
A m−2 (ampere per square metre) density

cd (candela) luminous intensity
cd m−2 (candela per square metre) luminance

K (kelvin) thermodynamic temperature
kg (kilogram) mass

m (metre) length
m s−2 (metre per second squared) acceleration
m s−1 (metre per second) velocity
m−1 (per metre) wave number
m2 (square metre) area
m3 (cubic metre) volume
m3 kg−1 (cubic metre per kilogram) specific volume
mol (mole) amount of substance
mol m−3 (mole per cubic metre) concentration

s (second) time

2

Figure 8.6: sample-units3.pdf

This ensures that books always come before films with the same title. An oddity is the film
“Whisky Galore!” which is one character different from the book “Whisky Galore” but the
default locale collator ignores punctuation so the two titles are considered identical by the
collator (but not by sort-suffix={non-unique}). If a letter comparison was used instead,
they would no longer be considered identical, but in this case the film would still be placed
after the book since the film title is longer.

Since I’ve set the category I can provide semantic formatting commands (as for sample
-bacteria.tex):

\newcommand*{\bookfont}[1]{\emph{#1}}
\newcommand*{\filmfont}[1]{\textsf{\em #1}}
\glssetcategoryattribute{book}{textformat}{bookfont}
\glssetcategoryattribute{book}{glossnamefont}{bookfont}
\glssetcategoryattribute{film}{textformat}{filmfont}
\glssetcategoryattribute{film}{glossnamefont}{filmfont}

I’ve given films a slightly different format to make them easier to distinguish from books of
the same name.

Both books.bib and films.bib had the custom year field, indicating the year of first
publication or release, which I’ve assigned to the user1 field. I can define post-name hooks
for each category to append the year in brackets after the name is displayed in the glossary:

324

8 Examples

\newcommand*{\glsxtrpostnamebook}{%
\ifglshasfield{user1}{\glscurrententrylabel}%
{\space(published \glscurrentfieldvalue)}%
{}%

}

\newcommand*{\glsxtrpostnamefilm}{%
\ifglshasfield{user1}{\glscurrententrylabel}%
{\space(released \glscurrentfieldvalue)}%
{}%

}

I’ve assigned the cast field to the user2 field, and since this field uses BIBTEX’s contributor
markup I need to convert this to a form that’s easier to customize:

bibtex-contributor-fields={user2}

I’m not sorting by this field and it would look better in the document to list the forenames
before the surname so I’ve also done:

contributor-order={forenames}

Since I have datatool-base v2.28+ installed, the list will be formatted using \DTLformatlist.
If I want an Oxford comma, I need to redefine \DTLlistformatoxford in the document:

\renewcommand*{\DTLlistformatoxford}{,}

If I want to change “&” to “and” I also need to redefine \DTLandname:

\renewcommand*{\DTLandname}{and}

If \DTLformatlist isn’t defined (datatool-base v2.27 or earlier), the cast list will look a little
odd as it uses a comma separator between all elements of this list, including the final pair (so
there’s no final & or “and”).

I’ve provided a post-description hook \glsxtrpostdesc⟨category⟩ to append the cast list:

\newcommand*{\glsxtrpostdescfilm}{%
\ifglshasfield{user2}{\glscurrententrylabel}%
{%

\glsxtrrestorepostpunc % requires glossaries-extra v1.23+
\ featuring \glscurrentfieldvalue

}%
{}%

}

This uses \glsxtrrestorepostpunc to restore the post-description punctuation if it was
suppressed with \glsxtrnopostpunc. This means that if I decide not to include the user2

325

8 Examples

field then the post-description punctuation will be revert back to being suppressed for entries
containing \glsxtrnopostpunc in the description field.

I haven’t referenced any of the entries in the main body of the document, so I’ve used
selection={all} to select all entries. This means that there are no number lists on the
first document build (LATEX+bib2gls+LATEX) but the next build would show locations for the
books that have been referenced by the film entries. Since this looks a bit odd, I’ve added
save-locations={false} to prevent bib2gls from saving the locations.

The complete document code is listed below. The document build is:

pdflatex sample-media
bib2gls --group sample-media
pdflatex sample-media

The four pages of the document are shown in figure 8.7.
\documentclass[11pt,a4paper]{report}

\usepackage[T1]{fontenc}
\usepackage[colorlinks]{hyperref}
\usepackage[record,% using bib2gls
nostyles ,% don't load default styles
postdot,% append a dot after descriptions
stylemods={list},% load glossary-list.sty and fix styles
style=altlistgroup]{glossaries -extra}

\GlsXtrLoadResources[
src=no-interpret -preamble ,
interpret -preamble=false

]

\GlsXtrLoadResources[
src={interpret -preamble ,books,films},
field-aliases={identifier=category ,year=user1,cast=user2},
bibtex-contributor -fields={user2},
contributor -order={forenames},
identical -sort-action={category},
save-locations=false,
selection=all

]

% requires datatool-base.sty v2.28+:
\renewcommand*{\DTLlistformatoxford}{,}
\renewcommand*{\DTLandname}{and}

\newcommand*{\bookfont}[1]{\emph{#1}}
\newcommand*{\filmfont}[1]{\textsf{\em #1}}

326

8 Examples

\glssetcategoryattribute{book}{textformat}{bookfont}
\glssetcategoryattribute{book}{glossnamefont}{bookfont}

\glssetcategoryattribute{film}{textformat}{filmfont}
\glssetcategoryattribute{film}{glossnamefont}{filmfont}

\newcommand*{\glsxtrpostnamebook}{%
\ifglshasfield{user1}{\glscurrententrylabel}%
{\space(published \glscurrentfieldvalue)}%
{}%

}

\newcommand*{\glsxtrpostnamefilm}{%
\ifglshasfield{user1}{\glscurrententrylabel}%
{\space (released \glscurrentfieldvalue)}%
{}%

}

\newcommand*{\glsxtrpostdescfilm}{%
\ifglshasfield{user2}{\glscurrententrylabel}%
{%

\glsxtrrestorepostpunc % requires glossaries -extra v1.23+
\ featuring \glscurrentfieldvalue

}%
{}%

}

\begin{document}
\printunsrtglossaries
\end{document}

sample-people.tex
This example uses the files people.bib, no-interpret-preamble.bib and interpret
-preamble.bib. The aim here is to have a list of people ordered alphabetically by surname
with a brief description, the same list ordered by date of birth and an index of all the people
without their details but with a number list indicating where that person was mentioned
in the document. The first two lists shouldn’t include aliases but the index should. Not all
the entries defined in people.bib are included in the document. Those that aren’t either
explicitly referenced or aliased are filtered by the selection criteria.

Since this is just an example document all the \gls commands only occur on page 1, which
means that each number list is just “1”. A real document would have the references scattered
about. The aliases haven’t actually been referenced anywhere in the document.

The born, died and othername fields will be ignored by default since they don’t cor-
respond to recognised keys, so the keys either need to be defined or the fields need to be

327

8 Examples

Glossary

B

The Big Sleep (published 1939)

novel by Raymond Chandler.

The Big Sleep (released 1946)

a film based on the novel The Big Sleep featuring Humphrey Bogart
and Lauren Bacall.

Blade Runner (released 1982)

a film loosely based on the novel Do Androids Dream of Electric Sheep?
featuring Harrison Ford, Rutger Hauer, and Sean Young.

Bleak House (published 1852)

novel by Charles Dickens.

Brighton Rock (published 1938)

novel by Graham Greene.

Brighton Rock (released 1947)

a film based on the novel Brighton Rock featuring Richard Attenbor-
ough, Hermione Baddeley, and William Hartnell.

D

Do Androids Dream of Electric Sheep? (published 1968)

novel by Philip K. Dick.

H

The Hobbit (published 1937)

novel by J.R.R. Tolkien.

1

The Hobbit: The Battle of Five Armies (released 2014)

a film based on the novel The Hobbit featuring Ian McKellen, Martin
Freeman, and Richard Armitage.

The Hobbit: The Desolation of Smaug (released 2013)

a film based on the novel The Hobbit featuring Ian McKellen, Martin
Freeman, and Richard Armitage.

The Hobbit: An Unexpected Journey (released 2012)

a film based on the novel The Hobbit featuring Martin Freeman, Ian
McKellen, and Richard Armitage.

I

Ice Cold in Alex (published 1957)

novel by Christopher Landon.

Ice Cold in Alex (released 1958)

a film based on the novel Ice Cold in Alex featuring John Mills, An-
thony Quayle, and Sylvia Sims.

Ice Station Zebra (published 1963)

novel by Alistair MacLean.

Ice Station Zebra (released 1968)

a film based on the novel Ice Station Zebra featuring Rock Hudson and
Ernest Borgnine.

L

The Long Goodbye (published 1953)

novel by Raymond Chandler.

The Long Goodbye (released 1973)

a film based on the novel The Long Goodbye featuring Elliott Gould
and Nina van Pallandt.

The Lord of the Rings (published 1954)

novel by J.R.R. Tolkien.

The Lord of the Rings: The Fellowship of the Ring (released 2001)

a film based on the novel The Lord of the Rings featuring Elijah Wood,
Ian McKellen, and Orlando Bloom.

2

The Lord of the Rings: The Return of the King (released 2003)

a film based on the novel The Lord of the Rings featuring Elijah Wood,
Viggo Mortensen, and Ian McKellen.

The Lord of the Rings: The Two Towers (released 2002)

a film based on the novel The Lord of the Rings featuring Elijah Wood,
Ian McKellen, and Viggo Mortensen.

M

Murder on the Orient Express (published 1934)

novel by Agatha Christie.

Murder on the Orient Express (released 1974)

a film based on the novel Murder on the Orient Express featuring
Albert Finney, Lauren Bacall, and Ingrid Bergman.

R

Red Harvest (published 1929)

novel by Dashiell Hammett.

T

A Tale of Two Cities (published 1859)

novel by Charles Dickens.

The Trouble with Harry (published 1950)

novel by Jack Trevor Story.

The Trouble with Harry (released 1955)

a film based on the novel The Trouble with Harry featuring John
Forsythe and Shirley MacLaine.

U

Ubik (published 1969)

novel by Philip K. Dick.

W

Where Eagles Dare (published 1967)

novel by Alistair MacLean.

3

Where Eagles Dare (released 1968)

a film based on the novel Where Eagles Dare featuring Richard Burton,
Clint Eastwood, and Mary Ure.

Whisky Galore (published 1947)

novel by Compton Mackenzie.

Whisky Galore! (released 1949)

a film based on the novel Whisky Galore featuring Basil Radford and
Joan Greenwood.

Why Didn’t They Ask Evans? (published 1934)

novel by Agatha Christie.

Why Didn’t They Ask Evans? (released 1980)

a film based on the novel Why Didn’t They Ask Evans? featuring
Francesca Annis, John Gielgud, and Bernard Miles.

The Wizard of Oz (released 1939)

a film based on the novel The Wonderful Wizard of Oz featuring Judy
Garland.

The Wonderful Wizard of Oz (published 1900)

novel by L. Frank Baum.

4

Figure 8.7: sample-media.pdf

328

8 Examples

mapped to existing keys. In this case I’ve decided to map them to the user1, user2 and
user3 fields using field-aliases:

field-aliases={born=user1,died=user2,othername=user3}

Although the aliases haven’t been referenced in the document, I’ve taken into account the
possibility that they might later be added. To prevent them from showing in the first two
lists I’ve filtered them out. This is easy to do since the aliases are all defined using @index
whereas the remaining (non-aliased) entries are defined using @entry so match can be used
to only select entries defined with @entry:

match={entrytype=entry}

I’d like the first use of \gls to display the full name, except for the entry that has the
first field set. The remaining entries only have text set to a shortened version of the name
so they need to have the name field copied to the first field using replicate-fields:

replicate-fields={name={first}}

I’d like the first use to show the other name in parentheses where provided. The simplest
way to achieve this is by defining the post-link hook \glsxtrpostlink⟨category⟩. If the
category field isn’t specified it will default to general (for entries defined with @entry), so
I could just define \glsxtrpostlinkgeneral but to allow for the possibility of extending
the document to incorporate other types of entries I decided to set the category to people
through the use of the category option:

category={people}

This means that I now need to define a command called \glsxtrpostlinkpeople that
will be used after instances of \gls etc where the entry has the category set to people. This
first tests if that was the first use of the entry with \glsxtrifwasfirstuse and then tests
if the user3 field is set. If so, it does a space followed by that field’s value in parentheses.
The entry’s label can be obtained from \glslabel:

\newcommand*{\glsxtrpostlinkpeople}{%
\glsxtrifwasfirstuse
{%

\ifglshasfield{user3}{\glslabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}%
{}%

}

I’d also like to do something similar after the name when the entry is displayed in the
glossary. This means defining the post-name hook \glsxtrpostname⟨category⟩, in this case
\glsxtrpostnamepeople. The entry’s label is referenced with \glscurrententrylabel:

329

8 Examples

\newcommand*{\glsxtrpostnamepeople}{%
\ifglshasfield{user3}{\glscurrententrylabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}

(A different command is used since \glsmay occur in the description, which would interfere
with the current entry label if they shared the same command to reference the label.)

The post-description hook can be used to append the birth and death dates. Although all
the entries that have been selected from people.bib have a died field, I’ve added a check
for the corresponding user3 field in case new references are added for people who are still
alive:

\newcommand*{\glsxtrpostdescpeople}{%
\ifglshasfield{user1}{\glscurrententrylabel}
{% born

\space(\glscurrentfieldvalue\,--\,%
\ifglshasfield{user2}{\glscurrententrylabel}
{% died

\glscurrentfieldvalue
}%
{}%

)%
}%
{}%

}

The first list is quite straight-forward and can be created with:

\GlsXtrLoadResources[
src={people},
match={entrytype=entry},
category={people},
replicate-fields={name={first}},
field-aliases={born=user1,died=user2,othername=user3}

]

I have used the sort option and there’s no document language, so bib2gls will sort ac-
cording to my locale. The custom commands \sortname and \sortvonname ensure that the
entries are all sorted alphabetically according to the surnames.

The second list can easily be created by adding the secondary option:

secondary={date:user1:bybirth}

This sorts according to the user1 field (which was originally the birth field). Note that
different locales have different default date formats. There may also be a difference in the

330

8 Examples

default date format depending on the Java locale provider. For example, if you switch from
using the JRE to using the CLDR you may find a change in the default format. In case the
format provided in the .bib file isn’t recognised, the required format can be set with:

secondary-date-sort-format={d MMM YYYY G}

I’ve changed the date group headings by redefining \bibglsdategroup and \bibgls-
dategrouptitle, which means that the grouping in the bybirth glossary will be in the
form ⟨year⟩ ⟨era⟩:

\newcommand{\bibglsdategroup}[7]{#1#4#7}
\newcommand{\bibglsdategrouptitle}[7]{\number#1\ #4}

I’ve also defined the bybirth glossary and supplied a title:

\newglossary*{bybirth}{People (Ordered by Birth)}

The first two glossaries have entries with fairly long names (especially those with the
post-name hook), so the best style is the altlistgroup. The glossaries-extra-stylemods package
patches this style to discourage page breaks occurring after group headings, so I’ve also used
the stylemods option to automatically load that package. I’d like to use the bookindex style
for the index, which is provided by glossary-bookindex, so I need:

stylemods={list,bookindex}

This ensures that glossary-list and glossary-bookindex are loaded and patches the list styles.
The first two glossaries would look better with a terminating full stop, so I’ve used the

postdot package option. (The bookindex style doesn’t use the description field and there-
fore doesn’t use the post-description hook.) The index glossary type can be defined with the
index package option. I’ve set the default style to altlistgroup but this can locally be changed
to bookindex when I display the index. The record option is needed to use bib2gls, so the
glossaries-extra package is loaded with:

\usepackage[record,% using bib2gls
index,% create index glossary
postdot,% dot after descriptions

% load glossary-list.sty and glossary-bookindex.sty and patch:
stylemods={list,bookindex},
style=altlistgroup]{glossaries-extra}

The index needs to include all the entries that have already been defined but also needs to
include the aliased entries. This means that existing entries simply need their label copied
to the index glossary but the other entries need to be defined so this requires setting the
action option:

action={define or copy}

I would also like to have groups in the index (which the bookindex style supports) so I need
to specify a field in which to save the group information using copy-action-group-field:

331

8 Examples

copy-action-group-field={indexgroup}

I need to remember to redefine \glsxtrgroupfield to this value before displaying the in-
dex:

\renewcommand{\glsxtrgroupfield}{indexgroup}

The aliased entries won’t be selected by default since they haven’t been used in the docu-
ment, so I need to change the selection criteria with selection:

selection={recorded and deps and see}

In the index, I’d like the surnames first. This can be done by redefining the custom com-
mands used in the name fields. There’s a slight complication here. These commands aren’t
defined on the first LATEX run as their definitions are written to the .glstex file by bib2gls,
so I can’t use \renewcommand. instead I’ve provided some custom commands:

\newcommand*{\swaptwo}[2]{#2, #1}
\newcommand*{\swapthree}[3]{#2 #3, #1}

Now I just need to make an assignment using \let:

\let\sortname\swaptwo
\let\sortart\swaptwo
\let\sortvonname\swapthree

This doesn’t perform any check to determine if the commands are already defined so there
won’t be a problem on the first run.

The first two glossaries shouldn’t have number lists:

\printunsrtglossary[title={People (Alphabetical)},nonumberlist]
\printunsrtglossary[type=bybirth,target=false,nonumberlist]

I’d like to use hyperref but I have to switch off the hypertargets for the second glossary
otherwise I’ll end up with duplicate targets. This is done with target=false. All references
using \gls etc will link to the first glossary.

I could also do this for the index but the cross-references in the aliased entries will link to
the first glossary rather than the relevant entry in the index. The simplest way to fix this is
to redefine \glolinkprefix to provide a different target:

\renewcommand*{\glolinkprefix}{idx:}

These redefinitions need to be done before the index. I’ve decided to use the starred \print-
unsrtglossary* to localise these changes, although that’s not needed for this document
since the index comes right at the end:

332

8 Examples

\printunsrtglossary*
[type=index,style=bookindex]
{%

\let\sortname\swaptwo
\let\sortart\swaptwo
\let\sortvonname\swapthree
\renewcommand{\glsxtrgroupfield}{indexgroup}%
\renewcommand*{\glolinkprefix}{idx:}%

}

The complete document code is listed below. The document build is:

pdflatex sample-people
bib2gls --group --break-space sample-people
pdflatex sample-people

The four pages of the document are shown in figure 8.8.
\documentclass[12pt,a4paper]{report}

\usepackage[colorlinks]{hyperref}
\usepackage[record,% using bib2gls
index,% create index glossary
postdot,% dot after descriptions

% load glossary-list.sty and glossary-bookindex.sty and patch:
stylemods={list,bookindex},
style=altlistgroup]{glossaries -extra}

\newglossary*{bybirth}{People (Ordered by Birth)}

\newcommand{\bibglsdategroup}[7]{#1#4#7}
\newcommand{\bibglsdategrouptitle}[7]{\number#1\ #4}

\newcommand*{\swaptwo}[2]{#2, #1}
\newcommand*{\swapthree}[3]{#2 #3, #1}

\GlsXtrLoadResources[
src=no-interpret -preamble ,
interpret -preamble=false

]

\GlsXtrLoadResources[
src={interpret -preamble ,people},
match={entrytype=entry},
category={people},
replicate -fields={name={first}},
field-aliases={born=user1,died=user2,othername=user3},

333

8 Examples

secondary={date:user1:bybirth},
secondary -date-sort-format={d MMM YYYY G}

]

\GlsXtrLoadResources[
src={people},
type=index,
category=people,
action={define or copy},
copy-action-group-field={indexgroup},
selection={recorded and deps and see}

]

\newcommand*{\glsxtrpostlinkpeople}{%
\glsxtrifwasfirstuse
{%

\ifglshasfield{user3}{\glslabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}%
{}%

}

\newcommand*{\glsxtrpostnamepeople}{%
\ifglshasfield{user3}{\glscurrententrylabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}

\newcommand*{\glsxtrpostdescpeople}{%
\ifglshasfield{user1}{\glscurrententrylabel}
{% born

\space(\glscurrentfieldvalue\,--\,%
\ifglshasfield{user2}{\glscurrententrylabel}
{% died

\glscurrentfieldvalue
}%
{}%

)%
}%
{}%

}

\begin{document}
\chapter{Sample}
\section{First Use}

334

8 Examples

\gls{caesar}, \gls{wellesley}, \gls{bonaparte},
\gls{vonrichthofen} and \gls{alexander}.

\section{Next Use}

\gls{caesar}, \gls{wellesley}, \gls{bonaparte},
\gls{vonrichthofen} and \gls{alexander}.

\printunsrtglossary[title={People (Alphabetical)},nonumberlist]

\printunsrtglossary[type=bybirth,target=false,nonumberlist]

\printunsrtglossary*
[type=index,style=bookindex]
{%

\let\sortname\swaptwo
\let\sortart\swaptwo
\let\sortvonname\swapthree
\renewcommand{\glsxtrgroupfield}{indexgroup}%
\renewcommand*{\glolinkprefix}{idx:}%

}
\end{document}

sample-authors.tex
This example uses the files people.bib, books.bib, no-interpret-preamble.bib and
interpret-preamble2.bib. The aim is to reference the books in books.bib and have
them listed by author. This means finding a way of assigning each book entry a parent field
that contains the label identifying the relevant author in people.bib.

To recap, each author is defined in people.bib in the form:

@entry{dickens,
name={\sortname{Charles}{Dickens}},
text={Dickens},
description={English writer and social critic},
born={7~February 1812 AD},
died={9~June 1870 AD},
identifier={person}

}

and each book is defined in books.bib in the form:

@entry{bleakhouse,
name={Bleak House},

335

8 Examples

Chapter 1

Sample

1.1 First Use

Julius Caesar, Arthur Wellesley (1st Duke of Wellington), Napoleon Bona-
parte, Manfred von Richthofen (The Red Baron) and Alexander III of Mace-
don (Alexander the Great).

1.2 Next Use

Caesar, Wellington, Bonaparte, von Richthofen and Alexander.

1

People (Alphabetical)

A

Alexander III of Macedon (Alexander the Great)

Ancient Greek king of Macedon (20 July 356 BC – 10 June 323 BC).

B

Napoleon Bonaparte

French military and political leader (15 July 1769 AD – 5 May 1821
AD).

C

Gaius Julius Caesar

Roman politician and general (13 July 100 BC – 15 March 44 BC).

V

Manfred von Richthofen (The Red Baron)

Prussian ace fighter pilot in the German Air Force during World War I
(2 May 1892 AD – 21 April 1918 AD).

W

Arthur Wellesley (1st Duke of Wellington)

Anglo-Irish soldier and statesman (1 May 1769 AD – 14 September 1852
AD).

2

People (Ordered by Birth)

357 BC

Alexander III of Macedon (Alexander the Great)

Ancient Greek king of Macedon (20 July 356 BC – 10 June 323 BC).

100 BC

Gaius Julius Caesar

Roman politician and general (13 July 100 BC – 15 March 44 BC).

1769 AD

Napoleon Bonaparte

French military and political leader (15 July 1769 AD – 5 May 1821
AD).

Arthur Wellesley (1st Duke of Wellington)

Anglo-Irish soldier and statesman (1 May 1769 AD – 14 September 1852
AD).

1892 AD

Manfred von Richthofen (The Red Baron)

Prussian ace fighter pilot in the German Air Force during World War I
(2 May 1892 AD – 21 April 1918 AD).

3

Index

A

Alexander III of Macedon
(Alexander the Great), 1

Alexander the Great, see Alexander
III of Macedon

B

Bonaparte, Napoleon, 1

C

Caesar, Gaius Julius, 1

R

Red Baron, The, see von Richthofen,
Manfred

V

von Richthofen, Manfred (The Red
Baron), 1

W

Wellesley, Arthur (1st Duke of
Wellington), 1

Wellington, see Wellesley, Arthur

4

Figure 8.8: sample-people.pdf

336

8 Examples

description={novel by Charles Dickens},
identifier={book},
author={\sortmediacreator{Charles}{Dickens}},
year={1852}

}

There’s a field here (the custom author field) that contains the author’s name, and this can
be aliased to the parent field with field-aliases:

field-aliases={author=parent}

but the author’s label in the people.bib file is just the lower case surname.
Remember from chapter 2 that the interpreter will be used on the parent field if the value

contains \ or { or } and interpret-label-fields={true}. This means that with this
field alias and the interpreter on, bib2gls will attempt to interpret the field contents. So
all that’s needed is to ensure that bib2gls is given a definition of \sortmediacreator that
ignores the first argument and converts the second argument to lower case. This definition is
available in interpret-preamble2.bib but, since this file uses \renewcommand rather than
\providecommand, write-preamble={false} is required to prevent LATEX from picking up
this definition.

As with the sample-people.tex example, I need to copy the name field to the first field
if that field is missing using replicate-fields:

replicate-fields={name={first}}

and I also want to provide a semantic command to format the book title, so the field aliases
also need to convert the custom identifier field to category:

field-aliases={identifier=category,author=parent}

so that the document can set the textformat and glossnamefont attributes:

\newcommand*{\bookfont}[1]{\emph{#1}}
\glssetcategoryattribute{book}{textformat}{bookfont}
\glssetcategoryattribute{book}{glossnamefont}{bookfont}

As with sample-media.tex, the terminating question mark at the end of some of the name
fields can cause an awkward situation if \gls is used at the end of a sentence. This can be
dealt with by getting bib2gls tomake a note of the fields that endwith sentence-terminating
punctuation through the use of the check-end-punctuation option. In this example, the
name, text and first fields are the same for all the books, so it’s sufficient just to check the
name field:

check-end-punctuation={name}

With glossaries-extra v1.23+ it’s easy to hook into the post-link hook to check if namendpunc
exists:

337

8 Examples

\renewcommand*{\glsxtrifcustomdiscardperiod}[2]{%
\GlsXtrIfFieldUndef{nameendpunc}{\glslabel}{#2}{#1}%

}

This will now cause the full stops following

\gls{whydidnttheyaskevans}.

and

\gls{doandroidsdreamofelectricsheep}.

to be discarded.
The complete document code is listed below. The document build is:

pdflatex sample-authors
bib2gls --group sample-authors
pdflatex sample-authors

The resulting document is shown in figure 8.9.
\documentclass[12pt,a4paper]{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,% using bib2gls
nostyles,% don't load default styles
stylemods={bookindex},% load glossary-bookindex and patch styles
style=bookindex]{glossaries -extra}

\GlsXtrLoadResources[
src=no-interpret -preamble ,
interpret -preamble=false

]

\GlsXtrLoadResources[
src={interpret -preamble2,people,books},
write-preamble=false,
interpret -label-fields,
field-aliases={identifier=category ,author=parent},
check-end-punctuation={name},
replicate -fields={name={first}}

]

\newcommand*{\bookfont}[1]{\emph{#1}}
\glssetcategoryattribute{book}{textformat}{bookfont}
\glssetcategoryattribute{book}{glossnamefont}{bookfont}

% requires glossaries -extra v1.23
\renewcommand*{\glsxtrifcustomdiscardperiod}[2]{%

338

8 Examples

\GlsXtrIfFieldUndef{nameendpunc}{\glslabel}{#2}{#1}%
}

\begin{document}
\section{Sample}

\gls{ataleoftwocities}. \gls{bleakhouse}. \gls{thebigsleep}.
\gls{thelonggoodbye}. \gls{redharvest}.
\gls{murderontheorientexpress}. \gls{whydidnttheyaskevans}.
\gls{icecoldinalex}. \gls{thehobbit}. \gls{thelordoftherings}.
\gls{thewonderfulwizardofoz}. \gls{whiskygalore}.
\gls{whereeaglesdare}. \gls{icestationzebra}. \gls{ubik}.
\gls{doandroidsdreamofelectricsheep}. \gls{thetroublewithharry}.
\gls{brightonrock}.

\printunsrtglossary[title={Author and Book List}]

\end{document}

\documentclass[12pt,a4paper]{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,% using bib2gls
nostyles,% don't load default styles
stylemods={bookindex},% load glossary-bookindex and patch styles
style=bookindex]{glossaries -extra}

\GlsXtrLoadResources[
src=no-interpret -preamble ,
interpret -preamble=false

]

\GlsXtrLoadResources[
src={interpret -preamble2,people,books},
write-preamble=false,
interpret -label-fields,
field-aliases={identifier=category ,author=parent},
check-end-punctuation={name},
replicate -fields={name={first}}

]

\newcommand*{\bookfont}[1]{\emph{#1}}
\glssetcategoryattribute{book}{textformat}{bookfont}
\glssetcategoryattribute{book}{glossnamefont}{bookfont}

% requires glossaries -extra v1.23
\renewcommand*{\glsxtrifcustomdiscardperiod}[2]{%

339

8 Examples

\GlsXtrIfFieldUndef{nameendpunc}{\glslabel}{#2}{#1}%
}

\begin{document}
\section{Sample}

\gls{ataleoftwocities}. \gls{bleakhouse}. \gls{thebigsleep}.
\gls{thelonggoodbye}. \gls{redharvest}.
\gls{murderontheorientexpress}. \gls{whydidnttheyaskevans}.
\gls{icecoldinalex}. \gls{thehobbit}. \gls{thelordoftherings}.
\gls{thewonderfulwizardofoz}. \gls{whiskygalore}.
\gls{whereeaglesdare}. \gls{icestationzebra}. \gls{ubik}.
\gls{doandroidsdreamofelectricsheep}. \gls{thetroublewithharry}.
\gls{brightonrock}.

\printunsrtglossary[title={Author and Book List}]

\end{document}

sample-msymbols.tex
This example uses bigmathsymbols.bib, mathsrelations.bib, binaryoperators.bib,
unaryoperators.bib and mathgreek.bib. The stix package is required for some of the
commands used in bigmathsymbols.bib, so that must be loaded in the document.

I’m using the mcolalttree style for this document, which means that the glossary-mcols
package is required and the styles need patching, which can be done with the stylemods
package option:

\usepackage[record,% using bib2gls
nostyles,% don't load default styles
postdot,% append a dot after descriptions
stylemods={mcols},% load glossary-mcols.sty and patch
style=mcolalttree]{glossaries-extra}

I’m not using a group-based style which suggests that I don’t need the --group switch.
However, although I don’t want group titles, I still want a slight gap between logical groups,
which means that I still need this switch. If I added the nogroupskip package option, then
I can omit --group.

I’m not referencing any of the entries in the document as I’m just generating a complete
list of all the defined symbols. This means I need to tell bib2gls to select all entries and
don’t bother saving the location field:

save-locations={false},
selection={all}

340

8 Examples

1 Sample

A Tale of Two Cities . Bleak House. The Big Sleep. The Long Goodbye. Red
Harvest . Murder on the Orient Express . Why Didn’t They Ask Evans? Ice
Cold in Alex . The Hobbit . The Lord of the Rings . The Wonderful Wizard
of Oz . Whisky Galore. Where Eagles Dare. Ice Station Zebra. Ubik . Do
Androids Dream of Electric Sheep? The Trouble with Harry . Brighton Rock .

Author and Book List

B

Lyman Frank Baum
The Wonderful Wizard of Oz , 1

C

Raymond Chandler
The Big Sleep, 1
The Long Goodbye, 1

Dame Agatha Mary Clarissa
Christie

Murder on the Orient Express , 1
Why Didn’t They Ask Evans? , 1

D

Philip K. Dick
Do Androids Dream of Electric

Sheep? , 1
Ubik , 1

Charles Dickens
Bleak House, 1
A Tale of Two Cities , 1

G

Henry Graham Green
Brighton Rock , 1

H

Samuel Dashiell Hammett
Red Harvest , 1

L

Christopher Guy Landon
Ice Cold in Alex , 1

M

Compton Mackenzie
Whisky Galore, 1

Alistair MacLean
Ice Station Zebra, 1
Where Eagles Dare, 1

S

Jack Trevor Story
The Trouble with Harry , 1

T

John Ronald Reuel Tolkien
The Hobbit , 1
The Lord of the Rings , 1

1

Figure 8.9: sample-authors.pdf

341

8 Examples

Since I’m using a style that’s based on alttree I need to find the widest name, which can be
done with set-widest.

I’ve used field-aliases to convert the custom identifier field to category, which
means I can also sort by that field:

sort-field={category},
field-aliases={identifier=category}

Since this will cause identical sort values, I need to provide a fallback. Here I’ve decided to
fallback on the description field:

identical-sort-action={description}

This means that entries will be order by category and then description, which naturally
creates blocks of symbol types in the glossary.

Remember that I want a small vertical gap between each logical block. These needs the
group field which, with the default locale sort, is obtained from the first letter of the sort
value. In this case the sort value is obtained from the category field, and as each category
happens to start with a different letter, this means I get the desired effect. However, in the
event that I add more entries with a new category that happens to start with the same letter
as an existing category, it’s better to provide a more future-proof method, so I’ve set the
group field to fetch its value from the category field:

replicate-fields={category=group}

(Since the field-aliases option is always performed before replicate-fields, the category
field will already have been set and is available for replicating.) This means that the group
label is the same as the category label rather than just the first letter. (For a quick check,
change the glossary style to mcolalttreegroup to display the group titles.)

The complete document code is listed below. The document build is:

pdflatex sample-msymbols
bib2gls --group sample-msymbols
pdflatex sample-msymbols

The resulting document is shown in figure 8.10.
\documentclass[a4paper]{article}

\usepackage[T1]{fontenc}
\usepackage{stix}

\usepackage[record,% using bib2gls
nostyles ,% don't load default styles
postdot,% append a dot after descriptions
stylemods={mcols},% load glossary -mcols.sty and patch
style=mcolalttree]{glossaries -extra}

342

8 Examples

\GlsXtrLoadResources[
src={bigmathsymbols ,mathgreek ,
mathsrelations ,binaryoperators ,unaryoperators},

sort-field={category},
identical -sort-action={description},
field-aliases={identifier=category},
replicate -fields={category=group},
set-widest,
save-locations=false,
selection=all

]

\begin{document}
\printunsrtglossaries
\end{document}

sample-maths.tex
This example uses bigmathsymbols.bib and mathsobjects.bib. It has a fairly similar
preamble to sample-msymbols.tex, but no-interpret-preamble.bib and interpret
-preamble.bib are now needed to provide the \sortart command:

\GlsXtrLoadResources[
src={no-interpret-preamble},
interpret-preamble={false}

]

There’s also an extra custom field to alias:

field-aliases={identifier=category,format=user1}

I’ve aliased format to user1 since \glsxtrfmt defaults to that field. If I decided to use a
different field I also need to remember to redefine \GlsXtrFmtField to match.

In this document I only want to select entries that have been indexed, so I’ve omitted the
selection option I used in the sample-msymbols.tex example, however I still don’t want
any number lists so I still have save-locations={false}.

I want \glsxtrfmt to index (which it doesn’t by default) so that means I need to redefine
\GlsXtrFmtDefaultOptions to prevent it from using noindex:

\renewcommand{\GlsXtrFmtDefaultOptions}{}

I’ve provided some convenient wrapper commands that use \glsxtrfmt* or the non-linking
\glsxtrentryfmt that are in the form:

\newcommand{\set}[2][]{\glsxtrfmt*[#1]{set}{#2}}
\newcommand{\nlset}[1]{\glsxtrentryfmt{set}{#1}}

343

8 Examples

Glossary

+ addition.
÷ division.
× multiplication.
− subtraction.

∮ ∮ contour integral.

∬ ∬ double integral.

∫ ∫ integral.

∯ ∯ surface integral.

∭ ∭ triple integral.

∰ ∰ volume integral.

� alpha.
� beta.
� chi.
� delta.
� epsilon.
" epsilon (variant).
� eta.
 gamma.
� iota.
� kappa.
z kappa (variant).
� lambda.
� mu.
� nu.
! omega.
o omicron.
� phi.
' phi (variant).
� pi.
$ pi (variant).
 psi.
� rho.
% rho (variant).
� sigma.

& sigma (variant).
� tau.
� theta.
theta (variant).
� upsilon.
� xi.
� zeta.
⨀

⨀

n-ary circled dot operator.
⨁

⨁

n-ary circled plus operator.
⨂

⨂

n-ary circled times operator.
∐

∐

n-ary coproduct.
⋂

⋂

n-ary intersection.
⋀

⋀

n-ary logical and.
⋁

⋁

n-ary logical or.
∏

∏

n-ary product.
⨅

⨅

n-ary square intersection opera-
tor.

⨆

⨆

n-ary square union operator.
∑

∑

n-ary summation.
⋃

⋃

n-ary union.
⨄

⨄

n-ary union operator with plus.

≈ approximately.
= equals.
> greater than.
≥ greater than or equal to.
∈ in.
< less than.
≤ less than or equal to.
≫ much greater than.
≪ much less than.
≠ not equals.
∋ not in.

! factorial.
∀ for all.
− minus.
+ plus.

1

Figure 8.10: sample-msymbols.pdf

344

8 Examples

The use of the starred form allows:

\[\set{A} = \gls{bigcup}[_{i=1}^n] \set{B}[_i] \]

which produces:

A =
n∪

i=1

Bi

Note the difference if the optional arguments aren’t used:

\[\set{A} = \gls{bigcup}_{i=1}^n \set{B}_i \]

This produces:
A =

∪
n
i=1Bi

Be careful with the set cardinality example. You might be tempted to nest \set within
the argument of \setcard but this results in nested hyperlinks. These are unpredictable
and there’s no consistent handling of them between different PDF viewers. It can also be
confusing to the reader. If |B1 ∪ B2| shows up as what appears to be a single hyperlink,
where would the reader expect the target? This is the reason for providing the non-linking
commands like \nlset and \nlsetcard.

The complete document code is listed below. The document build is:

pdflatex sample-maths
bib2gls --group sample-maths
pdflatex sample-maths

The resulting document is shown in figure 8.11.
\documentclass[a4paper]{article}

\usepackage[T1]{fontenc}
\usepackage{amssymb}

\usepackage[colorlinks]{hyperref}
\usepackage[record,% using bib2gls
nostyles ,% don't load default styles
postdot,% append a dot after descriptions
stylemods={mcols},% load glossary -mcols.sty and patch
style=mcolalttree]{glossaries -extra}

\GlsXtrLoadResources[
src={no-interpret -preamble},
interpret -preamble=false

]

\GlsXtrLoadResources[
src={interpret -preamble ,bigmathsymbols ,mathsobjects},

345

8 Examples

sort-field={category},
identical -sort-action={description},
field-aliases={identifier=category ,format=user1},
replicate -fields={category=group},
set-widest,
save-locations=false

]

\renewcommand{\GlsXtrFmtDefaultOptions}{}

% requires glossaries -extra.sty v1.23+
\newcommand{\set}[2][]{\glsxtrfmt*[#1]{set}{#2}}
\newcommand{\nlset}[1]{\glsxtrentryfmt{set}{#1}}
\newcommand*{\setcontents}[2][]{\glsxtrfmt*[#1]{setcontents}{#2}}
\newcommand*{\setmembership}[2]{\glsxtrfmt*{setmembership}{{#1}{#2}}}
\newcommand*{\setcard}[2][]{\glsxtrfmt*[#1]{setcard}{#2}}
\newcommand*{\nlsetcard}[1]{\glsxtrentryfmt{setcard}{#1}}
\newcommand*{\transpose}[2][]{\glsxtrfmt*[#1]{transpose}{#2}}
\newcommand*{\nltranspose}[1]{\glsxtrentryfmt{transpose}{#1}}
\newcommand*{\inv}[2][]{\glsxtrfmt*[#1]{inverse}{#2}}
\newcommand*{\nlinv}[1]{\glsxtrentryfmt{inverse}{#1}}
\newcommand*{\Vtr}[2][]{\glsxtrfmt[#1]{vector}{#2}}
\newcommand*{\nlVtr}[1]{\glsxtrentryfmt{vector}{#1}}
\newcommand*{\Mtx}[2][]{\glsxtrfmt[#1]{matrix}{#2}}
\newcommand*{\nlMtx}[1]{\glsxtrentryfmt{matrix}{#1}}

\begin{document}
\section{Sets}
The universal set ($\gls{universalset}$) contains everything.
The empty set ($\gls{emptyset}$) contains nothing.
Some assignments:
\[
\set{B}[_1] = \setcontents{1, 3, 5, 7},\quad
\set{B}[_2] = \setcontents{2, 4, 6, 8},\quad
\set{B}[_3] = \setcontents{9, 10}

\]
Define:
\[\set{A} = \gls{bigcup}[_{i=1}^3] \set{B}[_i]
= \setcontents{1, \ldots, 10} \]
The cardinality of a set \gls{set} is denoted \gls{setcard}
and is the number of elements in the set.
\[
\setcard{\nlset{B}_1} = 4,\quad
\setcard{\nlset{B}_2} = 4,\quad
\setcard{\nlset{B}_3} = 2,\quad
\setcard{\nlset{B}_1\cup\nlset{B}_2} = 8,\quad

346

8 Examples

\nlsetcard{\gls{emptyset}} = 0
\]

\section{Spaces}
A number space (denoted $\gls{numberspace}$) is characterised
by a set of entities with a set of axioms. For example:
\begin{align*}
\gls{naturalnumbers}
&= \setmembership{x}{x\text{ is positive integer}}\\

\gls{integernumbers}
&= \setmembership{x}{x\text{ is an integer}}\\

\gls{realnumbers}
&= \setmembership{x}{x\text{ is a real number}}

\end{align*}

\section{Vectors and Matrices}

A matrix (denoted \gls{matrix}) is a rectangular array of values.
A vector (denoted \gls{vector}) is a column or row of values (that
is a one-dimensional matrix).
\[

\gls{identitymatrix}\Vtr{x} = \Vtr{x},\quad
\Mtx{A}\inv{\nlMtx{A}} = \gls{identitymatrix},\quad
\inv{\nlVtr{x}}\gls{1vec} = \gls{sum}[_i] x_i

\]

\printunsrtglossaries
\end{document}

sample-textsymbols.tex
This example uses miscsymbols.bib. This requires both marvosym and (with the weather
option) ifsym. Unfortunately both define the commands \Sun and \Lightning, so these
commands need to be undefined after the first package is loaded and before the second.
Since I want the definitions provide by ifsym I have to first load marvosym, then undefine the
conflicting commands and then load ifsym:

\usepackage{etoolbox}
\usepackage{marvosym}
\undef\Sun
\undef\Lightning
\usepackage[weather]{ifsym}

The etoolbox package is also loaded as it provides \undef.
The custom entry type @icon must be aliased for the entries to be recognised:

347

8 Examples

1 Sets
The universal set (U) contains everything. The empty set (∅) contains nothing.
Some assignments:

B1 = {1, 3, 5, 7}, B2 = {2, 4, 6, 8}, B3 = {9, 10}

Define:

A =

3⋃
i=1

Bi = {1, . . . , 10}

The cardinality of a set S is denoted |S| and is the number of elements in the
set.

|B1| = 4, |B2| = 4, |B3| = 2, |B1 ∪ B2| = 8, |∅| = 0

2 Spaces
A number space (denoted S) is characterised by a set of entities with a set of
axioms. For example:

N = {x : x is positive integer}
Z = {x : x is an integer}
R = {x : x is a real number}

3 Vectors and Matrices
A matrix (denoted M) is a rectangular array of values. A vector (denoted v)
is a column or row of values (that is a one-dimensional matrix).

Ix = x, AA−1 = I, x−11 =
∑
i

xi

Glossary

I the identity matrix.
M−1 the inverse of M .
M a matrix.
v a vector.
1 the vector of 1s.∑∑

n-ary summation.⋃⋃
n-ary union.

S a number space.

Z the set of integers.
N the set of natural numbers.
R the set of real numbers.

|S| the cardinality of S.
∅ the empty set.
S a set.
{. . .} set contents.
{x : . . .} set membership.
U the universal set.

1

Figure 8.11: sample-maths.pdf

348

8 Examples

entry-type-aliases={unit=symbol}

Since none of the entries have a name or description field, the custom fields icon and
icondescription need to be aliased to them. The document uses the alttreegroup style
where the groups are obtained from the category, which again I obtain from the custom
identifier field using:

field-aliases={
identifier=category,
icon=name,
icondescription=description},

replicate-fields={category=group}

The group field is just a label and an appropriate title needs to be supplied for each group
label:

\glsxtrsetgrouptitle{information}{Information}
\glsxtrsetgrouptitle{mediacontrol}{Media Controls}
\glsxtrsetgrouptitle{weather}{Weather Symbols}

This also requires sorting first by category and then fallback on another field. The most
appropriate here is the description field, but instead of using identical-sort-action,
I’m using sort-suffix, which works better with the default locale sort when the fallback
field consists of words or phrases.

sort-field={category},
sort-suffix={description},
sort-suffix-marker={|}

Since I’m using one of the alttree styles, I need to set the widest name:

set-widest

In this case, bib2gls won’t be able to determine the widest name since it doesn’t recognise
any of the commands, so it will have to use the fallback command, which will use one of the
commands provided by the glossaries-extra-stylemods package.

The complete document code is listed below. The document build is:

pdflatex sample-textsymbols
bib2gls --group sample-textsymbols
pdflatex sample-textsymbols

The resulting document is shown in figure 8.12.
\documentclass[a4paper]{article}

\usepackage[T1]{fontenc}

\usepackage{etoolbox}

349

8 Examples

\usepackage{marvosym}

% package conflict , need to undefine conflicting commands
\undef\Sun
\undef\Lightning

\usepackage[weather]{ifsym}

\usepackage[record,% using bib2gls
nostyles ,% don't load default styles
postdot,% append a dot after descriptions
stylemods={tree},% load glossary-mcols.sty and patch
style=alttreegroup]{glossaries -extra}

\GlsXtrLoadResources[
src={miscsymbols},

% make @icon behave like @symbol:
entry-type-aliases={icon=symbol},
field-aliases={
identifier=category ,
icon=name,
icondescription=description

},
replicate -fields={category=group},
sort-field={category},
sort-suffix={description},
sort-suffix-marker={|},
set-widest,
selection=all

]

\glsxtrsetgrouptitle{information}{Information}
\glsxtrsetgrouptitle{mediacontrol}{Media Controls}
\glsxtrsetgrouptitle{weather}{Weather Symbols}

\begin{document}
\printunsrtglossaries
\end{document}

sample-languages.tex
This example uses markuplanguages.bib. Since the file includes abbreviations, any com-
mands that must be used before abbreviations are defined need to go before \GlsXtrLoad-
Resources. This includes the abbreviation style, which I’ve set to long-short-desc:
\setabbreviationstyle[markuplanguage]{long-short-desc}

350

8 Examples

Glossary

Information

® bicycle route.
K café.
o football stadium.
x Gents.
i information centre.
y Ladies.
Þ recycling centre.
w wheelchair access provided.

Media Controls

´ back to start of track.
¹ next track.
· play.
¶ rewind.

Weather Symbols

� cloudy.
� drizzle.
� foggy.
� hail.
� misty.
� overcast.
� rain.
� snow.
� sunny.
� thunderstorm.

1

Figure 8.12: sample-textsymbols.pdf

351

8 Examples

This style sets the name field using \glsxtrlongshortdescname, which defaults to the long
form followed by the short form in parenthesis. I decided to switch this round so that the
short form is shown first, which conveniently matches the default abbreviation-sort
-fallback.

\renewcommand*{\glsxtrlongshortdescname}{%
\protect\glsabbrvfont{\the\glsshorttok}\space
\glsxtrparen{\glslongfont{\the\glslongtok}}%

}

This redefinition must be done before the abbreviations are defined as it’s expanded when
the name field is set. (Note the need to protect commands that shouldn’t be expanded.) If I
decide not to change the name format in this way, I would then need to use abbreviation
-sort-fallback={long}.

I also decided to make use of the custom command \abbrvtag that marks up the letters
in the long field used to obtain the abbreviation. As with the abbreviation style, this must
be done before the abbreviations are defined:

\GlsXtrEnableInitialTagging{markuplanguage}{\abbrvtag}

If you accidentally place it after \GlsXtrLoadResources, you’ll encounter an error on the
second LATEX run (but not the first). This is because \GlsXtrEnableInitialTagging re-
quires that the supplied command (\abbrvtag in this case) be undefined. On the first LATEX
it’s undefined, but on the second it picks up the @preamble definition, which is now in the
resource file.

The tagging format is governed by \glsxtrtagfont which underlines its argument by
default. I’ve redefined it to also convert the letter to uppercase:

\renewcommand*{\glsxtrtagfont}[1]{\underline{\MakeTextUppercase{#1}}}

Note that in the mathml case, the first tag consists of more than one letter:

long={\abbrvtag{m\NoCaseChange{ath}}ematical }#markuplang

Here \NoCaseChange is used to prevent \MakeTextUppercase from applying the case change.
The default selection criteria includes entries that have been indexed and any cross-

references. Some of the description fields include \glsxtrshort, which bib2gls picks
up and the referenced entry is included in the dependency list. However, I don’t want any
indexing performed by commands occurring in the glossary. This can be dealt with in one of
two ways: either switch the format to glsignore or suppress the indexing by changing the
default options with \GlsXtrSetDefaultGlsOpts. In this case I decided to turn the records
into ignored records:

\GlsXtrSetDefaultNumberFormat{glsignore}

Thismeans that some of the entrieswon’t have location lists, so I’ve provided a post-description
hook that inserts a full stop after the description if there’s no location otherwise it inserts
a comma:

352

8 Examples

\newcommand{\glsxtrpostdescmarkuplanguage}{%
\glsxtrifhasfield{location}{\glscurrententrylabel}%
{,}%
{.}%

}

I’ve used loc-suffix to append a full stop after the location lists. This doesn’t affect the
entries that haven’t been indexed.

I decided to convert the first letter of the name field to uppercase. Since the name is im-
plicitly set for abbreviations based on the style, I’ve decided to implement this through the
glossname attribute rather than using name-case-change:

\glssetcategoryattribute{markuplanguage}{glossname}{firstuc}

If this line causes an error when the glossary is displayed that goes away if it’s commented
out, make sure you have at least version 2.06 of mfirstuc. For most of the entries, this doesn’t
make a difference as they already start with a capital. It’s only the markdown entry that’s
actually affected.

The complete document code is listed below. The document build is:

pdflatex sample-languages
bib2gls --group sample-languages
pdflatex sample-languages

The resulting document is shown in figure 8.13.
\documentclass[fontsize=12pt]{scrartcl}

\usepackage[T1]{fontenc}

\usepackage[colorlinks]{hyperref}
\usepackage[record,% use bib2gls
nostyles ,% don't load default styles

% load glossary-tree.sty and patch styles:
stylemods={tree},
style=treegroup]{glossaries -extra}

% abbreviation style must be set before \GlsXtrLoadResources
\setabbreviationstyle[markuplanguage]{long-short-desc}

\GlsXtrEnableInitialTagging{markuplanguage}{\abbrvtag}

\renewcommand*{\glsxtrlongshortdescname}{%
\protect\protect\glsabbrvfont{\the\glsshorttok}\space
\glsxtrparen{\glslongfont{\the\glslongtok}}%

}

\GlsXtrLoadResources[

353

8 Examples

src=markuplanguages ,% data in markuplanguages.bib
loc-suffix,
category=markuplanguage

]

\newcommand{\glsxtrpostdescmarkuplanguage}{%
\glsxtrifhasfield{location}{\glscurrententrylabel}%
{,}%
{.}%

}

\glssetcategoryattribute{markuplanguage}{glossname}{firstuc}

\renewcommand*{\glsxtrtagfont}[1]{\underline{\MakeTextUppercase{#1}}}

\begin{document}

\section{First Use}

\gls{LaTeX}, \gls{markdown}, \gls{xhtml}, \gls{mathml}, \gls{svg}.

\section{Next Use}

\gls{LaTeX}, \gls{markdown}, \gls{xhtml}, \gls{mathml}, \gls{svg}.

\GlsXtrSetDefaultNumberFormat{glsignore}
\printunsrtglossary
\end{document}

sample-usergroups.tex
This example uses usergroups.bib. This requires XƎLATEX or LuaLATEX as the .bib file in-
cludes non-ASCII labels. The entries include fields in different languages, the main one being
English. If an entry has a non-English name or long field, it also includes the custom field
translation that provides an (approximate) translation. If this field is present, the language
is given by the first element of the custom language field.

In this case, I’m providing keys for the custom language and translation fields, and
for a bit of variety from the other examples, I’m ignoring the custom identifier field. The
custom keys are provided with \glsaddstoragekey:

\glsaddstoragekey{language}{}{\glsentrylanguage}
\glsaddstoragekey{translation}{}{\glsentrytranslation}

The .bib file includes abbreviations. Remember that the abbreviation stylemust be set before
the resource file is loaded:

354

8 Examples

1 First Use

LATEX, markdown, extensible hypertext markup language (XHTML), mathematical markup
language (MathML), scalable vector graphics (SVG).

2 Next Use

LATEX, markdown, XHTML, MathML, SVG.

Glossary

H

HTML (HyperText Markup Language) the standard markup language for creating
web pages.

L

LATEX a format of TEX designed to separate content from style, 1.

M

Markdown a lightweight markup language with plain text formatting syntax, 1.
MathML (Mathematical Markup Language) the standard markup language for
creating web pages, 1.

S

SVG (Scalable Vector Graphics) XML-based vector image format, 1.

T

TEX a format for describing complex type and page layout often used for mathematics,
technical, and academic publications.

X

XHTML (eXtensible HyperText Markup Language) XML version of HTML, 1.
XML (eXtensible Markup Language) a markup language that defines a set of rules
for encoding documents.

1

Figure 8.13: sample-languages.pdf

355

8 Examples

\setabbreviationstyle[tug]{long-short-user}

For this example, I’m explicitly setting the category field to tug:

category={tug}

Some of the fields end with a full stop. This isn’t a problem with the long field as the first
use follows the long form with the short form in parentheses, but it will be a problem on
subsequent use if the short field ends with a full stop. This means I need to check for end-
of-sentence punctuation for the short field. It’s also a good idea to do this for the name field
for the non-abbreviations.

check-end-punctuation={name,short}

It’s now possible to discard a full stop that follows \gls:

\renewcommand*{\glsxtrifcustomdiscardperiod}[2]{%
\ifglshasshort{\glslabel}%
{%

\glsxtrifwasfirstuse{}%
{%
\GlsXtrIfFieldUndef{shortendpunc}{\glslabel}{#2}{#1}%

}%
}%
{%

\GlsXtrIfFieldUndef{nameendpunc}{\glslabel}{#2}{#1}%
}%

}

This first tests if the entry that’s just been referenced has a short field. If it has, then the
next test is to check if that was the first use for that entry. If it was, nothing is done. If it
wasn’t, then \GlsXtrIfFieldUndef is used to determine if shortendpunc has been set. If
it has been set then the period discard function is performed. If the entry doesn’t have a
short field, then the nameendpunc field needs checking instead.

Since the document requires XƎLATEX or LuaLATEX and has some non-ASCII characters, it
needs fontspec and an appropriate font. In this case I’ve chosen “Linux Libertine O”. If you
don’t have it installed, you’ll need to change it.

\usepackage{fontspec}
\setmainfont{Linux Libertine O}

Since it’s a multilingual document I also need polyglossia with the main language set to
english:

\usepackage{polyglossia}
\setmainlanguage[variant=uk]{english}

356

8 Examples

Now comes the difficult bit. The document needs to determine what other languages need
to be loaded. The tracklang package provides a convenient interface when dealing with lan-
guage tags. This is automatically loaded by glossaries but I’ve loaded it here explicitly as a
reminder:

\usepackage{tracklang}

Once the resource file has been loaded, I need to iterate over all the defined entries and check
if the translation field has been set. If it has, then the first language tag in the language
field will supply the language, but this needs to be converted from the IETF language tag to
a language name recognised by polyglossia.

Iterating over all entries can be done with \forglsentries but remember that no entries
will be defined before bib2gls has been run, so this does nothing on the first LATEX run.

\forglsentries{\thislabel}{%
\glsxtrifhasfield{translation}{\thislabel}%
{%

% requires glossaries-extra v1.24
\glsxtrforcsvfield{\thislabel}{language}{\addfirstlang}%

}%
{}%

}

Within the outer (\forglsentries) loop, there’s a check for the translation field using
\glsxtrifhasfield. If it’s present, then the first element of the language field is required.
The simplest way to get this is to use \glsxtrforcsvfieldwhich iterates over all elements
of the given field (language in this case) and break out of the loop (with \glsxtrendfor)
once the language has been found.

The handler function (\addfirstlang) is defined so that it adds the given language tag
as a tracked language using \TrackLocale. This command sets \TrackLangLastTracked-
Dialect to the associated (tracklang) dialect label for convenience. This dialect label can
then be converted to the root language label using \TrackedLanguageFromDialect. If this
language is supported by polyglossia, then there should be a file called gloss⟨language⟩.ldf.

Some of the entries use the same language, so it’s necessary to check if the language has
already been defined before loading it. There’s also a problem in that the language file should
not be loaded in a scoped context, but both \glsxtrforcsvfield and the unstarred \gls-
xtrifhasfield add implicit grouping. To solve both problems, an internal etoolbox list is
defined:

\newcommand{\langlist}{}%

and \xifinlist is used to first check if the language label is already in the list before adding
it. Since this part of the code is scoped, the global \listxadd is used to add the language
label to the list.

Next the useri field is set to text⟨language⟩ which is the name of the control sequence
used with polyglossia to switch languages. This means that \glsxtrentryfmt{⟨text⟩} can be

357

8 Examples

used to format ⟨text⟩ in the relevant language. Finally, \glsxtrendfor is used to break out
of the loop.

\newcommand*{\addfirstlang}[1]{%
\TrackLocale{#1}%
\edef\thislanguage{%

\TrackedLanguageFromDialect\TrackLangLastTrackedDialect}%
\IfFileExists{gloss-\thislanguage.ldf}%
{%

\xifinlist{\thislanguage}{\langlist}{}%
{\listxadd{\langlist}{\thislanguage}}%
\xGlsXtrSetField{\thislabel}{useri}{text\thislanguage}%
\glsxtrendfor

}%
{}%

}

Once the \forglsentries loop has found the appropriate languages, it’s now necessary to
iterator over the internal list \langlist and set the language:

\forlistloop{\setotherlanguage}{\langlist}

The long-short-user style now needs to be adjusted to ensure that it picks up the appropriate
language change. By default this style checks the useri field, so this needs to be changed to
translation by redefining \glsxtruserfield:

\renewcommand*{\glsxtruserfield}{translation}

The command that governs the format of the parenthetical material (\glsxtruserparen)
also needs adjusting. I’ve changed the space before the parenthesis to \␣ because some of
the long fields end with a full stop and this corrects the spacing. The translation field is in
English, so this needs to be encapsulated with \textenglish in case the surrounding text
is in a different language.

\renewcommand*{\glsxtruserparen}[2]{%
\
\glsxtrparen{#1%
\ifglshasfield{\glsxtruserfield}{#2}{,
\textenglish{\glscurrentfieldvalue}}{}}%

}

Next I’ve defined a convenient command for use in the textformat attributes for the custom
tug category:

\newcommand*{\tugtextformat}[1]{%
\glsxtrentryfmt{\glslabel}{#1}%

}

358

8 Examples

This uses \glsxtrentryfmt to encapsulate the given text in the appropriate language com-
mand (if provided). When this is set as the textformat attribute, it will be used instead of
\glstextformat, which means that the entry label can be referenced with \glslabel.

There’s a similar command for use in the glossnamefont attribute. This is used in the
glossary, so the label is referenced with \glscurrententrylabel:

\newcommand*{\tugnameformat}[1]{%
\glsxtrentryfmt{\glscurrententrylabel}{#1}%

}

The attributes can now be set to the relevant control sequence name:

\glssetcategoryattribute{tug}{textformat}{tugtextformat}
\glssetcategoryattribute{tug}{glossnamefont}{tugnameformat}

This document uses the bookindex style. This is set in the package options:

\usepackage[record,
nostyles,
stylemods={bookindex},
style={bookindex}

]{glossaries-extra}

This style ignores the description field, so I’ve provided a post-name hook to append it in
parentheses (with the translation, if provided):

\newcommand{\glsxtrpostnametug}{%
\ifglshasdesc{\glscurrententrylabel}%
{\ (\glossentrydesc{\glscurrententrylabel}%

\glsxtrifhasfield{translation}{\glscurrententrylabel}%
{, \textenglish{\glscurrentfieldvalue}}%
{}%

)}%
{%
\glsxtrifhasfield{translation}{\glscurrententrylabel}%
{\ (\textenglish{\glscurrentfieldvalue})}%
{}%

}%
}

Remember that this hook is included within the name font (provided by the glossnamefont
attribute in this case) so \textenglish is again used to switch the language to English for
the translation.

The complete document code is listed below. The document build is:

xelatex sample-usergroups
bib2gls --group sample-usergroups
xelatex sample-usergroups
xelatex sample-usergroups

359

8 Examples

The two pages of the document are shown in figure 8.14. Since the entries have all been
referenced on page 1, the location lists are all simply “1”.
\documentclass{scrreprt}

\usepackage{fontspec}
\setmainfont{Linux Libertine O}

\usepackage{polyglossia}
\setmainlanguage[variant=uk]{english}
\usepackage{tracklang}
\usepackage{etoolbox}

\usepackage[record,% use bib2gls
nostyles ,% don't load default styles
stylemods={bookindex},
style={bookindex}

]{glossaries -extra}

\glsaddstoragekey{language}{}{\glsentrylanguage}
\glsaddstoragekey{translation}{}{\glsentrytranslation}

\setabbreviationstyle[tug]{long-short-user}

\GlsXtrLoadResources[
src={usergroups}, % data in usergroups.bib
check-end-punctuation={name,short},
category=tug

]

\renewcommand*{\glsxtrifcustomdiscardperiod}[2]{%
\ifglshasshort{\glslabel}%
{%

\glsxtrifwasfirstuse{}%
{%

\GlsXtrIfFieldUndef{shortendpunc}{\glslabel}{#2}{#1}%
}%

}%
{%

\GlsXtrIfFieldUndef{nameendpunc}{\glslabel}{#2}{#1}%
}%

}

\newcommand{\langlist}{}%

\newcommand*{\addfirstlang}[1]{%
\TrackLocale{#1}%

360

8 Examples

\edef\thislanguage{%
\TrackedLanguageFromDialect\TrackLangLastTrackedDialect}%

\IfFileExists{gloss-\thislanguage.ldf}%
{%

\xifinlist{\thislanguage}{\langlist}{}%
{\listxadd{\langlist}{\thislanguage}}%
\xGlsXtrSetField{\thislabel}{useri}{text\thislanguage}%
\glsxtrendfor

}%
{}%

}

\forglsentries{\thislabel}{%
\glsxtrifhasfield{translation}{\thislabel}%
{%

% requires glossaries -extra v1.24
\glsxtrforcsvfield{\thislabel}{language}{\addfirstlang}%

}%
{}%

}

\forlistloop{\setotherlanguage}{\langlist}

\renewcommand*{\glsxtruserfield}{translation}

\renewcommand*{\glsxtruserparen}[2]{%
\
\glsxtrparen{#1%
\ifglshasfield{\glsxtruserfield}{#2}{,
\textenglish{\glscurrentfieldvalue}}{}}%

}

\newcommand*{\tugtextformat}[1]{%
\glsxtrentryfmt{\glslabel}{#1}%

}

\newcommand*{\tugnameformat}[1]{%
\glsxtrentryfmt{\glscurrententrylabel}{#1}%

}

\glssetcategoryattribute{tug}{textformat}{tugtextformat}
\glssetcategoryattribute{tug}{glossnamefont}{tugnameformat}

\newcommand{\glsxtrpostnametug}{%
\ifglshasdesc{\glscurrententrylabel}%
{\ (\glossentrydesc{\glscurrententrylabel}%

361

8 Examples

\glsxtrifhasfield{translation}{\glscurrententrylabel}%
{, \textenglish{\glscurrentfieldvalue}}%
{}%

)}%
{%
\glsxtrifhasfield{translation}{\glscurrententrylabel}%
{\ (\textenglish{\glscurrentfieldvalue})}%
{}%

}%
}

\begin{document}
\chapter{Sample}
\section{First Use}
\gls{TUG}. \gls{bgTeX}. \gls{latex-br}. \gls{CTeX}.
\gls{CSTUG}. \gls{DANTE}. \gls{DKTUG}. \gls{EUG}.
\gls{CervanTeX}. \gls{TirantloTeX}. \gls{GUTenberg}.
\gls{UKTUG}. \gls{ɛϕτ}. \gls{MaTeX}. \gls{ITALIC}.
\gls{ÍsTeX}. \gls{GuIT}. \gls{KTS}. \gls{LTVG}.
\gls{mxTeX}. \gls{NTG}. \gls{NTUG}. \gls{GUST}. \gls{GUTpt}.
\gls{VietTUG}. \gls{LUGSA}.

\section{Next Use}

\gls{TUG}. \gls{bgTeX}. \gls{latex-br}. \gls{CTeX}.
\gls{CSTUG}. \gls{DANTE}. \gls{DKTUG}. \gls{EUG}.
\gls{CervanTeX}. \gls{TirantloTeX}. \gls{GUTenberg}.
\gls{UKTUG}. \gls{ɛϕτ}. \gls{MaTeX}. \gls{ITALIC}.
\gls{ÍsTeX}. \gls{GuIT}. \gls{KTS}. \gls{LTVG}.
\gls{mxTeX}. \gls{NTG}. \gls{NTUG}. \gls{GUST}. \gls{GUTpt}.
\gls{VietTUG}. \gls{LUGSA}.

\printunsrtglossaries
\end{document}

sample-multi1.tex
This example uses bacteria.bib, markuplanguages.bib, vegetables.bib, minerals.bib,
animals.bib, chemicalformula.bib, baseunits.bib and derivedunits.bib. Since there’s
one or more UTF-8 character, the document requires UTF-8 support:

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

The aim of this example document is to have a separate glossary (without number lists)
for each type of data (bacteria, markup languages, vegetables, minerals, animals, chemical

362

8 Examples

1 Sample

1.1 First Use
TEX Users Group (TUG). Bulgarian LATEX Users Group (bgTeX). Grupo de Usuários (latex-br,
Brazilian TEX Users Group). Chinese TEX Society (CTeX). Československé sdružení uživatelů
TeXu, z. s. (CSTUG, Czech Republic TEX Users Group). Deutschsprachige Anwendervereini-
gung TEX e.V. (DANTE e.V., German Speaking TEX Users Group). Danish TEX Users Group
(DK-TUG). Estonian User Group. Grupo de Usuarios de TEX Hispanohablantes (CervanTeX,
Spanish Speaking TEX Users Group). Catalan TEX Users Group (Tirant lo TEX). Groupe franco-
phone des utilisateurs de TEX (GUTenberg, French Speaking TEX Users Group). UK TEX Users
Group (UK-TUG). Σύλλογος Ελλήνων Φίλων του TEX (ɛϕτ, Greek TEX Friends). Magyar TEX
Egyesület (MaTeX, Hungarian TEX Users Group). Irish TEX and LATEX In-print Community (IT-
ALIC). Vefur íslenskra TEX notenda (ÍsTeX, Icelandic TEX Users Group). Gruppo Utilizzatori
Italiani di TEX (GuIT, Italian TEX Users Group). Korean TEX Society (KTS). Lietuvos TEX’o
Vartotojų Grupė. TEX México. Nederlandstalige TEX Gebruikersgroep (NTG, Netherlands TEX
Users Group). Nordic TEX Users Group. Polska Grupa Użytkowników Systemu TEX (GUST,
Polish TEX Users Group). Grupo de Utilizadores de TEX (GUTpt, Portuguese TEX Users Group).
Vietnamese TEX Users Group (VietTUG). LATEX User Group— South Africa (LUGSA).

1.2 Next Use
TUG. bgTeX. latex-br. CTeX. CSTUG. DANTE e.V. DK-TUG. Estonian User Group. Cervan-
TeX. Tirant lo TEX. GUTenberg. UK-TUG. ɛϕτ. MaTeX. ITALIC. ÍsTeX. GuIT. KTS. Lietuvos
TEX’o Vartotojų Grupė. TEX México. NTG. Nordic TEX Users Group. GUST. GUTpt. VietTUG.
LUGSA.

1

Glossary

B

bgTeX (Bulgarian LATEX Users Group), 1

C

CervanTeX (Grupo de Usuarios de TEX
Hispanohablantes, Spanish Speaking
TEX Users Group), 1

CSTUG (Československé sdružení uživatelů
TeXu, z. s., Czech Republic TEX
Users Group), 1

CTeX (Chinese TEX Society), 1

D

DANTE e.V. (Deutschsprachige
Anwendervereinigung TEX e.V.,
German Speaking TEX Users Group),
1

DK-TUG (Danish TEX Users Group), 1

E

Estonian User Group, 1

G

GuIT (Gruppo Utilizzatori Italiani di TEX,
Italian TEX Users Group), 1

GUST (Polska Grupa Użytkowników Systemu
TEX, Polish TEX Users Group), 1

GUTenberg (Groupe francophone des
utilisateurs de TEX, French Speaking
TEX Users Group), 1

GUTpt (Grupo de Utilizadores de TEX,
Portuguese TEX Users Group), 1

I

ÍsTeX (Vefur íslenskra TEX notenda, Icelandic
TEX Users Group), 1

ITALIC (Irish TEX and LATEX In-print
Community), 1

K

KTS (Korean TEX Society), 1

L

latex-br (Grupo de Usuários, Brazilian TEX
Users Group), 1

Lietuvos TEX’o Vartotojų Grupė (Lithuanian
TEX Users Group), 1

LUGSA (LATEX User Group— South Africa), 1

M

MaTeX (Magyar TEX Egyesület, Hungarian
TEX Users Group), 1

N

Nordic TEX Users Group, 1
NTG (Nederlandstalige TEX Gebruikersgroep,

Netherlands TEX Users Group), 1

T

TEX México (Mexican TEX Users Group), 1
Tirant lo TEX (Catalan TEX Users Group), 1
TUG (TEX Users Group), 1

U

UK-TUG (UK TEX Users Group), 1

V

VietTUG (Vietnamese TEX Users Group), 1

Ɛ

ɛϕτ (Σύλλογος Ελλήνων Φίλων του TEX,
Greek TEX Friends), 1

2

Figure 8.14: sample-usergroups.pdf

formula, base units and derived units) and also an index listing all referenced entries with
number lists aswell as aliased entries that haven’t explicitly been used but the cross-reference
term as been indexed. This requires

selection={recorded and deps and see}

to ensure the aliased entries are selected.
Since I don’t need the default main glossary (I’m providing my own custom glossaries) I’ve

used the nomain option to suppress its automatic creation, but I do want the index glossary
so I’ve used the index package option. As with the other examples, I’ve used nostyles to
suppress the creation of the default styles and used stylemods to load the particular style
packages that I need and use glossaries-extra-stylemods to patch them. The index needs to
be in an unnumbered chapter, which is the default for book-like styles, but I want the other
glossaries in unnumbered sections so I’ve used the section option. I just need to remember
to switch this before displaying the index:

\usepackage[record,% use bib2gls
section,% use \section* for glossary headings
postdot,% insert dot after descriptions in glossaries
nomain,% don't create 'main' glossary
index,% create 'index' glossary
nostyles,% don't load default styles

363

8 Examples

% load and patch required style packages:
stylemods={list,mcols,tree,bookindex}

]{glossaries-extra}

The remaining glossaries need defining:

\newglossary*{bacteria}{Bacteria}
\newglossary*{markuplanguage}{Markup Languages}
\newglossary*{vegetable}{Vegetables}
\newglossary*{mineral}{Minerals}
\newglossary*{animal}{Animals}
\newglossary*{chemical}{Chemical Formula}
\newglossary*{baseunit}{SI Units}
\newglossary*{derivedunit}{Derived Units}

As with sample-bacteria.tex and sample-languages.tex I need to set the abbreviation
styles before the abbreviations are defined:

\setabbreviationstyle[bacteria]{long-only-short-only}
\setabbreviationstyle[markuplanguage]{long-short-desc}

Unlike the sample-languages.tex example, I’m not interested in tagging the initials in
this case, but I still want to change the way the name field is set with the long-short-desc
abbreviation style:

\renewcommand*{\glsxtrlongshortdescname}{%
\protect\protect\glsabbrvfont{\the\glsshorttok}\space
\glsxtrparen{\glslongfont{\the\glslongtok}}%

}

Remember that this also needs to be set before the abbreviations are defined. The textformat
and glossnamefont attributes may be set after definition:

\newcommand{\bacteriafont}[1]{\emph{#1}}
\glssetcategoryattribute{bacteria}{textformat}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossnamefont}{bacteriafont}

The description font also needs to be set since this will contain the long form:

\glssetcategoryattribute{bacteria}{glossdescfont}{bacteriafont}

The markuplanguage glossary contains descriptions and some long names, so it’s better
suited to the altlist style, in which case the descriptions would look better if they started with
a capital letter:

\glssetcategoryattribute{markuplanguage}{glossdesc}{firstuc}

364

8 Examples

Remember that the altlist style uses the description environment, which is governed by the
document class (and may be modified by list-related packages). In this case, one of the
KOMA-Script classes is used, so the list items are typeset in sans-serif.

There are various ways of dealing with the duplicated data in the index, such as using the
secondary option or having a separate resource set with a copy action. In this case, I’ve
decided to use a dual entry system. Since the entries aren’t defined using any dual types, I’ve
used entry-type-aliases to make bib2gls treat them as though they were, and I also
need to alias the custom @chemical, @unit and @measurement entry types:

entry-type-aliases={
abbreviation=dualindexabbreviation,
entry=dualindexentry,
symbol=dualindexsymbol,
unit=dualindexsymbol,
measurement=dualindexsymbol,
chemical=dualindexsymbol

}

Note that I haven’t aliased the @index types as I only want these in the index and not repli-
cated in a separate glossary.

The primary entries for the @dualindexabbreviation type ignore the short form. It
would be useful to store it. This could be done by copying the short field with replicate
-fields. For example, replicate-fields={short=symbol}. However, this will cause the
symbol field to be set for both the primary and dual entries, which will cause an unwanted
duplication if the dual entries are displayed using a glossary style that shows the symbol
field. Another field (such as user1) could be used instead or \bibglsnewdualindexabbre-
viation could be defined before \GlsXtrLoadResources:

\newcommand{\bibglsnewdualindexabbreviation}[7]{%
\longnewglossaryentry*{#1}{%
name={\protect\bibglsuselongfont{#4}{\glscategory{#2}}},%
symbol={\protect\bibglsuseabbrvfont{#5}{\glscategory{#2}}},%
category={index},#3}{}%

}

However, this will affect all @dualindexabbreviation entry types, but it’s not necessary
for the bacteria abbreviations. Instead it’s simpler to just keep a record of the dual label so
that the short form can be obtained from the dual entry:

dual-field

By default, the @dualindexabbreviation entry type falls back on the short field if the
name is omitted. In this case I want it to fall back on the long field instead.

abbreviation-name-fallback={long}

365

8 Examples

Remember that the sort fallback for abbreviations is still short (but can be changed with
abbreviation-sort-fallback), but I’ve changed the sort fallback for symbols:

symbol-sort-fallback={name}

I also need to alias the custom fields (especially for those in the chemicalformula.bib,
baseunits.bib and derivedunits.bib files):

field-aliases={
identifier=category,
formula=symbol,
chemicalname=name,
unitname=name,
unitsymbol=symbol,
measurement=description

}

There’s a slight problemhere. This ensures that the entries defined in chemicalformula.bib
have a name and symbol field, which are swapped round for the dual (according to the default
dual-indexsymbol-map) but these entries don’t have a description field. Since I’d like
to use the mcolalttreegroup style, this will end up with the odd appearance of the formula
(stored in the name field for the dual) followed by the chemical name (stored in the symbol
field for the dual) in parenthesis. This is default ⟨name⟩ (⟨symbol⟩) ⟨description⟩ format for
the style. I’ve fixed this by locally redefining \glsxtralttreeSymbolDescLocation for
just that glossary:

\printunsrtglossary*[type=chemical,style=mcolalttreegroup]
{%

\renewcommand\glsxtralttreeSymbolDescLocation[2]{%
\glossentrysymbol{#1}\glspostdescription\glsxtrAltTreePar

}%
\renewcommand*{\glstreenamefmt}[1]{#1}%
\renewcommand*{\glstreegroupheaderfmt}[1]{\textbf{#1}}%

}

I’ve also redefined \glstreenamefmt to prevent the names appearing in bold, which means
I also need to redefine \glstreegroupheaderfmt to keep the headers bold.

All the @dualindex⟨type⟩ entry types provide a primary entry that behaves like @index.
The secondary behaves like @⟨type⟩. This means that the primaries are conveniently gather
together with all the unaliased @index entries, so the primary entry type needs to be set to
index:

type={index}

The dual entry type depends on the entry’s category. Since I’ve defined my custom glossaries
with a label that matches the custom identifier field, I can both alias this custom field to
the category field and also set dual-type so that it matches the category:

366

8 Examples

field-aliases={identifier=category},
dual-type={same as category}

The primary entries (in the index glossary) need to be sorted alphabetically, and since the
document is in English I’m sorting according to that language (identified by the language
code en), but I also want to make sure that all the primary entries are sorted by the name
field to avoid discrepancies in the fallback value for the sort field:

sort={en},
sort-field={name}

With abbreviation-name-fallback={long} now set, this means that Coxiella burnetii
comes after Clostridium tetani in the index. I haven’t changed the sort field for the dual
entries, so in that case the abbreviation-sort-fallback and symbol-sort-fallback
settings will be used with the duals. This means that C. burnetii is between C. botulinum and
C. perfringens rather than after C. tetani.

I’d like to sort the dual entries according to a letter-number rule (as for the above sample
-chemical.tex and sample-units3.tex examples) but this would order “bílinite” after
“biotite” in the minerals glossary, so instead I’m also using the English sort rule for the
duals, but with the numbers padded:

dual-sort={en},
dual-sort-number-pad={2},

Thismethod doesn’t work as well as the method used in sample-chemical.tex as it doesn’t
separate the capitals, digits and lower case characters in the way that can be achieved with
the letter-number methods. An improvement can be made by changing the break-points. I
could use dual-break-at={upper-upper} but this would put “seal” before “sea lion” in the
animal glossary, so instead I’ve used:

dual-break-at={upper-upper-word}

This now puts “sea lion” before “seal”. Unfortunately the word break points will cause a
break at the markers used to indicate positive and negative numbers that are inserted with
dual-sort-number-pad, so these need to be changed to something that won’t cause them
to be discarded:

dual-sort-pad-minus={0},
dual-sort-pad-plus={1}

The document loads hyperref which means that all the \gls references will create hy-
perlinks. Since the primaries are in the index, the default prefixes mean that, for exam-
ple, \gls{svg} links to the “scalable vector graphics” item in the index rather than to the
abbreviation “SVG” in the markuplanguage glossary. There are two alternatives: change
\gls{svg} to \gls{dual.svg} or change the default prefixes, which is the more conve-
nient approach as is the one used here:

367

8 Examples

label-prefix={idx.},
dual-prefix={}

Now \gls{svg} refers to the dual abbreviation “SVG” and \gls{idx.svg} refers to the
primary entry “scalable vector graphics”. Unfortunately this means that the records created
with \gls{svg} now refer to the dual abbreviation and will end up being displayed in the
glossary instead of the index. This can be fixed with:

combine-dual-locations={primary}

Which transfers the dual entry locations to the corresponding primary.
The other problem is the cross-references in the description fields. Since the labels

don’t start with dual. bib2gls will assume the refer to the primary entries, which means
that idx. (the value of label-prefix) will be inserted. This means that they’ll link to the
index rather than the glossary entry. It also means that the cross-references where the dual
is an abbreviation won’t behave like an abbreviation as the reference is to the primary (non-
abbreviation) entry. This can be fixed by setting cs-label-prefix to the same value as
dual-prefix:

cs-label-prefix={}

The index is displayed using the bookindex style. This doesn’t show the description or symbol
by default, but it would be useful to include the symbol in parentheses after the name. This
can be done by redefining \glsxtrbookindexname:

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}{\space(\glossentrysymbol{#1})}{}%

}

However the chemical forumlae look a little odd in parentheses (especially those that contain
parenthetical parts) but this can be fixed by adding a category check:

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}%
{%

\glsifcategory{#1}{chemical}%
{, \glossentrysymbol{#1}}%
{\space(\glossentrysymbol{#1})}%

}%
{}%

}

Unfortunately \glossentrysymbol doesn’t pick up the glossnamefont attribute, so if the
short form of the abbreviations is saved in the symbol field, using one of the methods dis-
cussed above, then the custom \bacteriafontwon’t be applied. A simple solution is to use
\glossentrynameother instead:

368

8 Examples

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}%
{%

\glsifcategory{#1}{chemical}%
{, \glossentrysymbol{#1}}%
{\space(\glossentrynameother{#1}{symbol})}%

}%
{}%

}

However, since I decided not to store the short form in the symbol field and just saved the
dual entry label instead, I need to lookup the short form from the dual entry:

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}%
{%

\glsifcategory{#1}{chemical}%
{, \glossentrysymbol{#1}}%
{\space(\glossentrynameother{#1}{symbol})}%

}%
{%

\glsifcategory{#1}{markuplanguage}%
{%
\glsxtrifhasfield{short}{\glsxtrusefield{#1}{dual}}%
{\space(\glscurrentfieldvalue)}%
{}%

}%
{}%

}%
}

Not all of the markup languages are abbreviations so this uses \glsxtrifhasfield to check
if the short field is set. The dual entry’s label is easily obtained because dual-field has
provided the dual internal field and set it to the corresponding label.

It’s sometimes useful for the index to include a reference to the term’s definition. This
can be done by making use of \glsextrapostnamehook, which can be redefined before the
glossaries to automatically record each entry:

\renewcommand{\glsextrapostnamehook}[1]{\glsadd[format=hyperbf]{#1}}

This needs to be redefined to ignore its argument before the index, to avoid the redundant
index record:

\renewcommand{\glsextrapostnamehook}[1]{}

369

8 Examples

Remember that if any records are added within a glossary, an extra LATEX and bib2gls call
are required, so the document build is:

pdflatex sample-multi1
bib2gls --group sample-multi1
pdflatex sample-multi1
bib2gls --group sample-multi1
pdflatex sample-multi1

The complete document code is listed below. The resulting document is shown in figure 8.15
and figure 8.16.
\documentclass{scrreprt}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[version=4]{mhchem}
\usepackage{siunitx}
\usepackage[colorlinks]{hyperref}

\usepackage[record,% use bib2gls
section,% use \section* for glossary headings
postdot,% insert dot after descriptions in glossaries
nomain,% don't create 'main' glossary
index,% create 'index' glossary
nostyles ,% don't load default styles

% load and patch required style packages:
stylemods={list,mcols,tree,bookindex}

]{glossaries -extra}

\newglossary*{bacteria}{Bacteria}
\newglossary*{markuplanguage}{Markup Languages}
\newglossary*{vegetable}{Vegetables}
\newglossary*{mineral}{Minerals}
\newglossary*{animal}{Animals}
\newglossary*{chemical}{Chemical Formula}
\newglossary*{baseunit}{SI Units}
\newglossary*{derivedunit}{Derived Units}

% abbreviation styles must be set before \GlsXtrLoadResources:
\setabbreviationstyle[bacteria]{long-only-short-only}
\setabbreviationstyle[markuplanguage]{long-short-desc}

% style-dependent name format must be set
% before \GlsXtrLoadResources:
\renewcommand*{\glsxtrlongshortdescname}{%

\protect\glsabbrvfont{\the\glsshorttok}\space

370

8 Examples

\glsxtrparen{\glslongfont{\the\glslongtok}}%
}

\GlsXtrLoadResources[
src={bacteria ,markuplanguages ,vegetables ,minerals,
animals,chemicalformula ,baseunits ,derivedunits},

selection={recorded and deps and see},
set-widest,
type=index,
label-prefix={idx.},
dual-prefix={},
cs-label-prefix={},
combine-dual-locations={primary},
dual-field,
sort={en},
sort-field={name},
dual-type={same as category},
dual-sort={en},
dual-sort-number-pad={2},
dual-sort-pad-plus={1},
dual-sort-pad-minus={0},
dual-break-at=upper-upper-word,
entry-type-aliases={
abbreviation=dualindexabbreviation ,
entry=dualindexentry ,
symbol=dualindexsymbol ,
unit=dualindexsymbol ,
measurement=dualindexsymbol ,
chemical=dualindexsymbol

},
abbreviation -name-fallback={long},
symbol-sort-fallback={name},
field-aliases={

identifier=category ,
formula=symbol,
chemicalname=name,
unitname=name,
unitsymbol=symbol,
measurement=description

},
]

\newcommand{\bacteriafont}[1]{\emph{#1}}
\glssetcategoryattribute{bacteria}{textformat}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossnamefont}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossdescfont}{bacteriafont}

371

8 Examples

\glssetcategoryattribute{markuplanguage}{glossdesc}{firstuc}

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}%
{%

\glsifcategory{#1}{chemical}%
{, \glossentrysymbol{#1}}%
{\space(\glossentrynameother{#1}{symbol})}%

}%
{%

\glsifcategory{#1}{markuplanguage}%
{%

\glsxtrifhasfield{short}{\glsxtrusefield{#1}{dual}}%
{\space(\glscurrentfieldvalue)}%
{}%

}%
{}%

}%
}

\begin{document}
\chapter{Sample}
\section{Bacteria}
\subsection{First Use}
\gls{cbotulinum}, \gls{pputida}, \gls{cperfringens},
\gls{bsubtilis}, \gls{ctetani}, \gls{pcomposti},
\gls{pfimeticola}, \gls{cburnetii}, \gls{raustralis},
\gls{rrickettsii}.

\subsection{Next Use}
\gls{cbotulinum}, \gls{pputida}, \gls{cperfringens},
\gls{bsubtilis}, \gls{ctetani}, \gls{pcomposti},
\gls{pfimeticola}, \gls{cburnetii}, \gls{raustralis},
\gls{rrickettsii}.

\section{Markup Languages}
\subsection{First Use}
\gls{LaTeX}, \gls{markdown}, \gls{xhtml}, \gls{mathml}, \gls{svg}.

\subsection{Next Use}
\gls{LaTeX}, \gls{markdown}, \gls{xhtml}, \gls{mathml}, \gls{svg}.

\section{Vegetables}
\gls{cabbage}, \gls{brussels -sprout}, \gls{artichoke},

372

8 Examples

\gls{cauliflower}, \gls{courgette}, \gls{spinach}.

\section{Minerals}
\Gls{beryl}, \gls{amethyst}, \gls{chalcedony}, \gls{aquamarine},
\gls{aragonite}, \gls{calcite}, \gls{bilinite},
\gls{cyanotrichite}, \gls{biotite}, \gls{dolomite},
\gls{quetzalcoatlite}, \gls{vulcanite}.

\section{Animals}
\Gls{duck}, \gls{parrot}, \gls{hedgehog}, \gls{sealion}.

\section{Chemicals}
\gls{Al2SO43}, \gls{H2O}, \gls{C6H12O6},
\gls{CH3CH2OH}, \gls{CH2O}, \gls{OF2}, \gls{O2F2}, \gls{SO42-},
\gls{H3O+}, \gls{OH-}, \gls{O2}, \gls{AlF3}, \gls{O},
\gls{Al2CoO4}, \gls{As4S4}, \gls{C10H10O4}, \gls{C5H4NCOOH},
\gls{C8H10N4O2}, \gls{SO2}, \gls{S2O72-}, \gls{SbBr3},
\gls{Sc2O3}, \gls{Zr3PO44}, \gls{ZnF2}.

\section{SI Units}
Base: \gls{ampere}, \gls{kilogram}, \gls{metre}, \gls{second},
\gls{kelvin}, \gls{mole}, \gls{candela}.
Derived: \gls{area}, \gls{volume}, \gls{velocity},
\gls{acceleration}, \gls{density}, \gls{luminance},
\gls{specificvolume}, \gls{concentration}, \gls{wavenumber}.

\chapter*{Glossaries}
\renewcommand{\glsextrapostnamehook}[1]{\glsadd[format=hyperbf]{#1}}
\printunsrtglossary[type=bacteria ,style=mcoltree]
\printunsrtglossary[type=markuplanguage ,style=altlist]
\printunsrtglossary[type=vegetable ,style=tree,nogroupskip]
\printunsrtglossary[type=mineral,style=treegroup]
\printunsrtglossary[type=animal,style=tree]
\printunsrtglossary*[type=chemical ,style=mcolalttreegroup]
{%

\renewcommand\glsxtralttreeSymbolDescLocation[2]{%
\glossentrysymbol{#1}\glspostdescription\glsxtrAltTreePar

}%
\renewcommand*{\glstreenamefmt}[1]{#1}%
\renewcommand*{\glstreegroupheaderfmt}[1]{\textbf{#1}}%

}
\printunsrtglossary[type=baseunit ,style=alttree]
\printunsrtglossary[type=derivedunit ,style=alttree]

\renewcommand{\glsextrapostnamehook}[1]{}
\setupglossaries{section=chapter}

373

8 Examples

\printunsrtglossary[type=index,style=bookindex]
\end{document}}

sample-multi2.tex
This example is an alternative approach to sample-multi1.tex. Instead of using dual entry
types to define entries that appear in both a glossary and the index, this example makes
use of record-label-prefix to reselect the recorded entries for the index. This is more
complicated but it allows the entries that have natural word ordering to use a locale sort
method while the entries that are symbolic can use one of the letter-number sort methods.

This document uses some additional .bib files to the previous example, so it has extra
glossaries, which all need to be defined:
\newglossary*{bacteria}{Bacteria}
\newglossary*{markuplanguage}{Markup Languages}
\newglossary*{vegetable}{Vegetables}
\newglossary*{mineral}{Minerals}
\newglossary*{animal}{Animals}
\newglossary*{chemical}{Chemical Formula}
\newglossary*{baseunit}{SI Units}
\newglossary*{measurement}{Measurements}
\newglossary*{film}{Films}
\newglossary*{book}{Books}
\newglossary*{person}{People}
\newglossary*{mediacontrol}{Media Control Symbols}
\newglossary*{information}{Information Symbols}
\newglossary*{weather}{Weather Symbols}

Note that this is a total of 15 glossaries (including the index). With the basic makeglos-
saries method, this would require 16 write registers (including the write register used to
create the indexing style file), and a total of 15 × 3 + 1 = 46 associated files. (This doesn’t
include the standard .aux file and the .out file created by hyperref.) With bib2gls, no
additional write registers are required and the number of associated bib2gls files is equal
to the number of resource commands plus the transcript file (in this example, 9 + 1 = 10).

Since this document requires people.bib, books.bib and films.bib it also requires the
files that supply the definitions of the custom commands (no-interpret-preamble.bib
and either interpret-preamble.bib or interpret-preamble2.bib) to ensure the cus-
tom commands are provided both for the document and for bib2gls’s interpreter.

The first resource set to be loaded simply reads no-interpret-preamble.bib with the
preamble interpreter switched off:
\GlsXtrLoadResources[

src={no-interpret-preamble},
interpret-preamble={false}

]

374

8 Examples

1 Sample

1.1 Bacteria

1.1.1 First Use

Clostridium botulinum, Pseudomonas putida, Clostridium perfringens, Bacillus subtilis,
Clostridium tetani , Planifilum composti , Planifilum fimeticola, Coxiella burnetii , Rick-
ettsia australis, Rickettsia rickettsii .

1.1.2 Next Use

C. botulinum, P. putida, C. perfringens, B. subtilis, C. tetani , P. composti , P. fimeticola,
C. burnetii , R. australis, R. rickettsii .

1.2 Markup Languages

1.2.1 First Use

LATEX, markdown, extensible hypertext markup language (XHTML), mathematical markup
language (MathML), scalable vector graphics (SVG).

1.2.2 Next Use

LATEX, markdown, XHTML, MathML, SVG.

1.3 Vegetables

cabbage, Brussels sprout, artichoke, cauliflower, courgette, spinach.

1.4 Minerals

Beryl, amethyst, chalcedony, aquamarine, aragonite, calcite, bílinite, cyanotrichite, bi-
otite, dolomite, quetzalcoatlite, vulcanite.

1.5 Animals

Duck, parrot, hedgehog, sea lion.

1

1.6 Chemicals

Al2(SO4)3, H2O, C6H12O6, CH3CH2OH, CH2O, OF2, O2F2, SO4
2– , H3O+, OH– , O2,

AlF3, O, Al2CoO4, As4S4, C10H10O4, C5H4NCOOH, C8H10N4O2, SO2, S2O7
2– , SbBr3,

Sc2O3, Zr3(PO4)4, ZnF2.

1.7 SI Units

Base: A, kg, m, s, K, mol, cd. Derived: m2, m3, ms−1, ms−2, Am−2, cdm−2, m3 kg−1,
molm−3, m−1.

2

Glossaries

Bacteria

B. subtilis Bacillus subtilis.

C. botulinum Clostridium botulinum.
C. burnetii Coxiella burnetii .
C. perfringens Clostridium perfringens.
C. tetani Clostridium tetani .

P. composti Planifilum composti .
P. fimeticola Planifilum fimeticola.
P. putida Pseudomonas putida.

R. australis Rickettsia australis.
R. rickettsii Rickettsia rickettsii .

Markup Languages

HTML (hypertext markup language)

The standard markup language for creating web pages.

LATEX

A format of TEX designed to separate content from style.

markdown

A lightweight markup language with plain text formatting syntax.

MathML (mathematical markup language)

The standard markup language for creating web pages.

SVG (scalable vector graphics)

XML-based vector image format.

TEX

A format for describing complex type and page layout often used for mathematics,
technical, and academic publications.

XHTML (extensible hypertext markup language)

XML version of HTML.

XML (extensible markup language)

A markup language that defines a set of rules for encoding documents.

3

Vegetables

artichoke a variety of thistle cultivated as food.
Brussels sprout small leafy green vegetable buds.
cabbage vegetable with thick green or purple leaves.
cauliflower type of cabbage with edible white flower head.
courgette immature fruit of a vegetable marrow.
marrow long white-fleshed gourd with green skin.
spinach green, leafy vegetable.

Minerals

A

amethyst purple variety of quartz.
aquamarine light blue variety of beryl.
aragonite a crystal form of calcium carbonate.

B

beryl composed of beryllium aluminium cyclosilicate.
bílinite an iron sulfate mineral.
biotite a common phyllosilicate mineral.

C

calcite a crystal form of calcium carbonate.
chalcedony cryptocrystalline variety of quartz.
cyanotrichite a hydrous copper aluminium sulfate mineral.

D

dolomite an anhydrous carbonate mineral.

Q

quartz hard mineral consisting of silica.
quetzalcoatlite a rare tellurium oxysalt mineral.

V

vulcanite a rare copper telluride mineral.

4

Figure 8.15: sample-multi1.pdf (pages 1 to 4)

375

8 Examples

Animals

duck a waterbird with webbed feet.

hedgehog small nocturnal mammal with a spiny coat and short legs.

parrot mainly tropical bird with bright plumage.

sea lion a large type of seal.
seal sea-dwelling fish-eating mammal with flippers.

Chemical Formula

A

Al2(SO4)3 aluminium sulfate.
Al2CoO4 cobalt blue.
AlF3 aluminium trifluoride.
As4S4 tetraarsenic tetrasulfide.

C

CH2O formaldehyde.
CH3CH2OH ethanol.
C5H4NCOOH niacin.
C6H12O6 glucose.
C8H10N4O2 caffeine.
C10H10O4 ferulic acid.

H

H2O water.
H3O+ hydronium.

O

O oxygen.
OF2 oxygen difluoride.
OH– hydroxide ion.
O2 dioxygen.
O2F2 dioxygen difluoride.

S

SO2 sulfur dioxide.
SO4

2– sulfate.
S2O7

2– disulfate ion.
SbBr3 antimony(III) bromide.
Sc2O3 scandium oxide.

Z

ZnF2 zinc fluoride.
Zr3(PO4)4 zirconium phosphate.

SI Units

A (ampere) electric current.

cd (candela) luminous intensity.

K (kelvin) thermodynamic temperature.
kg (kilogram) mass.

m (metre) length.

5

mol (mole) amount of substance.

s (second) time.

Derived Units

Am−2 (ampere per square metre) density.

cdm−2 (candela per square metre) luminance.

ms−2 (metre per second squared) acceleration.
ms−1 (metre per second) velocity.
m−1 (per metre) wave number.
m2 (square metre) area.
m3 (cubic metre) volume.
m3 kg−1 (cubic metre per kilogram) specific volume.
molm−3 (mole per cubic metre) concentration.

6

Index

A

aluminium sulfate, Al2(SO4)3, 2, 5
aluminium trifluoride, AlF3, 2, 5
amethyst, 1, 4
ampere (A), 2, 5
ampere per square metre (Am−2), 2, 6
antimony(III) bromide, SbBr3, 2, 5
aquamarine, 1, 4
aragonite, 1, 4
artichoke, 1, 4

B

Bacillus subtilis, 1, 3
beryl, 1, 4
bílinite, 1, 4
biotite, 1, 4
Brussels sprout, 1, 4

C

cabbage, 1, 4
caffeine, C8H10N4O2, 2, 5
calcite, 1, 4
candela (cd), 2, 5
candela per square metre (cdm−2), 2, 6
cauliflower, 1, 4
chalcedony, 1, 4
Clostridium botulinum, 1, 3
Clostridium perfringens, 1, 3
Clostridium tetani , 1, 3
cobalt blue, Al2CoO4, 2, 5
courgette, 1, 4
Coxiella burnetii , 1, 3
cubic metre (m3), 2, 6
cubic metre per kilogram (m3 kg−1), 2, 6
cyanotrichite, 1, 4

D

dioxygen, O2, 2, 5
dioxygen difluoride, O2F2, 2, 5
disulfate ion, S2O7

2– , 2, 5
dolomite, 1, 4
duck, 1, 5

E

ethanol, CH3CH2OH, 2, 5
extensible hypertext markup language

(XHTML), 1, 3
extensible markup language (XML), 3

F

ferulic acid, C10H10O4, 2, 5
formaldehyde, CH2O, 2, 5

G

glucose, C6H12O6, 2, 5

H

hedgehog, 1, 5
hydronium, H3O+, 2, 5
hydroxide ion, OH– , 2, 5
hypertext markup language (HTML), 3

K

kelvin (K), 2, 5
kilogram (kg), 2, 5

L

LATEX, 1, 3
lettsomite, see cyanotrichite

M

markdown, 1, 3

7

marrow, 4
mathematical markup language

(MathML), 1, 3
metre (m), 2, 5
metre per second (ms−1), 2, 6
metre per second squared (ms−2), 2, 6
mole (mol), 2, 6
mole per cubic metre (molm−3), 2, 6

N

niacin, C5H4NCOOH, 2, 5

O

oxygen, O, 2, 5
oxygen difluoride, OF2, 2, 5

P

parrot, 1, 5
per metre (m−1), 2, 6
Planifilum composti , 1, 3
Planifilum fimeticola, 1, 3
Pseudomonas putida, 1, 3

Q

quartz, 4
quetzalcoatlite, 1, 4

R

Rickettsia australis, 1, 3

Rickettsia rickettsii , 1, 3

S

scalable vector graphics (SVG), 1, 3
scandium oxide, Sc2O3, 2, 5
sea lion, 1, 5
seal, 5
second (s), 2, 6
spinach, 1, 4
square metre (m2), 2, 6
sulfate, SO4

2– , 2, 5
sulfur dioxide, SO2, 2, 5

T

tetraarsenic tetrasulfide, As4S4, 2, 5
TEX, 3

V

vulcanite, 1, 4

W

water, H2O, 2, 5

Z

zinc fluoride, ZnF2, 2, 5
zirconium phosphate, Zr3(PO4)4, 2, 5
zucchini, see courgette

8

Figure 8.16: sample-multi1.pdf (pages 5 to 8)

376

8 Examples

This ensures that LATEX can pick up the provided commands and prevents them from being
added to the interpreter.

The people.bib file is the next to be loaded with interpret-preamble.bib. This is
loaded separately from the other resources as this needs the name field to be copied to first
(if not already set), as in the sample-people.tex file. By having a separate resource set,
this setting doesn’t affect the other entries. I’ve also converted the date fields so that I can
customise the format in the document.

\GlsXtrLoadResources[
src={interpret-preamble,people},
field-aliases={

identifier=category,
born=user1,
died=user2,
othername=user3

},
replicate-fields={name={first}},
type={person},
save-locations={false}
date-fields={user1,user2},
date-field-format={d MMM y G}

]

As with the sample-people.tex document, I need to use the --break-space switch to
convert the ~ to a normal breakable space so that it matches the given format. I’ve loaded
the datetime2 package:2

\usepackage[en-GB]{datetime2}

so that I can use \DTMdisplaydate to adjust the formatting:

\newcommand*{\bibglsdate}[7]{\DTMdisplaydate{#1}{#2}{#3}{#4}}

This needs to go before the resource set is loaded. Note that the en-GB option identifies the
document locale as en-GB (since there are no language packages loaded).

Note that unlike sample-people.tex which had category={people}, this document
obtains the category field from the custom identifier field, which in this case has the
value person. This means that the category hooks from sample-people.tex need to be
renamed to reflect the different category label:

\newcommand*{\glsxtrpostlinkperson}{%
\glsxtrifwasfirstuse
{%

\ifglshasfield{user3}{\glslabel}%
{\space(\glscurrentfieldvalue)}%

2The en-GB option to datetime2 also requires that datetime2-english must be installed.

377

8 Examples

{}%
}%
{}%

}

\newcommand*{\glsxtrpostnameperson}{%
\ifglshasfield{user3}{\glscurrententrylabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}

\newcommand*{\glsxtrpostdescperson}{%
\ifglshasfield{user1}{\glscurrententrylabel}
{% born
\space(\glscurrentfieldvalue\,--\,%

\ifglshasfield{user2}{\glscurrententrylabel}
{% died

\glscurrentfieldvalue
}%
{}%

)%
}%
{}%

}

The other .bib files that require locale sorting can now be loaded, but remember that the
abbreviation style settings must be set first since this resource set includes abbreviations:

\setabbreviationstyle[bacteria]{long-only-short-only}
\setabbreviationstyle[markuplanguage]{long-short-desc}

\renewcommand*{\glsxtrlongshortdescname}{%
\protect\protect\glsabbrvfont{\the\glsshorttok}\space
\glsxtrparen{\glslongfont{\the\glslongtok}}%

}

Now the resource set can be loaded:

\GlsXtrLoadResources[
src={bacteria,markuplanguages,vegetables,
minerals,animals,books,films},

field-aliases={identifier=category},
type={same as category},
save-locations={false}

]

378

8 Examples

The semantic markup command and attributes are as for sample-multi1.tex:

\newcommand{\bacteriafont}[1]{\emph{#1}}
\glssetcategoryattribute{bacteria}{textformat}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossnamefont}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossdescfont}{bacteriafont}
\glssetcategoryattribute{markuplanguage}{glossdesc}{firstuc}

Similarly for the books:

\newcommand{\bookfont}[1]{\emph{#1}}
\glssetcategoryattribute{book}{textformat}{bookfont}
\glssetcategoryattribute{book}{glossnamefont}{bookfont}

(as for sample-media.tex) and for films:

\newcommand{\filmfont}[1]{\emph{#1}}
\glssetcategoryattribute{film}{textformat}{filmfont}
\glssetcategoryattribute{film}{glossnamefont}{filmfont}

Next come the chemical formulae:

\GlsXtrLoadResources[
src={chemicalformula},
entry-type-aliases={chemical=symbol},
field-aliases={

identifier=category,
formula=name,
chemicalname=description

},
type={chemical},
set-widest,
sort={letternumber-case},
symbol-sort-fallback={name},
save-locations={false}

]

and the SI units, which are now combined into a single glossary:

\GlsXtrLoadResources[
src={baseunits,derivedunits},
entry-type-aliases={measurement=symbol,unit=symbol},
field-aliases={

unitname=description,
unitsymbol=symbol,
measurement=name

},

379

8 Examples

category={measurement},
type={measurement},
set-widest,
symbol-sort-fallback={name},
save-locations={false}

]

Here the name field is obtained from the custom measurement field. Since this contains a
word, the default locale sort is appropriate. I’ve locally redefined \glsxtralttreeSymbol-
DescLocation to place the symbol in parentheses after the description:

\printunsrtglossary*[type=measurement,style=alttree,nogroupskip]
{%

\renewcommand{\glsxtralttreeSymbolDescLocation}[2]{%
\glossentrydesc{#1}%
\ifglshassymbol{#1}{\space(\glossentrysymbol{#1})}{}%
\glspostdescription\glstreeprelocation
\glsxtrAltTreePar

}%
}

The base units are replicated in the baseunit glossary, this time with the name field ob-
tained from the custom unitsymbol field. This means that I need to find a way to prevent
duplicate labels. The simplest method is to use duplicate-label-suffix:

\GlsXtrLoadResources[
src={baseunits},
entry-type-aliases={unit=symbol},
field-aliases={

unitname=description,
unitsymbol=name

},
category={measurement},
type={baseunit},
duplicate-label-suffix={.copy},
symbol-sort-fallback={name},
save-locations={false}

]

I can’t use set-widest here as it won’t pick up the modified label and will instead use the
label from the original entry. Instead I’ve used \glsFindWidestTopLevelName to find it:

\printunsrtglossary*[type=baseunit,style=alttree,nogroupskip]
{%

\glsFindWidestTopLevelName[baseunit]%
}

380

8 Examples

The text symbols from miscsymbols.bib are all loaded in a single resource set, where the
type field can be obtained from the category, which in turns is obtained from the custom
identifier field. Since bib2gls doesn’t recognise any of the symbol commands, I’m sort-
ing according to the description field. (Even if bib2gls could determine a Unicode value
for each of the symbols, sorting by the description makes more sense in this case.)

\GlsXtrLoadResources[
src={miscsymbols},
field-aliases={

identifier=category,
icon=name,
icondescription=description

},
entry-type-aliases={icon=symbol},
type={same as category},
sort-field={description},
save-locations={false},
set-widest

]

Finally, all recorded and cross-referenced terms are needed for the index. This includes
entries that have already been defined in the earlier resource sets (so a guard against du-
plicates is necessary) but it also includes entries from the terms.bib file that haven’t yet
been dealt with. I’d like the index to start with a symbol group containing the icons from
miscsymbols.bib. This needs to be dealt with separately from the rest of the index to keep
them together in a single group:

\GlsXtrLoadResources[
src={miscsymbols},
selection={recorded no deps},
duplicate-label-suffix={.copy},
entry-type-aliases={icon=index},
field-aliases={
identifier=category,
icondescription=symbol,
icon=name

},
type={index},
sort-field={symbol},
group={glssymbols}

]

Since I know that there are no parents or cross-references in this set of entries I’ve used
selection={recorded no deps} to skip the dependency checks. In this resource set, the
name field has the symbol command (obtained from the custom icon field), and the symbol

381

8 Examples

field has the symbol description (obtained from the custom icondescription field), which
is used as the sort field. I’ve set the group label to glssymbols, which keeps all these entries
in a single group and the title will be obtained from \glssymbolsgroupname.

Before loading the final resource set \glsxtrlongshortdescname needs to be changed
so that the abbreviations using the long-short-desc style (that is, the abbreviations with the
category set to markuplanguage) have the name field set to ⟨long⟩ (⟨short⟩):

\renewcommand*{\glsxtrlongshortdescname}{%
\protect\glslongfont{\the\glslongtok}\space
\glsxtrparen{\glsabbrvfont{\the\glsshorttok}}%

}

The long-only-short-only style has a similar command, but it was only introduced to glossaries-
extra version 1.25:

\renewcommand*{\glsxtronlyname}{%
\protect\glsabbrvonlyfont{\the\glslongtok}%

}

The abbreviations all need to be sorted according to the long form:

abbreviation-sort-fallback={long}

The custom entry types and fields again need to be aliased

entry-type-aliases={
chemical=index,
measurement=entry,
unit=dualentry,
icon=index

},
field-aliases={

identifier=category,
formula=symbol,
chemicalname=name,
unitname=description,
unitsymbol=symbol,
measurement=name,
icon=symbol,
icondescription=name

}

The chemical formulae and icons are now defined using @index with the name field set to
a word form (chemical name and icon description). This means they’re appropriate for al-
phabetical sorting. (Both @entry and @symbol require the description field, which is why
I’ve aliased @chemical and @icon to @index here.) The custom @measurement entry type

382

8 Examples

has a description field (obtained from unitname), so that’s aliased to @entry as again the
name field is suitable for alphabetical sorting.

I’ve aliased @unit to @dualentry rather than @symbol as I want both the unit name and
the measurement in the index and I’ve combined their location lists:

combine-dual-locations={both}

Both primary and dual entries need to go in the index glossary:

type={index},
dual-type={index}

All .bib files used in the previous resource sets are needed as well as the terms.bib file:

src={terms,bacteria,markuplanguages,vegetables,minerals,
animals,chemicalformula,baseunits,derivedunits,people,
films,books,miscsymbols}

but this time I also want to select entries that haven’t been recorded but have a cross-
reference to a recorded entry:

selection[recorded and deps and see]

Again it’s necessary to provide a way to avoid duplicate entry labels, which can be done with

duplicate-label-suffix={.copy},

as above. However, this will cause the cross-references (from the alias fields) to link to the
glossary rather than the index. This may or may not confuse the reader. For consistency, it
may be more suitable to have the cross-reference in the index link to the aliased entry in the
index rather than in the glossary. I’ve therefore instead used:

label-prefix={idx.},
record-label-prefix={idx.},

This means that the entries defined in terms.bib need to be referenced with this prefix.
All instances of \gls will link to the original entry, so all entries except for those in the

terms.bib file will link to the relevant glossary. Those in the terms.bib file will link to
the index. It’s possible to disable the hyperlinks for those entries, but the reader may find it
useful to jump to the index to look up other locations for that entry in the document.

To deal with the identical book and film titles, I’m again using the category to resolve
identical sort values:

identical-sort-action={category}

For the people who have a first field, I’ve decided that this would be more appropriate for
the index as it’s more compact than the name, so here I’ve done the reverse to earlier and
copied the first field (if supplied) into the name field, but since the name field is already
provided the override setting needs to be on:

383

8 Examples

replicate-override,
replicate-fields={first=name}

As with sample-people.tex I’ve provided some custom commands to make it easier to
locally redefined \sortname and \sortvonname:

\newcommand*{\swaptwo}[2]{#2, #1}
\newcommand*{\swapthree}[3]{#2 #3, #1}

I’ve redefined \glsxtrbookindexname in a similar manner to sample-multi1.tex but it
has some modifications:

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}%
{%

\glsifcategory{#1}{chemical}%
{, \glossentrysymbol{#1}}%
{\space(\glossentrynameother{#1}{symbol})}%

}%
{%

\glsifcategory{#1}{film}%
{\ (film)}%
{}%

}%
}

This appends “(film)” to film names. I’ve chosen this method rather than using the post-name
hook as I only want this in the index and not in the list of films.

For some of the entries that are referenced in the document, I’ve appended information in
parentheses:

\gls{Al2SO43} (\glsdesc{Al2SO43})

This is all right for odd instances, but if this always needs to be done on first use, then it’s
better to use the post-link hook, which is what I’ve done for the icons for comparison:

\newcommand*{\glsxtrpostlinkmediacontrol}{%
\glsxtrpostlinkAddDescOnFirstUse

}

\newcommand*{\glsxtrpostlinkinformation}{%
\glsxtrpostlinkAddDescOnFirstUse

}

\newcommand*{\glsxtrpostlinkweather}{%
\glsxtrpostlinkAddDescOnFirstUse

}

384

8 Examples

I’ve also provided some custom commands to make it easier to reference entries without
worrying about the prefixes:

\newcommand{\unit}{\glssymbol}
\newcommand{\measurement}{\gls}
\glsxtrnewgls{film.}{\film}

As with sample-multi1.tex, it would be useful to include the page where the entries
are defined in their corresponding lists. Again this can be done by redefining the general
purpose non-category post-name hook \glsextrapostnamehook:

\newcommand*{\glsextrapostnamehook}[1]{%
\glsadd[format=hyperbf]{#1}%

}

This needs resetting before the index, since it’s redundant to record an entry in the index.
This will require an extra bib2gls+LATEX system call as this code can’t be performed until
the glossaries have been created.

The complete document code is listed below. The document build is:

pdflatex sample-multi2
bib2gls --group --break-space sample-multi2
pdflatex sample-multi2
bib2gls --group --break-space sample-multi2
pdflatex sample-multi2

The resulting document is shown in figure 8.17, figure 8.18 and figure 8.19.
\documentclass{scrreprt}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[version=4]{mhchem}
\usepackage{siunitx}
\usepackage{etoolbox}
\usepackage{marvosym}
% package conflict , need to undefine conflicting commands
\undef\Sun
\undef\Lightning
\usepackage[weather]{ifsym}

\usepackage[en-GB]{datetime2}
\usepackage[colorlinks]{hyperref}

\usepackage[record,% use bib2gls
section,% use \section* for glossary headings
postdot,% insert dot after descriptions in glossaries
nomain,% don't create 'main' glossary

385

8 Examples

index,% create 'index' glossary
nostyles ,% don't load default styles

% load and patch required style packages:
stylemods={list,mcols,tree,bookindex}

]{glossaries -extra}

\newglossary*{bacteria}{Bacteria}
\newglossary*{markuplanguage}{Markup Languages}
\newglossary*{vegetable}{Vegetables}
\newglossary*{mineral}{Minerals}
\newglossary*{animal}{Animals}
\newglossary*{chemical}{Chemical Formula}
\newglossary*{baseunit}{SI Units}
\newglossary*{measurement}{Measurements}
\newglossary*{film}{Films}
\newglossary*{book}{Books}
\newglossary*{person}{People}
\newglossary*{mediacontrol}{Media Control Symbols}
\newglossary*{information}{Information Symbols}
\newglossary*{weather}{Weather Symbols}

\newcommand*{\bibglsdate}[7]{\DTMdisplaydate{#1}{#2}{#3}{#4}}

\GlsXtrLoadResources[
src={no-interpret -preamble},
interpret -preamble=false

]

\GlsXtrLoadResources[
src={interpret -preamble ,people},
field-aliases={

identifier=category ,
born=user1,
died=user2,
othername=user3

},
replicate -fields={name={first}},
type=person,
save-locations=false,
date-fields={user1,user2},
date-field-format={d MMM y G}

]

% Abbreviation styles must be set before the resource set
% that defines the abbreviations:
\setabbreviationstyle[bacteria]{long-only-short-only}

386

8 Examples

\setabbreviationstyle[markuplanguage]{long-short-desc}

% And also the style-dependent name format:
\renewcommand*{\glsxtrlongshortdescname}{%

\protect\glsabbrvfont{\the\glsshorttok}\space
\glsxtrparen{\glslongfont{\the\glslongtok}}%

}

\GlsXtrLoadResources[
src={bacteria ,markuplanguages ,vegetables ,
minerals,animals,books,films},

field-aliases={
identifier=category ,
year=user1,
cast=user2

},
type={same as category},
bibtex-contributor -fields={user2},
contributor -order={forenames},
save-locations=false

]

\GlsXtrLoadResources[
src={chemicalformula},
entry-type-aliases={chemical=symbol},
field-aliases={

identifier=category ,
formula=name,
chemicalname=description ,

},
type={chemical},
set-widest,
sort={letternumber -case},
symbol-sort-fallback={name},
save-locations=false

]

\GlsXtrLoadResources[
src={baseunits ,derivedunits},
entry-type-aliases={measurement=symbol,unit=symbol},
field-aliases={

unitname=description ,
unitsymbol=symbol,
measurement=name

},
category={measurement},

387

8 Examples

type={measurement},
set-widest,
symbol-sort-fallback={name},
save-locations=false

]

\GlsXtrLoadResources[
src={baseunits},
entry-type-aliases={unit=symbol},
field-aliases={

unitname=description ,
unitsymbol=name

},
category={measurement},
type={baseunit},
duplicate -label-suffix={.copy},
symbol-sort-fallback={name},
save-locations=false

]

\GlsXtrLoadResources[
src={miscsymbols},
field-aliases={

identifier=category ,
icon=name,
icondescription=description

},
entry-type-aliases={icon=symbol},
type={same as category},
sort-field={description},
save-locations=false,
set-widest

]

\renewcommand*{\glsxtrlongshortdescname}{%
\protect\protect\glslongfont{\the\glslongtok}\space
\glsxtrparen{\glsabbrvfont{\the\glsshorttok}}%

}

% requires glossaries -extra v1.25:
\renewcommand*{\glsxtronlyname}{%

\protect\glsabbrvonlyfont{\the\glslongtok}%
}

\GlsXtrLoadResources[
src={miscsymbols},

388

8 Examples

selection={recorded no deps},
duplicate -label-suffix={.copy},
entry-type-aliases={icon=index},
field-aliases={
identifier=category ,
icondescription=symbol,
icon=name

},
type=index,
sort-field={symbol},
group={glssymbols}

]

\GlsXtrLoadResources[
src={terms,bacteria ,markuplanguages ,vegetables ,minerals,
animals,chemicalformula ,baseunits ,derivedunits ,people,
films,books,miscsymbols},

selection={recorded and deps and see},
field-aliases={

identifier=category ,
formula=symbol,
chemicalname=name,
unitname=description ,
unitsymbol=symbol,
measurement=name,
icon=symbol,
icondescription=name

},
entry-type-aliases={
chemical=index,
measurement=entry,
unit=dualentry ,
icon=index

},
label-prefix={idx.},
record-label-prefix={idx.},
type=index,
dual-type=index,
combine-dual-locations=both,
abbreviation -sort-fallback={long},
replicate -override ,
replicate -fields={first=name},
identical -sort-action={category}

]

\newcommand*{\swaptwo}[2]{#2, #1}

389

8 Examples

\newcommand*{\swapthree}[3]{#2 #3, #1}

\newcommand{\bacteriafont}[1]{\emph{#1}}
\glssetcategoryattribute{bacteria}{textformat}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossnamefont}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossdescfont}{bacteriafont}

\newcommand{\bookfont}[1]{\emph{#1}}
\glssetcategoryattribute{book}{textformat}{bookfont}
\glssetcategoryattribute{book}{glossnamefont}{bookfont}

\newcommand{\filmfont}[1]{\emph{#1}}
\glssetcategoryattribute{film}{textformat}{filmfont}
\glssetcategoryattribute{film}{glossnamefont}{filmfont}
\glssetcategoryattribute{film}{glossdesc}{firstuc}

\glssetcategoryattribute{markuplanguage}{glossdesc}{firstuc}

\newcommand*{\glsxtrpostlinkmediacontrol}{%
\glsxtrpostlinkAddDescOnFirstUse

}

\newcommand*{\glsxtrpostlinkinformation}{%
\glsxtrpostlinkAddDescOnFirstUse

}

\newcommand*{\glsxtrpostlinkweather}{%
\glsxtrpostlinkAddDescOnFirstUse

}

\newcommand*{\glsxtrpostlinkperson}{%
\glsxtrifwasfirstuse
{%

\ifglshasfield{user3}{\glslabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}%
{}%

}

\newcommand*{\glsxtrpostnameperson}{%
\ifglshasfield{user3}{\glscurrententrylabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}

390

8 Examples

\newcommand*{\glsxtrpostdescperson}{%
\ifglshasfield{user1}{\glscurrententrylabel}
{% born

\space(\glscurrentfieldvalue\,--\,%
\ifglshasfield{user2}{\glscurrententrylabel}
{% died

\glscurrentfieldvalue
}%
{}%

)%
}%
{}%

}

\newcommand*{\glsxtrpostdescfilm}{%
\ifglshasfield{user1}{\glscurrententrylabel}%
{%

\glsxtrrestorepostpunc % requires glossaries -extra v1.23+
\ (released \glscurrentfieldvalue)}%

{}%
\ifglshasfield{user2}{\glscurrententrylabel}%
{%

\glsxtrrestorepostpunc
\ featuring \glscurrentfieldvalue

}%
{}%

}

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}%
{%

\glsifcategory{#1}{chemical}%
{, \glossentrysymbol{#1}}%
{\space(\glossentrynameother{#1}{symbol})}%

}%
{%

\glsifcategory{#1}{film}%
{\ (film)}%
{}%

}%
}

% requires glossaries -extra v1.25+:
\renewcommand*{\glsextrapostnamehook}[1]{%

\glsadd[format=hyperbf]{#1}%

391

8 Examples

}

\newcommand{\unit}{\glssymbol}
\newcommand{\measurement}{\gls}
\glsxtrnewgls{film.}{\film}
\glsxtrnewglslike{idx.}{\idx}{\idxpl}{\Idx}{\Idxpl}

\begin{document}
\chapter{Sample}
\section{Bacteria}
This section is about \idxpl{bacteria}.
\subsection{First Use}
\gls{cbotulinum}, \gls{pputida}, \gls{cperfringens},
\gls{bsubtilis}, \gls{ctetani}, \gls{pcomposti},
\gls{pfimeticola}, \gls{cburnetii}, \gls{raustralis},
\gls{rrickettsii}.

\subsection{Next Use}
\gls{cbotulinum}, \gls{pputida}, \gls{cperfringens},
\gls{bsubtilis}, \gls{ctetani}, \gls{pcomposti},
\gls{pfimeticola}, \gls{cburnetii}, \gls{raustralis},
\gls{rrickettsii}.

\section{Markup Languages}
This section is about \idxpl{markuplanguage}.
\subsection{First Use}
\gls{LaTeX}, \gls{markdown}, \gls{xhtml}, \gls{mathml}, \gls{svg}.

\subsection{Next Use}
\gls{LaTeX}, \gls{markdown}, \gls{xhtml}, \gls{mathml}, \gls{svg}.

\section{Vegetables}
This section is about \idxpl{vegetable}.
\Gls{cabbage}, \gls{brussels -sprout}, \gls{artichoke},
\gls{cauliflower}, \gls{courgette}, \gls{spinach}.

\section{Minerals}
This section is about \idxpl{mineral}.
\Gls{beryl}, \gls{amethyst}, \gls{chalcedony}, \gls{aquamarine},
\gls{aragonite}, \gls{calcite}, \gls{bilinite},
\gls{cyanotrichite}, \gls{biotite}, \gls{dolomite},
\gls{quetzalcoatlite}, \gls{vulcanite}.

\section{Animals}
This section is about \idxpl{animal}.
\Gls{duck}, \gls{parrot}, \gls{hedgehog}, \gls{sealion},

392

8 Examples

\gls{zander}, \gls{aardvark}, \gls{zebra}, \gls{swan},
\gls{armadillo}.

\section{Chemicals}
This section is about \idxpl{chemical}.
\gls{Al2SO43} (\glsdesc{Al2SO43}), \gls{H2O} (\glsdesc{H2O}),
\gls{C6H12O6} (\glsdesc{C6H12O6}), \gls{CH3CH2OH}
(\glsdesc{CH3CH2OH}), \gls{CH2O} (\glsdesc{CH2O}), \gls{OF2}
(\glsdesc{OF2}), \gls{O2F2} (\glsdesc{O2F2}), \gls{SO42-}
(\glsdesc{SO42-}), \gls{H3O+} (\glsdesc{H3O+}), \gls{OH-}
(\glsdesc{OH-}), \gls{O2} (\glsdesc{O2}), \gls{AlF3}
(\glsdesc{AlF3}), \gls{O} (\glsdesc{O}), \gls{Al2CoO4}
(\glsdesc{Al2CoO4}), \gls{As4S4} (\glsdesc{As4S4}),
\gls{C10H10O4} (\glsdesc{C10H10O4}), \gls{C5H4NCOOH}
(\glsdesc{C5H4NCOOH}), \gls{C8H10N4O2} (\gls{C8H10N4O2}),
\gls{SO2} (\glsdesc{SO2}), \gls{S2O72-} (\gls{S2O72-}),
\gls{SbBr3} (\glsdesc{SbBr3}), \gls{Sc2O3} (\glsdesc{Sc2O3}),
\gls{Zr3PO44} (\glsdesc{Zr3PO44}), \gls{ZnF2} (\glsdesc{ZnF2}).

\section{SI Units}
\Idxpl{baseunit}: \unit{ampere} (measures \measurement{ampere}),
\unit{kilogram} (measures \measurement{kilogram}), \unit{metre},
\unit{second}, \unit{kelvin}, \unit{mole}, \unit{candela}.

\Idxpl{derivedunit}: \unit{area}, \unit{volume},
\unit{velocity},
\unit{acceleration}, \unit{density}, \unit{luminance},
\unit{specificvolume}, \unit{concentration}, \unit{wavenumber}.

\section{Books and Films}
\Idxpl{book}: \gls{ataleoftwocities} (by \gls{dickens}),
\gls{thebigsleep} (by \gls{chandler}, \idx{film} adaptation:
\film{thebigsleep}), \gls{icecoldinalex} (by
\gls{landon}, \idx{film} adaptation: \film{icecoldinalex}),
\gls{whydidnttheyaskevans} (by \gls{christie},
\idx{film} adaptation: \film{whydidnttheyaskevans}),
\gls{doandroidsdreamofelectricsheep} (by \gls{dick},
inspired the \idx{film} \film{bladerunner}).

\Idxpl{film}: \film{anunexpectedjourney}, \film{desolationofsmaug}
and \film{thebattleoffivearmies} (adapted from the
\idx{book} \gls{thehobbit} by \gls{tolkien}),
\film{thefellowshipofthering}, \film{thetwotowers}
and \film{thereturnoftheking} (adapted from the
\idx{book} \gls{thelordoftherings} also by \gls{tolkien}).

393

8 Examples

\section{Miscellaneous Symbols}

\subsection{First Use}

\Idxpl{mediacontrol}: \gls{forward}, \gls{forwardtoindex},
\gls{rewindtoindex}, \gls{rewind}.

\Idx{information}: \gls{bicycle}, \gls{coffeecup}, \gls{info},
\gls{gentsroom}, \gls{ladiesroom}, \gls{wheelchair}, \gls{football},
\gls{recycling}.

\Idx{weather}: \gls{cloud}, \gls{fog}, \gls{hail}, \gls{sun},
\gls{lightning}.

\subsection{Next Use}

\Idxpl{mediacontrol}: \gls{forward}, \gls{forwardtoindex},
\gls{rewindtoindex}, \gls{rewind}.

\Idx{information}: \gls{bicycle}, \gls{coffeecup}, \gls{info},
\gls{gentsroom}, \gls{ladiesroom}, \gls{wheelchair}, \gls{football}.

\Idx{weather}: \gls{cloud}, \gls{fog}, \gls{hail}, \gls{sun},
\gls{lightning}.

\section{Measurements}

\Idxpl{measurement}:
\measurement{ampere}, \measurement{area}, \measurement{metre}.

\chapter{Glossaries}
\printunsrtglossary[type=bacteria ,style=mcoltree]
\printunsrtglossary[type=markuplanguage ,style=altlist]
\printunsrtglossary[type=vegetable ,style=tree,nogroupskip]
\printunsrtglossary[type=mineral,style=treegroup]
\printunsrtglossary[type=animal,style=tree]
\printunsrtglossary[type=person,style=tree,nogroupskip]
\printunsrtglossary[type=book,style=tree,nogroupskip]
\printunsrtglossary[type=film,style=tree,nogroupskip]
\printunsrtglossary*[type=chemical ,style=mcolalttreegroup]
{%

\renewcommand*{\glstreenamefmt}[1]{#1}%
\renewcommand*{\glstreegroupheaderfmt}[1]{\textbf{#1}}%

}
\printunsrtglossary*[type=measurement ,style=alttree,nogroupskip]
{%

394

8 Examples

\renewcommand{\glsxtralttreeSymbolDescLocation}[2]{%
\glossentrydesc{#1}%
\ifglshassymbol{#1}{\space(\glossentrysymbol{#1})}{}%
\glspostdescription\glstreeprelocation
\glsxtrAltTreePar

}%
}

\printunsrtglossary*[type=baseunit ,style=alttree,nogroupskip]
{%

\glsFindWidestTopLevelName[baseunit]%
}
\printunsrtglossary[type=information ,style=alttree,nogroupskip]
\printunsrtglossary[type=mediacontrol ,style=alttree,nogroupskip]
\printunsrtglossary[type=weather,style=alttree,nogroupskip]

\printunsrtglossary*[type=index,style=bookindex]
{%

\setupglossaries{section=chapter}%
\let\sortname\swaptwo
\let\sortvonname\swapthree
\renewcommand*{\glsextrapostnamehook}[1]{}%

}
\end{document}}

395

8 Examples

1 Sample

1.1 Bacteria

This section is about bacteria.

1.1.1 First Use

Clostridium botulinum, Pseudomonas putida, Clostridium perfringens, Bacillus subtilis,
Clostridium tetani , Planifilum composti , Planifilum fimeticola, Coxiella burnetii , Rick-
ettsia australis, Rickettsia rickettsii .

1.1.2 Next Use

C. botulinum, P. putida, C. perfringens, B. subtilis, C. tetani , P. composti , P. fimeticola,
C. burnetii , R. australis, R. rickettsii .

1.2 Markup Languages

This section is about markup languages.

1.2.1 First Use

LATEX, markdown, extensible hypertext markup language (XHTML), mathematical markup
language (MathML), scalable vector graphics (SVG).

1.2.2 Next Use

LATEX, markdown, XHTML, MathML, SVG.

1.3 Vegetables

This section is about vegetables. Cabbage, Brussels sprout, artichoke, cauliflower, cour-
gette, spinach.

1.4 Minerals

This section is about minerals. Beryl, amethyst, chalcedony, aquamarine, aragonite,
calcite, bílinite, cyanotrichite, biotite, dolomite, quetzalcoatlite, vulcanite.

1

1.5 Animals

This section is about animals. Duck, parrot, hedgehog, sea lion, zander, aardvark, zebra,
swan, armadillo.

1.6 Chemicals

This section is about chemical formulae. Al2(SO4)3 (aluminium sulfate), H2O (water),
C6H12O6 (glucose), CH3CH2OH (ethanol), CH2O (formaldehyde), OF2 (oxygen difluo-
ride), O2F2 (dioxygen difluoride), SO4

2– (sulfate), H3O+ (hydronium), OH– (hydrox-
ide ion), O2 (dioxygen), AlF3 (aluminium trifluoride), O (oxygen), Al2CoO4 (cobalt
blue), As4S4 (tetraarsenic tetrasulfide), C10H10O4 (ferulic acid), C5H4NCOOH (niacin),
C8H10N4O2 (C8H10N4O2), SO2 (sulfur dioxide), S2O7

2– (S2O7
2–), SbBr3 (antimony(III)

bromide), Sc2O3 (scandium oxide), Zr3(PO4)4 (zirconium phosphate), ZnF2 (zinc fluo-
ride).

1.7 SI Units

Base SI units: A (measures electric current), kg (measures mass), m, s, K, mol, cd.
Derived SI units: m2, m3, ms−1, ms−2, Am−2, cdm−2, m3 kg−1, molm−3, m−1.

1.8 Books and Films

Books: A Tale of Two Cities (by Charles Dickens), The Big Sleep (by Raymond Chan-
dler, film adaptation: The Big Sleep), Ice Cold in Alex (by Christopher Landon, film
adaptation: Ice Cold in Alex), Why Didn’t They Ask Evans? (by Agatha Christie (Lady
Mallowan), film adaptation: Why Didn’t They Ask Evans?), Do Androids Dream of
Electric Sheep? (by Philip K. Dick, inspired the film Blade Runner).
Films: The Hobbit: An Unexpected Journey , The Hobbit: The Desolation of Smaug

and The Hobbit: The Battle of Five Armies (adapted from the book The Hobbit by
J.R.R. Tolkien), The Lord of the Rings: The Fellowship of the Ring , The Lord of the
Rings: The Two Towers and The Lord of the Rings: The Return of the King (adapted
from the book The Lord of the Rings also by Tolkien).

1.9 Miscellaneous Symbols

1.9.1 First Use

Media controls: · (play), ¹ (next track), ´ (back to start of track), ¶ (rewind).
Information: ® (bicycle route),K (café), i (information centre), x (Gents), y (Ladies),

w (wheelchair access provided), o (football stadium), Þ (recycling centre).
Weather: � (cloudy), � (foggy), � (hail), � (sunny), � (thunderstorm).

2

1.9.2 Next Use

Media controls: ·, ¹, ´, ¶.
Information: ®, K, i, x, y, w, o.
Weather: �, �, �, �, �.

1.10 Measurements

Measurements: electric current, area, length.

3

2 Glossaries

Bacteria

B. subtilis Bacillus subtilis.

C. botulinum Clostridium botulinum.
C. burnetii Coxiella burnetii .
C. perfringens Clostridium perfringens.
C. tetani Clostridium tetani .

P. composti Planifilum composti .
P. fimeticola Planifilum fimeticola.
P. putida Pseudomonas putida.

R. australis Rickettsia australis.
R. rickettsii Rickettsia rickettsii .

Markup Languages

HTML (hypertext markup language)

The standard markup language for creating web pages.

LATEX

A format of TEX designed to separate content from style.

markdown

A lightweight markup language with plain text formatting syntax.

MathML (mathematical markup language)

The standard markup language for creating web pages.

SVG (scalable vector graphics)

XML-based vector image format.

TEX

A format for describing complex type and page layout often used for mathematics,
technical, and academic publications.

XHTML (extensible hypertext markup language)

XML version of HTML.

XML (extensible markup language)

A markup language that defines a set of rules for encoding documents.

4

Figure 8.17: sample-multi2.pdf (pages 1 to 4)

396

8 Examples

Vegetables

artichoke a variety of thistle cultivated as food.
Brussels sprout small leafy green vegetable buds.
cabbage vegetable with thick green or purple leaves.
cauliflower type of cabbage with edible white flower head.
courgette immature fruit of a vegetable marrow.
marrow long white-fleshed gourd with green skin.
spinach green, leafy vegetable.

Minerals

A

amethyst purple variety of quartz.
aquamarine light blue variety of beryl.
aragonite a crystal form of calcium carbonate.

B

beryl composed of beryllium aluminium cyclosilicate.
bílinite an iron sulfate mineral.
biotite a common phyllosilicate mineral.

C

calcite a crystal form of calcium carbonate.
chalcedony cryptocrystalline variety of quartz.
cyanotrichite a hydrous copper aluminium sulfate mineral.

D

dolomite an anhydrous carbonate mineral.

Q

quartz hard mineral consisting of silica.
quetzalcoatlite a rare tellurium oxysalt mineral.

V

vulcanite a rare copper telluride mineral.

5

Animals

aardvark nocturnal African burrowing mammal.
armadillo nocturnal insectivore with large claws.

duck a waterbird with webbed feet.

hedgehog small nocturnal mammal with a spiny coat and short legs.

parrot mainly tropical bird with bright plumage.

sea lion a large type of seal.
seal sea-dwelling fish-eating mammal with flippers.
swan a large waterbird with a long flexible neck, short legs, webbed feet and a broad
bill.

zander large freshwater perch.
zebra wild African horse with black-and-white stripes.

People

Raymond Chandler American-British novelist and screenwriter (23rd July 1888 – 26th
March 1959).
Dame Agatha Mary Clarissa Christie (Lady Mallowan) English crime novelist
and playwright (15th September 1890 – 12th January 1976).
Philip K. Dick American science fiction writer (16th December 1928 – 2nd March 1982).
Charles Dickens English writer and social critic (7th February 1812 – 9th June 1870).
Christopher Guy Landon British novelist and screenwriter (29th March 1911 – 26th
April 1961).
John Ronald Reuel Tolkien English writer, poet, philologist, and university professor
(3rd January 1892 – 2nd September 1973).

Books

The Big Sleep novel by Raymond Chandler.
Do Androids Dream of Electric Sheep? novel by Philip K. Dick.
The Hobbit novel by J.R.R. Tolkien.
Ice Cold in Alex novel by Christopher Landon.
The Lord of the Rings novel by J.R.R. Tolkien.
A Tale of Two Cities novel by Charles Dickens.
Why Didn’t They Ask Evans? novel by Agatha Christie.

6

Films

The Big Sleep A film based on the novel The Big Sleep (released 1946) featuring
Humphrey Bogart & Lauren Bacall.
Blade Runner A film loosely based on the novel Do Androids Dream of Electric Sheep?
(released 1982) featuring Harrison Ford, Rutger Hauer & Sean Young.
The Hobbit: The Battle of Five Armies A film based on the novel The Hobbit
(released 2014) featuring Ian McKellen, Martin Freeman & Richard Armitage.
The Hobbit: The Desolation of Smaug A film based on the novel The Hobbit
(released 2013) featuring Ian McKellen, Martin Freeman & Richard Armitage.
The Hobbit: An Unexpected Journey A film based on the novel The Hobbit (released
2012) featuring Martin Freeman, Ian McKellen & Richard Armitage.
Ice Cold in Alex A film based on the novel Ice Cold in Alex (released 1958) featuring
John Mills, Anthony Quayle & Sylvia Sims.
The Lord of the Rings: The Fellowship of the Ring A film based on the novel
The Lord of the Rings (released 2001) featuring Elijah Wood, Ian McKellen & Orlando
Bloom.
The Lord of the Rings: The Return of the King A film based on the novel The Lord
of the Rings (released 2003) featuring Elijah Wood, Viggo Mortensen & Ian McKellen.
The Lord of the Rings: The Two Towers A film based on the novel The Lord of
the Rings (released 2002) featuring Elijah Wood, Ian McKellen & Viggo Mortensen.
Why Didn’t They Ask Evans? A film based on the novel Why Didn’t They Ask
Evans? (released 1980) featuring Francesca Annis, John Gielgud & Bernard Miles.

Chemical Formula

A

AlF3 aluminium trifluoride.
Al2(SO4)3 aluminium sulfate.
Al2CoO4 cobalt blue.
As4S4 tetraarsenic tetrasulfide.

C

CH2O formaldehyde.
CH3CH2OH ethanol.
C5H4NCOOH niacin.
C6H12O6 glucose.
C8H10N4O2 caffeine.
C10H10O4 ferulic acid.

H

H2O water.
H3O+ hydronium.

O

O oxygen.
OF2 oxygen difluoride.
OH– hydroxide ion.
O2 dioxygen.
O2F2 dioxygen difluoride.

S

SO2 sulfur dioxide.
SO4

2– sulfate.
S2O7

2– disulfate ion.
SbBr3 antimony(III) bromide.
Sc2O3 scandium oxide.

Z

ZnF2 zinc fluoride.
Zr3(PO4)4 zirconium phosphate.

7

Measurements

acceleration metre per second squared (ms−2).
amount of substance mole (mol).
area square metre (m2).
concentration mole per cubic metre (molm−3).
density ampere per square metre (Am−2).
electric current ampere (A).
length metre (m).
luminance candela per square metre (cdm−2).
luminous intensity candela (cd).
mass kilogram (kg).
specific volume cubic metre per kilogram (m3 kg−1).
thermodynamic temperature kelvin (K).
time second (s).
velocity metre per second (ms−1).
volume cubic metre (m3).
wave number per metre (m−1).

SI Units

A ampere.
cd candela.
K kelvin.
kg kilogram.
m metre.
mol mole.
s second.

Information Symbols

® bicycle route.
K café.
o football stadium.
x Gents.
i information centre.
y Ladies.
Þ recycling centre.
w wheelchair access provided.

8

Figure 8.18: sample-multi2.pdf (pages 5 to 8)

397

8 Examples

Media Control Symbols

´ back to start of track.
¹ next track.
· play.
¶ rewind.

Weather Symbols

� cloudy.
� foggy.
� hail.
� sunny.
� thunderstorm.

9

Index

Symbols

´ (back to start of track), 2, 3, 9
® (bicycle route), 2, 3, 8
K (café), 2, 3, 8
� (cloudy), 2, 3, 9
� (foggy), 2, 3, 9
o (football stadium), 2, 3, 8
x (Gents), 2, 3, 8
� (hail), 2, 3, 9
i (information centre), 2, 3, 8
y (Ladies), 2, 3, 8
¹ (next track), 2, 3, 9
· (play), 2, 3, 9
Þ (recycling centre), 2, 8
¶ (rewind), 2, 3, 9
� (sunny), 2, 3, 9
� (thunderstorm), 2, 3, 9
w (wheelchair access provided), 2, 3, 8

A

aardvark, 2, 6
acceleration (ms−2), 2, 8
aluminium sulfate, Al2(SO4)3, 2, 7
aluminium trifluoride, AlF3, 2, 7
amethyst, 1, 5
amount of substance (mol), 2, 8
ampere (A), 2, 3, 8
animal, 2
antimony(III) bromide, SbBr3, 2, 7
aquamarine, 1, 5
aragonite, 1, 5
area (m2), 2, 3, 8
armadillo, 2, 6
artichoke, 1, 5

B

Bacillus subtilis, 1, 4
back to start of track (´), 2, 3, 9
bacteria, 1
base SI unit, 2
beryl, 1, 5
bicycle route (®), 2, 3, 8
The Big Sleep, 2, 6, 7
The Big Sleep (film), 2, 7
bílinite, 1, 5
biotite, 1, 5
Blade Runner (film), 2, 7
book, 2
Brussels sprout, 1, 5

C

cabbage, 1, 5
café (K), 2, 3, 8
caffeine, C8H10N4O2, 2, 7
calcite, 1, 5
candela (cd), 2, 8
cauliflower, 1, 5
chalcedony, 1, 5
Chandler, Raymond, 2, 6
chemical formula, 2
Christie, Agatha, 2, 6
Clostridium botulinum, 1, 4
Clostridium perfringens, 1, 4
Clostridium tetani , 1, 4
cloudy (�), 2, 3, 9
cobalt blue, Al2CoO4, 2, 7
concentration (molm−3), 2, 8
courgette, 1, 5
Coxiella burnetii , 1, 4
cyanotrichite, 1, 5

10

D

density (Am−2), 2, 8
derived SI unit, 2
Dick, Philip K., 2, 6
Dickens, Charles, 2, 6
dioxygen, O2, 2, 7
dioxygen difluoride, O2F2, 2, 7
disulfate ion, S2O7

2– , 2, 7
Do Androids Dream of Electric Sheep? , 2,

6, 7
dolomite, 1, 5
duck, 2, 6

E

electric current (A), 2, 3, 8
ethanol, CH3CH2OH, 2, 7
extensible hypertext markup language

(XHTML), 1, 4
extensible markup language (XML), 4

F

ferulic acid, C10H10O4, 2, 7
film, 2
foggy (�), 2, 3, 9
football stadium (o), 2, 3, 8
formaldehyde, CH2O, 2, 7

G

Gents (x), 2, 3, 8
glucose, C6H12O6, 2, 7

H

hail (�), 2, 3, 9
hedgehog, 2, 6
The Hobbit , 2, 6, 7
The Hobbit: The Battle of Five Armies

(film), 2, 7
The Hobbit: The Desolation of Smaug

(film), 2, 7
The Hobbit: An Unexpected Journey

(film), 2, 7

hydronium, H3O+, 2, 7
hydroxide ion, OH– , 2, 7
hypertext markup language (HTML), 4

I

Ice Cold in Alex , 2, 6, 7
Ice Cold in Alex (film), 2, 7
information, 2, 3
information centre (i), 2, 3, 8

K

kelvin (K), 2, 8
kilogram (kg), 2, 8

L

Ladies (y), 2, 3, 8
Landon, Christopher, 2, 6
LATEX, 1, 4
length (m), 2, 3, 8
lettsomite, see cyanotrichite
The Lord of the Rings, 2, 6, 7
The Lord of the Rings: The Fellowship of

the Ring (film), 2, 7
The Lord of the Rings: The Return of the

King (film), 2, 7
The Lord of the Rings: The Two Towers

(film), 2, 7
luminance (cdm−2), 2, 8
luminous intensity (cd), 2, 8

M

markdown, 1, 4
markup language, 1
marrow, 5
mass (kg), 2, 8
mathematical markup language

(MathML), 1, 4
measurement, 3
media control, 2, 3
metre (m), 2, 3, 8
mineral, 1
mole (mol), 2, 8

11

N

next track (¹), 2, 3, 9
niacin, C5H4NCOOH, 2, 7

O

oxygen, O, 2, 7
oxygen difluoride, OF2, 2, 7

P

parrot, 2, 6
Planifilum composti , 1, 4
Planifilum fimeticola, 1, 4
play (·), 2, 3, 9
Pseudomonas putida, 1, 4

Q

quartz, 5
quetzalcoatlite, 1, 5

R

recycling centre (Þ), 2, 8
rewind (¶), 2, 3, 9
Rickettsia australis, 1, 4
Rickettsia rickettsii , 1, 4

S

scalable vector graphics (SVG), 1, 4
scandium oxide, Sc2O3, 2, 7
sea lion, 2, 6
seal, 6
second (s), 2, 8
specific volume (m3 kg−1), 2, 8
spinach, 1, 5

sulfate, SO4
2– , 2, 7

sulfur dioxide, SO2, 2, 7
sunny (�), 2, 3, 9
swan, 2, 6

T

A Tale of Two Cities, 2, 6
tetraarsenic tetrasulfide, As4S4, 2, 7
TEX, 4
thermodynamic temperature (K), 2, 8
thunderstorm (�), 2, 3, 9
time (s), 2, 8
Tolkien, J.R.R., 2, 6

V

vegetable, 1
velocity (ms−1), 2, 8
volume (m3), 2, 8
vulcanite, 1, 5

W

water, H2O, 2, 7
wave number (m−1), 2, 8
weather, 2, 3
wheelchair access provided (w), 2, 3, 8
Why Didn’t They Ask Evans? , 2, 6, 7
Why Didn’t They Ask Evans? (film), 2, 7

Z

zander, 2, 6
zebra, 2, 6
zinc fluoride, ZnF2, 2, 7
zirconium phosphate, Zr3(PO4)4, 2, 7
zucchini, see courgette

12

Figure 8.19: sample-multi2.pdf (pages 9 and 12)

398

Command Summary
@

\@
Adjusts the space factor to indicate the following punctuation character marks the end of
the sentence (kernel command).

\@gls@hypergroup{⟨type⟩}{⟨group id⟩}
Identifies that the given group was used in the glossary on the previous run (internal
command provided by glossary-hypernav).

\@istfilename{⟨filename⟩}
Identifies the style file in the .aux file for the benefit of external tools like
makeglossaries and makeglossaries-lite (provided by glossaries).

A

\abbrvpluralsuffix
The style sensitive suffix used to construct the default plural for the short form of
abbreviations (provided by glossaries-extra).

\ac[⟨options⟩]{⟨label⟩}[⟨insert⟩]
Equivalent to \gls (provided by glossaries-extra shortcuts package option).

\acronymtype
Expands to the default glossary type when using \newacronym (provided by glossaries).

\acrpluralsuffix
The suffix used to construct the default plural for the short form of acronyms (provided
by glossaries).

\alpha
Greek letter alpha α (kernel command (maths mode only)).

\apptoglossarypreamble[⟨type⟩]{⟨code⟩}
Appends ⟨code⟩ to the preamble for the given glossary (provided by glossaries-extra).

\AtEndDocument{⟨code⟩}
Perform ⟨code⟩ at the end of the document (kernel command).

B

\backmatter
Switches to back matter (provided by book-like classes).

399

Command Summary

\bibglsaliassep
Separator between alias cross-reference and location list.

\bibglsampersandchar
Expands to a literal ampersand character.

\bibglscircumchar
Expands to a literal circumflex character.

\bibglscontributor{⟨forenames⟩}{⟨von-part⟩}{⟨surname⟩}{⟨suffix⟩}
Used to markup a contributor’s name that was converted from BIBTEX’s contributor
syntax.

\bibglscontributorlist{⟨list⟩}{⟨number⟩}
Used to markup a list of names from a field that was converted from BIBTEX’s contributor
syntax.

\bibglsdate{⟨year⟩}{⟨month⟩}{⟨day-of-month⟩}{⟨day-of-week⟩}{⟨day-of-year⟩}{⟨era⟩}
{original}
Used to markup a date converted from a field value.

\bibglsdategroup{⟨YYYY⟩}{⟨MM⟩}{⟨DD⟩}{⟨G⟩}{⟨title⟩}{⟨group-id⟩}{⟨type⟩}
Expands to the date group label.

\bibglsdategrouptitle{⟨YYYY⟩}{⟨MM⟩}{⟨DD⟩}{⟨G⟩}{⟨title⟩}{⟨group-id⟩}{⟨type⟩}
Expands to the date group title.

\bibglsdatetime{⟨year⟩}{⟨month⟩}{⟨day-of-month⟩}{⟨day-of-week⟩}{⟨day-of-year⟩}{⟨era⟩}
{⟨hour⟩}{⟨minute⟩}{⟨second⟩}{⟨millisec⟩}{⟨dst⟩}{⟨zone⟩}{original}
Used to markup a date-time instance converted from a field value.

\bibglsdatetimegroup{⟨YYYY⟩}{⟨MM⟩}{⟨DD⟩}{⟨hh⟩}{⟨mm⟩}{⟨ss⟩}{⟨zone⟩}{⟨title⟩}{⟨group
-id⟩}{⟨type⟩}
Expands to the date-time group label.

\bibglsdatetimegrouptitle{⟨YYYY⟩}{⟨MM⟩}{⟨DD⟩}{⟨hh⟩}{⟨mm⟩}{⟨ss⟩}{⟨zone⟩}{⟨title⟩}
{⟨group-id⟩}{⟨type⟩}
Expands to the date-time group title.

\bibglsdelimN
Delimit individual locations (except last).

\bibglsdollarchar
Expands to a literal dollar character.

\bibglsemptygroup{⟨type⟩}
Expands to the empty group label.

\bibglsemptygrouptitle{⟨type⟩}
Expands to the empty group title.

\bibglsflattenedchildpostsort{⟨parent name⟩}{⟨child name⟩}
Expands to the post-sort flattened child entry’s new name.

400

Command Summary

\bibglsflattenedchildpresort{⟨child name⟩}{⟨parent name⟩}
Expands to the pre-sort flattened child entry’s new name.

\bibglsflattenedhomograph{⟨name⟩}{⟨parent label⟩}
Expands to the flattened entry’s new name.

\bibglshashchar
Expands to a literal hash character.

\bibglshypergroup{⟨type⟩}{⟨group-id⟩}
Creates group navigation information.

\bibglshyperlink{⟨text⟩}{⟨label⟩}
Displays ⟨text⟩ with a hyperlink to the entry given by ⟨label⟩, if supported.

\bibglsinterloper{⟨location⟩}
Interloper location format.

\bibglslastDelimN
Delimit last location.

\bibglslettergroup{⟨title⟩}{⟨letter⟩}{⟨id⟩}{⟨type⟩}
Expands to the letter group label.

\bibglslettergrouptitle{⟨title⟩}{⟨letter⟩}{⟨id⟩}{⟨type⟩}
Expands to the letter group title.

\bibglslocationgroup{⟨n⟩}{⟨counter⟩}{⟨list⟩}
Location group encapsulator.

\bibglslocationgroupsep
Location group separator.

\bibglslocprefix{⟨n⟩}
Location list prefix.

\bibglslocsuffix{⟨n⟩}
Location list suffix.

\bibglsnewabbreviation{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}
Defines terms provided with @abbreviation.

\bibglsnewacronym{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}
Defines terms provided with @acronym.

\bibglsnewbibtexentry{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}
Defines terms provided with @bibtexentry.

\bibglsnewcontributor{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}
Defines terms provided with @contributor.

\bibglsnewdualabbreviation{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}
Defines terms provided with @dualabbreviation.

401

Command Summary

\bibglsnewdualabbreviationentry{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}{⟨description⟩}
Defines primary terms provided with @dualabbreviationentry.

\bibglsnewdualabbreviationentrysecondary{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}
{⟨description⟩}
Defines secondary terms provided with @dualabbreviationentry.

\bibglsnewdualacronym{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}
Defines terms provided with @dualacronym.

\bibglsnewdualentry{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}
Defines terms provided with @dualentry.

\bibglsnewdualentryabbreviation{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}{⟨description⟩}
Defines primary terms provided with (deprecated) @dualentryabbreviation.

\bibglsnewdualentryabbreviationsecondary{⟨label⟩}{⟨options⟩}{⟨short⟩}{⟨long⟩}
{⟨description⟩}
Defines secondary terms provided with (deprecated) @dualentryabbreviation.

\bibglsnewdualindexabbreviation{⟨label⟩}{⟨dual-label⟩}{⟨options⟩}{⟨name⟩}{⟨short⟩}
{⟨long⟩}{⟨description⟩}
Defines primary terms provided with @dualindexabbreviation.

\bibglsnewdualindexabbreviationsecondary{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨short⟩}
{⟨long⟩}{⟨description⟩}
Defines secondary terms provided with @dualindexabbreviation.

\bibglsnewdualindexentry{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}
Defines primary terms provided with @dualindexentry.

\bibglsnewdualindexentrysecondary{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}
Defines secondary terms provided with @dualindexentry.

\bibglsnewdualindexnumber{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨symbol⟩}{⟨description⟩}
Defines primary terms provided with @dualindexnumber.

\bibglsnewdualindexnumbersecondary{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}
Defines secondary terms provided with @dualindexnumber.

\bibglsnewdualindexsymbol{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨symbol⟩}{⟨description⟩}
Defines primary terms provided with @dualindexsymbol.

\bibglsnewdualindexsymbolsecondary{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}
Defines secondary terms provided with @dualindexsymbol.

\bibglsnewdualnumber{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}
Defines terms provided with @dualnumber.

\bibglsnewdualsymbol{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}
Defines terms provided with @dualsymbol.

\bibglsnewentry{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}
Defines terms provided with @entry.

402

Command Summary

\bibglsnewindex{⟨label⟩}{⟨options⟩}
Defines terms provided with @index.

\bibglsnewnumber{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}
Defines terms provided with @number.

\bibglsnewsymbol{⟨label⟩}{⟨options⟩}{⟨name⟩}{⟨description⟩}
Defines terms provided with @symbol.

\bibglsnewtertiaryindexabbreviationentry{⟨label⟩}{⟨dual-label⟩}{⟨options⟩}{⟨name⟩}
{⟨short⟩}{⟨long⟩}{⟨description⟩}
Defines primary terms provided with @tertiaryindexabbreviationentry.

\bibglsnewtertiaryindexabbreviationentrysecondary{⟨label⟩}{⟨tertiary-label⟩}
{⟨options⟩}{⟨tertiary-opts⟩}{⟨primary-name⟩}{⟨short⟩}{⟨long⟩}{⟨description⟩}
Defines secondary and tertiary terms provided with
@tertiaryindexabbreviationentry.

\bibglsnumbergroup{⟨value⟩}{⟨id⟩}{⟨type⟩}
Expands to the number group label.

\bibglsnumbergrouptitle{⟨value⟩}{⟨id⟩}{⟨type⟩}
Expands to the number group title.

\bibglsothergroup{⟨character⟩}{⟨id⟩}{⟨type⟩}
Expands to the non-letter group label.

\bibglsothergrouptitle{⟨character⟩}{⟨id⟩}{⟨type⟩}
Expands to the non-letter group title.

\bibglspagename
Name used for single page.

\bibglspagesname
Name used for multiple pages.

\bibglspassim
Passim range suffix.

\bibglspassimname
Name used by passim range suffix.

\bibglspostlocprefix
Location list post prefix.

\bibglsrange{⟨start⟩\delimR ⟨end⟩}
Explicit range format.

\bibglsseealsosep
Separator between seealso cross-references and location list.

\bibglsseesep
Separator between see cross-references and location list.

403

Command Summary

\bibglssetemptygrouptitle{{⟨type⟩}}
Sets the empty group title.

\bibglssetlettergrouptitle{{⟨title⟩}{⟨letter⟩}{⟨id⟩}{⟨type⟩}}
Sets the letter group title.

\bibglssetnumbergrouptitle{{⟨value⟩}{⟨id⟩}{⟨type⟩}}
Sets the number group title.

\bibglssetothergrouptitle{{⟨character⟩}{⟨id⟩}{⟨type⟩}}
Sets the non-letter group title.

\bibglssetunicodegrouptitle{{⟨label⟩}{⟨character⟩}{⟨id⟩}{⟨type⟩}}
Sets the Unicode script, category or character code title.

\bibglssetwidest{⟨level⟩}{⟨name⟩}
Sets the widest name.

\bibglssetwidestfallback{⟨glossary list⟩}
Fallback used instead of \bibglssetwidest in the event that bib2gls can’t determine
the widest name.

\bibglssetwidestfortype{⟨type⟩}{⟨level⟩}{⟨name⟩}
Sets the widest name for the given glossary type.

\bibglssetwidestfortypefallback{⟨type⟩}
Fallback used instead of \bibglssetwidestfortype in the event that bib2gls can’t
determine the widest name.

\bibglssetwidesttoplevelfallback{⟨glossary list⟩}
Fallback used instead of \bibglssetwidest in the event that bib2gls can’t determine
the widest name where there are only top level entries.

\bibglssetwidesttoplevelfortypefallback{⟨type⟩}
Fallback used instead of \bibglssetwidestfortype in the event that bib2gls can’t
determine the widest name where there are only top-level entries.

\bibglssupplemental{⟨n⟩}{⟨list⟩}
Supplemental list encapsulator.

\bibglssupplementalsep
Separator between main and supplementary locations.

\bibglstime{⟨hour⟩}{⟨minute⟩}{⟨second⟩}{⟨millisec⟩}{⟨dst⟩}{⟨zone⟩}{original}
Used to markup a time converted from a field value.

\bibglstimegroup{⟨hh⟩}{⟨mm⟩}{⟨ss⟩}{⟨zone⟩}{⟨title⟩}{⟨group-id⟩}{⟨type⟩}
Expands to the time group label.

\bibglstimegrouptitle{⟨hh⟩}{⟨mm⟩}{⟨ss⟩}{⟨zone⟩}{⟨title⟩}{⟨group-id⟩}{⟨type⟩}
Expands to the time group title.

\bibglsunderscorechar
Expands to a literal underscore character.

404

Command Summary

\bibglsunicodegroup{⟨label⟩}{⟨character⟩}{⟨id⟩}{⟨type⟩}
Expands to the Unicode script or category label or character code.

\bibglsunicodegrouptitle{⟨label⟩}{⟨character⟩}{⟨id⟩}{⟨type⟩}
Expands to the Unicode script or category label or character code.

\bibglsuseabbrvfont{⟨text⟩}{⟨category⟩}
Ensures that the given text is formatted according to the given category’s short format.

\bibglsusealias{⟨label⟩}
Display cross-reference list for given entry.

\bibglsuselongfont{⟨text⟩}{⟨category⟩}
Ensures that the given text is formatted according to the given category’s long format.

\bibglsusesee{⟨label⟩}
Display cross-reference list for given entry.

\bibglsuseseealso{⟨label⟩}
Display cross-reference list for given entry.

\bibliography{⟨file list⟩}
Display bibliography created by BIBTEX (kernel command).

\bigoperatornamefmt{⟨text⟩}
Custom command.

\boldsymbol{⟨symbol⟩}
Renders given maths symbol in bold if supported by the current font (provided by
amsmath).

C

\ce{⟨formula⟩}
Displays the chemical formula (provided by mhchem).

\chapter*{⟨title⟩}
Unnumbered chapter heading (book or report classes).

\char⟨number⟩
Accesses the character identified by ⟨number⟩ (TEX primitive).

\citation{⟨label⟩}
Written to the .aux file on each occurrence of \cite (kernel command).

\cite{⟨label⟩}
Cross-reference a bibliographic citation (kernel command).

\cjkname{⟨CJK characters⟩}
Displays ⟨CJK characters⟩ in the appropriate encoding (provided by CJKutf8).

405

Command Summary

D

\DeclareOptions{⟨name⟩}{⟨code⟩}
Declares an option with the given ⟨name⟩ (kernel command).

\DeclareOptions*{⟨code⟩}
Indicates what to do with unknown options (kernel command).

\delimN
Used to delimited individual locations (provided by glossaries).

\delimR
Used as a separator between the start and end locations of a range (provided by
glossaries).

\DTLandname
Used in the definition of \DTLlistformatlastsep (provided by datatool-base).

\DTLformatlist{⟨list⟩}
Formats a comma-separated list (provided by datatool-base).

\DTLlistformatlastsep
Used by \DTLformatlist to separate the last two items in the list (provided by
datatool-base).

\DTLlistformatoxford
Insert before \DTLlistformatlastsep if the list has three or more items (provided by
datatool-base).

\DTMdisplaydate{⟨year⟩}{⟨month⟩}{⟨day⟩}{⟨dow⟩}
Formats the given date where all arguments are numeric (provided by datetime2).

E

\emph{⟨text⟩}
Emphasizes the given text (italic or slanted if the surrounding font is upright, otherwise
upright font is used) (kernel command).

\ensuremath{⟨maths⟩}
Ensures the argument is in math mode (kernel command).

F

\forall
For all symbol (∀) (kernel command).

\forglsentries[⟨glossary-list⟩]{⟨cs⟩}{⟨body⟩}
Iterates over all entries defined in the listed glossaries and perform ⟨body⟩ where you can
use the control sequence ⟨cs⟩ to reference the current label (provided by glossaries).

\frontmatter
Switches to front matter (provided by book-like classes).

406

Command Summary

G

\glolinkprefix
Target name prefix used in entry hyperlinks (provided by glossaries).

\glossentry{⟨label⟩}{⟨location list⟩}
Used in the glossary to display a top-level entry (provided by glossaries).

\glossentryname{⟨label⟩}
Used by glossary styles to display the name (provided by glossaries).

\glossentrynameother{⟨label⟩}{⟨field⟩}
Acts like \glossentryname (obeys glossname and glossnamefont or \glsnamefont and
the post-name hook) but uses the given ⟨field⟩ instead of the name field (provided by
glossaries-extra v1.22+).

\glossentrysymbol{⟨label⟩}
Used by glossary styles to display the symbol (provided by glossaries).

\Gls[⟨options⟩]{⟨label⟩}[⟨insert⟩]
As \gls but converts the first letter of the link text to upper case (provided by glossaries).

\gls[⟨options⟩]{⟨label⟩}[⟨insert⟩]
On first use displays the first use text (the value of the first field for general entries) and
on subsequent use displays the subsequent use text (the value of the text field for
general entries) where the text is optionally hyperlinked to the relevant place in the
glossary (provided by glossaries).

\glsadd[⟨options⟩]{⟨label⟩}
Indexes the entry without displaying any text (provided by glossaries).

\glsaddall[⟨options⟩]
Iterates over all entries defined for all glossaries (or for the sub-list provided in the
options) and performs \glsadd for each entry (provided by glossaries).

\glsaddallunused[⟨list⟩]
Iterates over all entries defined for all glossaries (or for the sub-list provided in the
options) and performs \glsadd for each entry that hasn’t been used with the format set
to glsignore (provided by glossaries).

\glsaddkey{⟨key⟩}{⟨default value⟩}{⟨no link cs⟩}{⟨no link ucfirst cs⟩}{⟨link cs⟩}{⟨link ucfirst
cs⟩}{⟨link allcaps cs⟩}
Adds a new key for use in \newglossaryentry and associated commands to access it
(provided by glossaries).

\glsaddstoragekey{⟨key⟩}{⟨default value⟩}{⟨no link cs⟩}
Adds a new key for internal use that can be set in \newglossaryentry (provided by
glossaries).

\glsbackslash
Expands to a literal backslash \ character (provided by glossaries).

407

Command Summary

\glscurrententrylabel
Only for use in the glossary, such as in the style or in the post-name or post-description
hooks, this expands to the label of the current entry (provided by glossaries).

\glsdefaulttype
The default glossary type (provided by glossaries).

\glsdescwidth
Length register used by the tabular styles to specify the width of the description column
(provided by glossary-long and glossary-super).

\glsentrylong{⟨label⟩}
Displays the long form without any formatting or indexing (provided by glossaries).

\glsentryname{⟨label⟩}
Expands to the value of the name field (provided by glossaries).

\glsentrytext{⟨label⟩}
Expands to the value of the text field (provided by glossaries).

\glsexpandfields
Switches on field expansion (provided by glossaries).

\glsextrapostnamehook{⟨label⟩}
Additional category-independent code for the post-name hook (provided by
glossaries-extra version 1.25+).

\glsfieldfetch{⟨label⟩}{⟨field⟩}{⟨cs⟩}
Fetches the value of the given field for the given label and stores it in the command ⟨cs⟩
(provided by glossaries).

\glsFindWidestLevelTwo[⟨glossary list⟩]
Finds the widest name in the given glossaries for the top level and first two sub-levels
(provided by glossaries-extra-stylemods).

\glsFindWidestTopLevelName[⟨glossary list⟩]
CamelCase synonym for \glsfindwidesttoplevelname (provided by
glossaries-extra-stylemods).

\glsfindwidesttoplevelname[⟨glossary list⟩]
Finds the widest top-level name in the given glossaries (provided by glossary-tree).

\glsgroupheading{⟨label⟩}
Formats the heading for the group identified by the given label (provided by glossaries).

\glshex
Expands to \string\u (provided by glossaries-extra v1.21+ (moved to
glossaries-extra-bib2gls in v1.27)).

\glshyperlink[⟨link text⟩]{⟨label⟩}
Creates a hyperlink to the entry information in the glossary (provided by glossaries).

408

Command Summary

\glshypernumber{⟨text⟩}
A location format that has a hyperlink (if enabled) (provided by glossaries).

\glsignore{⟨text⟩}
Does nothing but when used as a location format bib2gls recognises it as an ignored
record (provided by glossaries).

\glslabel
Only for use in the post-link hooks this expands to the label of the entry that was last
referenced (provided by glossaries).

\glslink[⟨options⟩]{⟨label⟩}[⟨text⟩]
Links to the entry’s location in the glossary with the given link text without altering the
first use flag (provided by glossaries).

\glsnamefont{⟨text⟩}
Used by \glossentryname to format the name (provided by glossaries).

\glsnavhypertarget[⟨type⟩]{⟨label⟩}{⟨text⟩}
Creates a hyper target for the group given by ⟨label⟩ for the given glossary type and
displays the text (provided by glossary-hypernav).

\glsnoexpandfields
Switches off field expansion (provided by glossaries).

\glsnoidxdisplayloc{⟨prefix⟩}{⟨counter⟩}{⟨format⟩}{⟨location⟩}
Handler used to display the number list stored in the loclist field (provided by
glossaries).

\glsnoidxloclist{⟨location list cs⟩}
Iterates over the given internal location list using the \glsnoidxloclisthandler
handler (provided by glossaries).

\glsnoidxloclisthandler{⟨location⟩}
The handler used by the internal list loop function used in \glsnoidxloclist (provided
by glossaries).

\glsnumberformat{⟨text⟩}
Default location format, uses \glshypernumber if hyperlinks enabled otherwise just
does ⟨text⟩ (provided by glossaries).

\glsnumbersgroupname
The name used for the numbers group (provided by glossaries).

\Glspl[⟨options⟩]{⟨label⟩}[⟨insert⟩]
As \Gls but shows the plural form (provided by glossaries).

\glspl[⟨options⟩]{⟨label⟩}[⟨insert⟩]
As \gls but shows the plural form (provided by glossaries).

\glspluralsuffix
The suffix used to construct the default plural (provided by glossaries).

409

Command Summary

\glssee[⟨tag⟩]{⟨label⟩}{⟨xr label list⟩}
Indexes a “see” cross-reference (provided by glossaries).

\glsseeformat{⟨tag⟩}{⟨labels⟩}{⟨location (ignored)⟩}
Formats the entries identified in the comma separated list of labels as a set of
cross-references (provided by glossaries).

\glssetexpandfield{⟨field⟩}
Switches on field expansion for the given field (provided by glossaries).

\glssetnoexpandfield{⟨field⟩}
Switches off field expansion for the given field (provided by glossaries).

\glssetwidest[⟨level⟩]{⟨text⟩}
Used with the alttree style to set the widest entry name for the given level (provided by
glossaries).

\glssymbol[⟨options⟩]{⟨label⟩}
Links to the entry’s location in the glossary with the link text obtained from the symbol
field without altering the first use flag (provided by glossaries).

\glssymbolsgroupname
The name used for the symbols group (provided by glossaries).

\glstext[⟨options⟩]{⟨label⟩}
Links to the entry’s location in the glossary with the link text obtained from the text
field without altering the first use flag (provided by glossaries).

\glstextformat{⟨text⟩}
Used by commands like \gls to format the link-text (provided by glossaries).

\glstildechar
Expands to a literal tilde ~ character (provided by glossaries).

\glstreegroupheaderfmt{⟨text⟩}
Used with the tree styles to format the group headings (provided by glossary-tree).

\glstreenamefmt{⟨text⟩}
Used with the tree styles to format the entry’s name (provided by glossary-tree).

\glstriggerrecordformat{⟨text⟩}
Does nothing but when used as a location format bib2gls recognises it as an ignored
record indexed by commands like \rgls (provided by glossaries-extra v1.21+).

\glsupdatewidest[⟨level⟩]{⟨text⟩}
As \glssetwidest but only sets if ⟨text⟩ is wider than the current value (provided by
glossaries-extra-stylemods version 1.23+).

\glsuseabbrvfont{⟨text⟩}{⟨category⟩}
Applies the formatting command used for the short form for the abbreviation style
associated with the given category (provided by glossaries-extra v1.21+).

410

Command Summary

\glsuselongfont{⟨text⟩}{⟨category⟩}
Applies the formatting command used for the long form for the abbreviation style
associated with the given category (provided by glossaries-extra v1.21+).

\glsxtr@record{⟨label⟩}{⟨prefix⟩}{⟨counter⟩}{⟨format⟩}{⟨location⟩}
This command is written to the .aux file each time an entry is indexed to provide
bib2gls with the record information (provided by glossaries).

\glsxtr@resource{⟨options⟩}{⟨filename⟩}
This internal command is written to the .aux file by \glsxtrresourcefile to provide
bib2gls with the resource information (internal command provided by glossaries-extra).

\glsxtr@wrglossarylocation{⟨n⟩}{⟨page⟩}
This command simply expands to ⟨n⟩, the value of the wrglossary counter for the given
page (internal command provided by glossaries-extra-bib2gls v1.29+).

\glsxtrabbrvpluralsuffix
The default suffix used to construct the plural for the short form of abbreviations
(provided by glossaries-extra).

\glsxtrabbrvtype
Expands to the default glossary type when using \newabbreviation (provided by
glossaries-extra).

\glsxtralttreeSymbolDescLocation{⟨label⟩}{⟨location list⟩}
Used by the alttree styles to format the symbol, description and location (provided by
glossaries-extra-stylemods).

\glsxtrautoindexassignsort{⟨cs⟩}{⟨label⟩}
Assigns the sort value for \index when using auto-indexing (provided by glossaries-extra
v1.16+).

\glsxtrautoindexentry{⟨label⟩}
Used for the actual value in \index when using auto-indexing (provided by
glossaries-extra v1.16+).

\GlsXtrBibTeXEntryAliases
Expands to the set of common entry aliases for @bibtexentry (provided by
glossaries-extra-bib2gls v1.29+).

\glsxtrbookindexname{⟨label⟩}
Used with the bookindex style to format the entry’s name (provided by
glossary-bookindex).

\glsxtrcopytoglossary{⟨label⟩}{⟨type⟩}
Copies the entry given by ⟨label⟩ to the glossary given by ⟨type⟩ (provided by
glossaries-extra v1.12+).

\GlsXtrEnableInitialTagging{⟨category list⟩}{⟨cs⟩}
Defines the control sequence ⟨cs⟩ to be used with abbreviation tagging with the given
categories (provided by glossaries-extra).

411

Command Summary

\glsxtrenablerecordcount
Redefines \gls etc to their \rgls counterpart (provided by glossaries-extra version 1.21+).

\glsxtrendfor
May be used within the handler macro of \glsxtrforcsvfield to prematurely break
the loop (provided by glossaries-extra version 1.24+).

\glsxtrentryfmt{⟨label⟩}{⟨text⟩}
Alternative to \glsxtrfmt for use in section headings (provided by glossaries-extra).

\glsxtrfielddolistloop{⟨label⟩}{⟨field⟩}
Iterates over the items the given field, which contains an etoolbox internal list (provided
by glossaries-extra).

\glsxtrfieldforlistloop{⟨label⟩}{⟨field⟩}{⟨handler⟩}
Iterates over the items the given field, which contains an etoolbox internal list, using the
given handler (provided by glossaries-extra, use at least v1.29 to avoid a bug).

\glsxtrfieldlistadd{⟨label⟩}{⟨field⟩}{⟨item⟩}
Adds the given item to the given field that contains an etoolbox internal list (provided by
glossaries-extra v1.12+).

\glsxtrfmt[⟨options⟩]{⟨label⟩}{⟨text⟩}
Formats the given text according to the formatting command identified by the value of
the field obtained from \GlsXtrFmtField (provided by glossaries-extra).

\glsxtrfmt*[⟨options⟩]{⟨label⟩}{⟨text⟩}[⟨insert⟩]
Like \glsxtrfmt but inserts extra material into the link text but outside of the
formatting command (provided by glossaries-extra).

\GlsXtrFmtDefaultOptions
The default options used by \glsxtrfmt (provided by glossaries-extra).

\GlsXtrFmtField
Expands to the internal label of the field used to store the control sequence name for use
with \glsxtrfmt (provided by glossaries-extra).

\glsxtrforcsvfield{⟨label⟩}{⟨field⟩}{⟨handler⟩}
Iterates over the comma-separated list in the given ⟨field⟩ for the entry identified by
⟨label⟩ and performs ⟨handler⟩{⟨element⟩} on each element of the list, where ⟨handler⟩ is
a control sequence which takes a single argument (provided by glossaries-extra version
1.24+).

\glsxtrgroupfield
Expands to the field label used to store the entry group labels (provided by
glossaries-extra v1.21+).

\glsxtrifcustomdiscardperiod{⟨true⟩}{⟨false⟩}
Should expand to ⟨true⟩ if the post-link hook should check for a following full stop (in
addition to attribute checks) otherwise should expand to ⟨false⟩ (provided by
glossaries-extra v1.23+).

412

Command Summary

\GlsXtrIfFieldUndef{⟨field label⟩}{⟨entry label⟩}{⟨true⟩}{⟨false⟩}
Tests if the given field isn’t defined for the given entry, which may also not exist
(provided by glossaries-extra v1.23+).

\glsxtrifhasfield{⟨field label⟩}{⟨entry label⟩}{⟨true⟩}{⟨false⟩}
Tests if the given entry has the given internal field set (defined and not empty) without
testing if the entry exists and adds implicit scoping to ⟨true⟩ and ⟨false⟩ (provided by
glossaries-extra v1.19+).

\glsxtrifhasfield*{⟨field label⟩}{⟨entry label⟩}{⟨true⟩}{⟨false⟩}
Tests if the given entry has the given field set (defined and not empty) without testing if
the entry exists and without introducing an implicit scope (provided by glossaries-extra
v1.19+).

\glsxtrifwasfirstuse{⟨true⟩}{⟨false⟩}
Only for use in the post-link hooks this tests if the entry just referenced was used for the
first time (provided by glossaries-extra).

\GlsXtrIndexCounterLink{⟨text⟩}{⟨label⟩}
Creates a hyperlink to the wrglossary location obtained from the indexcounter field
(internal command provided by glossaries-extra-bib2gls v1.29+).

\glsxtrindexseealso{⟨label⟩}{⟨xr list⟩}
Indexes a “see also” cross-reference (provided by glossaries-extra).

\GlsXtrLoadResources[⟨options⟩]
A shortcut command that uses \glsxtrresourcefile (provided by glossaries-extra).

\glsxtrlongshortdescname
Governs the way the name field is set by the long-short-desc abbreviation styles (provided
by glossaries-extra v1.17+).

\glsxtrnewgls[⟨options⟩]{⟨prefix⟩}{⟨cs⟩}
Defines the command ⟨cs⟩ to behave like \gls with the given label prefix (provided by
glossaries-extra v1.21+).

\glsxtrnewglslike[⟨options⟩]{⟨prefix⟩}{⟨gls-like cs⟩}{⟨glspl-like cs⟩}{⟨Gls-like
cs⟩}{⟨Glspl-like cs⟩}
Defines commands to behave like \gls, \glspl, \Gls and \Glspl with the given label
prefix (provided by glossaries-extra v1.21+).

\glsxtrnewnumber[⟨key=value list⟩]{⟨label⟩}
Defines a new number (provided by glossaries-extra).

\glsxtrnewsymbol[⟨key=value list⟩]{⟨label⟩}{⟨symbol⟩}
Defines a new symbol (provided by glossaries-extra).

\glsxtrnopostpunc
Suppresses the post-description punctuation without suppressing the post-description
hook (provided by glossaries-extra v1.22+).

413

Command Summary

\glsxtrp{⟨field⟩}{⟨label⟩}
Displays the given field for the entry given by label (provided by glossaries-extra).

\glsxtrpostdescabbreviation
Hook used after the description is displayed in the glossary for entries that have the
category set to abbreviation (provided by glossaries-extra).

\glsxtrpostdesc⟨category⟩
Hook used after the description is displayed in the glossary for entries that have the
category set to ⟨category⟩ (common category hooks such as \glsxtrpostdescgeneral
are provided by glossaries-extra, custom categories need the hook defined).

\glsxtrpostdescgeneral
Hook used after the description is displayed in the glossary for entries that have the
category set to general (provided by glossaries-extra).

\glsxtrpostdescsymbol
Hook used after the description is displayed in the glossary for entries that have the
category set to symbol (provided by glossaries-extra).

\glsxtrpostlink⟨category⟩
Hook used after commands like \gls for entries that have the category set to ⟨category⟩
(user needs to define hook for use with glossaries-extra).

\glsxtrpostname⟨category⟩
Hook used after the name is displayed in the glossary for entries that have the category
set to ⟨category⟩ (user needs to define hook for use with glossaries-extra).

\GlsXtrProvideBibTeXFields
Defines the standard BIBTEX fields using \glsaddstoragekey (provided by
glossaries-extra-bib2gls v1.29+).

\glsxtrprovidecommand{⟨cs⟩}[⟨n⟩][⟨def ⟩]{⟨code⟩}
Behaves like \providecommand in the document but like \renewcommand in bib2gls
(provided by glossaries-extra-bib2gls v1.27+).

\glsxtrprovidestoragekey{⟨key⟩}{⟨default value⟩}{⟨no link cs⟩}
Adds a new key, if not already defined, for use in \newglossaryentry and an associated
command to access it where (unlike \glsaddstoragekey) the ⟨no link cs⟩ part may be
empty if unrequired (provided by glossaries-extra v1.12+).

\glsxtrresourcefile[⟨options⟩]{⟨filename⟩}
Input the .glstex file created by bib2gls and write resource instructions to the .aux
file (provided by glossaries-extra).

\glsxtrresourceinit
Provides code that locally redefines commands during the protected write operation
performed by \glsxtrresourcefile (provided by glossaries-extra v1.21+).

\glsxtrrestorepostpunc
Used within post-description category hooks, this restores the post-description

414

Command Summary

punctuation if it’s been suppressed with \glsxtrnopostpunc (provided by
glossaries-extra v1.23+).

\glsxtrsetaliasnoindex
Hooks into the alias noindex setting (provided by glossaries-extra).

\GlsXtrSetDefaultGlsOpts{⟨options⟩}
Set the default options for commands like \gls (provided by glossaries-extra).

\GlsXtrSetDefaultNumberFormat{⟨format⟩}
Set the default format to use if the format key isn’t set (provided by glossaries-extra
v1.19+).

\GlsXtrSetField{⟨entry label⟩}{⟨field label⟩}{⟨value⟩}
Assigns the given ⟨value⟩ to the field identified by ⟨field label⟩ for the entry identified by
⟨entry label⟩ (provided by glossaries-extra).

\glsxtrsetgrouptitle{⟨group label⟩}{⟨group title⟩}
Globally sets the title for the group identified by the given label (provided by
glossaries-extra version 1.14+).

\GlsXtrSetRecordCountAttribute{⟨category list⟩}{⟨value⟩}
Sets the recordcount attribute to ⟨value⟩ for the given categories (provided by
glossaries-extra version 1.21+).

\glsxtrshort[⟨options⟩]{⟨label⟩}
Links to the entry’s location in the glossary with the link text obtained from the short
field (using the appropriate abbreviation style) without altering the first use flag
(provided by glossaries-extra).

\glsxtrtagfont{⟨text⟩}
Font used by tagging command defined by \GlsXtrEnableInitialTagging (provided
by glossaries-extra).

\glsxtrusefield{⟨entry label⟩}{⟨field label⟩}
Expands to the value of the given field for the given entry (provided by glossaries-extra).

\glsxtruserfield
Used by the parenthetical abbreviation styles, this expands to the label of the field used to
store the parenthetical material (provided by glossaries-extra).

\glsxtruserparen
Used by the parenthetical abbreviation styles to format the parenthetical material
(provided by glossaries-extra).

\glsxtrusesee{⟨label⟩}
Applies \glsseeformat to the entry’s see field if not empty (provided by
glossaries-extra).

\glsxtruseseealso{⟨label⟩}
Applies \glsseeformat to the entry’s seealso field if not empty (provided by
glossaries-extra).

415

Command Summary

\glsxtruseseealsoformat{⟨xr list⟩}
Used to format the entries whose labels are given in ⟨xr list⟩ as a list of “see also”
cross-references (provided by glossaries-extra).

H

\hyperbf{⟨text⟩}
A location format that uses the bold font that also has a hyperlink (if enabled) (provided
by glossaries).

\hyperit{⟨text⟩}
A location format that uses the italic font that also has a hyperlink (if enabled) (provided
by glossaries).

\hyperlink{⟨target name⟩}{⟨text⟩}
Create a hyperlink to ⟨target name⟩ with the given ⟨text⟩ (provided by hyperref).

\hypersf{⟨text⟩}
A location format that uses the sans-serif font that also has a hyperlink (if enabled)
(provided by glossaries).

I

\ifcase⟨number⟩
Case conditional (TEX primitive).

\ifglsentryexists{⟨label⟩}{⟨true⟩}{⟨false⟩}
Tests if the entry given by ⟨label⟩ exists (provided by glossaries).

\ifglshasfield{⟨field label⟩}{⟨entry label⟩}{⟨true⟩}{⟨false⟩}
Tests if the given entry, which must be defined, has the given field set to a non-empty
value (provided by glossaries).

\immediate⟨file operation⟩
Perform the file operation immediately instead of the usual delay (TEX primitive).

\index{⟨text⟩}
Indexes the given term by writing the relevant information to an associated file that can
then be processed by makeindex or xindy (kernel command).

\input{⟨file⟩}
Input the given file (kernel command).

\invfmt{⟨maths⟩}
Example command.

J

\jobname
The current job name, which is usually the name of the main .tex file without the
extension (primitive).

416

Command Summary

L

\label{⟨id⟩}
Creates a label that can be referenced with \ref or \pageref (kernel command).

\let⟨token1⟩⟨token2⟩
Assigns ⟨token1⟩ to ⟨token2⟩ (TEX primitive).

\listxadd{⟨list cs⟩}{⟨element⟩}
Globally adds (expanded) ⟨element⟩ to the list stored in the control sequence ⟨list cs⟩
(provided by etoolbox).

\loadglsentries[⟨type⟩]{⟨file⟩}
Locally redefines \glsdefaulttype to ⟨type⟩ and inputs ⟨file⟩ (provided by glossaries).

\longnewglossaryentry{⟨label⟩}{⟨key=value list⟩}{⟨description⟩}
Defines a new glossary entry (provided by glossaries).

\longprovideglossaryentry{⟨label⟩}{⟨key=value list⟩}{⟨description⟩}
Defines a new glossary entry if one doesn’t already exist with the given label (provided
by glossaries).

M

\mainmatter
Switches to main matter (provided by book-like classes).

\makefirstuc{⟨text⟩}
Converts the first letter of ⟨text⟩ to upper case (provided by mfirstuc).

\makeglossaries
Opens associated glossary files to be processed by makeindex or xindy (provided by
glossaries).

\MakeLowercase{⟨text⟩}
Converts ⟨text⟩ to lower case (kernel command).

\MakeTextLowercase{⟨text⟩}
Converts ⟨text⟩ to lower case (provided by textcase).

\MakeTextUppercase{⟨text⟩}
Converts ⟨text⟩ to upper case (provided by textcase).

\MakeUppercase{⟨text⟩}
Converts ⟨text⟩ to upper case (kernel command).

\mathord{⟨maths⟩}
Assigns the character or sub-formula in the argument to class 0, ordinary (TEX primitive).

\mtxfmt{⟨symbol⟩}
Example command.

417

Command Summary

N

\nary{⟨text⟩}
Custom command.

\newabbreviation[⟨key=value list⟩]{⟨label⟩}{⟨short⟩}{⟨long⟩}
Defines a new abbreviation (provided by glossaries-extra).

\newacronym[⟨key=value list⟩]{⟨label⟩}{⟨short⟩}{⟨long⟩}
Defines a new abbreviation with the category set to acronym (provided by glossaries).

\newcommand{⟨cs⟩}[⟨n⟩][⟨def ⟩]{⟨code⟩}
Defines a new command (kernel command).

\newdualentry[⟨key=value list⟩]{⟨label⟩}{⟨short⟩}{⟨long⟩}{⟨description⟩}
Example given in glossaries user manual.

\newentry{⟨label⟩}{⟨key=value list⟩}
Equivalent to \newglossaryentry (provided by glossaries-extra’s shortcuts).

\newglossary[⟨log⟩]{⟨type⟩}{⟨gls⟩}{⟨glo⟩}{⟨title⟩}
Defines a new glossary identified by ⟨type⟩ with the given title and associated file
extensions used by makeindex or xindy (provided by glossaries).

\newglossary*{⟨type⟩}{⟨title⟩}
Defines a new glossary identified by ⟨type⟩ with the given title (provided by glossaries).

\newglossaryentry{⟨label⟩}{⟨key=value list⟩}
Defines a new glossary entry (provided by glossaries).

\newignoredglossary{⟨type⟩}
Defines a new ignored glossary (with hyperlinks suppressed) identified by ⟨type⟩ that’s
not included in the list used by commands, such as \printunsrtglossaries, that
iterate over defined glossaries (provided by glossaries v4.08+).

\newignoredglossary*{⟨type⟩}
Defines a new ignored glossary (without suppressing hyperlinks) identified by ⟨type⟩
that’s not included in the list used by commands, such as \printunsrtglossaries, that
iterate over defined glossaries (provided by glossaries-extra v1.11+).

\newnum{⟨label⟩}{⟨key=value list⟩}
Equivalent to \glsxtrnewnumber (provided by glossaries-extra’s shortcuts package
option).

\newsym{⟨label⟩}{⟨key=value list⟩}{⟨symbol⟩}
Equivalent to \glsxtrnewsymbol (provided by glossaries-extra’s shortcuts package
option).

\newterm[⟨key=value list⟩]{⟨label⟩}
Defines a new glossary entry where the description field defaults to empty (provided
by glossaries).

418

Command Summary

\NoCaseChange{⟨text⟩}
Prevents \MakeTextUppercase and \MakeTextLowercase from converting ⟨text⟩
(provided by textcase).

\nopostdesc
Suppresses the post-description hook (provided by glossaries).

\numspacefmt{⟨symbol⟩}
Example command.

O

\omicron
Greek letter omicron o (provided by glossaries-extra-bib2gls).

P

\PackageError{⟨name⟩}{⟨code⟩}{⟨help⟩}
Generates an error message for the package identified by ⟨name⟩ (kernel command).

\pagelistname
Language-sensitive name used for the location list header for some glossary styles
(provided by glossaries).

\pageref{⟨id⟩}
Cross-reference the page where \label{⟨id⟩} occurred (kernel command).

\printglossaries
Iterates over all non-ignored defined glossaries and performs \printglossary for each
one (provided by glossaries).

\printglossary[⟨options⟩]
Inputs file created by makeindex or xindy (provided by glossaries).

\printunsrtglossaries
Iterates over all non-ignored defined glossaries and performs \printunsrtglossary for
each one (provided by glossaries-extra).

\printunsrtglossary[⟨options⟩]
Display the glossary by iterating over all entries associated with that glossary in the
order in which they were defined (provided by glossaries-extra).

\printunsrtglossary*[⟨options⟩]{⟨code⟩}
As \printunsrtglossary but performs ⟨code⟩ first (scoped to localise any assignments
within ⟨code⟩) (provided by glossaries-extra).

\ProcessOptions
Processes supplied options (kernel command).

\protect⟨token⟩
Protects ⟨token⟩ from expansion (kernel command).

419

Command Summary

\providecommand{⟨cs⟩}[⟨n⟩][⟨def ⟩]{⟨code⟩}
Defines a command if it’s not already defined (kernel command).

\provideglossaryentry{⟨label⟩}{⟨key=value list⟩}
Defines a new glossary entry if one doesn’t already exist with the given label (provided
by glossaries).

\provideignoredglossary{⟨type⟩}
As \newignoredglossary but does nothing if a glossary identified by ⟨type⟩ already
exists (provided by glossaries-extra).

\provideignoredglossary*{⟨type⟩}
As \provideignoredglossary but doesn’t suppress hyperlinks (provided by
glossaries-extra).

\ProvidesPackage{⟨name⟩}[⟨version⟩]
Identifies a package (kernel command).

R

\ref{⟨id⟩}
Cross-reference the location where \label{⟨id⟩} occurred (kernel command).

\refstepcounter{⟨counter name⟩}
Increments the given counter in a manner compatible with the \label cross-referencing
mechanism (kernel command).

\renewcommand{⟨cs⟩}[⟨n⟩][⟨def ⟩]{⟨code⟩}
Redefines an existing command (kernel command).

\RequirePackage[⟨options⟩]{⟨name⟩}[⟨min version⟩]
Loads the package identified by ⟨name⟩ from within another package (kernel command).

\rgls[⟨options⟩]{⟨label⟩}[⟨insert⟩]
Like \gls but checks for the record count trigger setting (provided by glossaries-extra
version 1.21+).

\rglsformat{⟨label⟩}[⟨insert⟩]
Used by \rgls if the record count switch is triggered (provided by glossaries-extra
version 1.21+).

S

\section*{⟨title⟩}
Unnumbered section heading (most classes that have a concept of document sections).

\seealsoname
Language sensitive “see also” text (provided by glossaries-extra or language packages).

\setabbreviationstyle[⟨category⟩]{⟨style-name⟩}
Sets the abbreviation style to ⟨style-name⟩ for the given ⟨category⟩, must be used before
the abbreviation is defined (provided by glossaries-extra).

420

Command Summary

\setcardfmt{⟨maths⟩}
Example command.

\setcontentsfmt{⟨contents⟩}
Example command.

\setfmt{⟨symbol⟩}
Example command.

\setmembershipfmt{⟨variable(s)⟩}{⟨condition⟩}
Example command.

\setmembershiponeargfmt{{⟨variable(s)⟩}{⟨condition⟩}}
Example command.

\si{⟨unit⟩}
Displays the unit with intelligent formatting (provided by siunitx).

\sortart{⟨article⟩}{⟨text⟩}
Example command.

\sortmediacreator{⟨first name(s)⟩}{⟨surname⟩}
Example command.

\sortname{⟨first name(s)⟩}{⟨surname⟩}
Example command.

\sortop{⟨text1⟩}{⟨text2⟩}
Example command.

\sortvonname{⟨first name(s)⟩}{⟨von⟩}{⟨surname⟩}
Example command.

\string⟨token⟩
If ⟨token⟩ is a control sequence it expands to the escape character followed by the control
sequence name (TEX primitive).

\strong{⟨text⟩}
Example command.

\subglossentry{⟨level⟩}{⟨label⟩}{⟨location list⟩}
Used in the glossary to display a sub-entry (provided by glossaries).

T

\textsubscript{⟨text⟩}
Displays ⟨text⟩ as a subscript (kernel command as from 2015/01/01).

⟨text⟩
Displays ⟨text⟩ as a superscript (kernel command).

\TrackedLanguageFromDialect{⟨dialect⟩}
Expands to the root language associated with the given (tracklang) dialect label (provided
by tracklang).

421

Command Summary

\TrackLangLastTrackedDialect
Set by commands like \TrackLocale (provided by tracklang).

\TrackLocale{⟨language tag⟩}
Tracks the given language tag (provided by tracklang version 1.3+).

\transposefmt{⟨maths⟩}
Example command.

U

\u{⟨character⟩}
Puts a breve accent over ⟨character⟩ (kernel command).

\undef⟨cs⟩
Undefines the control sequence ⟨cs⟩ (provided by etoolbox).

\unexpanded{⟨general text⟩}
Expands to the argument (ε-TEX primitive).

\usepackage[⟨options⟩]{⟨name⟩}[⟨min version⟩]
Loads the package identified by ⟨name⟩ (kernel command).

V

\vecfmt{⟨symbol⟩}
Example command.

W

\write18{⟨system call⟩}
Perform shell escape if permitted (kernel command).

X

\xifinlist{⟨element⟩}{⟨list cs⟩}{⟨true⟩}{⟨false⟩}
Tests if ⟨element⟩ is in the list stored in the control sequence ⟨list cs⟩ (provided by
etoolbox).

422

Bibliography
[1] Oracle. Java API: CollationKey class, 2017. http://docs.oracle.com/javase/8/

docs/api/java/text/CollationKey.html.

[2] Oracle. Java API: Collator class, 2017. http://docs.oracle.com/javase/8/docs/
api/java/text/Collator.html.

[3] Oracle. Java API: DecimalFormat class, 2017. http://docs.oracle.com/javase/8/
docs/api/java/text/DecimalFormat.html.

[4] Oracle. Java API: Pattern class, 2017. http://docs.oracle.com/javase/8/docs/
api/java/util/regex/Pattern.html.

[5] Oracle. Java API: RuleBasedCollator class, 2017. http://docs.oracle.com/
javase/8/docs/api/java/text/RuleBasedCollator.html.

[6] Oracle. Java API: SimpleDateFormat class, 2017. http://docs.oracle.com/
javase/8/docs/api/java/text/SimpleDateFormat.html.

[7] Oracle. Adoption of unicode cldr data and the java.locale.providers system
property, 2018. https://docs.oracle.com/javase/8/docs/technotes/guides/
intl/enhancements.8.html#cldr.

[8] Nicola Talbot. texparserlib: Java code for parsing (La)TeX files, 2017. https://
github.com/nlct/texparser.

[9] Nicola Talbot. The glossaries-extra package, 2017. https://ctan.org/pkg/
glossaries-extra.

[10] Nicola Talbot. The glossaries package, 2017. https://ctan.org/pkg/glossaries.

[11] Nicola L. C. Talbot. LATEX for Administrative Work, volume 3 of Dickimaw LATEX Series,
chapter 2.7.5. Dickimaw Books, Norfolk, UK, 2015. http://www.dickimaw-books.
com/latex/admin/html/foreachtips.shtml.

[12] Is there a program for managing glossary tags?, 2016. https://tex.stackexchange.
com/questions/342544.

[13] TEX Users Group. TEX user groups around the world, 2017. http://tug.org/
usergroups.html.

423

http://docs.oracle.com/javase/8/docs/api/java/text/CollationKey.html
http://docs.oracle.com/javase/8/docs/api/java/text/CollationKey.html
http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/8/docs/api/java/text/RuleBasedCollator.html
http://docs.oracle.com/javase/8/docs/api/java/text/RuleBasedCollator.html
http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/enhancements.8.html#cldr
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/enhancements.8.html#cldr
https://github.com/nlct/texparser
https://github.com/nlct/texparser
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/glossaries
http://www.dickimaw-books.com/latex/admin/html/foreachtips.shtml
http://www.dickimaw-books.com/latex/admin/html/foreachtips.shtml
https://tex.stackexchange.com/questions/342544
https://tex.stackexchange.com/questions/342544
http://tug.org/usergroups.html
http://tug.org/usergroups.html

Index

Symbols

\#, 163, 173, 177, 178
(literal), 177, 178, 228
(parameter), 163, 173
(string concatenation), 41, 289
$ (literal), 228
$ (maths shift), 13, 25, 42, 106, 116, 122, 276
\%, 163, 177, 178
% (comment), 13, 34, 81, 163
% (literal), 177, 178
\&, 163, 177, 178
& (alignment), 163
& (literal), 177, 178, 228
* (regular expression, zero or more), 89
\., 89, 108
. (end of sentence), see full stop (.)
. (regular expression, match any), 89
\@, 142, 211, 399
\@gls@hypergroup, 29
\@istfilename, 11, 399
\ (escape), 13, 42, 106, 116
\ (literal), 163
^ (literal), 229
^ (superscript), 13, 23
_, 163, 177, 178
_ (literal), 177, 178, 228
_ (subscript), 13, 23, 163
\{, 163, 177, 178
{ (begin group), 13, 42, 106, 116, 163
{ (literal), 177, 178
\}, 163, 177, 178
} (end group), 13, 42, 106, 116, 163
} (literal), 177, 178
~ (literal), 163
~ (non-breakable space), 13, 21, 106, 116, 377

\␣, 358

A

abbreviation styles
long-noshort-desc, 49
long-only-short-only, 309, 311, 382
long-postshort-user-desc, 72
long-short-desc, 70, 71, 350, 364, 382, 413
long-short-sc, 49, 131
long-short-sm, 50
long-short-user, 69, 358
long-short-user-desc, 72
short-long, 111

\abbrvpluralsuffix, 131, 399
see also \glsxtrabbrvpluralsuffix

\ac, 26, 399
\acronymtype, 200, 205, 399
\acrpluralsuffix, 131, 399
\alpha, 164, 399
animals.bib, 295, 362
applications

arara, 10
bibtex, 1
convertgls2bib, 14, 230–232, 236
kpsewhich, 9, 12, 20, 87, 230
makeglossaries, 1, 11, 374, 399
makeglossaries-lite, 11, 399
makeindex, 9, 20, 135, 166, 167, 170, 215,

416, 417, 419
xindy, 4, 20, 36, 135, 166, 167, 170, 215,

416, 417, 419
\apptoglossarypreamble, 173, 399
\AtEndDocument, 1, 399

B

\backmatter, 133, 399

424

Index

bacteria.bib, 248, 309, 362
baseunits.bib, 250, 252, 313, 319, 362, 366
bib2gls-en.xml, 10, 127, 209, 211, 215
bib2gls.bat, 11
bib2gls.jar, 11, 18
bib2gls.sh, 11
\bibglsaliassep, 139, 207
\bibglsampersandchar, 228
\bibglscircumchar, 229
\bibglscontributor, 50, 75, 114–116, 228
\bibglscontributorlist, 114, 227
\bibglsdate, 116
\bibglsdategroup, 28, 221, 331
\bibglsdategrouptitle, 221, 331
\bibglsdatetime, 116
\bibglsdatetimegroup, 28, 220
\bibglsdatetimegrouptitle, 221
\bibglsdelimN, 135, 208, 209, 214

see also \bibglslastDelimN
\bibglsdollarchar, 228
\bibglsemptygroup, 28, 219
\bibglsemptygrouptitle, 220
\bibglsflattenedchildpostsort, 94,
95, 225

\bibglsflattenedchildpresort, 97, 225
\bibglsflattenedhomograph, 98, 224
\bibglshashchar, 228
\bibglshypergroup, 29, 223
\bibglshyperlink, 195, 225
\bibglsinterloper, 209, 210
\bibglslastDelimN, 208

see also \bibglsdelimN
\bibglslettergroup, 28, 216, 217
\bibglslettergrouptitle, 216–218
\bibglslocationgroup, 143, 212
\bibglslocationgroupsep, 143, 213
\bibglslocprefix, 140–142, 210, 212
\bibglslocsuffix, 141, 211
\bibglsnewabbreviation, 50, 200
\bibglsnewacronym, 50, 200
\bibglsnewbibtexentry, 75, 76, 206
\bibglsnewcontributor, 50, 75, 206
\bibglsnewdualabbreviation, 68, 205

\bibglsnewdualabbreviationentry,
66, 203

\bibglsnewdualabbreviationentrysec-
ondary,
66, 203

\bibglsnewdualacronym, 72, 205
\bibglsnewdualentry, 58, 104, 193, 200
\bibglsnewdualentryabbreviation, 204
\bibglsnewdualentryabbreviationsec-
ondary,
204

\bibglsnewdualindexabbreviation, 61,
202, 205, 365

\bibglsnewdualindexabbreviationsec-
ondary, 61,
202, 203

\bibglsnewdualindexentry, 59, 201
\bibglsnewdualindexentrysecondary,
59, 201

\bibglsnewdualindexnumber, 65, 202
\bibglsnewdualindexnumbersecondary,
65, 202

\bibglsnewdualindexsymbol, 62, 201
\bibglsnewdualindexsymbolsecondary,
62, 64, 201

\bibglsnewdualnumber, 67, 205
\bibglsnewdualsymbol, 66, 204
\bibglsnewentry, 47, 193, 198
\bibglsnewindex, 49, 104, 199
\bibglsnewnumber, 48, 199
\bibglsnewsymbol, 47, 198, 199
\bibglsnewtertiaryindexabbrevia-
tionentry,
205

\bibglsnewtertiaryindexabbrevia-
tionentrysecondary,
73, 206

\bibglsnumbergroup, 28, 220
\bibglsnumbergrouptitle, 220
\bibglsothergroup, 28, 219
\bibglsothergrouptitle, 219
\bibglspagename, 141, 211
\bibglspagesname, 141, 211
\bibglspassim, 10, 138, 208

425

Index

\bibglspassimname, 209
\bibglspostlocprefix, 140, 142, 210
\bibglsrange, 133, 209
\bibglsseealsosep, 139, 207
\bibglsseesep, 139, 207
\bibglssetemptygrouptitle, 219
\bibglssetlettergrouptitle, 216
\bibglssetnumbergrouptitle, 220
\bibglssetothergrouptitle, 218
\bibglssetunicodegrouptitle, 222
\bibglssetwidest, 83, 226, 227, 404
\bibglssetwidestfallback, 83, 226, 227
\bibglssetwidestfortype, 83, 226,
227, 404

\bibglssetwidestfortypefallback,
83, 227

\bibglssetwidesttoplevelfallback,
83, 227

\bibglssetwidesttoplevelfortype-
fallback,
83, 227

\bibglssupplemental, 148, 213
\bibglssupplementalsep, 149, 213
\bibglstime, 116
\bibglstimegroup, 28, 221
\bibglstimegrouptitle, 221
\bibglsunderscorechar, 228
\bibglsunicodegroup, 180, 222
\bibglsunicodegrouptitle, 223
\bibglsuseabbrvfont, 61, 202
\bibglsusealias, 139, 208
\bibglsuselongfont, 61, 203, 206
\bibglsusesee, 139, 208
\bibglsuseseealso, 139, 208
\bibliography, 76, 405
bigmathsymbols.bib, 273, 340, 343
\bigoperatornamefmt, 273, 405
binaryoperators.bib, 278, 340
\boldsymbol, 16, 405
books.bib, 109, 127, 259, 262, 323, 324,
335, 374

C

category attributes, 309
aposplural, 131
externallocation, 147
glossdescfont, 309, 311
glossname, 15, 311, 353, 407
glossnamefont, 309, 311, 337, 359, 364,

368, 407
noshortplural, 131
recordcount, 32, 415
targetname, 98, 101
targeturl, 98, 101
textformat, 309, 337, 358, 359, 364

\ce, 244, 405
\chapter*, 316, 405
\char, 13, 14, 231, 405
chemicalformula.bib, 244, 306, 362, 366
\citation, 21, 22, 74, 405
\cite, 76, 405
CJK environment, 217, 218
\cjkname, 217, 405
CLDR (Unicode Common Locale Data
Repository), 18, 160, 254, 331

command line options
--break-space, 21, 116, 253, 377
--cite-as-record, 21, 74, 77
--custom-packages, 24
--debug, 14, 16, 19, 135, 167
--dir, 20, 21, 87
--expand-fields, 31, 214
--force-cross-resource-refs, 7,

8, 22
--group, 17, 18, 27, 86, 103, 128, 214, 215,

223, 239, 340
--help, 19
--ignore-packages, 23, 24
--interpret, 13, 14, 21
--list-known-packages, 13, 23
--locale, 9, 20
--log-file, 20
--map-format, 26, 135, 143
--merge-wrglossary-records, 22, 144

426

Index

--mfirstuc-math-protection, 6,
15, 25

--mfirstuc-protection, 6, 15, 24, 25
--nested-link-check, 6, 25
--no-break-space, 21
--no-cite-as-record, 22
--no-debug, 14, 19
--no-expand-fields, 31
--no-force-cross-resource-refs, 22
--no-group, 30, 180
--no-interpret, 8, 13, 21
--no-merge-wrglossary-records, 22
--no-mfirstuc-math-protection, 25
--no-mfirstuc-protection, 25
--no-nested-link-check, 25
--no-record-count, 33
--no-record-count-unit, 33
--no-support-unicode-script, 23
--no-trim-fields, 32
--no-verbose, 20
--packages, 23, 24
--record-count, 32, 33
--record-count-unit, 33
--shortcuts, 26
--silent, 20
--support-unicode-script, 22
--tex-encoding, 30, 81
--trim-fields, 31, 32
--verbose, 17–19, 161, 169
--version, 19

constants.bib, 241, 302
convertgls2bib.jar, 11
convertgls2bib.sh, 11
cross-resource reference, 7, 8, 22, 34, 79,
106, 120

custom group, 28

D

date-time group, 28, 220, 221
date group, 28, 221
\DeclareOptions, 24, 406
\DeclareOptions*, 24, 406
\delimN, 134, 208, 406

\delimR, 135, 209, 403, 406
derivedunits.bib, 252, 313, 319, 362, 366
description environment, 365
digraph, 28
\DTLandname, 325, 406

see also \DTLformatlist
\DTLformatlist, 114, 227, 325, 406
\DTLlistformatlastsep, 406

see also \DTLformatlist
\DTLlistformatoxford, 325, 406

see also \DTLformatlist
\DTMdisplaydate, 254, 377, 406
dual, 51

E

\emph, 26, 27, 406
empty group (unknown commands), 28,
219, 220

encoding, 34, 81
\ensuremath, 122, 124, 276, 279, 406
entry types

@abbreviation, 49, 50, 83, 111, 162, 163,
200, 235, 248, 288, 290

@acronym, 50, 111, 162, 163, 200, 235
@bibtexentry, 21, 39, 50, 51, 74, 75, 162,

163, 206, 259, 411
@contributor, 39, 50, 51, 74, 75, 162, 206
@dualabbreviation, 37, 67, 68, 72, 194,

196, 205
@dualabbreviationentry, 50, 52, 53,

55, 57, 65, 66, 83, 194, 196, 203, 237
@dualacronym, 72, 205
@dualentry, 34, 58, 65–67, 104, 187–189,

192, 194–196, 200, 217, 383
@dualentryabbreviation, 65, 66,

196, 204
@dualindexabbreviation, 52, 53, 55,

61, 73, 195, 196, 202, 203, 365
@dualindexentry, 8, 52, 59, 61, 194,

196, 201
@dualindexnumber, 65, 194, 196, 202
@dualindexsymbol, 52, 61, 64, 65, 194,

196, 201

427

Index

@dualnumber, 67, 205
@dualsymbol, 51, 66, 67, 194, 196,

204, 319
@entry, 15, 46–48, 58, 59, 104, 162, 198,

232, 233, 245, 253, 288, 295, 297, 300,
306, 315, 329, 382, 383

@index, 8, 48–50, 52, 59, 74, 94, 104, 109,
162, 199, 234, 254, 290, 300, 301, 329,
365, 366, 382

@number, 47, 48, 163, 199, 236, 302
@preamble, 5, 8, 14–16, 41–43, 79–82, 97,

150, 169, 225, 240, 242, 268, 288,
290, 352

@string, 6, 41, 289, 290
@symbol, 15, 47, 48, 51, 163, 199, 235, 236,

245, 250, 268, 273, 279, 285, 306, 313,
382, 383

@tertiaryindexabbreviationentry,
57, 73, 195, 196, 205, 206

equation counter, 143

F

fields
access, 38
alias, 7, 13, 35, 37, 52, 106, 120, 130, 139,

140, 192, 194, 207, 208, 230, 254,
300, 383

category, 7, 13, 37, 58, 59, 61, 62, 64–68,
72, 74, 90, 103–106, 109, 111, 127, 132,
149, 161, 168, 182, 188, 197, 199, 200,
202, 205, 303, 309, 323, 324, 329, 337,
342, 349, 356, 366, 377, 381–383

description, 6, 7, 31, 37, 46, 47, 49, 58,
65, 70, 73, 120, 121, 125, 126, 150, 195,
199, 203, 250, 254, 259, 263, 273, 281,
285, 303, 306, 309, 311, 326, 331, 342,
349, 352, 359, 366, 368, 381–383

descriptionaccess, 38
descriptionplural, 37, 58, 193
descriptionpluralaccess, 38
duallong, 37, 67–69, 71, 72, 194, 205
duallongplural, 37, 67, 68
dualshort, 37, 67, 68, 125, 189, 194, 205

dualshortplural, 37, 67, 68, 132
first, 25, 37, 112, 113, 127, 131, 254, 329,

337, 377, 383
firstaccess, 38
firstplural, 25, 37, 113, 131
firstpluralaccess, 38
long, 25, 37, 49, 61, 65–68, 73, 131, 194,

205, 248, 288, 311, 352, 354, 356, 365
longaccess, 38
longplural, 25, 37, 65, 67, 68, 131
longpluralaccess, 38
name, 6, 13, 15, 25, 31, 37, 42, 46–50, 55,

58, 59, 61, 62, 65, 66, 75, 82, 83, 94, 95,
97, 98, 107, 109–114, 125, 127, 131, 145,
150, 160, 162, 163, 181, 194, 195, 199,
202, 203, 206, 223–227, 234, 236, 239,
245, 250, 253, 254, 268, 273, 276, 279,
285, 303, 306, 309, 311, 313, 319, 329,
332, 337, 342, 349, 352–354, 356, 359,
364–367, 377, 380–383, 407, 413

parent, 6, 13, 37, 46–48, 88, 91, 94, 101,
106, 109–111, 120, 127, 162, 335, 337

plural, 25, 37, 58, 62, 65, 66, 113, 130,
131, 193

pluralaccess, 38
prefix, 38
prefixfirst, 38
prefixfirstplural, 38
prefixplural, 38
see, 7, 13, 35–37, 88, 89, 91, 98, 101, 106,

120, 130, 132, 135, 139, 140, 193, 207,
208, 230

seealso, 7, 13, 35–37, 88, 91, 98, 101, 106,
120, 132, 135, 139, 207, 208, 230, 231

short, 25, 37, 49, 55, 61, 65–68, 73, 111,
122–125, 131, 163, 194, 205, 248, 311,
356, 365, 366, 369, 415

shortaccess, 38
shortplural, 25, 37, 65, 67, 68, 131, 132
shortpluralaccess, 38
symbol, 25, 31, 37, 62, 66, 194, 245, 250,

315, 319, 365, 366, 368, 369, 381, 410
symbolaccess, 38
symbolplural, 37, 62, 66

428

Index

symbolpluralaccess, 38
text, 25, 37, 65, 94, 97, 112, 113, 125, 127,

130, 131, 254, 276, 279, 329, 337, 410
textaccess, 38
user1, 37, 43, 48, 67, 70, 107, 112, 178,

303, 304, 324, 329, 330, 343, 365
user2, 37, 112, 304, 325, 329
user3, 37, 112, 304, 329, 330
user4, 37
user5, 37
user6, 37

fields, internal
bib2gls@sort, 35, 40
bib2gls@sortfallback, 40
bibtexcontributor, 39
bibtexentry, 39, 50, 75
bibtexentry@⟨entry-type⟩, 39, 50, 75
bibtextype, 39, 74
childcount, 39, 129
counter, 7, 39
currcount, 40
currcount@⟨value⟩, 40
desc, 40
descplural, 40
⟨field⟩endpunc, 39, 127, 337, 356
firstpl, 40
flag, 40
group, 6, 13, 27, 30, 39, 72, 86, 94, 102,

103, 106, 109, 128, 179–181, 215, 216,
222, 313, 342, 349, 382

index, 40
indexcounter, 39, 143–146, 413
level, 40
location, 39, 132, 134, 135, 139, 340
loclist, 39, 132, 134, 135
longpl, 40
nonumberlist, 40
prevcount, 40
prevcount@⟨value⟩, 40
prevunitmax, 40
prevunittotal, 40
recordcount, 32, 39
recordcount.⟨counter⟩, 32, 39

recordcount.⟨counter⟩.⟨location⟩,
33, 39

secondarygroup, 39, 128, 181
secondarysort, 39, 181
shortpl, 40
sort, 9, 15–17, 34, 35, 39, 42, 47–49, 61,

65, 66, 68, 74, 78, 154, 160–163, 168,
169, 175, 181, 199, 215–217, 230, 245,
250, 268, 306, 311, 319, 367

sortvalue, 40
type, 4, 7, 13, 29, 30, 39, 58, 72, 74, 83, 85,

86, 89, 103, 105, 106, 109, 127, 141, 187,
188, 197, 200, 205, 216, 222, 226,
231, 381

unitlist, 40
useri, 40, 304, 357, 358
userii, 40, 304
useriii, 40
useriv, 40
userv, 40
uservi, 40

file formats
.aux, 1, 10, 13, 20, 26, 29, 30, 32, 78, 88,

101, 132, 134, 135, 144, 148, 151, 163
.bat, 11
.bib, 1, 5, 10, 13, 20, 31, 34, 80, 81, 87,

100, 120, 189, 230
.glg, 16, 20, 21
.glstex, 5, 7, 10, 21, 29, 31, 32, 35, 39, 42,

53, 68, 73, 78, 81, 82, 85, 87, 88, 101,
102, 150, 189, 190, 198, 215

.jar, 12

.log, 23, 24, 223

.out

.sh, 11

.tex, 1, 230
films.bib, 240, 262, 323, 324, 374
\forall, 279, 406
\forglsentries, 357, 358, 406
\frontmatter, 133, 406
full stop (.), 108, 125–127, 142, 211, 263, 303,
331, 352, 353, 356, 358

429

Index

G

\glolinkprefix, 332, 407
glossary styles

altlist, 302, 364, 365
altlistgroup, 331
alttree, 82, 285, 303, 342, 349, 410, 411
alttreegroup, 308, 349
bookindex, 309, 311, 331, 359, 368, 411
index, 27, 311
indexgroup, 27, 30
indexhypergroup, 29, 215, 223
list, 303, 321
long3col-booktabs, 321
mcolalttree, 340
mcolalttreegroup, 308, 342, 366
mcolindexgroup, 315

\glossentry, 134, 407
\glossentryname, 311, 407
\glossentrynameother, 311, 368, 407
\glossentrysymbol, 368, 407
\Gls, 24, 407, 413
\gls, 26, 32, 35, 37, 52, 64, 88, 98, 101, 118,
119, 130, 132, 133, 138, 142, 144, 187, 209,
215, 230, 329, 356, 407, 413
counter, 117, 142, 146
format, 32, 132, 133, 143, 145, 146, 209
noindex, 415

\glsadd, 1, 132, 133, 146, 147, 209, 407
format, 133, 147
theHvalue, 147
thevalue, 146, 147

\glsaddall, 1, 88, 407
\glsaddallunused, 133, 407
\glsaddkey, 35, 90, 112, 407
\glsaddstoragekey, 35, 74, 90, 354, 407
\glsbackslash, 163, 407
\glscurrententrylabel, 329, 408
\glsdefaulttype, 231, 408
\glsdescwidth, 321, 408
\glsentrylong, 311, 408
\glsentryname, 9, 76, 195, 408
\glsentrytext, 68, 408
\glsexpandfields, 231, 232

\glsextrapostnamehook, 369, 385, 408
\glsfieldfetch, 132, 408
\glsFindWidestLevelTwo, 226, 408

see also \glsfindwidesttoplevelname
\glsFindWidestTopLevelName, 82,
227, 408
see also \glsfindwidesttoplevelname

\glsfindwidesttoplevelname, 408
\glsgroupheading, 214, 215
\glshex, 164, 408
\glshyperlink, 195, 225, 408
\glshypernumber, 144, 409
\glsignore, 26, 27, 133–135, 409
\glslabel, 329, 409
\glslink, 43, 44, 409
\glsnamefont, 145, 311, 409
\glsnavhypertarget, 30, 409
\glsnoexpandfields, 31, 232
\glsnoidxdisplayloc, 132
\glsnoidxloclist, 134, 409
\glsnoidxloclisthandler, 134, 409
\glsnumberformat, 26, 27, 135, 409
\glsnumbersgroupname, 220, 409
\Glspl, 409, 413
\glspl, 37, 130, 409, 413
\glspluralsuffix, 130, 131, 409
\glssee, 35, 36, 151, 410
\glsseeformat, 132, 208, 410
\glssetexpandfield, 31, 232
\glssetnoexpandfield, 231, 232
\glssetwidest, 82, 226, 410
\glssymbol, 385, 410
\glssymbolsgroupname, 214, 219, 220,
382, 410

\glstext, 119, 410
\glstextformat, 359, 410
\glstildechar, 163, 410
\glstreegroupheaderfmt, 308, 410
\glstreenamefmt, 308, 410
\glstriggerrecordformat, 32, 105, 134,
135, 410

\glsupdatewidest, 82, 226, 410
see also \glssetwidest

\glsuseabbrvfont, 203, 410

430

Index

\glsuselongfont, 206, 411
\glsxtr@record, 21, 134
\glsxtr@resource, 10
\glsxtr@wrglossarylocation, 144
\glsxtrabbrvpluralsuffix, 131, 411
\glsxtrabbrvtype, 200, 411
\glsxtralttreeSymbolDescLocation,
366, 380, 411

\glsxtrautoindexassignsort, 9, 411
\glsxtrautoindexentry, 9, 411
\GlsXtrBibTeXEntryAliases, 51, 74,
76, 411

\glsxtrbookindexname, 311, 368, 384, 411
\glsxtrcopytoglossary, 85, 86
\GlsXtrEnableInitialTagging, 289,
352, 411

\glsxtrenablerecordcount, 32, 412
\glsxtrendfor, 357, 358, 412

see also \glsxtrforcsvfield
\glsxtrentryfmt, 43, 44, 343, 357, 359
\glsxtrfielddolistloop, 75, 132, 412
\glsxtrfieldforlistloop, 75, 76,
132, 412

\glsxtrfieldlistadd, 75, 198
\glsxtrfmt, 43, 44, 281, 343
\glsxtrfmt*, 43, 343
\GlsXtrFmtDefaultOptions, 44, 343, 412
\GlsXtrFmtField, 43, 343, 412
\glsxtrforcsvfield, 357, 412

see also \glsxtrendfor
\glsxtrgroupfield, 77, 86, 128, 181,
332, 412

\glsxtrifcustomdiscardperiod, 128
\GlsXtrIfFieldUndef, 128, 413
\glsxtrifhasfield, 128, 130, 304, 357,
369, 413
see also \GlsXtrIfFieldUndef

\glsxtrifhasfield*, 128, 413
see also \GlsXtrIfFieldUndef

\glsxtrifwasfirstuse, 329, 413
\GlsXtrIndexCounterLink, 145
\glsxtrindexseealso, 36, 413
\GlsXtrLoadResources, 2, 4, 5, 34, 35, 78,
79, 87, 90, 100, 102, 103, 180, 181, 218, 225,

289, 350, 352, 365, 374, 377–381
see also resource options

& \glsxtrresourcefile
\glsxtrlongshortdescname, 352, 382, 413
\glsxtrnewgls, 262

see also \gls
\glsxtrnewglslike, 64

see also \glsxtrnewgls
\glsxtrnewnumber, 236
\glsxtrnewsymbol, 235, 236
\glsxtrnopostpunc, 126, 263, 325, 413
\glsxtrp, 35, 414
\glsxtrpostdescabbreviation, 68, 414
\glsxtrpostdesc⟨category⟩, 75, 76, 303,
325, 414

\glsxtrpostdescgeneral, 64, 414
\glsxtrpostdescsymbol, 64, 414
\glsxtrpostlink⟨category⟩, 329, 414
\glsxtrpostname⟨category⟩, 329, 414
\GlsXtrProvideBibTeXFields, 74, 414
\glsxtrprovidecommand, 41, 165, 414
\glsxtrprovidestoragekey, 68, 189, 414
\glsxtrresourcefile, 3, 5, 10, 78–80, 87,
102, 138, 140, 189, 411
see also resource options

& \GlsXtrLoadResources
\glsxtrresourceinit, 164, 414
\glsxtrrestorepostpunc, 263, 325, 414
\glsxtrsetaliasnoindex, 140, 415
\GlsXtrSetDefaultGlsOpts, 173, 352, 415
\GlsXtrSetDefaultNumberFormat, 132,
133, 173, 352, 415

\GlsXtrSetField, 129, 130, 144, 415
\glsxtrsetgrouptitle, 28, 76, 103,
215–217, 313

\GlsXtrSetRecordCountAttribute, 32
\glsxtrshort, 352, 415
\glsxtrtagfont, 352, 415

see also
\GlsXtrEnableInitialTagging

\glsxtrusefield, 68, 415
\glsxtruserfield, 69, 358, 415
\glsxtruserparen, 358, 415
\glsxtrusesee, 139, 208, 415

431

Index

\glsxtruseseealso, 208, 415
\glsxtruseseealsoformat, 36, 132, 416

H

\hyperbf, 26, 27, 416
\hyperit, 27, 416
\hyperlink, 144, 416
\hypersf, 26, 27, 416

I

IETF (Internet Engineering Task Force), 9,
20, 154, 357

\ifcase, 140, 416
\ifglsentryexists, 86, 225, 416
\ifglshasfield, 128, 130, 304, 416

see also \glsxtrifhasfield
& \GlsXtrIfFieldUndef

ignored glossary, 4, 5
ignored record, 21, 32, 36, 74, 105, 132–135,
173, 409, 410

\immediate, 1, 416
\index, 8, 416
\input, 1, 35, 416
interpret-preamble.bib, 239, 240, 253,
259, 262, 281, 323, 327, 343, 374, 377

interpret-preamble2.bib, 239, 240, 259,
335, 337, 374

\invfmt, 280

J

\jobname, 78, 87, 102, 416
JRE (Java Runtime Environment), 18, 154,
160, 253, 254, 331

JVM (Java Virtual Machine), 160, 230

L

\label, 144, 417
label prefixes

dual., 34, 58, 118–120, 185, 368
ext⟨n⟩., 34, 118, 120, 122, 262
tertiary., 72, 119, 197

\let, 332, 417

letter group, 28, 29, 216, 217
\listxadd, 357, 417
\loadglsentries, 1, 35, 231, 417
locale provider, 18, 160, 253, 331
\longnewglossaryentry, 66, 193, 198, 233
\longprovideglossaryentry, 233
longtable environment, 321

M

\mainmatter, 133, 417
\makefirstuc, 6, 24, 122, 195, 417
\makeglossaries, 4, 417
\MakeLowercase, 179, 417
\MakeTextLowercase, 122, 417
\MakeTextUppercase, 122, 352, 417
\MakeUppercase, 13, 231, 417
markuplanguages.bib, 288, 350, 362
mathgreek.bib, 268, 273, 340
\mathord, 279, 417
mathsobjects.bib, 280, 343
mathsrelations.bib, 276, 278, 340
minerals.bib, 297, 362
miscsymbols.bib, 285, 347, 381
\mtxfmt, 280

N

\nary, 273, 418
\newabbreviation, 37, 54, 66, 80, 200,
205, 235

\newacronym, 200, 205, 235
\newcommand, 64, 198, 236, 237, 418
\newdualentry, 65, 236, 237
\newentry, 232, 418
\newglossary, 4, 418
\newglossary*, 4, 316, 418
\newglossaryentry, 31, 35, 78, 168,
230, 232

\newignoredglossary, 4, 418
\newignoredglossary*, 4, 5, 418
\newnum, 236, 418
\newsym, 236, 418
\newterm, 233

432

Index

no-interpret-preamble.bib, 115, 150,
239, 242, 253, 259, 262, 281, 323, 327, 335,
343, 374

\NoCaseChange, 122, 124, 352, 419
non-ASCII, 15, 34, 174, 290, 354, 356
non-letter group, 28, 29, 218, 219, 381
\nopostdesc, 126, 198, 199, 233, 263, 419
number group, 28, 220
\numspacefmt, 280

O

\omicron, 268, 419
openin_any, 9, 230
openout_any, 9, 230

P

package options
abbreviations, 54, 66
accsupp, 38
automake, 1
counter, 144
index, 233, 331, 363
indexcounter, 22, 143, 144
nogroupskip, 27, 340
nomain, 105, 316, 363
nonumberlist, 135, 306
nopostdot, 125, 233
nostyles, 303, 308, 311, 315, 321, 363
numbers, 236
postdot, 125, 126, 263, 303, 331
record, 4, 11, 27, 78, 85, 88, 132, 146, 151,

164, 303, 331
section, 316, 363
shortcuts, 26, 399, 418
sort, 78
style, 303, 321
stylemods, 303, 308, 309, 315, 321, 331,

340, 363
symbols, 64, 105, 235
undefaction, 85, 88

\PackageError, 24, 419
packages

amsmath, 23

amssymb, 23
babel
booktabs, 23
bpchem, 23
CJKutf8, 217
color, 23
datatool, 23
datatool-base, 23
datetime2, 254
etoolbox, 23, 132
fontenc, 23
fontspec, 23, 30
fourier, 23
glossaries, 1, 30, 78, 214
glossaries-accsupp, 38
glossaries-extra, 1, 23, 78, 131, 143, 146
glossaries-extra-bib2gls, 74, 78, 164, 268
glossaries-extra-stylemods
glossaries-prefix, 38
glossary-bookindex
glossary-hypernav, 30
glossary-list
glossary-long
glossary-longbooktabs
glossary-mcols
glossary-tree
graphics, 23
graphicx, 23
hyperref, 23, 29, 30, 44, 98, 148, 223
ifsym, 285, 347
ifthen, 23
inputenc, 30, 31, 34, 215
jmlrutils, 23
lipsum, 23
longtable
marvosym, 285, 347
mfirstuc, 24, 25
mhchem, 23
MnSymbol, 23
natbib, 23
pifont, 23
polyglossia
probsoln, 23
shortvrb, 23

433

Index

siunitx, 13, 23, 250, 319
stix, 23, 273, 340
textcase, 23, 124
textcomp, 23
tipa, 23
tracklang, 154
upgreek, 23, 242
wasysym, 23
xspace, 23

page counter, 143
\pagelistname, 140, 419
\pageref, 144, 417, 419
people.bib, 253, 327, 330, 335, 337, 374, 377
period, see full stop (.)
post-description hook, 126, 263, 303, 325,
330, 331, 352

post-link hook, 128, 329, 337, 384
post-name hook, 311, 324, 329, 331, 359, 384
primary, 51
\printglossaries, 4, 419
\printglossary, 4, 419
\printunsrtglossaries, 4, 419
\printunsrtglossary, 4, 27, 52, 80, 86,
135, 181, 215, 419

\printunsrtglossary*, 87, 128, 332, 419
\ProcessOptions, 24, 419
\protect, 122, 125, 164, 419
\providecommand, 14, 41, 165, 198, 237, 420
\provideglossaryentry, 233
\provideignoredglossary, 420
\provideignoredglossary*, 5, 101, 106,
181, 420

\ProvidesPackage, 24, 420

R

\ref, 417, 420
\refstepcounter, 143, 420
\renewcommand, 14, 41, 236, 420
\RequirePackage, 24, 420
resource options

abbreviation-name-fallback, 61, 111,
163, 202, 203, 365, 367

abbreviation-sort-fallback, 49, 61,
65, 68, 71, 162, 163, 311, 352, 366,
367, 382

action, 85, 86, 100, 128, 180, 331, 365
alias, 139
alias-loc, 6, 140
bibtex-contributor-fields, 6, 114,

116, 227, 228, 240, 254, 259
bibtexentry-sort-fallback, 74,

162, 163
break-at, 114, 151, 154, 166, 167, 183, 191
break-marker, 166, 167, 183, 191
category, 7, 35, 48, 59, 74, 76, 86,

101–105, 149, 188, 197, 199, 200, 323,
329, 330, 356, 377, 380

charset, 31, 35, 81
check-end-punctuation, 6, 39, 127, 337
combine-dual-locations, 6, 61, 72,

185, 187, 368, 383
contributor-order, 114, 115, 228
copy-action-group-field, 86, 87, 128,

331, 332
copy-alias-to-see, 130
counter, 7, 39, 117, 188
cs-label-prefix, 119, 120, 368
date-field-format, 116, 117, 189, 377
date-field-locale, 116, 117, 190
date-fields, 7, 116, 117, 377
date-sort-format, 117, 159–161, 178,

185, 192, 254
date-sort-locale, 117, 159–161, 177,

184, 192
date-time-field-format, 116, 117, 189
date-time-field-locale, 116, 117, 190
date-time-field-locale, 116, 117, 190
date-time-fields, 7, 116, 117
decomposition, 174, 184, 192
description-case-change, 125
dual-abbrv-backlink, 68, 196
dual-abbrv-map, 70, 194
dual-abbrventry-backlink, 196
dual-abbrventry-map, 194
dual-backlink, 196
dual-break-at, 166, 191, 367

434

Index

dual-break-marker, 167, 191
dual-category, 7, 58, 104, 188, 197
dual-counter, 7, 188
dual-date-field-format, 116, 117, 189
dual-date-field-locale, 116, 117, 190
dual-date-sort-format, 192
dual-date-sort-locale, 177, 192
dual-date-time-field-format, 116,

117, 189
dual-date-time-field-locale, 116,

117, 190
dual-decomposition, 174, 192
dual-entry-backlink, 195, 196
dual-entry-map, 192–195
dual-entryabbrv-backlink, 196
dual-field, 189, 365, 369
dual-group-formation, 180, 192, 222
dual-identical-sort-action,

168, 191
dual-indexabbrv-backlink, 196
dual-indexabbrv-map, 195
dual-indexentry-backlink, 59, 196
dual-indexentry-map, 194
dual-indexsymbol-backlink, 196
dual-indexsymbol-map, 194, 366
dual-letter-number-punc-rule,

175, 192
dual-letter-number-rule, 175, 192
dual-missing-sort-fallback,

162, 191
dual-numeric-locale, 177, 192
dual-numeric-sort-pattern, 177, 192
dual-prefix, 34, 52, 58, 118–120,

185, 368
dual-short-case-change, 125, 189
dual-short-plural-suffix, 132
dual-sort, 52, 73, 91, 177, 185, 190,

191, 367
dual-sort-field, 52, 190, 191
dual-sort-number-pad, 167, 191, 367
dual-sort-pad-minus, 167, 191, 367
dual-sort-pad-plus, 167, 191, 367
dual-sort-rule, 190, 191
dual-sort-suffix, 168, 191

dual-sort-suffix-marker, 173, 191
dual-strength, 173, 192
dual-symbol-backlink, 196
dual-symbol-map, 194
dual-time-field-format, 116, 117, 190
dual-trim-sort, 163, 191
dual-type, 7, 29, 58, 64, 66, 83, 85, 105,

187, 188, 197, 210, 211, 321, 366,
367, 383

duplicate-label-suffix, 119, 380,
381, 383

entry-type-aliases, 5, 51, 74, 76, 83,
84, 89, 103, 105, 187, 188, 241, 242, 245,
250, 285, 302, 306, 313, 316, 319, 349,
365, 379–382

ext-prefixes, 34, 118, 120
field-aliases, 6, 74–76, 110, 112, 241,

242, 245, 248, 250, 252–254, 259, 262,
302, 306, 315, 318, 319, 323, 329, 330,
337, 342, 343, 349, 366, 367, 377–382

flatten, 86, 91, 93, 109, 111, 151, 161
flatten-lonely, 91–93, 96, 98, 223, 225
flatten-lonely-rule, 91, 92, 94, 98
group, 6, 28, 39, 86, 103, 180, 313, 381
group-formation, 103, 180, 185, 192,

215, 222
identical-sort-action, 168, 170, 173,

184, 191, 303, 323, 342, 349, 383
ignore-fields, 6, 49, 91, 109,

111–113, 254
interpret-label-fields, 6, 13, 82,

106, 337
interpret-preamble, 8, 16, 42, 79, 81,

82, 171, 179, 239, 343, 374
label-prefix, 6, 34, 69, 101, 118, 120,

122, 180, 262, 323, 368, 383
labelify, 6, 13, 23, 75, 82, 102, 106–110
labelify-list, 6, 13, 23, 82, 106–108
labelify-replace, 51, 75, 76,

106–108, 110
letter-number-punc-rule, 156, 157,

175, 184, 192
letter-number-rule, 156–158, 175, 177,

184, 192

435

Index

limit, 7, 91
loc-counters, 142, 143, 212, 213
loc-prefix, 10, 140–142, 210, 211
loc-suffix, 141, 142, 211, 212, 353
master, 5, 7, 86, 100, 101
master-resources, 102
match, 7, 89, 90, 329, 330
match-action, 90
match-op, 89, 90
max-loc-diff, 138, 208
min-loc-range, 133, 135
missing-parent-category, 109, 111
missing-parents, 109–111
missing-sort-fallback, 161–163, 183,

191, 303
name-case-change, 6, 86, 125, 353
not-match, 90
numeric-locale, 159, 177, 184, 192
numeric-sort-pattern, 159, 177,

184, 192
post-description-dot, 125, 126
primary-dual-dependency, 185
record-label-prefix, 119, 374, 383
replicate-fields, 6, 76, 107, 112–114,

254, 311, 329, 330, 337, 342, 349, 365,
377, 384

replicate-override, 112, 114, 254, 384
save-child-count, 129
save-index-counter, 22, 143, 144, 146
save-locations, 86, 132, 135, 143, 306,

326, 340, 343, 377–381
save-loclist, 135
save-original-id, 130
secondary, 5, 39, 46, 51, 85, 86, 105, 128,

162, 177, 180, 181, 330, 365
secondary-break-at, 166, 183
secondary-break-marker, 167, 183
secondary-date-sort-format,

185, 331
secondary-date-sort-locale,

177, 184
secondary-decomposition, 174, 184
secondary-group-formation, 180,

185, 222

secondary-identical-sort-action,
168, 184

secondary-letter-number-punc
-rule,
175, 184

secondary-letter-number-rule,
175, 184

secondary-missing-sort-fallback,
162, 183

secondary-numeric-locale, 177, 184
secondary-numeric-sort-pattern,

177, 184
secondary-sort-number-pad, 167, 183
secondary-sort-pad-minus, 167, 184
secondary-sort-pad-plus, 167, 183
secondary-sort-rule, 181, 183
secondary-sort-suffix, 168, 184
secondary-sort-suffix-marker,

173, 184
secondary-strength, 173, 184
secondary-trim-sort, 163, 183
see, 139, 207
seealso, 36, 139
selection, 1, 7, 8, 21, 35, 52, 74, 88, 89,

91, 111, 133, 180, 302, 315, 326, 327,
332, 340, 343, 352, 363, 381, 383

set-widest, 13, 82, 83, 119, 226, 227, 273,
285, 302, 308, 342, 349, 379–381

short-case-change, 6, 49, 100,
122–125, 189

short-plural-suffix, 6, 132
shuffle, 91, 151, 161
sort, 13–15, 17, 18, 27, 29, 53, 86, 90, 150,

151, 154, 155, 160, 161, 163, 166, 167,
171, 177, 178, 180, 181, 185, 190, 217,
219, 253, 254, 273, 303, 330, 367, 379

sort-field, 15, 17, 47, 49, 76, 111,
161–163, 181, 182, 191, 268, 303, 319,
342, 349, 367, 381

sort-number-pad, 155, 167, 183, 191
sort-pad-minus, 167, 184, 191
sort-pad-plus, 167, 183, 191
sort-rule, 14, 18, 152, 154, 163, 183, 191
sort-suffix, 76, 168, 169, 184, 191,

436

Index

324, 349
sort-suffix-marker, 170, 173, 184,

191, 349
src, 7, 10, 76, 79, 87, 88, 121, 146, 148,

161, 330, 343, 374, 377–381, 383
strength, 173, 174, 184, 192
strip-missing-parents, 109
strip-trailing-nopost, 6, 126, 263
suffixF, 139
suffixFF, 139
supplemental-category, 149
supplemental-locations, 146, 213
supplemental-selection, 148
symbol-sort-fallback, 47, 162, 163,

245, 303, 306, 313, 319, 366, 367,
379, 380

tertiary-category, 72, 197
tertiary-prefix, 72, 119, 197
tertiary-type, 72, 85, 105, 197
time-field-format, 116, 117, 190
time-field-locale, 116, 117, 190
time-fields, 7, 116, 117
trigger-type, 5, 32, 105
trim-sort, 163, 183, 191
type, 7, 29, 35, 39, 66, 74, 76, 83, 85, 86,

101, 103–106, 128, 141, 187, 197, 200,
210, 211, 216, 226, 231, 302, 315, 321,
366, 377–381, 383

write-preamble, 14, 76, 82, 240, 337
resource set, 5, 7, 8, 74, 78, 79, 81, 109, 119,
223, 242, 313, 316, 377, 381–383

\rgls, 32, 33, 105, 134
\rglsformat, 32

S

sample-authors.tex, 110, 335
sample-bacteria.tex, 309, 324, 364
sample-chemical.tex, 306, 367
sample-constants.tex, 302
sample-dual.tex, 236
sample-languages.tex, 350, 364
sample-maths.tex, 281, 343
sample-media.tex, 239, 263, 323, 337, 379

sample-msymbols.tex, 340, 343
sample-multi1.tex, 8, 362, 374, 379,
384, 385

sample-multi2.tex, 8, 374
sample-people.tex, 327, 337, 377, 384
sample-textsymbols.tex, 285, 347
sample-units1.tex, 313, 316
sample-units2.tex, 316
sample-units3.tex, 319, 367
sample-usergroups.tex, 354
secondary, 51

see also dual
section counter, 147
\section*, 316, 420
\seealsoname, 36, 231, 420
\setabbreviationstyle, 80, 420
\setcardfmt, 280
\setcontentsfmt, 280
\setfmt, 280
\setmembershipfmt, 280, 281
\setmembershiponeargfmt, 281
\si, 13, 122, 124, 250, 319, 421
SI unit, 250, 319, 379
\sortart, 239, 240, 281, 343
\sortmediacreator, 240, 337
\sortname, 239, 240, 330
\sortop, 150, 239
\sortvonname, 239, 240, 254, 330
\string, 164, 173, 177, 178, 421
\strong, 80
\subglossentry, 134, 321, 421
symbol group, see non-letter group

T

terms.bib, 301, 381, 383
tertiary, 72
texparserlib.jar, 11, 13–15, 23
\textsubscript, 176, 421
\textsuperscript, 176, 421
time group, 28, 221
\TrackedLanguageFromDialect, 357, 421
\TrackLangLastTrackedDialect, 357, 422
\TrackLocale, 357, 422

437

Index

\transposefmt, 280
trigraph, 28
TUG (TEX Users Group), 290

U

\u, 164, 173, 177, 178, 422
unaryoperators.bib, 279, 340
\undef, 347, 422
\unexpanded, 217, 218, 422
Unicode categories

Letter, Lowercase, 157
Letter, Modifier, 157
Letter, Other, 157
Letter, Titlecase, 157
Letter, Uppercase, 157
Number, Decimal Digit, 136, 155, 176
Punctuation, Close, 126, 127
Punctuation, Final quote, 126, 127

Punctuation, Other, 126, 127
Separator, Space, 156

\usepackage, 231, 422
usergroups.bib, 290, 354

V

\vecfmt, 280
vegetables.bib, 300, 362

W

wrglossary counter, 22, 39, 143–145, 411, 413
\write18, 1, 422

X

xampl.bib, 75
\xifinlist, 357, 422

438

	Introduction
	Example Use
	Defining a New Glossary
	Resource Sets
	Indexing
	Security
	Localisation
	Conditional Document Build
	Manual Installation

	TeX Parser Library
	Command Line Options
	–help (or -h)
	–version (or -v)
	–debug [n]
	–no-debug (or –nodebug)
	–verbose
	–no-verbose (or –noverbose)
	–silent
	–locale lang (or -l lang)
	–log-file filename (or -t filename)
	–dir dirname (or -d dirname)
	–interpret
	–no-interpret
	–no-break-space
	–break-space
	–cite-as-record
	–no-cite-as-record
	–merge-wrglossary-records
	–no-merge-wrglossary-records
	–force-cross-resource-refs (or -x)
	–no-force-cross-resource-refs
	–support-unicode-script
	–no-support-unicode-script
	–list-known-packages
	–packages list (or -p list)
	–custom-packages list
	–ignore-packages list (or -k list)
	–mfirstuc-protection list|all (or -u list|all)
	–no-mfirstuc-protection
	–mfirstuc-math-protection
	–no-mfirstuc-math-protection
	–nested-link-check list|none
	–no-nested-link-check
	–shortcuts value
	–map-format map:value list (or -m map:value list)
	–group (or -g)
	–no-group
	–tex-encoding name
	–no-expand-fields
	–expand-fields
	–trim-fields
	–no-trim-fields
	–record-count (or -c)
	–no-record-count
	–record-count-unit (or -n)
	–no-record-count-unit

	.bib Format
	Encoding
	Comments
	Fields
	Standard Entry Types
	@string
	@preamble

	Single Entry Types
	@entry
	@symbol
	@number
	@index
	@abbreviation
	@acronym
	@contributor

	Dual Entry Types
	@dualentry
	@dualindexentry
	@dualindexabbreviation
	@dualindexsymbol
	@dualindexnumber
	@dualabbreviationentry
	@dualentryabbreviation
	@dualsymbol
	@dualnumber
	@dualabbreviation
	@dualacronym

	Tertiary Entry Types
	@tertiaryindexabbreviationentry

	Multi-Entry Types
	@bibtexentry

	Resource File Options
	General Options
	charset=encoding-name
	interpret-preamble=boolean
	write-preamble=boolean
	set-widest=boolean
	entry-type-aliases=key=value list
	action=value

	Selection Options
	src=list
	selection=value
	match=key=value list
	match-op=value
	not-match=key=value list
	match-action=value
	limit=number
	flatten=boolean
	flatten-lonely=value
	flatten-lonely-rule=value

	Master Documents
	master=name
	master-resources=list

	Field and Label Options
	group=label
	category=value
	type=value
	trigger-type=type
	interpret-label-fields=boolean
	labelify=list
	labelify-list=list
	labelify-replace=list
	strip-missing-parents=boolean
	missing-parents=value
	missing-parent-category=value
	abbreviation-name-fallback=field
	ignore-fields=list
	field-aliases=key=value list
	replicate-fields=key=value list
	replicate-override={boolean}
	bibtex-contributor-fields=list
	contributor-order=value
	date-time-fields=list
	date-fields=list
	time-fields=list
	date-time-field-format=value
	date-field-format=value
	time-field-format=value
	date-time-field-locale=value
	date-field-locale=value
	time-field-locale=value
	counter=value
	label-prefix=tag
	duplicate-label-suffix=value
	record-label-prefix=tag
	cs-label-prefix=tag
	ext-prefixes=list
	short-case-change=value
	name-case-change=value
	description-case-change=value
	post-description-dot=value
	strip-trailing-nopost=value
	check-end-punctuation=list
	copy-action-group-field=value
	save-child-count=value
	save-original-id=value
	copy-alias-to-see=boolean

	Plurals
	short-plural-suffix=value
	dual-short-plural-suffix=value

	Location List Options
	save-locations=boolean
	save-loclist=boolean
	min-loc-range=value
	max-loc-diff=value
	suffixF=value
	suffixFF=value
	see=value
	seealso=value
	alias=value
	alias-loc=value
	loc-prefix=value
	loc-suffix=value
	loc-counters=list
	save-index-counter=value

	Supplemental Locations
	supplemental-locations=basename
	supplemental-selection=value
	supplemental-category=value

	Sorting
	sort=value
	No Sort
	Alphabet
	Letter Case (Unicode Order)
	Letter-Number
	Numerical
	Date-Time

	shuffle=seed
	sort-field=field
	missing-sort-fallback=field
	abbreviation-sort-fallback=field
	symbol-sort-fallback=field
	bibtexentry-sort-fallback=field
	trim-sort=boolean
	sort-rule=value
	break-at=option
	break-marker=marker
	sort-number-pad=number
	sort-pad-plus=marker
	sort-pad-minus=marker
	identical-sort-action=value
	sort-suffix=value
	sort-suffix-marker=value
	strength=value
	decomposition=value
	letter-number-rule=value
	letter-number-punc-rule=value
	numeric-sort-pattern=value
	numeric-locale=value
	date-sort-locale=value
	date-sort-format=value
	group-formation=value

	Secondary Glossary
	secondary=value
	secondary-missing-sort-fallback=field
	secondary-trim-sort=boolean
	secondary-sort-rule=value
	secondary-break-at=value
	secondary-break-marker=marker
	secondary-sort-number-pad=number
	secondary-sort-pad-plus=marker
	secondary-sort-pad-minus=marker
	secondary-identical-sort-action=value
	secondary-sort-suffix=value
	secondary-sort-suffix-marker=value
	secondary-strength=value
	secondary-decomposition=value
	secondary-letter-number-rule=value
	secondary-letter-number-punc-rule=value
	secondary-numeric-sort-pattern=value
	secondary-numeric-locale=value
	secondary-date-sort-locale=value
	secondary-date-sort-format=value
	secondary-group-formation=value

	Dual Entries
	General Dual Settings
	dual-prefix=value
	primary-dual-dependency=boolean
	combine-dual-locations=value

	Dual Fields
	dual-type=value
	dual-category=value
	dual-counter=value
	dual-short-case-change=value
	dual-field=value
	dual-date-time-field-format=value
	dual-date-field-format=value
	dual-time-field-format=value
	dual-date-time-field-locale=value
	dual-date-field-locale=value
	date-time-field-locale=value

	Dual Sorting
	dual-sort=value
	dual-sort-field=field
	dual-missing-sort-fallback=field
	dual-trim-sort=boolean
	dual-sort-rule=value
	dual-break-at=value
	dual-break-marker=marker
	dual-sort-number-pad=number
	dual-sort-pad-plus=marker
	dual-sort-pad-minus=marker
	dual-identical-sort-action=value
	dual-sort-suffix=value
	dual-sort-suffix-marker=value
	dual-strength=value
	dual-decomposition=value
	dual-letter-number-rule=value
	dual-letter-number-punc-rule=value
	dual-numeric-sort-pattern=value
	dual-numeric-locale=value
	dual-date-sort-locale=value
	dual-date-sort-format=value
	dual-group-formation=value

	Dual Mappings
	dual-entry-map={{list1},{list2}}
	dual-abbrv-map={{list1},{list2}}
	dual-abbrventry-map={{list1},{list2}}
	dual-symbol-map={{list1},{list2}}
	dual-indexentry-map={{list1},{list2}}
	dual-indexsymbol-map={{list1},{list2}}
	dual-indexabbrv-map={{list1},{list2}}

	Dual Back-Links
	dual-entry-backlink={boolean}
	dual-abbrv-backlink={boolean}
	dual-symbol-backlink={boolean}
	dual-abbrventry-backlink={boolean}
	dual-entryabbrv-backlink={boolean}
	dual-indexentry-backlink={boolean}
	dual-indexsymbol-backlink={boolean}
	dual-indexabbrv-backlink={boolean}
	dual-backlink={boolean}

	Tertiary Entries
	tertiary-prefix={value}
	tertiary-type={value}
	tertiary-category={value}

	Provided Commands
	Entry Definitions
	\bibglsnewentry
	\bibglsnewsymbol
	\bibglsnewnumber
	\bibglsnewindex
	\bibglsnewabbreviation
	\bibglsnewacronym
	\bibglsnewdualentry
	\bibglsnewdualindexentry
	\bibglsnewdualindexentrysecondary
	\bibglsnewdualindexsymbol
	\bibglsnewdualindexsymbolsecondary
	\bibglsnewdualindexnumber
	\bibglsnewdualindexnumbersecondary
	\bibglsnewdualindexabbreviation
	\bibglsnewdualindexabbreviationsecondary
	\bibglsnewdualabbreviationentry
	\bibglsnewdualabbreviationentrysecondary
	\bibglsnewdualentryabbreviation
	\bibglsnewdualentryabbreviationsecondary
	\bibglsnewdualsymbol
	\bibglsnewdualnumber
	\bibglsnewdualabbreviation
	\bibglsnewdualacronym
	\bibglsnewtertiaryindexabbreviationentry
	\bibglsnewtertiaryindexabbreviationentrysecondary
	\bibglsnewbibtexentry
	\bibglsnewcontributor

	Location Lists and Cross-References
	\bibglsseesep
	\bibglsseealsosep
	\bibglsaliassep
	\bibglsusesee
	\bibglsuseseealso
	\bibglsusealias
	\bibglsdelimN
	\bibglslastDelimN
	\bibglspassim
	\bibglspassimname
	\bibglsrange
	\bibglsinterloper
	\bibglspostlocprefix
	\bibglslocprefix
	\bibglspagename
	\bibglspagesname
	\bibglslocsuffix
	\bibglslocationgroup
	\bibglslocationgroupsep
	\bibglssupplemental
	\bibglssupplementalsep

	Letter Groups
	\bibglssetlettergrouptitle
	\bibglslettergroup
	\bibglslettergrouptitle
	\bibglssetothergrouptitle
	\bibglsothergroup
	\bibglsothergrouptitle
	\bibglssetemptygrouptitle
	\bibglsemptygroup
	\bibglsemptygrouptitle
	\bibglssetnumbergrouptitle
	\bibglsnumbergroup
	\bibglsnumbergrouptitle
	\bibglsdatetimegroup
	\bibglsdatetimegrouptitle
	\bibglsdategroup
	\bibglsdategrouptitle
	\bibglstimegroup
	\bibglstimegrouptitle
	\bibglssetunicodegrouptitle
	\bibglsunicodegroup
	\bibglsunicodegrouptitle
	\bibglshypergroup

	Flattened Entries
	\bibglsflattenedhomograph
	\bibglsflattenedchildpresort
	\bibglsflattenedchildpostsort

	Other
	\bibglshyperlink
	\bibglssetwidest
	\bibglssetwidestfortype
	\bibglssetwidestfallback
	\bibglssetwidestfortypefallback
	\bibglssetwidesttoplevelfallback
	\bibglssetwidesttoplevelfortypefallback
	\bibglscontributorlist
	\bibglscontributor
	\bibglshashchar
	\bibglsunderscorechar
	\bibglsdollarchar
	\bibglsampersandchar
	\bibglscircumchar

	Converting Existing .tex to .bib
	\glsexpandfields
	\glsnoexpandfields
	\glssetexpandfield
	\glssetnoexpandfield
	\newglossaryentry
	\provideglossaryentry
	\longnewglossaryentry
	\longprovideglossaryentry
	\newterm
	\newabbreviation
	\newacronym
	\glsxtrnewsymbol
	\glsxtrnewnumber
	\newdualentry

	Examples
	no-interpret-preamble.bib
	interpret-preamble.bib
	interpret-preamble2.bib
	constants.bib
	chemicalformula.bib
	bacteria.bib
	baseunits.bib
	derivedunits.bib
	people.bib
	books.bib
	films.bib
	mathgreek.bib
	bigmathsymbols.bib
	mathsrelations.bib
	binaryoperators.bib
	unaryoperators.bib
	mathsobjects.bib
	miscsymbols.bib
	markuplanguages.bib
	usergroups.bib
	animals.bib
	minerals.bib
	vegetables.bib
	terms.bib
	sample-constants.tex
	sample-chemical.tex
	sample-bacteria.tex
	sample-units1.tex
	sample-units2.tex
	sample-units3.tex
	sample-media.tex
	sample-people.tex
	sample-authors.tex
	sample-msymbols.tex
	sample-maths.tex
	sample-textsymbols.tex
	sample-languages.tex
	sample-usergroups.tex
	sample-multi1.tex
	sample-multi2.tex

	Command Summary
	@
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

