
bib2gls: a command line Java application to
convert .bib files to

glossaries-extra.sty resource files

Nicola Talbot
http://www.dickimaw-books.com/

2017-09-09

The bib2gls command line application can be used to extract glossary infor-
mation stored in a .bib file and convert it into glossary entry definition com-
mands that can be read using glossaries-extra’s \GlsXtrLoadResources com-
mand. When used in combination with the record package option, bib2gls can
select only those entries that have been used in the document, as well as any depen-
dent entries, which reduces the TEX resources required by not defining unnecessary
commands.

Since bib2gls can also sort and collate the recorded locations present in the
.aux file, it can simultaneously by-pass the need to use makeindex or xindy,
although bib2gls can be used together with an external indexing application if
required. (For example, if a custom xindy rule is needed.)

An additional build may be required to ensure the locations are up-to-date as the
page-breaking may be slightly different on the first LATEX run due to the unknown
references being replaced with ?? which can be significantly shorter than the actual
text produced when the reference is known.

Note that bib2gls is a Java application, so it requires the Java Runtime Envi-
ronment (at least JRE 7). Additionally, glossaries-extra must be at least version
1.12. (Although the latest version is recommended.) This application was devel-
oped in response to the question Is there a program for managing glossary tags?
on TEX on StackExchange. The .bib file can be managed in an application such
as JabRef.

If you already have a .tex file containing entry definitions using commands like
\newglossaryentry then you can use the supplementary tool convertgls2bib
to convert the entries to the .bib format required by bib2gls. See section 7 for
further details.

http://www.dickimaw-books.com/
http://tex.stackexchange.com/q/342544

Contents

1 Introduction 1
1.1 Example Use . 1
1.2 Security . 4
1.3 Localisation . 4
1.4 Manual Installation . 5

2 TEX Parser Library 7

3 Command Line Options 12
--help (or -h) . 12
--version (or -v) . 12
--debug [〈n〉] . 12
--no-debug (or --nodebug) . 12
--verbose . 12
--no-verbose (or --noverbose) . 13
--silent . 13
--locale 〈lang〉 (or -l 〈lang〉) . 13
--log-file 〈filename〉 (or -t 〈filename〉) . 13
--dir 〈dirname〉 (or -d 〈dirname〉) . 13
--interpret . 14
--no-interpret . 14
--mfirstuc-protection (or -u) . 14
--no-mfirstuc-protection . 15
--mfirstuc-math-protection . 15
--no-mfirstuc-math-protection . 15
--nested-link-check 〈list〉|none . 15
--no-nested-link-check . 15
--shortcuts 〈value〉 . 15
--map-format 〈format1〉:〈format2〉 or -m 〈format1〉:〈format2〉 16
--group . 17
--no-group . 20
--tex-encoding 〈name〉 . 20
--trim-fields . 20
--no-trim-fields . 20

4 .bib Format 21
@string . 22

i

@preamble . 23
@entry . 27
@symbol . 28
@number . 28
@index . 29
@abbreviation . 29
@acronym . 30
@dualentry . 30
@dualentryabbreviation . 32
@dualsymbol . 33
@dualnumber . 33
@dualabbreviation . 34
@dualacronym . 39

5 Resource File Options 40
5.1 General Options . 43

charset={〈encoding-name〉} . 43
interpret-preamble={〈boolean〉} . 43
set-widest={〈boolean〉} . 43
secondary={〈list〉} . 44
secondary-sort-rule={〈value〉} . 46

5.2 Selection Options . 46
src={〈list〉} . 46
selection={〈value〉} . 47
match={〈key=value list〉} . 48
match-op={〈value〉} . 49
flatten={〈boolean〉} . 49
flatten-lonely={〈value〉} . 49
flatten-lonely-rule={〈value〉} . 56

5.3 Master Documents . 57
master={〈name〉} . 59
master-resources={〈list〉} . 60

5.4 Field and Label Options . 61
ignore-fields={〈list〉} . 61
category={〈value〉} . 61
type={〈value〉} . 62
label-prefix={〈tag〉} . 63
ext-prefixes={〈list〉} . 64
short-case-change={〈value〉} . 66
group={〈value〉} . 67
save-child-count={〈boolean〉} . 68

5.5 Plurals . 69
short-plural-suffix={〈value〉} . 70
dual-short-plural-suffix={〈value〉} 71

ii

5.6 Location List Options . 71
save-locations={〈boolean〉} . 74
min-loc-range={〈value〉} . 74
max-loc-diff={〈value〉} . 76
suffixF={〈value〉} . 77
suffixFF={〈value〉} . 77
see={〈value〉} . 77
seealso={〈value〉} . 78
alias-loc={〈value〉} . 78
loc-prefix={〈value〉} . 78
loc-suffix={〈value〉} . 80
loc-counters={〈list〉} . 80

5.7 Supplemental Locations . 82
supplemental-locations={〈basename〉} 82
supplemental-selection={〈value〉} . 84
supplemental-category={〈value〉} . 85

5.8 Sorting . 85
sort={〈value〉} . 85
sort-rule={〈value〉} . 87
break-at={〈option〉} . 88
break-marker={〈marker〉} . 88
sort-field={〈field〉} . 89
shuffle={〈seed〉} . 89
strength={〈value〉} . 89
decomposition={〈value〉} . 90

5.9 Dual Entries . 91
dual-sort={〈value〉} . 91
dual-sort-field={〈value〉} . 91
dual-sort-rule={〈value〉} . 91
dual-prefix={〈value〉} . 91
dual-type={〈value〉} . 92
dual-category={〈value〉} . 92
dual-short-case-change={〈value〉} . 93
dual-entry-map={{〈list1〉},{〈list2〉}} . 93
dual-abbrv-map={{〈list1〉},{〈list2〉}} . 94
dual-entryabbrv-map={{〈list1〉},{〈list2〉}} 94
dual-symbol-map={{〈list1〉},{〈list2〉}} . 95
dual-entry-backlink={〈boolean〉} . 95
dual-abbrv-backlink={〈boolean〉} . 96
dual-symbol-backlink={〈boolean〉} . 96
dual-entryabbrv-backlink={〈boolean〉} 96
dual-backlink={〈boolean〉} . 96
dual-field={〈value〉} . 96

iii

6 Provided Commands 98
6.1 Entry Definitions . 98

\bibglsnewentry . 98
\bibglsnewsymbol . 98
\bibglsnewnumber . 99
\bibglsnewindex . 99
\bibglsnewabbreviation . 100
\bibglsnewacronym . 100
\bibglsnewdualentry . 100
\bibglsnewdualentryabbreviation . 101
\bibglsnewdualentryabbreviationsecondary 101
\bibglsnewdualsymbol . 101
\bibglsnewdualnumber . 101
\bibglsnewdualabbreviation . 102
\bibglsnewdualacronym . 102

6.2 Location Lists and Cross-References . 102
\bibglsseesep . 102
\bibglsseealsosep . 103
\bibglspassim . 103
\bibglspassimname . 103
\bibglsrange . 104
\bibglsinterloper . 104
\bibglspostlocprefix . 104
\bibglslocprefix . 105
\bibglspagename . 106
\bibglspagesname . 106
\bibglslocsuffix . 106
\bibglslocationgroup . 107
\bibglslocationgroupsep . 108
\bibglssupplemental . 108
\bibglssupplementalsep . 108

6.3 Letter Groups . 109
\bibglssetlettergrouptitle . 111
\bibglslettergroup . 111
\bibglslettergrouptitle . 112
\bibglssetothergrouptitle . 113
\bibglsothergroup . 114
\bibglsothergrouptitle . 114
\bibglssetnumbergrouptitle . 114
\bibglsnumbergroup . 114
\bibglsnumbergrouptitle . 114
\bibglshypergroup . 115

6.4 Flattened Entries . 115
\bibglsflattenedhomograph . 115

iv

\bibglsflattenedchildpresort . 116
\bibglsflattenedchildpostsort . 116

7 Converting Existing .tex to .bib 118
7.1 \newglossaryentry . 119
7.2 \provideglossaryentry . 119
7.3 \longnewglossaryentry . 120
7.4 \longprovideglossaryentry . 120
7.5 \newterm . 120
7.6 \newabbreviation . 121
7.7 \newacronym . 122
7.8 \glsxtrnewsymbol . 122
7.9 \glsxtrnewnumber . 122
7.10 \newdualentry . 123

Index 125

v

1 Introduction

If you have extensively used the glossaries or glossaries-extra package, you may have found
yourself creating a large .tex file containing many definitions that you frequently use in docu-
ments. This file can then simply be loaded using \input or \loadglsentries, but a large file
like this can be difficult to maintain and if the document only actually uses a small proportion
of those entries, the document build is unnecessarily slow due to the time and resources taken
on defining the unwanted entries.

The aim of bib2gls is to allow the entries to be stored in a .bib file, which can be main-
tained using a reference system such as JabRef. The document build process can now be anal-
ogous to that used with bibtex (or biber), where only those entries that have been recorded
in the document (and possibly their dependent entries) will be extracted from the .bib file.
Since bib2gls can also perform hierarchical sorting and can collate location lists, it doubles
as an indexing application, which means that the makeglossaries step can be skipped.

You can’t use \glsaddallwith this method as that command works by iterating over all de-
fined entries and calling \glsadd{〈label〉}. On the first LATEX run there are no entries defined,
so \glsaddall does nothing. If you want to select all entries, just use selection={all} in-
stead (which has the advantage over \glsaddall in that it doesn’t create a redundant location
for each entry).

Note that bib2gls requires the extension package glossaries-extra and can’t be used with
just the base glossaries package, since it requires some of the extension commands. See the
glossaries-extra user manual for information on the differences between the basic package and
the extended package, as some of the default settings are different.

Since the information used by bib2gls is written to the .aux file, it’s not possible to run
bib2gls through TEX’s shell escape while the .aux file is open for write access. (The .aux
file is closed after the end document hook, so it can’t be deferred with \AtEndDocument.)
This means that if you really want to run bib2gls through \write18 it must be done in the
preamble with \immediate. For example:

\immediate\write18{bib2gls \jobname}

As from version 1.14 of glossaries-extra, this can be done automatically with the automake
option if the .aux file exists. (Remember that this will require the shell escape to be enabled.)

1.1 Example Use

The glossary entries are stored in a .bib file. For example, the file entries.bib might con-
tain:

1

@entry{bird,
name={bird},
description = {feathered animal}

}

@abbreviation{html,
short="html",
long={hypertext markup language}

}

@symbol{v,
name={\vec{v}},
text={\vec{v}},
description={a vector}

}

@index{goose,plural="geese"}

Here’s an example document that uses this data:

\documentclass{article}

\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={en-GB}% sort according to 'en-GB' locale

]

\begin{document}
\Gls{bird} and \gls{goose}.
Symbol: \gls{v}.
Abbreviation: \gls{html}.

\printunsrtglossaries
\end{document}

If this document is called myDoc.tex, the build process is:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

(This manual assumes pdflatex for simplicity. Replace with latex, xelatex or lualatex
as appropriate.)

You can have multiple instances of \GlsXtrLoadResources. For example:

2

\documentclass{article}

\usepackage[record,index,abbreviations,symbols]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={en-GB},% sort according to 'en-GB' locale
match={entrytype={entry}},% only select @entry
type={main}% put these entries in the 'main' glossary

]

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={en-GB},% sort according to 'en-GB' locale
match={entrytype={abbreviation}},% only select @abbreviation
type={abbreviations}% put these entries in the 'abbreviations' glossary

]

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={letter-case},% case-sensitive letter sort
match={entrytype={symbol}},% only select @symbol
type={symbols}% put these entries in the 'symbols' glossary

]

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={en-GB},% sort according to 'en-GB' locale
match={entrytype={index}},% only select @index
type={index}% put these entries in the 'index' glossary

]

\begin{document}
\Gls{bird} and \gls{goose}.
Symbol: \gls{v}.
Abbreviation: \gls{html}.

\printunsrtglossaries
\end{document}

Note that there’s no need to called xindy or makeindex since bib2gls automatically sorts
the entries and collates the locations after selecting the required entries from the .bib file
and before writing the temporary file that’s input with \glsxtrresourcefile (or the more

3

convenient shortcut \GlsXtrLoadResources).1 This means the entries are already defined
in the correct order, and only those entries that are required in the document are defined, so
\printunsrtglossary (or \printunsrtglossaries) may be used. (The “ unsrt ” part of
the command name indicates that all defined entries should be listed in the order of definition
from glossaries-extra’s point of view.)

If you additionally want to use an indexing application, such as xindy, you need the pack-
age option record={alsoindex} and use \makeglossaries and \printglossary (or the
iterative \printglossaries) as usual. This requires a more complicated build process:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

(The entries aren’t defined until the second LATEX run, so the indexing files required by makeindex
or xindy can’t be created until then.)

1.2 Security

TEXLive comewith security settings openin_any and openout_any that, respectively, govern
read and write file access (in addition to the operating system’s file permissions). bib2gls uses
kpsewhich to determine these values and honours them. MikTeX doesn’t use these settings,
so if these values are unset, bib2gls will default to a (any) for openin_any and p (paranoid)
for openout_any.

1.3 Localisation

The messages produced by bib2gls are fetched from a resource file called bib2gls-〈lang〉
.xml, where 〈lang〉 is a valid Internet Engineering Task Force (IETF) language tag.

The appropriate file is searched for in the following order, where 〈locale〉 is the operating
system’s locale or the value supplied by the --locale switch:

1. 〈lang〉 exactly matches 〈locale〉. For example, my locale is en-GB, so bib2gls will first
search for bib2gls-en-GB.xml. This file doesn’t exist, so it will try again.

2. If 〈locale〉 has an associated script, the next try is with 〈lang〉 set to 〈lang code〉-〈script〉
where 〈lang code〉 is the two letter ISO language code and 〈script〉 is the script code. For
example, if 〈locale〉 is sr-RS-Latn then bib2gls will search for bib2gls-sr-Latn.
xml if bib2gls-sr-RS-Latn.xml doesn’t exist.

3. The final attempt is with 〈lang〉 set to just the two letter ISO language code. For example,
bib2gls-sr.xml.

1This document will mostly use the more convenient \GlsXtrLoadResources.

4

If there is no match, bib2gls will fallback on the English resource file bib2gls-en.xml.
(Currently only bib2gls-en.xml exists as my language skills aren’t up to translating it. Any
volunteers who want to provide other language resource files would be much appreciated.)

Note that if you use the loc-prefix={true} option, the textual labels (“Page” and “Pages”
in English) will be taken from the resource file. In the event that the loaded resource file doesn’t
match the document language, you will have to manually set the correct translation (in English,
this would be loc-prefix={Page,Pages}). The default definition of \bibglspassim is also
obtained from the resource file.

1.4 Manual Installation

If you are unable to install bib2gls through your TEX package manager, you can install man-
ually using the instructions below. Replace 〈TEXMF〉 with the path to your local or home
TEXMF tree (for example, ~/texmf).

Copy the files provided to the following locations:

• 〈TEXMF〉/scripts/bib2gls/bib2gls.jar (Java application.)

• 〈TEXMF〉/scripts/bib2gls/convertgls2bib.jar (Java application.)

• 〈TEXMF〉/scripts/bib2gls/texparserlib.jar (Java library.)

• 〈TEXMF〉/scripts/bib2gls/resources/bib2gls-en.xml (English resource file.)

• 〈TEXMF〉/doc/support/bib2gls/bib2gls.pdf (This document.)

If you are using a Unix-like system, there are also bash scripts provided called bib2gls.sh
and convertgls2bib.sh. Either copy then directly to somewhere on your path without the
.sh extension, for example:

cp bib2gls.sh ~/bin/bib2gls
cp convertgls2bib.sh ~/bin/convertgls2bib

or copy the files to 〈TEXMF〉/scripts/bib2gls/ and create a symbolic link to them called
just bib2gls and convertgls2bib from somewhere on your path, for example:

cp bib2gls.sh ~/texmf/scripts/bib2gls/
cp convertgls2bib.sh ~/texmf/scripts/bib2gls/
cd ~/bin
ln -s ~/texmf/scripts/bib2gls/bib2gls.sh bib2gls
ln -s ~/texmf/scripts/bib2gls/convertgls2bib.sh convertgls2bib

The texparserlib.jar file isn’t an application but is a library used by both bib2gls.jar
and convertgls2bib.jar, and so needs to be in the same class path. (The library is in a
separate GitHub repository as it’s also used by some of my other applications.)

Windows users can create a .bat file that works in a similar way to the bash scripts. To do
this, create a file called bib2gls.bat that contains the following:

5

https://github.com/nlct/texparser

@ECHO OFF
FOR /F "tokens=*" %%I IN ('kpsewhich --progname=bib2gls --format=texmfscripts
bib2gls.jar') DO SET JARPATH=%%I
java -Djava.locale.providers=CLDR,JRE -jar "%JARPATH%" %*

Save this file to somewhere on your system’s path. (Similarly for convertgls2bib.) Note that
TEX distributions for Windows usually convert .jar files to executables.

You may need to refresh TEX’s database to ensure that kpsewhich can find the .jar files.
To test that the application has been successfully installed, open a command prompt or ter-

minal and run the following command:

bib2gls --version
convertgls2bib --version

This should display the version information for both applications.

6

2 TEX Parser Library

The bib2gls application requires the TEX Parser Library texparserlib.jar1 which is used
to parse the .aux and .bib files.

With the --interpret switch on (default), this library is also used to interpret the sort value
when it contains a backslash \ or a dollar symbol $ or braces { } (and when the sort option is
not unsrt or none or use). The other case is with set-widest when determining the width
of the name field. The --no-interpret switch will turn off this function, but the library will
still be used to parse the .aux and .bib files.

The texparserlib.jar library is not a TEX engine and there are plenty of situations where
it doesn’t work. In particular, in this case it’s being used in a fragmented context without know-
ing most of the packages used by the document2 or any custom commands or environments
provided within the document.

TEX syntax can be quite complicated and, in some cases, far too complicated for simple
regular expressions. The library performs better than a simple pattern match, and that’s the
purpose of texparserlib.jar and why it’s used by bib2gls (and by convertgls2bib).
When the --debug mode is on, any warnings or errors triggered by the --interpret mode
will be written to the transcript prefixed with texparserlib: (the results of the conversions
will be included in the transcript as informational messages prefixed with texparserlib:
even with --no-debug).

For example, suppose the .bib file includes:

@preamble{
"\providecommand{\mtx}[1]{\boldsymbol{#1}}
\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}
\providecommand{\imaginary}{i}"}

@entry{M,
name={{}\mtx{M}},
text={\mtx{M}},
description={a matrix}

}

@entry{v,
name={{}\vec{v}},

1https://github.com/nlct/texparser
2bib2gls can detect from the log file a small number of packages that the parser can support, such as pifonts,

wasysym, amssymb, stix, mhchem and bpchem. There’s also partial support for siunitx’s \si command.

7

https://github.com/nlct/texparser

text={\vec{v}},
description={a vector}

}

@entry{S,
name={{}\set{S}},
text={\set{S}},
description={a set}

}

@entry{card,
name={{}\card{S}},
text={\card{S}},
description={the cardinality of the set \set{S}}

}

@entry{i,
name={{}\imaginary},
text={\imaginary},
description={square root of minus one ($\sqrt{-1}$)}

}

(The empty group at the start of the name fields protects against the possibility that the gloss-
name category attribute might be set to firstuc, which automatically converts the first letter
of the name to upper case when displaying the glossary. See also --mfirstuc-protection
and --mfirstuc-math-protection.)

None of these entries have a sort field so the name is used. If the entry type had been
@symbol instead, the fallback would be the entry’s label. This means that with symbol instead
of entry, and the default sort-field={sort}, andwith sort={letter-case}, these entries
will be defined in the order: M, S, card, i, v (since this is the case-sensitive letter order of the
labels) whereas with sort-field={letter-nocase}, the order will be: card, i, M, S, v (since
this is the case-insensitive letter order of the labels).

However, with @entry, the fallback field will be taken from the namewhich in the above ex-
ample contains TEX code, so bib2glswill use texparserlib.jar to interpret this code. The
library has several different ways of writing the processed code. For simplicity, bib2gls uses
the library’s HTML output and then strips the HTML markup and trims any leading or trailing
spaces. The library method that writes non-ASCII characters using “ &x〈hex〉; ” markup is
overridden by bib2gls to just write the Unicode character, which means that the letter-based
sorting options will sort according to the integer value 〈hex〉 rather than the string “ &x〈hex〉; ”.

The interpreter is first passed the code provided with @preamble:

\providecommand{\mtx}[1]{\boldsymbol{#1}}
\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}
\providecommand{\imaginary}{i}

8

(unless interpret-preamble={false}). This means that the provided commands are now
recognised by the interpreter when it has to parse the fields later.

In the case of the M entry in the example above, the code that’s passed to the interpreter is:

{}\mtx{M}

The transcript (.glg) file will show the results of the conversion:3

texparserlib: {}\mtx{M} -> M

So the sort value for this entry is set to “ M ”. The font change (caused by math-mode and
\boldsymbol) has been ignored. The sort value therefore consists of a single Unicode char-
acter 0x4D (Latin upper case letter “ M ”, decimal value 77).

For the v entry, the code is:

{}\vec{v}

The transcript shows:

texparserlib: {}\vec{v} -> →
v

So the sort value for this entry is set to “→
v ”, which consists of two Unicode characters 0x76

(Latin lower case letter “ v ”, decimal value 118) and 0x20D7 (combining right arrow above,
decimal value 8407).

For the set entry, the code is:

{}\set{S}

The transcript shows:

texparserlib: {}\set{S} -> S

So the sort value for this entry is set to “ S ” (again ignoring the font change). This consists
of a single Unicode character 0x53 (Latin upper case letter “ S ”, decimal value 83).

For the card entry, the code is:

{}\card{S}

The transcript shows:

texparserlib: {}\card{S} -> |S|

So the sort value for this entry is set to “ |S| ” (the | characters from the definition of \card
provided in @preamble have been included, but the font change has been discarded). In this
case the sort value consists of three Unicode characters 0x7C (vertical line, decimal value 124),
0x53 (Latin upper case letter “ S ”, decimal value 83) and 0x7C again. If interpret-preamble
={false} had been used, \card wouldn’t be recognised and would be discarded leaving just
“ S ” as the sort value.

For the i entry, the code is:
3The --debug mode will show additional information.

9

{}\imaginary

The transcript shows:

texparserlib: {}\imaginary -> i

So the sort value for this entry is set to “ i ”.
This means that in the case of the default sort-field={sort}with sort={letter-case},

these entries will be defined in the order: M (M), S (S), i (i), v (~v) and card (|S|). In this
case, the entries have been sorted according to the character codes. If you run bib2gls with
--verbose the decimal character codes will be included in the transcript. For this example:

i -> 'i' [105]
card -> '|S|' [124 83 124]
M -> 'M' [77]
S -> 'S' [83]
v -> '→

v' [118 8407]

The --group option (in addition to --verbose) will place the letter group in parentheses
before the character code list:

i -> 'i' (i) [105]
card -> '|S|' [124 83 124]
M -> 'M' (M) [77]
S -> 'S' (S) [83]
v -> '→

v' (v) [118 8407]

(Note that the card entry doesn’t have a letter group since the vertical bar character isn’t con-
sidered a letter.)

If sort={letter-nocase} is used instead then, after conversion by the interpreter, the sort
values will all be changed to lower case. The order is now: i (i), M (M), S (S), v (~v) and card
(|S|). The transcript (with --verbose) now shows

i -> 'i' [105]
card -> '|s|' [124 115 124]
M -> 'm' [109]
S -> 's' [115]
v -> '→

v' [118 8407]

With --group (in addition to --verbose) the letter groups are again included:

i -> 'i' (I) [105]
card -> '|s|' [124 115 124]
M -> 'm' (M) [109]
S -> 's' (S) [115]
v -> '→

v' (V) [118 8407]

10

Note that the letter groups are upper case not lower case. Again the card entry doesn’t have
an associated letter group.

If a locale-based sort is used, the ordering will follow the locale’s alphabet rules. For exam-
ple, with sort={en} (English, no region or variant), the order becomes: card (|S|), i (i), M
(M), S (S) and v (~v). The transcript (with --verbose) shows the collation keys instead:

i -> 'i' [0 92 0 0 0 0]
card -> '|S|' [0 66 0 102 0 66 0 0 0 0]
M -> 'M' [0 96 0 0 0 0]
S -> 'S' [0 102 0 0 0 0]
v -> '→

v' [0 105 0 0 0 0]

Again the addition of the --group switch will show the letter groups.4
Suppose I add a new symbol to my .bib file:

@symbol{angstrom,
name={\AA},
description={\AA ngstr\"om}

}

and I also use this entry in the document. Then with sort={en}, the order is: card (|S|),
angstrom (Å), i (i), M (M), S (S), and v (~v). The --group switch shows that the angstrom
entry (Å) has been placed in the “A” letter group.

However, if I change the locale to sort={sv}, the angstrom entry is moved to the end of
the list and the --group switch shows that it’s been placed in the “Å” letter group.
If you are using Java 8, you can set the java.locale.providers property to CLDR,JRE to

use the Common Locale Data Repository, which has more extensive support for locales than
the native Java Runtime Environment. This isn’t available for Java 7, and should be enabled
by default for the proposed Java 9.

4For more information on collation keys see the CollationKey class in Java’s API.

11

http://docs.oracle.com/javase/8/docs/api/java/text/CollationKey.html

3 Command Line Options

The syntax of bib2gls is:

bib2gls [〈options〉] 〈filename〉

where 〈filename〉 is the name of the .aux file. (The extension may be omitted.) Only one
〈filename〉 is permitted.

Available options are listed below.

--help (or -h)

Display the help message and quit.

--version (or -v)

Display the version information and quit.

--debug [〈n〉]
Switch on debugging mode. If 〈n〉 is present, it must be a non-negative integer indicating the
debugging level. If omitted 1 is assumed. This option also switches on the verbose mode. A
value of 0 is equivalent to --no-debug.

--no-debug (or --nodebug)

Switches off the debugging mode.

--verbose

Switches on the verbose mode. This writes extra information to the terminal and transcript file.

12

--no-verbose (or --noverbose)

Switches off the verbose mode. This is the default behaviour. Some messages are written to
the terminal. To completely suppress all messages (except errors), switch on the silent mode.
For additional information messages, switch on the verbose mode.

--silent

Suppresses all messages except for errors that would normally be written to the terminal. Warn-
ings and informational messages are written to the transcript file, which can be inspected af-
terwards.

--locale 〈lang〉 (or -l 〈lang〉)
Specify the preferred language resource file, where 〈lang〉 is a valid IETF language tag. This
option requires an appropriate bib2gls-〈lang〉.xml resource file otherwise bib2glswill fall-
back on English.

--log-file 〈filename〉 (or -t 〈filename〉)
Sets the name of the transcript file. By default, the name is the same as the .aux file but with a
.glg extension. Note that if you use bib2gls in combination with xindy or makeindex, you
will need to change the transcript file name to prevent interference.

--dir 〈dirname〉 (or -d 〈dirname〉)
By default bib2gls assumes that the output files should be written in the current working
directory. The input .bib files are assumed to be either in the current working directory or on
TEX’s path (in which case kpsewhich will be used to find them).

If your .aux file isn’t in the current working directory (for example, you have run TEX with
-output-directory) then you need to take care how you invoke bib2gls.

Suppose I have a file called test-entries.bib that contains my entry definitions and a
document called mydoc.tex that selects the .bib file using:

\GlsXtrLoadResources[src={test-entries}]

(test-entries.bib is in the same directory as mydoc.tex). If I compile this document using

pdflatex -output-directory tmp mydoc

then the auxiliary file mydoc.aux will be written to the tmp sub-directory. The resource infor-
mation is listed in the .aux file as

13

\glsxtr@resource{src={test-entries}}{mydoc}

If I run bib2gls from the tmp directory, then it won’t be able to find the test-entries.bib
file (since it’s in the parent directory).

If I run bib2gls from the same directory as mydoc.tex using

bib2gls tmp/mydoc

then the .aux file is found and the transcript file is tmp/mydoc.glg (since the default is the
same as the .aux file but with the extension changed to .glg) but the output file mydoc.glstex
will be written to the current directory.

This works fine from TEX’s point of view as it can find the .glstex file, but it may be that
you’d rather the .glstex file was tidied away into the tmp directory along with all the other
files. In this case you need to invoke bib2gls with the --dir or -d option:

bib2gls -d tmp mydoc

--interpret

Switch on the interpreter mode (default). See section 2 for more details.

--no-interpret

Switch off the interpreter mode. See section 2 for more details.

--mfirstuc-protection (or -u)

Commands like \Gls use \makefirstuc provided by the mfirstuc package. This command
has limitations and one of the things that can break it is the use of a referencing command
at the start of its argument. The glossaries-extra package has more detail about the problem
in the “Nested Links” section of the user manual. If a glossary field starts with one of these
problematic commands, the recommended method (if the command can’t be replaced) is to
insert an empty group in front of it.

For example, the following definition

\newabbreviation{shtml}{shtml}{\glsps{ssi} enabled \glsps{short}{html}}

will cause a problem for \Gls{shtml} on first use.
The above example, would be written in a .bib file as:

@abbreviation{shtml,
short={shtml},
long={\glsps{ssi} enabled \glsps{html}}

}

14

With the --mfirstuc-protection switch on (the default behaviour), bib2gls will auto-
matically insert an empty group at the start of the long field to guard against this problem. A
warning will be written to the transcript.

--no-mfirstuc-protection

Switches off the mfirstuc protection mechanism described above.

--mfirstuc-math-protection

This works in the same way as --mfirstuc-protection but guards against fields starting
with inline maths ($. . .$). For example, if the name field starts with x and the glossary style
automatically tries to convert the first letter of the name to upper case, then this will cause a
problem.

With --mfirstuc-math-protection set, bib2glswill automatically insert an empty group
at the start of the field and write a warning in the transcript. This setting is on by default.

--no-mfirstuc-math-protection

Switches off the above.

--nested-link-check 〈list〉|none
By default, bib2glswill parse certain fields for potential nested links. (See the section “Nested
Links” in the glossaries-extra user manual.)

The default set of fields to check are: name, text, plural, first, firstplural, long,
longplural, short, shortplural and symbol.
You can change this set of fields using --nested-link-check 〈value〉 where 〈value〉 may

be none (don’t parse any of the fields) or a comma-separated list of fields to be checked.

--no-nested-link-check

Equivalent to --nested-link-check none.

--shortcuts 〈value〉
Some entriesmay reference another entrywithin a field, using commands like \gls, so bib2gls
parses the fields for these commands to determine dependent entries to allow them to be se-
lected even if they haven’t been used within the document. The shortcuts package option
provided by glossaries-extra defines various synonyms, such as \ac which is equivalent to

15

\gls. By default the value of the shortcuts option will be picked up by bib2gls when pars-
ing the .aux file. This then allows bib2gls to additionally search for those shortcut commands
while parsing the fields.

You can override the shortcuts setting using --shortcuts 〈value〉 (where 〈value〉 may
take any of the allowed values for the shortcuts package option), but in general there is little
need to use this switch.

--map-format 〈format1〉:〈format2〉 or -m 〈format1〉:〈format2〉
This sets up the rule of precedence for partial location matches (see section 5.6). For example,

bib2gls --map-format "emph:hyperbf" mydoc

This essentially means that if there’s a record conflict involving emph, try replacing emph with
hyperbf and see if that resolves the conflict.

Note that if the conflict includes a range formation, the range takes precedence.
If you have multiple mappings, you can either use a single --map-format with a comma

separated list of 〈format1〉:〈format2〉 or you can have multiple instances of --map-format
〈format1〉:〈format2〉.

Note that the mapping tests are applied as the records are read. For example, suppose the
records are listed in the .aux file as:

\glsxtr@record{gls.sample}{}{page}{emph}{3}
\glsxtr@record{gls.sample}{}{page}{hypersf}{3}
\glsxtr@record{gls.sample}{}{page}{hyperbf}{3}

and bib2gls is invoked with

bib2gls --map-format "emph:hyperbf,hypersf:hyperit" mydoc

or

bib2gls --map-format emph:hyperbf --map-format hypersf:hyperit mydoc

then bib2gls will process these records as follows:

1. Accept the first record (emph) since there’s currently no conflict. (This is the first record
for page 3 for the entry given by gls.sample.)

2. The second record (hypersf) conflicts with the existing record (emph). Neither has the
format glsnumberformat or glsignore so bib2gls consults the mappings provided
by --map-format.

• The hypersf format (from the new record) is mapped to hyperit, so bib2gls
checks if the existing record has this format. In this case it doesn’t (the format is
emph). So bib2gls moves onto the next test:

16

• The emph format (from the existing record) is mapped to hyperbf, so bib2gls
checks if the new record has this format. In this case it doesn’t (the format is
hypersf).
Since the provided mappings haven’t resolved this conflict, the new record is dis-
carded with a warning. Note that there’s no look ahead to the next record. (There
may be other records for other entries also used on page 3 interspersed between
these records.)

3. The third record (hyperbf) conflicts with the existing record (emph). Neither has the
format glsnumberformat or glsignore so bib2gls again consults the mappings pro-
vided by --map-format.

• The new record’s hyperbf format has no mapping provided, so bib2gls moves
onto the next test:

• The existing record’s emph format has amapping provided (hyperbf). Thismatches
the new record’s format, so the new record takes precedence.
This means that the location list ends up with the hyperbf location for page 3.

If, on the other hand, the mappings are given as

--map-format "emph:hyperit,hypersf:hyperit,hyperbf:hyperit"

then all the three conflicting records (emph, hypersf and hyperbf) will end up being replaced
by a single record with hyperit as the format.

Multiple conflicts will typically be rare as there’s usually little reason for more than two or
three different location formats within the same list. (For example, glsnumberformat as the
default and hyperbf or hyperit for a primary reference.)

--group

The glossaries-extra record package option automatically creates a new field called group.
If the --group switch is used then, when sorting, bib2gls will try to determine the letter
group for each entry and add it to the group field. (Some sort options ignore this setting.)
This value will be picked up by \printunsrtglossary if group headings are required (for
example with the indexgroup style). If you’re not using a glossary style that displays the group
headings, there’s no need to use this switch. Note that this switch doesn’t automatically select
an appropriate glossary style.

There are four basic types of groups:

• letter groups where the group title indicates the first letter of all the sort values within
that group. The group title is set with \bibglslettergroup.

• non-letter groups (or symbol groups) where the first characters of all the sort values
within that group are non-alphabetical. The group title is set with \bibglsothergroup.

17

• number groups for all entries sorted by a numeric comparison (such as sort={integer}).
The group title is set with \bibglsnumbergroup.

• custom groups for all entries that have had the group title explicitly set using the group
={〈title〉} resource option.

The letter group titles will typically have the first character converted to upper case for the
rule-based comparisons (sort={custom} and sort={〈lang-tag〉}). A “letter” may not nec-
essarily be a single character (depending on the sort rule), but may be composed of multiple
characters, such as a digraph (two characters) or trigraph (three characters).

For example, if the sort rule recognises the digraph “dz” as a letter, then it will be converted
to “Dz” for the group title. There are some exceptions to this. For example, the Dutch digraph
“ij” should be “IJ” rather than “Ij”. This is indicated by the following line in the language
resource file:

<entry key="grouptitle.case.ij">IJ</entry>

If there isn’t a grouptitle.case.〈lc〉 key (where 〈lc〉 is the lower case version), then only
the first character will be converted to upper case otherwise the value supplied by the resource
file is used. This resource key is only checked for the locale and custom rule comparisons. If
the initial part of the sort value isn’t recognised as a letter according to the sort rule, then the
entry will be in a non-letter group (even if the character is alphabetical).

The locale-independent character code comparisons (such as sort={letter-nocase}) only
select the first character of the sort value for the group. If the character is alphabetical1 then
it will be a letter group otherwise it’s a non-letter group. The case-insensitive ordering (such
as sort={letter-nocase}) will convert the letter group character to upper case. The case-
sensitive ordering (such as sort={letter-case}) won’t change the case.

Glossary styles with navigational links to groups (such as indexhypergroup) require an extra
run for the ordinary \makeglossaries and \makenoidxglossariesmethods. For example,
for the document myDoc.tex:

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc
pdflatex myDoc

On the first pdflatex call, there’s no glossary. On the second pdflatex, there’s a glossary
but the glossary must be processed to find the group information, which is written to the .aux
file as

\@gls@hypergroup{〈type〉}{〈group id〉}

The third pdflatex reads this information and is then able to create the navigation links.
With bib2gls, if the type is provided (through the type field or via options such as type

and dual-type) then this information can be determined when bib2gls is ready to write the
.glstex file, which means that the extra LATEX run isn’t necessary.

For example:
1according to Java’s Character.isAlphabetic(int) method

18

\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[record,abbreviations,style=indexhypergroup]{glossaries-extra}

\GlsXtrLoadResources[src={entries},% data in entries.bib
type={main}% put these entries in the 'main' glossary

]

\GlsXtrLoadResources[src={abbrvs},% data in abbrvs.bib
type={abbreviations}% put these entries in the 'abbreviations' glossary

]

Here the type is set and bib2gls can detect that hyperref has been loaded, so if the --group
switch is used, then the group hyperlinks can be set (using \bibglshypergroup). This means
that the build process is just:

pdflatex myDoc
bibtex --group myDoc
pdflatex myDoc

Note that this requires glossaries v4.32+. If your version of glossaries is too old then bib2gls
can’t override the default behaviour of glossary-hypernav’s \glsnavhypertarget.

If hyperref isn’t loaded or the --group switch isn’t used or the type isn’t set or your version
of glossaries is too old, then the information isn’t saved.

For example:

\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[record,abbreviations,style=indexhypergroup]{glossaries-extra}

\GlsXtrLoadResources[src={entries}]% data in entries.bib

\GlsXtrLoadResources[src={abbrvs}]% data in abbrvs.bib

This requires the build process:

pdflatex myDoc
bibtex --group myDoc
pdflatex myDoc
pdflatex myDoc

because the group hyperlink information can’t be determined by bib2gls, so it’s best to always
set the type if you want hyper-group styles, and make sure you have an up-to-date version of
glossaries (and glossaries-extra).

19

--no-group

Don’t use the group field. (Default.) The glossary won’t have groups even if a group style,
such as indexgroup, is used.

--tex-encoding 〈name〉
bib2gls tries to determine the character encoding to use for the output files. If the document
has loaded the inputenc package then bib2gls can obtain the value of the encoding from the
.aux file. This then needs to be converted to a name recognised by Java. For example, utf8
will be mapped to UTF-8. If the fontspec package has been loaded, glossaries-extrawill assume
the encoding is utf8 and write that value to the .aux file.

If neither package has been loaded, bib2gls will assume the operating system’s default
encoding. If this is incorrect or if bib2gls can’t work out the appropriate mapping then you
can specify the correct encoding using --tex-encoding 〈name〉where 〈name〉 is the encoding
name.

--trim-fields

Trim leading and trailing spaces from field values. For example, if the .bib file contains:

@entry{sample,
name = { sample },
description = {
an example

}
}

This will cause spurious spaces. Using --trim-fields will automatically trim the values
before writing the .glstex file.

--no-trim-fields

Don’t trim any leading or trailing spaces from field values. This is the default setting.

20

4 .bib Format

bib2gls recognises certain entry types. Any unrecognised types will be ignored and a warning
will be written to the transcript file. Entries are defined in the usual .bib format:

@〈entry-type〉{〈id〉,
〈field-name-1〉 = {〈text〉},
...
〈field-name-n〉 = {〈text〉}

}

where 〈entry-type〉 is the entry type (listed below), 〈field-name-1〉, . . . , 〈field-name-n〉 are the
field names (same as the keys available with \newglossaryentry) and 〈id〉 is a unique label.
The label can’t contain any spaces or commas. In general it’s best to stick with alpha-numeric
labels. The field values may be delimited by braces {〈text〉} or double-quotes "〈text〉".
bib2gls allows you to insert prefixes to the labels when the data is read through the label

-prefix option. Remember to use these prefixes when you reference the entries in the doc-
ument, but don’t include them when you reference them in the .bib file. There are some
special prefixes that have a particular meaning to bib2gls: “dual.” and “ext〈n〉.” where
〈n〉 is a positive integer. In the first case, dual. references the dual element of a dual entry
(see @dualentry). This prefix will be replaced by the value of the dual-prefix option. The
ext〈n〉. prefix is used to reference an entry from a different set of resources (loaded by another
\GlsXtrLoadResources command). This prefix is replaced by the corresponding element of
the list supplied by ext-prefixes.

In the event that the sort value falls back on the label, the original label supplied in the
.bib file is used, not the prefixed label.

Avoid non-ASCII characters in the 〈id〉 if your document uses the inputenc package. You
can set the character encoding in the .bib file using:

% Encoding: 〈encoding-name〉

where 〈encoding-name〉 is the name of the character encoding. For example:

% Encoding: UTF-8

You can also set the encoding using the charset option, but it’s simpler to include the above
comment on the first line of the .bib file. (This comment is also searched for by JabRef to
determine the encoding, so it works for both applications.) If you don’t use either method
bib2gls will have to search the entire .bib file, which is inefficient and you may end up with
a mismatched encoding.

21

Each entry type may have required fields and optional fields. For the optional fields, any key
recognised by \newglossaryentry may be used as a field. However, note that if you add any
custom keys in your document using \glsaddkey or \glsaddstoragekey, those commands
must be placed before the first use of \GlsXtrLoadResources.

Any unrecognised fields will be ignored. This is more convenient than using \input or
\loadglsentries, which requires all the keys used in the file to be defined, regardless of
whether or not you actually need them in the document.

If an optional field is missing and bib2gls needs to access it for some reason (for example,
for sorting), bib2gls will try to fallback on another value. The actual fallback value depends
on the entry type.

Other entries can be cross-referenced using the see, seealso or alias fields or by using
commands like \gls or \glsxtrp in any of the recognised fields. These will automatically
be selected if the selection setting includes dependencies, but you may need to rebuild the
document to ensure the location lists are correct. If an entry has the see field set, any instance of
\glssee in the document for that entry will be ignored, otherwise the reference from \glssee
will be transferred to the see field (provided you have at least v1.14 of glossaries-extra). In
general, it’s best just to use the see field and not use \glssee.

The seealso key was only added to glossaries-extra v1.16, but this field may be used with
bib2gls even if you only have version 1.14 or 1.15. If the key isn’t available, seealso={〈xr-
list〉} will be treated as see={[\seealsoname]〈xr-list〉} (the resource option seealso won’t
have an effect). You can’t use both see and seealso for the same entry with bib2gls. Note
that the seealso field doesn’t allow for the optional [〈tag〉] part. If you need a different tag, ei-
ther use see or change the definition of \seealsoname or \glsxtruseseealsoformat. Note
that, unless you are using xindy, \glsxtrindexseealso just does \glssee[\seealsoname],
and so will be treated as see rather than seealso by bib2gls. Again, it’s better to just use
the seealso field directly.

@string

The standard @string is available and can be used to define variables that may be used in field
values. For example:

@string{ssi={server-side includes}}
@string{html={hypertext markup language}}

@abbreviation{shtml,
short="shtml",
long= ssi # " enabled " # html,
see={ssi,html}

}

@abbreviation{html,
short ="html",

22

long = html
}

@abbreviation{ssi,
short="ssi",
long = ssi

}

@preamble

The standard @preamble is available and can be used to provide command definitions used
within field values. For example:

@preamble{"\providecommand{\mtx}[1]{\boldsymbol{#1}}"}

@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values, denoted \mtx{M}}

}

The TEX parser library used by bib2glswill parse the contents of @preamble before trying
to interpret the field value used as a fallbackwhen sort is omitted (unless interpret-preamble
={false} is set in the resource options). For example:

@preamble{"\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}"}

@entry{S,
name={{}\set{S}},
text={\set{S}},
description={a set}

}
@entry{card,
name={{}\card{S}},
text={\card{S}},
description={the cardinality of \gls{S}}

}

Neither entry has the sort field, so bib2gls has to fall back on the name field and, since this
contains the special characters \ $ { and }, the TEX parser library is used to interpret it. The
definitions provided by @preamble allow bib2gls to deduce that the sort value of the S entry
is just S and the sort value of the card entry is |S| (see section 2).

23

What happens if you also need to use these commands in the document? The definitions
provided in @preamblewon’t be available until the .glstex file has been created, whichmeans
the commands won’t be defined on the first LATEX run.

There are several approaches:

1. Just define the commands in the document. This means the commands are available, but
bib2gls won’t be able to correctly interpret the name fields.

2. Define the commands in both the document and in @preamble. For example:

\newcommand{\set}[1]{\mathcal{#1}}
\newcommand{\card}[1]{|\set{#1}|}
\GlsXtrLoadResources[src={my-data}]

Alternatively:

\GlsXtrLoadResources[src={my-data}]
\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}

If the provided definitions match those given in the .bib file, there’s no difference. If
they don’t match then in the first example the document definitions will take precedence
(but the interpreter will use the @preamble definitions) and in the second example the
@preamble definitions will take precedence.

3. Make use of \glsxtrfmt provided by glossaries-extra1 which allows you to store the
name of the formatting command in a field. The default is the user1 field, but this can
be changed to another field by redefining \GlsXtrFmtField.
The .bib file can now look like this:

@preamble{"\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}"}

@symbol{S,
name={{}\set{S}},
text={\set{S}},
user1={set},
description={a set}

}
@symbol{cardS,
name={{}\card{S}},
text={\card{S}},
user1={card},
description={the cardinality of \gls{S}}

}
1Introduced in version 1.12.

24

Within the document, you can format 〈text〉 using the formatting command provided in
the user1 field with:

\glsxtrfmt[〈options〉]{〈label〉}{〈text〉}

(which internally uses \glslink) or

\glsxtrentryfmt{〈label〉}{〈text〉}

which just applies the appropriate formatting command to 〈text〉. If the entry given by
〈label〉 hasn’t been defined, then this just does 〈text〉 and a warning is issued. (It just does
〈text〉 without a warning if the field hasn’t been set.) The 〈options〉 are as for \glslink
but \glslink will actually be using

\glslink[〈def-options〉,〈options〉]{〈label〉}{\〈csname〉{〈text〉}}

where the default options 〈def-options〉 are given by \GlsXtrFmtDefaultOptions. The
default definition of this is just noindex which suppresses the automatic indexing or
recording action. (See the glossaries-extra manual for further details.)
This means that the document doesn’t need to actually provide \set or \card but can
instead use, for example,

\glsxtrfmt{S}{A}
\glsxtrentryfmt{cardS}{B}

instead of

\set{A}
\card{B}

The first LATEX run will simply ignore the formatting and produce a warning.
Since this is a bit cumbersome to write, you can provide shortcut commands. For exam-
ple:

\GlsXtrLoadResources[src={my-data}]
\newcommand{\gset}[2][]{\glsxtrfmt[#1]{S}{#2}}
\newcommand{\gcard}[2][]{\glsxtrfmt[#1]{cardS}{#2}}

Whilst this doesn’t seem a great deal different from simply providing the definitions of
\set and \card in the document, this means you don’t have to worry about remembering
the names of the actual commands provided in the .bib file (just the entry labels) and
the use of \glsxtrfmt will automatically produce a hyperlink to the glossary entry if
the hyperref package has been loaded.

25

Here’s an alternative .bib that defines entries with a term, a description and a symbol:

@preamble{"\providecommand{\setfmt}[1]{\mathcal{#1}}
\providecommand{\cardfmt}[1]{|\setfmt{#1}|}"}

@entry{set,
name={set},
symbol={\setfmt{S}},
user1={setfmt},
description={collection of values}

}
@entry{cardinality,
name={cardinality},
symbol={\cardfmt{S}},
user1={cardfmt},
description={the number of elements in the \gls{set} \glssymbol{set}}

}

I’ve changed the entry labels and the names of the formatting commands. The definitions in the
document need to reflect the change in label but not the change in the formatting commands:

\newcommand{\gset}[2][]{\glsxtrfmt[#1]{set}{#2}}
\newcommand{\gcard}[2][]{\glsxtrfmt[#1]{cardinality}{#2}}

Here’s another approach that allows for a more complicated argument for the cardinality.
(For example, if the argument is an expression involving set unions or intersections.) The
.bib file is now:

@preamble{"\providecommand{\setfmt}[1]{\mathcal{#1}}
\providecommand{\cardfmt}[1]{|#1|}"}

@entry{set,
name={set},
symbol={\setfmt{S}},
user1={setfmt},
description={collection of values}

}
@entry{cardinality,
name={cardinality},
symbol={\cardfmt{\setfmt{S}}},
user1={cardfmt},
description={the number of elements in the \gls{set} \glssymbol{set}}

}

This has removed the \setfmt command from the definition of \cardfmt. Now the definitions
in the document:

26

\newcommand{\gset}[1]{\glsxtrentryfmt{set}{#1}}
\newcommand{\gcard}[2][]{\glsxtrfmt[#1]{cardinality}{#2}}

This allows for code such as:

\[\gcard{\gset{A} \cap \gset{B}} \]

which will link back to the cardinality entry in the glossary and avoids any hyperlinking
with \gset. Alternatively to avoid links with \gcard as well:

\newcommand{\gset}[1]{\glsxtrentryfmt{set}{#1}}
\newcommand{\gcard}[1]{\glsxtrentryfmt{cardinality}{#1}}

Now \gset and \gcard are simply formatting commands, but their actual definitions are de-
termined in the .bib file.

@entry

Regular terms are defined by the @entry field. This requires the description field and either
name or parent.

For example:

@preamble{"\providecommand{\mtx}[1]{\boldsymbol{#1}}"}

@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values, denoted \gls{M}},
seealso={vector}

}

@entry{M,
name={\ensuremath{M}},
description={a \gls{matrix}}

}

@entry{vector,
name = "vector",
description = {column or row of values, denoted \gls{v}},
seealso={matrix}

}

@entry{v,
name={\ensuremath{\vec{v}}},
description={a \gls{vector}}

}

27

If the name field is omitted it will be set from the parent’s name. If the sort field is missing
the default is obtained from the name field. (This can be overridden with sort-field.)

Terms defined using @entrywill be written to the output (.glstex) file using the command
\bibglsnewentry.

@symbol

The @symbol entry type is much like @entry, but it’s designed specifically for symbols, so in
the previous example, the M and v terms would be better defined using the @symbol entry type
instead. For example:

@symbol{M,
name={\ensuremath{M}},
description={a \gls{matrix}}

}

The required fields are name or parent. The description field is required if the name field
is missing. If the sort field is omitted, the default sort is given by the entry label. Note that
this is different from @entry where the sort defaults to name if omitted.

Terms that are defined using @symbol will be written to the output file using the command
\bibglsnewsymbol.

@number

The @number entry type is like @symbol, but it’s for numbers. The numbers don’t have to be
explicit digits and may have a symbolic representation. There’s no real difference between the
behaviour of @number and @symbol except that terms defined using @number will be written
to the output file using the command \bibglsnewnumber.

For example, the file constants.bib might define mathematical constants like this:

@number{pi,
name={\ensuremath{\pi}},
description={the ratio of the length of the circumference
of a circle to its diameter},
user1={3.14159}

}

@number{e,
name={\ensuremath{e}},
description={base of natural logarithms},
user1={2.71828}

}

This stores the approximate value in the user1 field. This can be used to sort the entries in
numerical order according to the values rather than the symbols:

28

\GlsXtrLoadResources[
src={constants},% constants.bib
category={number},% set the category for all selected entries
sort={double},% numerical double-precision sort
sort-field={user1}% sort according to 'user1' field

]

The category={number} option makes it easy to adjust the glossary format to include the
user1 field:

\renewcommand{\glsxtrpostdescnumber}{%
\ifglshasfield{useri}{\glscurrententrylabel}
{ (approximate value: \glscurrentfieldvalue)}%
{}%

}

@index

The @index entry type is designed for entries that don’t have a description. Only the label is
required. If name is omitted, it’s assumed to be the same as the label, even if parent is present.
(Note this is different to the fallback behaviour of @entry, which fetches the name from the
parent entry.) However, this means that if the name contains any characters that can’t be used
in the label, you will need the name field. If the sort field is missing the default is obtained
from the name field.

Example:

@index{duck}

@index{goose,plural={geese}}

@index{sealion,name={sea lion}}

@index{facade,name={fa\c{c}ade}}

Terms that are defined using @index will be written to the output file using the command
\bibglsnewindex.

@abbreviation

The @abbreviation entry type is designed for abbreviations. The required fields are short
and long. If the sort key is missing, bib2gls will use the value of the short field. You can
also use short-case-change to convert the case of the short field.

Note that you must set the abbreviation style before loading the resource file to ensure that
the abbreviations are defined correctly, however bib2gls has no knowledge of the abbreviation

29

style so it doesn’t know if the description field must be included or if the default sort value
isn’t simply the value of the short field.

You can instruct bib2gls to sort by the long field instead using sort-field={long}.
You can also tell bib2gls to ignore certain fields using ignore-fields, so you can include
a description field in the .bib file if you sometimes need it, and then instruct bib2gls to
ignore it when you don’t want it.

For example:

@abbreviation{html,
short ="html",
long = {hypertext markup language},
description={a markup language for creating web pages}

}

If youwant the long-noshort-desc style, then you can put the following in your document (where
the .bib file is called entries-abbrv.bib):

\setabbreviationstyle{long-noshort-desc}
\GlsXtrLoadResources[src={entries-abbrv.bib},sort-field={long}]

Whereas, if you want the long-short-sc style, then you can instead do:

\setabbreviationstyle{long-short-sc}
\GlsXtrLoadResources[src={entries-abbrv.bib},ignore-fields={description}]

or to convert the short value to upper case and use the long-short-sm style instead:

\setabbreviationstyle{long-short-sm}
\GlsXtrLoadResources[src={entries-abbrv.bib},
short-case-change={uc},% convert short value to upper case
ignore-fields={description}]

(If you want an equivalent of \newdualentry, use @dualentryabbreviation instead.)
Terms defined using @abbreviation will be written to the output file using the command

\bibglsnewabbreviation.

@acronym

The @acronym entry type is like @abbreviation except that the term is written to the output
file using the command \bibglsnewacronym.

@dualentry

The @dualentry entry type is similar to @entry but actually defines two entries: the primary
entry and the dual entry. The dual entry contains the same information as the primary en-
try but some of the fields are swapped around. The dual entry is given the prefix set by the
dual-prefix option.

30

Note that the alias field will never be copied to the dual entry, nor can it be mapped. The
alias will only apply to the primary entry.

By default, the name and description fields and the plural and descriptionplural
fields are swapped.

For example:

@dualentry{child,
name={child},
plural={children},
description={enfant}

}

Is like

@entry{child,
name={child},
plural={children},
description={enfant}
descriptionplural={enfants}

}

@entry{dual.child,
description={child},
descriptionplural={children},
name={enfant}
plural={enfants}

}

where dual. is replaced by the value of the dual-prefix option. However, instead of defin-
ing the entries with \bibglsnewentry both the primary and dual entries are defined using
\bibglsnewdualentry. The category and type fields can be set for the dual entry using
the dual-category and dual-type options.

If dual-sort={combine} then the dual entries will be sorted alongwith the primary entries,
otherwise the dual-sort indicates how to sort the dual entries and the dual entries will be
appended to the end of the .glstex file. The dual-sort-field determines what field to use
for the sort value if the dual entries should be sorted separately.

For example:

\newglossary*{english}{English}
\newglossary*{french}{French}

\GlsXtrLoadResources[
src = {entries-dual},% data in entries-dual.bib
type = {english},% put primary entries in glossary 'english'
dual-type = {french},% put dual entries in glossary 'french'
category = {dictionary},% set the primary category to 'dictionary'

31

dual-category = {dictionary},% set the dual category to 'dictionary'
sort = {en},% sort primary entries according to language 'en'
dual-sort = {fr}% sort dual entries according to language 'fr'

]

Note that there’s no dual equivalent to @index since that entry type doesn’t have required
fields and there’s nothing obvious to swap with that type that would differentiate it from a
normal entry.

@dualentryabbreviation

The @dualentryabbreviation entry type is similar to @dualentry, but by default the field
mappings are:

• long 7→ name

• short 7→ text

You may need to add a mapping from shortplural to plural if the default is inappropriate.
The required fields are: short, long and description. This entry type is designed to em-

ulate the example \newdualentry command given in the glossaries user manual. The primary
entry is an abbreviation with the given short and long fields (but not the description) and
the secondary entry is a regular entry with the name copied from the long field.

For example:

@dualentryabbreviation{svm,
long = {support vector machine},
short = {SVM},
description = {statistical pattern recognition technique}

}

is rather like doing

@abbreviation{svm,
long = {support vector machine},
short = {SVM}

}

@entry{dual.svm,
name = {support vector machine},
description = {statistical pattern recognition technique}

}

but dual.svm will automatically be selected if svm is indexed in the document. If dual.svm
isn’t explicitly indexed, it won’t have a location list.

32

As with @dualentry, the alias field will never be copied to the dual entry, nor can it be
mapped. The alias will only apply to the primary entry.

If the sort field is missing bib2gls by default falls back on the name field. If this is missing,
this sort value will fallback on the short field. This means that if name isn’t explicitly given
in @dualentryabbreviation, then the primary entry will be sorted according to short but
the dual will be sorted according its name (which has been copied from the primary long).

Entries provided using @dualentryabbreviation will be defined with

\bibglsnewdualentryabbreviation

(which uses \newabbreviation) for the primary entries and with

\bibglsnewdualentryabbreviationsecondary

(which uses \longnewglossaryentry) for the secondary entries. This means that if the
abbreviations package option is used, this will put the primary entry in the abbreviations
glossary and the secondary entry in the main glossary. Use the type and dual-type options
to override this.

@dualsymbol

This is like @dualentry but the default mappings swap the name and symbol fields (and the
plural and symbolplural fields). The name and symbol are required.

As with @dualentry, the alias field will never be copied to the dual entry, nor can it be
mapped. The alias will only apply to the primary entry.

For example:

@dualsymbol{pi,
name={pi},
symbol={\ensuremath{\pi}},
description={the ratio of the length of the circumference
of a circle to its diameter}

}

Entries are defined using \bibglsnewdualsymbol, which by default sets the category to
symbol.

@dualnumber

This is much the same as @dualsymbol but entries are defined using \bibglsnewdualnumber,
which by default sets the category to number.

The above example could be defined as a number since π is a constant:

33

@dualnumber{pi,
name={pi},
symbol={\ensuremath{\pi}},
description={the ratio of the length of the circumference
of a circle to its diameter},
user1={3.14159}

}

This has stored the approximate value in the user1 field. The post-description hook could
then be adapted to show this.

\renewcommand{\glsxtrpostdescnumber}{%
\ifglshasfield{useri}{\glscurrententrylabel}
{ (approximate value: \glscurrentfieldvalue)}%
{}%

}

This use of the user1 field means that the dual entries could be sorted numerically according
to the approximate value:

\usepackage[record,postdot,numbers,style=index]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},% entries.bib
dual-type={numbers},
dual-sort={double},% decimal sort
dual-sort-field={user1}

]

@dualabbreviation

The required fields are: short, long, dualshort and duallong. This includes some new
fields: dualshort, dualshortplural, duallong and duallongplural. If these aren’t al-
ready defined, they will be provided in the .glstex file with

\glsxtrprovidestoragekey{〈key〉}{}{}

This command is defined by the glossaries-extra package. Note that this use with an empty third
argument prevents the creation of a field access command (analogous to \glsentrytext).
You can fetch the value with \glsxtrusefield. (See the glossaries-extra manual for further
details.) Remember that the field won’t be available until the .glstex file has been created.
As with @dualentry, the alias field will never be copied to the dual entry, nor can it be

mapped. The alias will only apply to the primary entry.
Note that bib2gls doesn’t know what abbreviation styles are in used, so if the sort field is

missing it will fallback on the short field. If the abbreviations need to be sorted according to
the long field instead, use sort-field={long}.

34

The @dualabbreviation entry type is similar to @dualentry, but by default the field map-
pings are:

• short 7→ dualshort

• shortplural 7→ dualshortplural

• long 7→ duallong

• longplural 7→ duallongplural

• dualshort 7→ short

• dualshortplural 7→ shortplural

• duallong 7→ long

• duallongplural 7→ longplural

Terms that are defined using @dualabbreviation will be written to the output file using
\bibglsnewdualabbreviation.

If the dual-abbrv-backlink option is on, the default field used for the backlinks is the
dualshort field, so you’ll need to make sure you adapt the glossary style to show that field.
The simplest way to do this is through the category post description hook.

For example, if the entries all have the category set to abbreviation, then this requires
redefining \glsxtrpostdescabbreviation.
Here’s an example dual abbreviation for a document where English is the primary language

and German is the secondary language:

@dualabbreviation{rna,
short={RNA},
dualshort={RNS},
long={ribonucleic acid},
duallong={Ribonukleinsäure}

}

If the abbreviation is in the file called entries-dual-abbrv.bib, then here’s an example
document:

\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage[ngerman,main=english]{babel}
\usepackage[colorlinks]{hyperref}
\usepackage[record,nomain]{glossaries-extra}

35

\newglossary*{english}{English}
\newglossary*{german}{German}

\setabbreviationstyle{long-short}

\renewcommand*{\glsxtrpostdescabbreviation}{%
\ifglshasfield{dualshort}{\glscurrententrylabel}
{%
\space(\glscurrentfieldvalue)%

}%
{}%

}

\GlsXtrLoadResources[
src={entries-dual-abbrv},% entries-dual-abbrv.bib
type=english,% put primary entries in glossary 'english'
dual-type=german,% put primary entries in glossary 'german'
label-prefix={en.},% primary label prefix
dual-prefix={de.},% dual label prefix
sort=en,% sort primary entries according to language 'en'
dual-sort=de-1996,% sort dual entries according to 'de-1996'

% (German new orthography)
dual-abbrv-backlink% add links in the glossary to the opposite

%entry
]

\begin{document}

English: \gls{en.rna}; \gls{en.rna}.

German: \gls{de.rna}; \gls{de.rna}.

\printunsrtglossaries
\end{document}

If the label-prefix is omitted, then only the dual entries will have a prefix:

English: \gls{rna}; \gls{rna}.

German: \gls{de.rna}; \gls{de.rna}.

Another variation is to use the long-short-user abbreviation style and modify the associated
\glsxtruserfield so that the duallong field is selected for the parenthetical material:

\renewcommand*{\glsxtruserfield}{duallong}

36

This means that the first use of the primary entry is displayed as

ribonucleic acid (RNA, Ribonukleinsäure)

and the first use of the dual entry is displayed as:

Ribonukleinsäure (RNS, ribonucleic acid)

Here’s an example to be used with the long-short-desc style:

@dualabbreviation{rna,
short={RNA},
dualshort={RNS},
long={ribonucleic acid},
duallong={Ribonukleinsäure}
description={a polymeric molecule},
user1={Ein polymeres Molekül}

}

This stores the dual description in the user1 field, so this needs a mapping. The new example
document is much the same as the previous one, except that the dual-abbrv-map option is
needed to include the mapping between the description and user1 fields:

\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage[ngerman,main=english]{babel}
\usepackage[colorlinks]{hyperref}
\usepackage[record,nomain]{glossaries-extra}

\newglossary*{english}{English}
\newglossary*{german}{German}

\setabbreviationstyle{long-short-desc}

\renewcommand*{\glsxtrpostdescabbreviation}{%
\ifglshasfield{dualshort}{\glscurrententrylabel}
{%
\space(\glscurrentfieldvalue)%

}%
{}%

}

\GlsXtrLoadResources[

37

src={entries-dual-abbrv-desc},% entries-dual-abbrv-desc.bib
type=english,% put primary entries in glossary 'english'
dual-type=german,% put primary entries in glossary 'german'
label-prefix={en.},% primary label prefix
dual-prefix={de.},% dual label prefix
sort=en,% sort primary entries according to language 'en'
sort-field={long},% sort by the 'long' field
dual-sort=de-1996,% sort dual entries according to 'de-1996'

% (German new orthography)
dual-abbrv-backlink,% add links in the glossary to the opposite

% entry
% dual key mappings:
dual-abbrv-map={%
{short,shortplural,long,longplural,dualshort,dualshortplural,
duallong,duallongplural,description,user1},

{dualshort,dualshortplural,duallong,duallongplural,short,shortplural,
long,longplural,user1,description}

}
]

\begin{document}

English: \gls{en.rna}; \gls{en.rna}.

German: \gls{de.rna}; \gls{de.rna}.

\printunsrtglossaries
\end{document}

Note that since this document uses the long-short-desc abbreviation style, the sort-field
needs to be changed to long, since the fallback if the sort field is missing is the short field.

If I change the order of the mapping to:

dual-abbrv-map={%
{long,longplural,short,shortplural,dualshort,dualshortplural,
duallong,duallongplural,description,user1},

{duallong,duallongplural,dualshort,dualshortplural,short,shortplural,
long,longplural,user1,description}

Then the back-link field will switch to duallong. The post-description hook can be modified
to allow for this:

\renewcommand*{\glsxtrpostdescabbreviation}{%
\ifglshasfield{duallong}{\glscurrententrylabel}
{%

38

\space(\glscurrentfieldvalue)%
}%
{}%

}

An alternative is to use the long-short-user-desc style without the post-description hook:

\setabbreviationstyle{long-short-user-desc}

\renewcommand*{\glsxtruserfield}{duallong}

However be careful with this approach as it can cause nested hyperlinks. In this case it’s better
to use the long-postshort-user-desc style which defers the parenthetical material until after the
link-text:

\setabbreviationstyle{long-postshort-user-desc}

\renewcommand*{\glsxtruserfield}{duallong}

If the back-link field has been switched to duallong then the post-description hook is no longer
required.

@dualacronym

As @dualabbreviation but defines the entries with \bibglsnewdualacronym.

39

5 Resource File Options

Make sure that you load glossaries-extra with the record package option. This ensures that
bib2gls can pick up the required information from the .aux file. (You may omit this option
if you use selection={all} and you don’t require the location lists.)

The .glstex resource files created by bib2gls are loaded in the document using

\glsxtrresourcefile[〈options〉]{〈filename〉}

where 〈filename〉 is the name of the resource file without the .glstex extension. You can
have multiple \glsxtrresourcefile commands within your document, but each 〈filename〉
must be unique, otherwise LATEX would attempt to input the same .glstex file multiple times.
bib2gls checks for non-unique file names.

There’s a shortcut command that uses \jobname in the 〈filename〉:

\GlsXtrLoadResources[〈options〉]

The first instance of this command is equivalent to

\glsxtrresourcefile[〈options〉]{\jobname}

Any additional use of \GlsXtrLoadResources is equivalent to

\glsxtrresourcefile[〈options〉]{\jobname-〈n〉}

where 〈n〉 is number. For example:

\GlsXtrLoadResources[src=entries-en,sort={en}]
\GlsXtrLoadResources[src=entries-fr,sort={fr}]
\GlsXtrLoadResources[src=entries-de,sort={de-1996}]

This is equivalent to:

\glsxtrresourcefile[src=entries-en,sort={en}]{\jobname}
\glsxtrresourcefile[src=entries-fr,sort={fr}]{\jobname-1}
\glsxtrresourcefile[src=entries-de,sort={de-1996}]{\jobname-2}

In general, it’s simplest just to use \GlsXtrLoadResources.
The optional argument 〈options〉 is a comma-separated key=value list. Allowed options are

listed below. The option list applies only to that specific 〈filename〉.glstex and are not carried
over to the next instance of \glsxtrresourcefile. The glossaries-extra package doesn’t
parse the options, but just writes the information to the .aux file. This means that any invalid
options will be reported by bib2gls not by glossaries-extra.

40

If you have multiple .bib files you can either select them all using src={〈bib list〉} in a
single \glsxtrresourcefile call, if they all require the same settings, or you can load them
separately with different settings applied.

For example, if the files entries-terms.bib and entries-symbols.bib have the same
settings:

\GlsXtrLoadResources[src={entries-terms,entries-symbols}]

Alternatively, if they have different settings:

\GlsXtrLoadResources[src={entries-terms},type=main]
\GlsXtrLoadResources[src={entries-symbols},sort=use,type=symbols]

Note that the sorting is applied to each resource call independently of other resources. This
means that if you have multiple instances of \glsxtrresourcefile but only one glossary
type, the glossary will effectively contain blocks of sorted entries. For example, if file1.bib
contains:

@index{duck}
@index{zebra}
@index{aardvark}

and file2.bib contains:

@index{caterpillar}
@index{bee}
@index{wombat}

then

\GlsXtrLoadResources[src={file1,file2}]

will result in the list: aardvark, bee, caterpillar, duck, wombat, zebra. These six entries are all
defined when \jobname.glstex is read. Whereas

\GlsXtrLoadResources[src={file1}]
\GlsXtrLoadResources[src={file2}]

will result in the list: aardvark, duck, zebra, bee, caterpillar, wombat. The first three (aardvark,
duck, zebra) are defined when \jobname.glstex is read. The second three (bee, caterpil-
lar, wombat) are defined when \jobname-1.glstex is read. Since \printunsrtglossary
simply iterates over all defined entries, this is the ordering used.

Note bib2gls allows .bib files that don’t provide any entries. This can be used to provide
commands in @preamble. For example, suppose I have defs.bib that just contains

@preamble{"\providecommand{\strong}[1]{\textbf{\color{red}#1}}
\providecommand{\test}[2]{#2 (#1)}"}

41

This provides two commands: \strong (which sets the font weight and colour) and \test
(which just displays its second argument followed by the first in parentheses).

Suppose I also have entries.bib that contains:

@index{example,
name={\strong{\test{stuff}{example}}}

}
@index{sample}
@index{test}
@index{foo}
@index{bar}

This contains an entry that requires the commands provided in defs.bib, so to ensure those
commands are defined, I can do:

\GlsXtrLoadResources[src={defs,entries}]

Unfortunately this results in the sort value for example being set to redexample (stuff)
because the interpreter has detected the provided commands and expanded

\strong{\test{stuff}{example}}

to

\textbf{\color{red}example (stuff)}

It discards font changes, so \textbf is ignored, but it doesn’t recognise \color and so doesn’t
know that the first argument is just the colour specifier and therefore doesn’t discard it. This
means that “example (stuff)” is placed between “foo” and “sample” instead of between “bar”
and “foo”.

I can prevent the interpreter from parsing @preamble:

\GlsXtrLoadResources[src={defs,entries},interpret-preamble=false]

Now when the sort value for example is obtained from

\strong{\test{stuff}{example}}

no expansion occurs (since \strong and \test are unrecognised) so the sort value ends up as
stuffexample which places “example (stuff)” between “sample” and “test”, which is again
incorrect.

The best thing to do in this situation is to split the provided commands into two .bib files:
one that shouldn’t be interpreted and one that should.

For example, defs-nointerpret.bib:

@preamble{"\providecommand{\strong}[1]{\textbf{\color{red}#1}}"}

and defs-interpret.bib:

42

@preamble{"\providecommand{\test}[2]{#2 (#1)}"}

Now the first one can be loaded with interpret-preamble={false}:

\GlsXtrLoadResources[src={defs-nointerpret},interpret-preamble=false]

This creates a .glstex file that provides \strong but doesn’t define any entries. The other file
defs-interpret.bib can then be loaded with the default interpret-preamble={true}:

\GlsXtrLoadResources[src={defs-interpret,entries}]

The provided commands are remembered by the interpreter, so you can also do:

\GlsXtrLoadResources[src={defs-interpret}]
\GlsXtrLoadResources[src={entries}]

The contents of @preamble are only written to the associated .glstex file, but the definitions
contained within the @preamble are retained by the interpreter for subsequent resource sets.

5.1 General Options

charset={〈encoding-name〉}
If the character encoding hasn’t been supplied in the .bib file with the encoding comment

% Encoding: 〈encoding-name〉

then you can supply the correct encoding using charset={encoding-name}. In general, it’s
better to include the encoding in the .bib file where it can also be read by a .bib managing
systems, such as JabRef.

See --tex-encoding for the encoding used to write the .glstex file.

interpret-preamble={〈boolean〉}
This is a boolean option that determines whether or not the interpreter should parse the contents
of @preamble. The default is true. If false, the preamble contents will still be written to the
.glstex file, but any commands provided in the preamble won’t be recognised if the interpreter
is needed to determine an entry’s sort value.

set-widest={〈boolean〉}
The alttree glossary style needs to know the widest name (for each level, if hierarchical). This
can be set using \glssetwidest provided by the glossaries package, but this requires knowing
which name is the widest.

The boolean option set-widest={true} will try to calculate the widest names for each
hierarchical level. Since it doesn’t know the fonts that will be used in the document or if there
are any non-standard commands that aren’t provided in the .bib files preamble, this option
may not work. The transcript file will include the message

43

Calculated width of '〈text〉': 〈number〉

where 〈text〉 is bib2gls’s interpretation of the contents of the name field and 〈number〉 is a
rough guide to the width of 〈text〉 assuming the operating system’s default serif font. The entry
that has the largest 〈number〉 is the one that will be selected. This will then be implemented
using:

\glssetwidest[〈level〉]{\glsentryname{〈id〉}}

where 〈id〉 is the entry’s label. This leaves TEX to compute the width according to the document
fonts.

If type has been set, the \glssetwidest command will be appended to the glossary pream-
ble for that type, otherwise it’s simply set in the .glstex file and may be overridden later in
the document if required.

secondary={〈list〉}
It may be that you want to display a glossary multiple times but with a different order. For
example, the first time alphabetically and the second time by category.

You can do this with the secondary option. The value (whichmust be supplied) is a comma-
separated list where each item in the list is in the format

〈sort〉:〈field〉:〈type〉

or

〈sort〉:〈type〉

If the 〈field〉 is omitted, the value of sort-field is used. The value of 〈sort〉 is as for sort,
but note that in this case the sort value unsrt or none means to use the same ordering as
the primary entries. So with sort={de-CH-1996}, secondary={none:copies} the copies
list will be ordered according to de-CH-1996 and not according to the order in which they
were read when the .bib file or files were parsed. If 〈sort〉 is custom, then the rule should be
provided with secondary-sort-rule.

This will copy all the selected entries into the glossary labelled 〈type〉 sorted according to
〈sort〉 using 〈field〉 as the sort value.

(If the glossary 〈type〉 doesn’t exist, it will be defined with \provideignoredglossary*
{〈type〉}.) Note that if the glossary already exists and contains entries, the existing entries
aren’t re-ordered. The new entries are simply appended to the list.

For example, suppose the .bib file contains entries like:

@entry{quartz,
name={quartz},
description={hard mineral consisting of silica},
category={mineral}

}

44

@entry{cabbage,
name={cabbage},
description={vegetable with thick green or purple leaves},
category={vegetable}

}

@entry{waterfowl,
name={waterfowl},
description={any bird that lives in or about water},
category={animal}

}

and the document preamble contains:

\GlsXtrLoadResources[src={entries},sort={en-GB},
secondary={en-GB:category:topic}

]

This sorts the primary entries according to the default sort-field and then sorts the entries
according to the category field and copies this list to the topic glossary (which will be pro-
vided if not defined.)

The secondary list can be displayed with the hypertargets switched off to prevent duplicates.
The cross-references will link to the original glossary.

For example:

\printunsrtglossary[title={Summary (alphabetical)}]
\printunsrtglossary[title={Summary (by topic)},target=false]

The alternative (or if more than two lists are required) is to reload the same .bib file with
different label prefixes. For example, if the entries are stored in entries.bib:

\newglossary*{nosort}{Symbols (Unsorted)}
\newglossary*{byname}{Symbols (Letter Order)}
\newglossary*{bydesc}{Symbols (Ordered by Description)}
\newglossary*{byid}{Symbols (Ordered by Label)}

\GlsXtrLoadResources[
src={entries},% entries.bib
sort={unsrt},
type={nosort}

]

\GlsXtrLoadResources[
src={entries},% entries.bib
sort={letter-case},
type={byname},

45

label-prefix={byname.}
]

\GlsXtrLoadResources[
src={entries},% entries.bib
sort={locale},
sort-field={description},
type={bydesc},
label-prefix={bydesc.}

]

\GlsXtrLoadResources[
src={entries},% entries.bib
sort={letter},
sort-field={id},
type={byid},
label-prefix={byid.}

]

secondary-sort-rule={〈value〉}
As sort-rule but for secondary custom sorting.

5.2 Selection Options

src={〈list〉}
This identifies the .bib files containing the entry definitions. The value should be a comma-
separated list of the required .bib files. These may either be in the current working directory
or in the directory given by the --dir switch or on TEX’s path (in which case kpsewhich will
be used to find them). The .bib extension may be omitted. Remember that if 〈list〉 contains
multiple files it must be grouped to protect the comma from the 〈options〉 list.
For example

\GlsXtrLoadResources[src={entries-terms,entries-symbols}]

indicates that bib2glsmust read the files entries-terms.bib and entries-symbols.bib
and create the file given by \jobname.glstex on the first instance or \jobname-〈n〉.glstex
on subsequent use.

With \glsxtrresourcefile[〈options〉]{〈filename〉}, if the src option is omitted, the .bib
file is assumed to be 〈filename〉.bib. For example:

\glsxtrresourcefile{entries-symbols}

46

indicates that bib2gls needs to read the file entries-symbols.bib, which contains the entry
data, and create the file entries-symbols.glstex. If the .bib file is different or if you have
multiple .bib files, you need to use the src option.
\GlsXtrLoadResources uses \jobname as the argument of \glsxtrresourcefile on

the first instance, so

\GlsXtrLoadResources[]

will assume src=\jobname. Remember that subsequent uses of \GlsXtrLoadResources
append a suffix, so in general it’s best to always supply src.

selection={〈value〉}
By default all entries that have records in the .aux file will be selected as well as all their
dependent entries. The dependent entries that don’t have corresponding records on the first
LATEX run, may need an additional build to ensure their location lists are updated.

Remember that on the first LATEX run the .glstex files don’t exist. This means that the en-
tries can’t be defined. The record package option additionally switches on the undefaction
={warn} option, which means that you’ll only get warnings rather than errors when you ref-
erence entries in the document. This means that you can’t use \glsaddall with bib2gls
because the glossary lists are empty on the first run, so there’s nothing for \glsaddall to it-
erate over. Instead, if you want to add all defined entries, you need to instruct bib2gls to do
this with the selection option. The following values are allowed:

• recorded and deps: add all recorded entries and their dependencies (default).

• recorded and deps and see: as above but will also add unrecorded entries whose
see or seealso field refers to a recorded entry.

• recorded no deps: add all recorded entries but not their dependencies. The dependen-
cies include those referenced in the see or seealso field, parent entries and those found
referenced with commands like \gls in the field values that are parsed by bib2gls.
With this setting, parents will be omitted unless they’ve been referenced in the docu-
ment through commands like \gls.

• recorded and ancestors: this is like the previous setting but parents are added even
if they haven’t been referenced in the document. The other dependent entries are omitted
if they haven’t been referenced in the document.

• all: add all entries found in the .bib files supplied in the src option.

The 〈value〉 must be supplied.
For example, suppose the file entries.bib contains:

@index{run}

@index{sprint,see={run}}

47

@index{dash,see={sprint}}

If the document only references the “run” entry (for example, using \gls{run}) then:

• If selection={recorded and deps}, only the “run” entry is selected. The “run” entry
has a record, so it’s selected, but it has no dependencies. Neither “sprint” nor “dash” have
records, so they’re not selected.

• If selection={recorded and deps and see}, the “run” and “sprint” entries are se-
lected, but not the “dash” entry. The “run” entry is selected because it has a record. The
“sprint” entry doesn’t have a record but its see field includes “run”, which does have a
record, so “sprint” is also selected. The “dash” entry doesn’t have a record. Its see field
references “sprint”. Although “sprint” has been selected, it doesn’t have any records, so
“dash” isn’t selected.

The above is just an example. The circuitous redirection of “dash” to “sprint” to “run” is
unhelpful to the reader and is best avoided. A better method would be:

@index{run}

@index{sprint,see={run}}

@index{dash,see={run}}

The selection={recorded and deps and see} in this case will select all three entries,
and the document won’t send the reader on a long-winded detour.

match={〈key=value list〉}
It’s possible to filter the selection by matching field values. If 〈key=value list〉 is empty no
filtering will be applied, otherwise 〈key=value list〉 should be a 〈key〉=〈regexp〉 list, where
〈key〉 is the name of a field or id for the entry’s label or entrytype for the entry’s .bib type
(as in the part after @ in the .bib file not the type field identifying the glossary label).
The 〈regex〉 part should be a regular expression conforming to Java’s Pattern class. The pat-

tern is anchored (oo.* matches oops but not loops) and 〈regexp〉 can’t be empty. Remember
that TEXwill expand the option list as it writes the information to the .aux file so take care with
special characters. For example, to match a literal period use \string\. not \. (backslash
dot).

If the field is missing its value it is assumed to be empty for the purposes of the pattern match
even if it will be assigned a non-empty default value when the entry is defined.

If a field is listed multiple times, the pattern for that field is concatenated using

(?:〈pattern-1〉)|(?:〈pattern-2〉)

where 〈pattern-1〉 is the current pattern for that field and 〈pattern-2〉 is the new pattern. This
means it performs a logical OR. For the non-duplicate fields the logical operator is given by
match-op. For example:

48

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

match-op={and},
match={
{category=animals},
{topic=biology},
{category=vegetables}

}

This will keep all the selected entries that satisfy:

• category matches (?:animals)|(?:vegetables)
(the category is either animals or vegetables)

AND

• topic is biology.

and will discard any entries that don’t satisfy this condition. A message will be written to the
log file for each entry that’s discarded.

Patterns for unknown fields will be ignored. If the entire list consists of patterns for unknown
fields it will be treated as match={}. That is, no filtering will be applied.

match-op={〈value〉}
If the value of match contains more than one 〈key〉=〈pattern〉 element, the match-op deter-
mines whether to apply a logical AND or a logical OR. The 〈value〉 may be either and or or.
The default is match-op={and}.

flatten={〈boolean〉}
This is a boolean option. The default value is flatten={false}. If flatten={true}, the
sorting will ignore hierarchy and the parent field will be omitted when writing the definitions
to the .glstex file, but the parent entries will still be considered a dependent ancestor from
the selection point of view.

Note the difference between this option and using ignore-fields={parent} which will
remove the dependency (unless a dependency is established through another field).

flatten-lonely={〈value〉}
This may take one of three values: false (default), presort and postsort. The value must
be supplied.

Unlike the flatten option, which completely removes the hierarchy, the flatten-lonely
option can be used to selectively alter the hierarchy. In this case only those entries that have a
parent but have no siblings are checked. This option is affected by the flatten-lonely-rule
setting. The conditions for moving a child up one hierarchical level are as follows:

• The child must have a parent, and

49

• the child can’t have any selected siblings, and

• if flatten-lonely-rule={only unrecorded parents} then the parent can’t have a
location list, where the location list includes records and see or seealso cross-references
(for the other rules the parent may have a location list as long as it only has the one child
selected).

If the child is selected for hierarchical adjustment, the parent will be removed if:

• The parent has no location list, and

• flatten-lonely-rule isn’t set to no discard.

The value of flatten-lonely determines whether the adjustment should be made before
sorting (presort) or after sorting (postsort). To disable this function use flatten-lonely
={false}.

For example, suppose the file entries.bib contains:

@index{birds}
@index{duck,parent={birds}}
@index{goose,plural={geese},parent={birds}}
@index{swan,parent={birds}}
@index{chicken,parent={birds}}

@index{vegetable}
@index{cabbage,parent={vegetable}}

@index{minerals}
@index{quartz,parent={minerals}}
@index{corundum,parent={minerals}}
@index{amber,parent={minerals}}
@index{gypsum,parent={minerals}}

@index{aardvark}
@index{bard}
@index{buzz}

@index{item}
@index{subitem,parent={item}}
@index{subsubitem,parent={subitem}}

and suppose the document contains:

\documentclass{article}

\usepackage[record,style=indexgroup]{glossaries-extra}

50

\GlsXtrLoadResources[src={entries.bib}]

\begin{document}
\gls{duck}.
\gls{quartz}, \gls{corundum}, \gls{amber}.
\gls{aardvark}, \gls{bard}, \gls{buzz}.
\gls{vegetable}, \gls{cabbage}.
\gls{subsubitem}.

\printunsrtglossaries
\end{document}

Although the duck entry has siblings in the entries.bib file, none of them have been recorded
(indexed) in the document, nor has the parent birds entry.

This document hasn’t used flatten-lonely, so the default flatten-lonely={false} is
assumed. This results in the hierarchical structure:

A

aardvark 1

B

bard 1
birds

duck 1
buzz 1

I

item

subitem

subsubitem 1

M

minerals

amber 1
corundum 1
quartz 1

51

V

vegetable 1
cabbage 1

(The “1” in the above indicates the page number.) There are some entries here that look a little
odd: duck, cabbage and subsubitem. In each case they are a lone child entry. It would look
better if they could be compressed, but I don’t want to use the flatten option, as I still want
to keep the mineral hierarchy.

If I now add flatten-lonely={postsort}:

\GlsXtrLoadResources[src={entries.bib},flatten-lonely=postsort]

the hierarchy becomes:

A

aardvark 1

B

bard 1
birds, duck 1
buzz 1

I

item, subitem, subsubitem 1

M

minerals

amber 1
corundum 1
quartz 1

V

vegetable 1
cabbage 1

The name field of the duck entry has been set to

name={\bibglsflattenedchildpostsort{birds}{duck}}

52

the text field has been set to

text={duck}

the group field is copied over from the parent entry (“B”), and the parent field has been ad-
justed, moving duck up one hierarchical level. Finally, the former parent birds entry has been
removed (the default flatten-lonely-rule={only unrecorded parents} is in effect).

The default definition of \bibglsflattenedchildpostsort formats its arguments so that
they are separated by a comma and space (“birds, duck”). If the text field had been set in the
original @index definition of duck, it wouldn’t have been altered. This adjustment ensures that
in the document \gls{duck} still produces “duck” rather than “birds, duck”. (If the child and
parent name fields are identical, the terms are considered homographs. See below for further
details.)

The subsubitem entry has also been adjusted. This was done in a multi-stage process,
starting with sub-items and then moving down the hierarchical levels:

• The subitem entry was adjusted, moving it from a sub-entry to a top-level entry. The
name field was then modified to

name={\bibglsflattenedchildpostsort{item}{subitem}}

This now means that the subsubitem entry is now a sub-entry (rather than a sub-sub-
entry). The subitem entry now has no parent, but at this stage the subsubitem entry
still has subitem as its parent.

• The subsubitem entry is then adjusted moving from a sub-entry to a top-level entry.
The name field was then modified to

name=
{%
\bibglsflattenedchildpostsort
{%
% name from former parent
\bibglsflattenedchildpostsort{item}{subitem}%

}%
{subsubitem}% original name

}

The first argument of \bibglsflattenedchildpostsort is obtained from the name
field of the entry’s former parent (which is removed from the child’s set of ancestors).
This field value was changed in the previous step, and the change is reflected here.
This means that the name for subitemwill be displayed as “item, subitem” and the name
for subsubitem will be displayed as “item, subitem, subsubitem”.

• The parent entries item and subitem are removed from the selection as they have no
location lists.

53

Note that the cabbage sub-entry hasn’t been adjusted. It doesn’t have any siblings but its
parent entry (vegetable) has a location list so it can’t be discarded. If I change the rule:

\GlsXtrLoadResources[src={entries.bib},
flatten-lonely-rule=discard unrecorded,
flatten-lonely=postsort]

then this will move the cabbage entry up a level but the original parent entry vegetable will
remain:

A

aardvark 1

B

bard 1
birds, duck 1
buzz 1

I

item, subitem, subsubitem 1

M

minerals

amber 1
corundum 1
quartz 1

V

vegetable 1
vegetable, cabbage 1

Remember that flatten-lonely={postsort} performs the adjustment after sorting. This
means that the entries are still in the same relative location that they were in with the original
flatten-lonely={false} setting. For example, duck remains in the B letter group before
“buzz”.

With flatten-lonely={presort} the adjustments are made before the sorting is per-
formed. For example, using:

54

\GlsXtrLoadResources[src={entries.bib},
flatten-lonely-rule=discard unrecorded,
flatten-lonely=presort]

the hierarchical order is now:

A

aardvark 1

B

bard 1
buzz 1

C

cabbage 1

D

duck 1

M

minerals

amber 1
corundum 1
quartz 1

S

subsubitem 1

V

vegetable 1

This method uses a different format for the modified name field. For example, the duck entry
now has:

name={\bibglsflattenedchildpresort{duck}{birds}}

55

The default definition of \bibglsflattenedchildpresort simply does the first argument
and ignores the second. The sorting is then performed, but the interpreter recognises this
command and can deduce that the sort value for this entry should be duck, so “duck” now ends
up in the D letter group.

If you provide a definition of \bibglsflattenedchildpresort in the @preamble, it will
be picked up by the interpreter. For example:

@preamble{"\providecommand{\bibglsflattenedchildpresort}[2]{#1 (#2)}"}

Note that the text field is only changed if not already set. This option may have unpre-
dictable results for abbreviations as the name field (and sometimes the text field) is typically
set by the abbreviation style. Remember that if the parent entry doesn’t have a location list and
the rule isn’t set to no discard then the parent entry will be discarded after all relevant en-
tries and their dependencies have been selected, so any cross-references within the parent entry
(such as \gls occurring in the description) may end up being selected even if they wouldn’t
be selected if the parent entry didn’t exist.

With both presort and postsort, if the parent name is the same as the child’s name then
the child is considered a homograph and the child’s name is set to

\bibglsflattenedhomograph{〈name〉}{〈parent label〉}

instead of the corresponding \bibglsflattenedchild...sort. This defaults to just 〈name〉.

flatten-lonely-rule={〈value〉}
This option governs the rule used by flatten-lonely to determine which sub-entries (that
have no siblings) to adjust and which parents to remove. The value may be one of the following:

only unrecorded parents Only the sub-entries that have a parent without a location list
will be altered. The parent entry will be removed from the selection. This value is the
default setting.

discard unrecorded This setting will adjust all sub-entries that have no siblings regardless
of whether or not the parent has a location list. Only the parent entries that don’t have a
location list will be removed from the selection.

no discard This setting will adjust all sub-entries that have no siblings regardless of whether
or not the parent has a location list. No entries will be discarded, so parent entries that
don’t have a location list will still appear in the glossary.

In the above, the location list includes records and cross-references obtained from the see or
seealso fields. See flatten-lonely for further details.

56

5.3 Master Documents

Suppose you have two documents mybook.tex and myarticle.tex that share a common
glossary that’s shown in mybook.pdf but not in myarticle.pdf. Furthermore, you’d like to
use hyperref and be able to click on a term in myarticle.pdf and be taken to the relevant
page in mybook.pdf where the term is listed in the glossary.

This can be achieved with the targeturl and targetname category attributes. For example,
without bib2gls the file mybook.tex might look like:

\documentclass{book}
\usepackage[colorlinks]{hyperref}
\usepackage{glossaries-extra}

\makeglossaries

\newglossaryentry{sample}{name={sample},description={an example}}

\begin{document}
\chapter{Example}
\gls{sample}.

\printglossaries
\end{document}

The other document myarticle.tex might look like:

\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage{glossaries-extra}

\newignoredglossary*{external}
\glssetcategoryattribute{external}{targeturl}{mybook.pdf}
\glssetcategoryattribute{external}{targetname}{\glolinkprefix\glslabel}

\newglossaryentry{sample}{type=external,category=external,
name={sample},description={an example}}

\begin{document}
\gls{sample}.
\end{document}

In this case the main glossary isn’t used, but the category attributes allow a mixture of in-
ternal and external references, so the main glossary could be used for the internal references.
(In which case, \makeglossaries and \printglossaries would need to be added back to
myarticle.tex.)

57

Note that both documents had to define the common terms. The above documents can be
rewritten to work with bib2gls. First a .bib file needs to be created:

@entry{sample,
name={sample},
description={an example}

}

Assuming this file is called myentries.bib, then mybook.tex can be changed to:

\documentclass{book}
\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[src={myentries}]

\begin{document}
\chapter{Example}
\gls{sample}.

\printunsrtglossaries
\end{document}

and myarticle.tex can be changed to:

\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\newignoredglossary*{external}
\glssetcategoryattribute{external}{targeturl}{mybook.pdf}
\glssetcategoryattribute{external}{targetname}{\glolinkprefix\glslabel}

\GlsXtrLoadResources[
src={myentries},
sort=none,
type=external,
category=external]

\begin{document}
\gls{sample}.
\end{document}

Most of the options related to sorting and the glossary format are unneeded here since the
glossary isn’t being displayed. This may be sufficient for your needs, but it may be that the book
has changed various settings that have been written to mybook.glstex but aren’t present in the

58

.bib file (such as short-case-change={uc}). In this case, you could just remember to copy
over the settings from mybook.tex to myarticle.tex, but another possibility is to simply
make myarticle.tex input mybook.glstex instead of using \GlsXtrLoadResources. This
can work but it’s not so convenient to set the label prefix, the type and the category. The master
option allows this, but it has limitations (see below), so in complex cases (in particular different
label prefixes combined with hierarchical entries or cross-references) you’ll have to use the
method shown in the example code above.

master={〈name〉}
This option will disable most of the options that relate to parsing and processing data contained
in .bib files (since this option doesn’t actually read any .bib files).

The use of master isn’t always suitable. In particular if any of the terms cross-reference
each other, such as through the see or seealso field or the parent field or using commands
like \gls in any of the other fields when the labels have been assigned prefixes. In this case
you will need to use the method described in the example above.

The 〈name〉 is the name of the .aux file for the master document without the extension
(in this case, mybook). It needs to be relative to the document referencing it or an absolute
path using forward slashes as the directory divider. Remember that if it’s a relative path, the
PDF files (mybook.pdf and myarticle.pdf) will also need to be located in the same relative
position.

When bib2gls detects the master option, it won’t search for entries in any .bib files (for
that particular resource set) but will create a .glstex file that inputs the master document’s
.glstex files, but it will additionally temporarily adjust the internal commands used to define
entries so that the prefix given by label-prefix, the glossary type and the category type are
all automatically inserted. If the type or category options haven’t been used, the correspond-
ing value will default to master. The targeturl and targetname category attributes will auto-
matically be set, and the glossary type will be provided using \provideignoredglossary*
{〈type〉}.

The above myarticle.tex can be changed to:

\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
label-prefix={book.},
master={mybook}]

\begin{document}
\gls{book.sample}.
\end{document}

There are some settings from the master document that you still need to repeat in the other

59

document. These include the label prefixes set when the master document loaded the resource
files, and any settings in the master document that relate to the master document’s entries.

For example, if the master document loaded a resource file with label-prefix={term.}
then you also need this prefix when you reference the entries in the dependent document in
addition to the label-prefix for the dependent document. Suppose mybook.tex loads the
resources using
\GlsXtrLoadResources[src={myentries},label-prefix={term.}]

and myarticle.tex loads the resources using:
\GlsXtrLoadResources[
label-prefix={book.},
master={mybook}]

Then the entries referenced in myarticle.tex need to use the prefix book.term. as in:
This is a \gls{book.term.sample} term.

Remember that the category labels will need adjusting to reflect the change in category label
in the dependent document.

For example, if mybook.tex included:
\setabbreviationstyle{long-short-sc}

then myarticle.tex will need:
\setabbreviationstyle[master]{long-short-sc}

(change master to 〈value〉 if you have used category={〈value〉}). You can, of course, choose
a different abbreviation style for the dependent document, but the category in the optional
argument needs to be correct.

master-resources={〈list〉}
If the master document has multiple resource files then by default all that document’s .glstex
files will be input. If you don’t want them all you can use master-resources to specify only
those files that should be included. The value 〈list〉 is a comma-separated list of names, where
each name corresponds to the final argument of \glsxtrresourcefile. Remember that
\GlsXtrLoadResources is just a shortcut for \glsxtrresourcefile that bases the name
on \jobname. (Note that, as with the argument of \glsxtrresourcefile, the .glstex ex-
tension should not be included.) The file \jobname.glstex is considered the primary re-
source file and the files \jobname-〈n〉.glstex (starting with 〈n〉 equal to 1) are considered
the supplementary resource files.

For example, to just select the first and third of the supplementary resource files (omitting
the primary mybook.glstex):
\GlsXtrLoadResources[
master={mybook},
master-resources={mybook-1,mybook-3}

]

60

5.4 Field and Label Options

ignore-fields={〈list〉}
The ignore-fields key indicates that you want bib2gls to skip the fields listed in the sup-
plied comma-separated 〈list〉 of field labels. Remember that unrecognised fields will always
be skipped.

For example, suppose my .bib file contains

@abbreviation{html,
short ="html",
long = {hypertext markup language},
description={a markup language for creating web pages},
seealso={xml}

}

but I want to use the short-long style and I don’t want the cross-referenced term, then I can use
ignore-fields={seealso,description}.

Note that ignore-fields={parent} removes the parent before determining the depen-
dency lists. Thismeans that selection={recorded and deps} and selection={recorded
and ancestors} won’t pick up the label in the parent field.

If you want to maintain the dependency and ancestor relationship but omit the parent field
when writing the entries to the .glstex file, you need to use flatten instead.

category={〈value〉}
The selected entries may all have their category field changed before writing their definitions
to the .glstex file. The 〈value〉 may be:

• same as entry: set the category to the .bib entry type used to define it (without the
leading @);

• same as type: set the category to the same value as the type field (if that field has
been provided either in the .bib file or through the type option);

• 〈label〉: the category is set to 〈label〉 (which mustn’t contain any special characters).

This will override any category fields supplied in the .bib file.
For example, if the .bib file contains:

@entry{bird,
name={bird},
description = {feathered animal}

}

@index{duck}

61

@index{goose,plural="geese"}

@dualentry{dog,
name={dog},
description={chien}

}

then if the document contains

\GlsXtrLoadResources[category={same as entry},src={entries}]

this will set the category of the bird field to entry (since it was defined with \entry), the
category of the duck and goose entries to index (since they were defined with @index),
and the category of the dog entry to dualentry (since it was defined with @dualentry).
Note that the dual entry dual.dog doesn’t have the category set, since that’s governed by
dual-category instead.

If, instead, the document contains

\GlsXtrLoadResources[category={animals},src={entries}]

then the category of all the primary selected entries will be set to animals. Again the dual
entry dual.dog doesn’t have the category set.

Note that the categories may be overridden by the commands, such as \bibglsnewindex,
that are used to actually define the entries.

For example, if the document contains

\newcommand{\bibglsnewdualentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2,category={dual}}{#4}%

}

\GlsXtrLoadResources[category={animals},src={entries}]

then both the dog and dual.dog entries will have their category field set to dual since the
new definition of \bibglsnewdualentry has overridden the category={animals} option.

type={〈value〉}
The 〈value〉may be same as entry or a glossary label. This is similar to the category option
except that it sets the type field. As with the category option, type={same as entry}
indicates that the entry type should be used. There is no 〈value〉 analogous to category=
{same as type}.

Make sure that the glossary type has already been defined.
Note that this setting only changes the type field for primary entries. Use dual-type for

dual entries.
For example:

62

\usepackage[record,symbols]{glossaries-extra}

\GlsXtrLoadResources[src={entries-symbols},type=symbols]

Remember that you can use the starred version of \newglossary if you don’t want to worry
about the extensions needed by makeindex or xindy. For example:

\usepackage[record,nomain]{glossaries-extra}

\newglossary*{dictionary}{Dictionary}

\GlsXtrLoadResources[src={entries-symbols},type=dictionary]

(The nomain option was added to suppress the creation of the default main glossary.)
Alternatively you can use \newignoredglossary if you don’t want the glossary picked up

by \printunsrtglossaries.

label-prefix={〈tag〉}
The label-prefix option prepends 〈tag〉 to each entry’s label. This 〈tag〉will also be inserted
in front of any cross-references, unless they start with dual. or ext〈n〉. (where 〈n〉 is an
integer).

For example, if the .bib file contains

@entry{bird,
name={bird},
description = {feathered animal, such as a \gls{duck} or \gls {goose}}

}

@entry{waterfowl,
name={waterfowl},
description={Any \gls{bird} that lives in or about water},
see={[see also]{duck,goose}}

}

@index{duck}

@index{goose,plural="geese"}

Then if this .bib file is loaded with label-prefix={gls.} it’s as though the entries had been
defined as:

@entry{gls.bird,
name={bird},
description = {feathered animal, such as a \gls{gls.duck} or

\gls{gls.goose}}

63

}

@entry{gls.waterfowl,
name={waterfowl},
description={Any \gls{gls.bird} that lives in or about water},
see={[see also]{gls.duck,gls.goose}}

}

@index{gls.duck,name={duck}}

@index{gls.goose,name={goose},plural="geese"}

Remember to use this prefix when you reference the terms in the document with commands
like \gls.

ext-prefixes={〈list〉}
Any cross-references in the .bib file that start with ext〈n〉. (where 〈n〉 is a positive integer)
will be substituted with the 〈n〉th tag listed in the comma-separated 〈list〉. If there aren’t that
many items in the list, the ext〈n〉. will simply be removed. The default setting is an empty
list, which will strip all ext〈n〉. prefixes.
For example, suppose the file entries-terms.bib contains:

@entry{set,
name={set},
description={collection of values, denoted \gls{ext1.set}}

}

and the file entries-symbols.bib contains:

@symbol{set,
name={\ensuremath{\mathcal{S}}},
description={a \gls{ext1.set}}

}

These files both contain an entrywith the label set but the description includes \gls{ext1.set}
which is referencing the entry from the other file. These two files can be loaded without conflict
using:

\usepackage[record,symbols]{glossaries-extra}

\GlsXtrLoadResources[src={entries-terms},
label-prefix={gls.},
ext-prefixes={sym.}

]

64

\GlsXtrLoadResources[src={entries-symbols},
type=symbols,
label-prefix={sym.},
ext-prefixes={gls.}

]

Now the set entry from entries-terms.bib will be defined with the label gls.set and
the description will be

collection of values, denoted \gls{sym.set}

The set entry from entries-symbols.bib will be defined with the label sym.set and the
description will be

a \gls{gls.set}

Note that in this case the .bib files have to be loaded as two separate resources. They can’t
be combined into a single src list as the labels aren’t unique.

If you want to allow the flexibility to choose between loading them together or separately,
you’ll have to give them unique labels. For example, entries-terms.bib could contain:

@entry{set,
name={set},
description={collection of values, denoted \gls{ext1.S}}

}

and entries-symbols.bib could contain:

@symbol{S,
name={\ensuremath{\mathcal{S}}},
description={a \gls{ext1.set}}

}

Now they can be combined with:

\GlsXtrLoadResources[src={entries-terms,entries-symbols}]

which will simply strip the ext1. prefix from the cross-references. Alternatively:

\GlsXtrLoadResources[src={entries-terms,entries-symbols},
label-prefix={gls.},
ext-prefixes={gls.}

]

which will insert the supplied label-prefix at the start of the labels in the entry definitions
and will replace the ext1. prefix with gls. in the cross-references.

65

short-case-change={〈value〉}
The value of the short field may be automatically converted to upper or lower case. This
option may take one of the following values:

• none: don’t apply any case-changing (default);

• lc: convert to lower case;

• uc: convert to upper case;

• lc-cs: convert to lower case using \MakeTextLowercase;

• uc-cs: convert to upper case using \MakeTextUppercase.

For example, if the .bib file contains

@abbreviation{html,
short = "html",
long = "hypertext markup language"

}

then short-case-change={uc} would convert the value of the short field into

HTML

whereas short-case-change={uc-cs} would convert it to

\MakeTextUppercase{html}

In the case of short-case-change={uc} and short-case-change={lc} only tokens that
are recognised as characters will be converted. For example, suppose I have a slightly more
eccentric definition:

@abbreviation{html,
short = "ht\emph{ml}",
long = "hypertext markup language"

}

then short-case-change={uc} would convert the value of the short field into:

HT\emph{ML}

Note that \emph isn’t modified as it’s recognised as a command. There’s no attempt at inter-
preting the contents at this point (but the value may later be interpreted during sorting).

For example, suppose an abbreviation is defined using:

short = "z\ae\oe",

then with short-case-change={uc}, this would be converted to

66

Z\ae\oe

since the interpreter isn’t being used at this stage. If the interpreter is later used during sorting,
the sort value will be set to Zæœ.

However, with short-case-change={uc-cs}, the short value would be converted to

\MakeTextUppercase{z\ae\oe}

If the interpreter is used during sorting, the sort value will be set to ZÆŒ.
You can use \NoCaseChange{〈text〉} to prevent the given 〈text〉 from having the case changed.

For example, if the short field is defined as

short = {a\NoCaseChange{bc}d}

then with short-case-change={uc}, this would be converted to

A\NoCaseChange{bc}D

(This command is provided by textcase, which is automatically loaded by glossaries.)
If you have a command that takes a label or identifier as an argument then it’s best to hide the

label in a custom command. For example, if the short field in the .bib definition is defined
as:

short = "ht\textcolor{red}{ml}",

then with short-case-change={uc} this would end up as:

HT\textcolor{RED}{ML}

which is incorrect. Instead, provide a command that hides the label (such as the \strong
example described on page 41).

See dual-short-case-change to adjust the dualplural field.

group={〈value〉}
This option may only be used with the --group switch. This will set the group field to 〈value〉
unless 〈value〉 is auto, in which case the value is set automatically during the sorting. For
example:

\GlsXtrLoadResources[sort=integer,group={Constants},
src={entries-constants}% data in entries-constants.bib

]
\GlsXtrLoadResources[sort=letter-case,group={Variables},
src={entries-variables}% data in entries-variables.bib

]

If the type field hasn’t been set in the .bib files, these entries will be added to the same
glossary, but will be grouped according to each instance of \GlsXtrLoadResources, with
the provided group label. The default behaviour is group={auto}.

67

save-child-count={〈boolean〉}
This is a boolean option. The default setting is save-child-count={false}. If save-child
-count={true}, each entry will be assigned a field called childcount with the value equal
to the number of child entries that have been selected.

The assignment is done using \GlsXtrSetField so there’s no associated key. For example,
suppose entries.bib contains:

@index{birds}
@index{duck,parent={birds}}
@index{goose,plural={geese},parent={birds}}
@index{swan,parent={birds}}

@index{minerals}
@index{quartz,parent={minerals}}
@index{corundum,parent={minerals}}
@index{amber,parent={minerals}}
@index{gypsum,parent={minerals}}
@index{gold,parent={minerals}}

and the document contains:

\documentclass{article}

\usepackage[record,style=indexgroup]{glossaries-extra}

\GlsXtrLoadResources[src={entries},save-child-count]

\begin{document}
\gls{duck} and \gls{goose}.
\gls{quartz}, \gls{corundum}, \gls{amber}.

\printunsrtglossaries
\end{document}

Then the .glstex file will contain:

\GlsXtrSetField{birds}{childcount}{2}
\GlsXtrSetField{duck}{childcount}{0}
\GlsXtrSetField{goose}{childcount}{0}
\GlsXtrSetField{minerals}{childcount}{3}
\GlsXtrSetField{amber}{childcount}{0}
\GlsXtrSetField{corundum}{childcount}{0}
\GlsXtrSetField{quartz}{childcount}{0}

68

Note that although birds has three children defined in the .bib file, only two have been se-
lected, so the child count is set to 2. Similarly the minerals entry has five children defined in
the .bib file, but only three have been selected, so the child count is 3.

The following uses the post-description hook to show the child count in parentheses:

\GlsXtrLoadResources[src={entries},category=general,save-child-count]

\renewcommand{\glsxtrpostdescgeneral}{%
\glsxtrifhasfield{childcount}{\glscurrententrylabel}
{ (child count: \glscurrentfieldvalue.)}%
{}%

}

(\glsxtrifhasfield requires at least glossaries-extra v1.19. It’s slightly more efficient that
\ifglshasfield provided by the base glossaries package, and it doesn’t complain if the entry
or field don’t exist, but note that \glsxtrifhasfield implicitly scopes its content. Use the
starred version to omit the grouping.)

5.5 Plurals

Some languages, such as English, have a general rule that plurals are formed from the sin-
gular with a suffix appended. This isn’t an absolute rule. There are plenty of exceptions (for
example, geese, children, churches, elves, fairies, sheep, mice), so a simplistic approach of
just doing \gls{〈label〉}[s] will sometimes produce inappropriate results, so the glossaries
package provides a plural key with the corresponding command \glspl.

In some cases a plural may not make any sense (for example, if the term is a verb or symbol),
so the plural key is optional, but to make life easier for languages where the majority of
plurals can simply be formed by appending a suffix to the singular, the glossaries package lets
the plural field default to the value of the text field with \glspluralsuffix appended.
This command is defined to be just the letter “s”. This means that the majority of terms in such
languages don’t need to have the plural supplied as well, and you only need to use it for the
exceptions.

For languages that don’t have this general rule, the plural field will always need to be
supplied for nouns.

There are other plural fields, such as firstplural, longplural and shortplural. Again,
if you are using a language that doesn’t have a simple suffix rule, you’ll have to supply the plural
forms if you need them (and if a plural makes sense in the context).

If these fields are omitted, the glossaries package follows these rules:

• If firstplural is missing, then \glspluralsuffix is appended to the first field,
if that field has been supplied. If the first field hasn’t been supplied but the plural
field has been supplied, then the firstplural field defaults to the plural field. If the
plural field hasn’t been supplied, then both the plural and firstplural fields default
to the text field (or name, if no text field) with \glspluralsuffix appended.

69

• If the longplural field is missing, then \glspluralsuffix is appended to the long
field, if the long field has been supplied.

• If the shortplural field is missing then, with the base glossaries acronym mechanism,
\acrpluralsuffix is appended to the short field.

The last case is different with the glossaries-extra extension package. The shortplural
field defaults to the short field with \abbrvpluralsuffix appended unless overridden by
category attributes. This suffix command is set by the abbreviation styles. This means that
every time an abbreviation style is implemented, \abbrvpluralsuffix is redefined. Most
styles simply define this command as:

\renewcommand*{\abbrvpluralsuffix}{\glsxtrabbrvpluralsuffix}

where \glsxtrabbrvpluralsuffix expands to \glspluralsuffix. The “sc” styles (such
as long-short-sc) use a different definition:

\renewcommand*{\abbrvpluralsuffix}{\protect\glsxtrscsuffix}

This allows the suffix to be reverted back to the upright font, counter-acting the affect of the
small-caps font.

This means that if you want to change or strip the suffix used for the plural short form,
it’s usually not sufficient to redefine \abbrvpluralsuffix, as the change will be undone the
next time the style is applied. Instead, for a document-wide solution, you need to redefine
\glsxtrabbrvpluralsuffix. Alternatively you can use the category attributes.
There are two attributes that affect the short plural suffix formation. The first is aposplural

which uses the suffix

'\abbrvpluralsuffix

That is, an apostrophe followed by \abbrvpluralsuffix is appended. The second attribute is
noshortplural which suppresses the suffix and simply sets shortplural to the same as short.
With bib2gls, if you have some abbreviations where the plural should have a suffix and

some where the plural shouldn’t have a suffix (for example, the document has both English and
French abbreviations) then there are two approaches.

The first approach is to use the category attributes. For example:

\glssetcategoryattribute{french}{noshortplural}

Now just make sure all the French abbreviations are have their category field set to french:

\GlsXtrLoadResources[src={fr-abbrvs},category={french}]

The other approach is to use the options listed below.

short-plural-suffix={〈value〉}
Sets the plural suffix for the default shortplural to 〈value〉. If this option is omitted or if
short-plural-suffix={use-default}, then bib2gls will leave it to glossaries-extra to
determine the appropriate default. If the 〈value〉 is omitted or empty, the suffix is set to empty.

70

dual-short-plural-suffix={〈value〉}
Sets the plural suffix for the default dualshortplural field to 〈value〉. If this option is omitted
or if dual-short-plural-suffix={use-default}, then bib2glswill leave it to glossaries-
extra to determine the appropriate default. If the 〈value〉 is omitted or empty, the suffix is set
to empty.

5.6 Location List Options

The record package option automatically adds two new keys: loclist and location. These
two fields are set by bib2gls from the information supplied in the .aux file (unless the option
save-locations={false} is used). The loclist field has the syntax of an etoolbox internal
list and includes every location (except for the discarded duplicates and ignored formats). Each
item in the list is provided in the form

\glsseeformat[〈tag〉]{〈label list〉}{}

for the cross-reference supplied by the see field,

\glsxtruseseealsoformat{〈label list〉}

for the cross-reference supplied by the seealso field, and

\glsnoidxdisplayloc{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}

for the locations. You can iterate through the loclist value using one of etoolbox’s internal
list loops (either by first fetching the list using \glsfieldfetch or through glossaries-extra’s
\glsxtrfielddolistloop or \glsxtrfieldforlistloop shortcuts).

The 〈format〉 is that supplied by the format keywhen using commands like \gls or \glsadd
(the encapsulator or encap in makeindex parlance). If omitted, format={glsnumberformat}
is assumed (unless this default value is changed with \GlsXtrSetDefaultNumberFormat,
provided by glossaries-extra v1.19+).

Ranges can be explicitly formed using the parenthetical encap syntax format={(} and
format={)} or format={(〈csname〉} and format={)〈csname〉} (where 〈csname〉 is the name
of a text-block command without the initial backslash) in the optional argument of commands
like \gls or \glsadd. These will always form a range, regardless of min-loc-range, and will
be encapsulated by \bibglsrange. (This command is not used with ranges that are formed
by collating consecutive locations.)

Explicit ranges don’t merge with neighbouring locations, but will absorb any single loca-
tions within the range that don’t conflict. (Conflicts will be moved to the start of the explicit
range.) For example, if \gls{sample} is used on page 1, \gls[format=(]{sample} is used
on page 2, \gls{sample} is used on page 3, and \gls[format=)]{sample} is used on page 4,
then the location list will be 1, 2–4. The entry on page 3 is absorbed into the explicit range,
but the range can’t be expanded to include page 1. If the entry on page 3 had a different for-
mat to the explicit range, for example \gls[format=textbf]{sample} then it would cause

71

a warning and be moved before the start of the range so that the location list would then be 1,
3, 2–4.

The special format format={glsignore} is provided by the glossaries package for cases
where the location should be ignored. (The command \glsignore simply ignores its argu-
ment.) This works reasonably well if an entry only has the one location, but if the entry happens
to be indexed again, it can lead to an odd empty gap in the location list with a spurious comma.
If bib2gls encounters a record with this special format, the entry will be selected but the
record will be discarded.

This means that the location list will be empty if the entry was only indexed with glsignore,
but if the entry was also indexed with another format then the location list won’t include the
ignored record. (This format is used by \glsaddallunused but remember that iterative com-
mands like this don’t work with bib2gls. Instead, just use selection={all} to select all
entries.)

For example, suppose you only want main matter locations in the number list, but you want
entries that only appear in the back matter to still appear in the glossary (without a location
list), then you could do:

\backmatter
\GlsXtrSetDefaultNumberFormat{glsignore}

(This command requires v1.19 of glossaries-extra.) If you also want to drop front matter loca-
tions as well:

\frontmatter
\GlsXtrSetDefaultNumberFormat{glsignore}
...
\mainmatter
\GlsXtrSetDefaultNumberFormat{glsnumberformat}
...
\backmatter
\GlsXtrSetDefaultNumberFormat{glsignore}

Note that explicit range formations aren’t discarded, so if glsignore is used in a range, such
as

\glsadd[format=(glsignore]{sample}
...
\glsadd[format=)glsignore]{sample}

then the range will be included in the location list (encapsulated with \glsignore), but this
case would be a rather odd use of this special format and is not recommended.

The locations are always listed in the order in which they were indexed, (except for the cross-
reference which may be placed at the start or end of the list or omitted). This is different to
xindy and makeindex where you can specify the ordering (such as lower case Roman first,
then digits, etc), but unlike those applications, bib2gls allows any location, although it may

72

not be able to work out an integer representation. (With xindy, you can define new location
formats, but you need to remember to add the appropriate code to the custom module.)

It’s possible to define a custom glossary style where \glossentry (and the child form
\subglossentry) ignore the final argument (which will be the location field) and instead
parse the loclist field and re-order the locations or process them in some other way. Remem-
ber that you can also use \glsnoidxloclist provided by glossaries. For example:

\glsfieldfetch{gls.sample}{loclist}{\loclist}% fetch location list
\glsnoidxloclist{\loclist}% iterate over locations

This uses \glsnoidxloclisthandler as the list’s handler macro, which simply displays each
location separated by \delimN. (See also Iteration Tips and Tricks.)

Each location is listed in the .aux file in the form:

\glsxtr@record{〈label〉}{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}

Exact duplicates are discarded. For example, if cat is indexed twice on page 1:

\glsxtr@record{cat}{}{page}{glsnumberformat}{1}
\glsxtr@record{cat}{}{page}{glsnumberformat}{1}

then the second record is discarded. Only the first record is added to the location list.
Partial duplicates, where all arguments match except for 〈format〉, may be discarded de-

pending on the value of 〈format〉. For example, if page 1 of the document uses \gls{cat} and
\gls[format=hyperbf]{cat} then the .aux file will contain:

\glsxtr@record{cat}{}{page}{glsnumberformat}{1}
\glsxtr@record{cat}{}{page}{hyperbf}{1}

This is a partial record match. In this case, bib2gls makes the following tests:

• If one of the formats includes a range formation, the range takes precedence.

• If one of the formats is glsnumberformat (as in the above example) or glsignore, that
format will be skipped. So in the above example, the second record will be added to the
location list, but not the first. (A message will only be written to the transcript if the
--debug switch is used.) The default glsnumberformat will take precedence over the
ignored format glsignore.

• If a mapping has been set with the --map-format switch that mapping will be checked.

• Otherwise the duplicate record will be discarded with a warning.

The location field is used to store the formatted location list. The code for this list is gener-
ated by bib2gls based on the information provided in the .aux file, the presence of the see or
seealso field and the various settings described in this chapter. When you display the glossary
using \printunsrtglossary, if the location field is present it will be displayed according to
the glossary style (and other factors, such as whether the nonumberlist option has been used,
either as a package option or supplied in the optional argument of \printunsrtglossary).
For more information on adjusting the formatting see the glossaries and glossaries-extra user
manuals.

73

http://www.dickimaw-books.com/latex/admin/html/foreachtips.shtml

save-locations={〈boolean〉}
By default, the locations will be processed and stored in the location and loclist fields.
However, if you don’t want the location lists (for example, you are using the nonumberlist
option or you are using xindywith a custom location rule), then there’s no need for bib2gls to
process the locations. To switch this function off, just use save-locations={false}. Note
that with this setting, if you’re not additionally using makeindex or xindy, then the locations
won’t be available even if you don’t have the nonumberlist option set.

min-loc-range={〈value〉}
By default, three or more consecutive locations 〈loc-1〉, 〈loc-2〉, . . . , 〈loc-n〉 are compressed
into the range 〈loc-1〉\delimR 〈loc-n〉 (where \delimR is provided by the glossaries package).
Otherwise the locations are separated by \delimN (again provided by glossaries). Asmentioned
above, these aren’t merged with explicit range formations.

You can change this with the min-loc-range setting where 〈value〉 is either none (don’t
form ranges) or an integer greater than one indicating how many consecutive locations should
be converted into a range.
bib2gls determines if one location {〈prefix-2〉}{〈counter-2〉}{〈format-2〉}{〈location-2〉}

is one unit more than another location {〈prefix-1〉}{〈counter-1〉}{〈format-1〉}{〈location-1〉}
according to the following:

1. If 〈prefix-1〉 is not equal to 〈prefix-2〉 or 〈counter-1〉 is not equal to 〈counter-2〉 or 〈format-
1〉 is not equal to 〈format-2〉, then the locations aren’t considered consecutive.

2. If either 〈location-1〉 or 〈location-2〉 are empty, then the locations aren’t considered con-
secutive.

3. If both 〈location-1〉 and 〈location-2〉 match the pattern (line break for clarity only)1

(.*?)(?:\\protect\s*)?(\\[\p{javaAlphabetic}@]+)\s*\{([\p{javaDigit}
\p{javaAlphabetic}]+)\}

then:
• if the control sequence matched by group 2 isn’t the same for both locations, the
locations aren’t considered consecutive;

• if the argument of the control sequence (group 3) is the same for both locations,
then the test is retried with 〈location-1〉 set to group 1 of the first pattern match and
〈location-2〉 set to group 1 of the second pattern match;

• otherwise the test is retried with 〈location-1〉 set to group 3 of the first pattern match
and 〈location-2〉 set to group 3 of the second pattern match.

1The Java class \p{javaDigit} used in the regular expression will not only match the Western Arabic digits
0,. . . , 9 but also digits in other scripts. Similarly the alphabetic classes will match alphabetic characters outside
the Basic Latin set.

74

4. If both 〈location-1〉 and 〈location-2〉 match the pattern

(.*?)([^\p{javaDigit}]?)(\p{javaDigit}+)

then:
a) if group 3 of both pattern matches are equal then:

i. if group 3 isn’t zero, the locations aren’t considered consecutive;
ii. if the separators (group 2) are different the test is retried with 〈location-1〉

set to the concatenation of the first two groups 〈group-1〉〈group-2〉 of the first
pattern match and 〈location-2〉 set to the concatenation of the first two groups
〈group-1〉〈group-2〉 of the second pattern match;

iii. if the separators (group 2) are the same the test is retried with 〈location-1〉 set
to the first group 〈group-1〉 of the first pattern match and 〈location-2〉 set to
the first group 〈group-1〉 of the second pattern match.

b) If 〈group-1〉 of the first pattern match (of 〈location-1〉) doesn’t equal 〈group-1〉 of
the second patternmatch (of 〈location-2〉) or 〈group-2〉 of the first pattern match (of
〈location-1〉) doesn’t equal 〈group-2〉 of the second pattern match (of 〈location-2〉)
then the locations aren’t considered consecutive;

c) If 0 < l2 − l1 ≤ d where l2 is 〈group 3〉 of the second pattern match, l1 is 〈group
3〉 of the first pattern match and d is the value of max-loc-diff then the locations
are consecutive otherwise they’re not consecutive.

5. The next pattern matches for 〈prefix〉〈sep〉〈n〉 where 〈n〉 is a lower case Roman numeral,
which is converted to a decimal value and the test is performed in the same way as the
above decimal test.

6. The next patternmatches for 〈prefix〉〈sep〉〈n〉where 〈n〉 is an upper case Roman numeral,
which is converted to a decimal value and the test is performed in the same way as the
above decimal test.

7. The next pattern matches for 〈prefix〉〈sep〉〈c〉 where 〈c〉 is either a lower case letter from
a to z or an upper case letter from A to Z. The character is converted to its code point and
the test is performed in the same way as the decimal pattern above.

8. If none of the above, the locations aren’t considered consecutive.

Examples:

1. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{1}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{2}

These records are consecutive. The prefix, counter and format are identical (so the test
passes step 1), the locations match the decimal pattern and the test in step 4c passes.

75

2. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{1}
\glsxtr@record{gls.sample}{}{page}{textbf}{2}

These records aren’t consecutive since the formats are different.

3. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{A.i}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{A.ii}

These records are consecutive. The prefix, counter and format are identical (so it passes
step 1). The locations match the lower case Roman numeral pattern, where A is con-
sidered a prefix and the dot is consider a separator. The Roman numerals i and ii are
converted to decimal and the test is retried with the locations set to 1 and 2, respectively.
This now passes the decimal pattern test (step 4c).

4. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{i.A}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{ii.A}

These records aren’t consecutive. They match the alpha pattern. The first location is
considered to consist of the prefix i, the separator . (dot) and the number given by the
character code of A. The second location is considered to consist of the prefix ii, the
separator . (dot) and the number given by the character code of A.
The test fails because the numbers are equal and the prefixes are different.

5. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{1.0}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{2.0}

These records are consecutive. Theymatch the decimal pattern, and then step 4a followed
by step 4(a)iii. The .0 part is discarded and the test is retried with the first location set
to 1 and the second location set to 2.

6. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{1.1}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{2.1}

These records aren’t consecutive as the test branches off into step 4(a)i.

7. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{\@alph{1}}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{\@alph{2}}

These records are consecutive. The locations match the control sequence pattern. The
control sequences are the same, so the test is retried with the first location set to 1 and
the second location set to 2. (Note that \glsxtrresourcefile changes the category
code of @ to allow for internal commands in locations.)

max-loc-diff={〈value〉}
This setting is used to determine whether two locations are considered consecutive. The value
must be an integer greater than or equal to 1. (The default is 1.)

76

For two locations, 〈location-1〉 and 〈location-2〉, that have numeric values n1 and n2 (and
identical prefix, counter and format), then the sequence 〈location-1〉, 〈location-2〉 is considered
consecutive if

0 < n2 − n1 ≤ 〈max-loc-diff 〉

The default value of 1 means that 〈location-2〉 immediately follows 〈location-1〉 if n2 = n1+1.
For example, if 〈location-1〉 is “B” and 〈location-2〉 is “C”, then n1 = 66 and n2 = 67.

Since n2 = 67 = 66 + 1 = n1 + 1 then 〈location-2〉 immediately follows 〈location-1〉.
This is used in the range formations within the location lists. So, for example, the list “1, 2,

3, 5, 7, 8, 10, 11, 12, 58, 59, 61” becomes “1–3, 5, 7, 8, 10–12, 58, 59, 61”.
The automatically indexing of commands like \glsmeans that the location lists can become

long and ragged. You could deal with this by switching off the automatic indexing and only
explicitly index pertinent use or you can adjust the value of max-loc-diff so that a range
can be formed even there are one or two gaps in it. By default, any location ranges that have
skipped gaps in this manner will be followed by \bibglspassim. The default definition of
this command is obtained from the resource file. For English, this is ␣passim (space followed
by “passim”).

So with the above set of locations, if max-loc-diff={2} then the list becomes “1–12 pas-
sim, 58–61 passim” which now highlights that there are two blocks within the document related
to that term.

suffixF={〈value〉}
If set, a range consisting of two consecutive locations 〈loc-1〉 and 〈loc-2〉 will be displayed in
the location list as 〈loc-1〉〈value〉.

Note that suffixF={} sets the suffix to the empty string. To remove the suffix formation
use suffixF={none}.

The default is suffixF={none}.

suffixFF={〈value〉}
If set, a range consisting of three or more consecutive locations 〈loc-1〉 and 〈loc-2〉 will be
displayed in the location list as 〈loc-1〉〈value〉.
Note that suffixFF={} sets the suffix to the empty string. To remove the suffix formation

use suffixFF={none}.
The default is suffixFF={none}.

see={〈value〉}
If an entry has a see field, this can be placed before or after the location list, or completely
omitted (but the value will still be available in the see field for use with \glsxtrusesee).
This option may take the following values:

• omit: omit the see reference from the location list.

77

• before: place the see reference before the location list.

• after: place the see reference after the location list (default).

The 〈value〉 part is required.
The separator between the location list and the cross-reference is provided by \bibglsseesep.

This separator is omitted if the location list is empty. The cross-reference is written to the
location field using \glsxtrusesee{〈label〉}.

seealso={〈value〉}
This is like see but governs the location of the cross-references provided by the seealso field.
You need at least v1.16 of glossaries-extra for this option. The values are the same as for
see but the separator is given by \bibglsseealsosep. The cross-reference is written to the
location field using \glsxtruseseealso{〈label〉}.

alias-loc={〈value〉}
If an entry has an alias field, the location list may be retained or omitted or transferred to the
target entry. The 〈value〉 may be one of:

• keep: keep the location list;

• transfer: transfer the location list;

• omit: omit the location list.

The default setting is alias-loc={transfer}. In all cases, the target entry will be added to
the see field of the entry with the alias field, unless it already has a see field (in which case
the see value is left unchanged).

Note that with alias-loc={transfer}, both the aliased entry and the target entry must
be in the same resource set. (That is, both entries have been selected by the same instance of
\glsxtrresourcefile.) If you have glossaries-extra version 1.12, you may need to redefine
\glsxtrsetaliasnoindex to do nothing if the location lists aren’t showing correctly with
aliased entries. (This was corrected in version 1.13.)

loc-prefix={〈value〉}
The loc-prefix setting indicates that the location lists should begin with \bibglslocprefix
{〈n〉}. The 〈value〉 may be one of the following:

• false: don’t insert \bibglslocprefix{〈n〉} at the start of the location lists (default).

• {〈prefix-1〉},{〈prefix-2〉},...,{〈prefix-n〉}: insert \bibglslocprefix{〈n〉} (where
〈n〉 is the number of locations in the list) at the start of each location list and the def-
inition of \bibglslocprefix will be appended to the glossary preamble providing an
\ifcase condition:

78

\providecommand{\bibglslocprefix}[1]{%
\ifcase#1
\or 〈prefix-1〉\bibglspostlocprefix
\or 〈prefix-2〉\bibglspostlocprefix
...
\else 〈prefix-n〉\bibglspostlocprefix
\fi

}

• list: equivalent to loc-prefix={\pagelistname }.

• true: equivalent to loc-prefix={\bibglspagename,\bibglspagesname}, where
the definitions of \bibglspagename and \bibglspagesname are obtained from the
tag.page and tag.pages entries in bib2gls’s language resource file. This setting
works best if the document’s language matches the language file. However, you can rede-
fine these commands within the document’s language hooks or in the glossary preamble.

If 〈value〉 is omitted, true is assumed. Take care not to mix different values of loc-prefix
for entries for the same type setting. It’s okay to mix loc-prefix={false} with another
value, but don’t mix non-false values. See the description of \bibglslocprefix for further
details.

For example:

\GlsXtrLoadResources[type=main,src={entries1},loc-prefix=false]
\GlsXtrLoadResources[type=main,src={entries2},loc-prefix]
\GlsXtrLoadResources[type=symbols,src={entries3},loc-prefix={p.,pp.}]

This works since the conflicting loc-prefix={p.,pp.} and loc-prefix={true} are in dif-
ferent glossaries (assigned through the type key). The entries fetched from entries1.bib
won’t have a location prefix. The entries fetched from entries2.bib will have the location
prefix obtained from the language resource file. The entries fetched from entries3.bib will
have the location prefix “p.” or “pp.” (Note that using the type option isn’t the same as setting
the type field for each entry in the .bib file.)

If the type option isn’t used:

\GlsXtrLoadResources[src={entries1},loc-prefix=false]
\GlsXtrLoadResources[src={entries2},loc-prefix]
\GlsXtrLoadResources[src={entries3},loc-prefix={p.,pp.}]

then loc-prefix={true} takes precedence over loc-prefix={p.,pp.} (since it was used
first). The entries fetched from entries1.bib still won’t have a location prefix, but the entries
fetched from both entries2.bib and entries3.bib have the location prefixes obtained from
the language resource file.

79

loc-suffix={〈value〉}
This is similar to loc-prefix but there are some subtle differences. In this case 〈value〉 may
either be the keyword false (in which case the location suffix is omitted) or a comma-separated
list 〈suffix-0〉,〈suffix-1〉,...,〈suffix-n〉 where 〈suffix-0〉 is the suffix to use when the location
list only has a cross-reference with no locations, 〈suffix-1〉 is the suffix to use when the location
list has one location (optionally with a cross-reference), and so on. The final 〈suffix-n〉 in the list
is the suffix when the location list has 〈n〉 or more locations (optionally with a cross-reference).

This option will append \bibglslocsuffix{〈n〉} to location lists that either have a cross-
reference or have at least one location. Unlike \bibglslocprefix, this command isn’t used
when the location list is completely empty. Also, unlike \bibglslocprefix, this suffix com-
mand doesn’t have an equivalent to \bibglspostlocprefix.

If 〈value〉 omitted, loc-suffix={\@.} is assumed. The default is loc-suffix={false}.
As with loc-prefix, take care not to mix different values of loc-suffix for entries in the

same glossary type.

loc-counters={〈list〉}
Commands like \gls allow you to select a different counter to use for the location for that
specific instance (overriding the default counter for the entry’s glossary type). This is done
with the counter option. For example, consider the following document:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,style=tree]{glossaries-extra}

\GlsXtrLoadResources[
src={entries}% data in entries.bib

]

\begin{document}

\gls{pi}.

\begin{equation}
\gls[counter=equation]{pi}
\end{equation}

\begin{equation}
\gls[counter=equation]{pi}
\end{equation}

\newpage

80

\begin{equation}
\gls[counter=equation]{pi}
\end{equation}

\newpage

\gls{pi}.

\newpage

\gls{pi}.

\newpage

\gls{pi}.

\newpage

\printunsrtglossaries
\end{document}

This results in the location list “1, 1–3, 3–5”. This looks a little odd and it may seem as though
the range formation hasn’t worked, but the locations are actually: page 1, equation 1, equation 2,
equation 3, page 3, page 4 and page 5. Ranges can’t be formed across different counters.

The loc-counters={〈list〉} option instructs bib2gls to group the locations according to
the counters given in the comma-separated 〈list〉. If a location has a counter that’s not listed in
〈list〉, then the location is discarded.

For example:

\GlsXtrLoadResources[
loc-counters={equation,page},% group locations by counter
src={entries}% data in entries.bib

]

This will first list the locations for the equation counter and then the locations for the page
counter. Each group of locations is encapsulatedwithin the command \bibglslocationgroup
{〈n〉}{〈counter〉}{〈locations〉}. The groups are separated by \bibglslocationgroupsep
(which defaults to \delimN).

The 〈list〉 value must be non-empty. Use loc-counters={as-use} to restore the default
behaviour, where the locations are listed in the document order of use, or save-locations=
{false} to omit the location lists. Note that you can’t form counter groups from supplemental
location lists.

81

5.7 Supplemental Locations

These options require at least version 1.14 of glossaries-extra.

supplemental-locations={〈basename〉}
The glossaries-extra package (from v1.14) provides a way of manually adding locations in
supplemental documents through the use of the thevalue option in the optional argument
of \glsadd. Setting values manually is inconvenient and can result in errors, so bib2gls
provides a way of doing this automatically. Both the main document and the supplementary
document need to use the record option. The entries provided in the src set must have the
same labels as those used in the supplementary document. (The simplest way to achieve this
is to ensure that both documents use the same .bib files and the same prefixes.)

For example, suppose the file entries.bib contains:

@entry{sample,
name={sample},
description="an example entry"

}

@abbreviation{html,
short="html",
long={hypertext markup language}

}
@abbreviation{ssi,
short="ssi",
long="server-side includes"

}

@index{goose,plural="geese"}

Now suppose the supplementary document is contained in the file suppl.tex:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,counter=section]{glossaries-extra}

\GlsXtrLoadResources[src=entries]

\renewcommand{\thesection}{S\arabic{section}}
\renewcommand{\theHsection}{\thepart.\thesection}

\begin{document}
\part{Sample Part}

82

\section{Sample Section}
\gls{goose}. \gls{sample}.

\part{Another Part}
\section{Another Section}
\gls{html}.
\gls{ssi}.

\printunsrtglossaries
\end{document}

This uses the section counter for the locations and has a prefix (\thepart.) for the section
hyperlinks.

Now let’s suppose I have another document called main.tex that uses the sample entry,
but also needs to include the location (S1) from the supplementary document. The manual
approached offered by glossaries-extra is quite cumbersome and requires setting the external-
location attribute and using \glsadd with thevalue={S1}, theHvalue={I.S1} and format
={glsxtrsupphypernumber}.

This can be simplified with bib2gls by using the supplemental-locations option. The
value should be the base name (without the extension) of the supplementary document (suppl
in the above example). For example:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
supplemental-locations=suppl,% fetch records from suppl.aux
src=entries]

\begin{document}
\Gls{sample} document.

\printunsrtglossaries

\end{document}

The location list for sample will now be “1, S1” (page 1 from the main document and S1 from
the supplementary document). Note that the original location format from the supplementary
document will be replaced by glsxtrsupphypernumber, which will produce an external hy-
perlink if the main document loads the hyperref package. (Note that not all PDF viewers can
handle external hyperlinks, and some that can open the external PDF file may not recognise
the destination within that file.)

The supplementary locations lists are encapsulated within \bibglssupplemental.

83

supplemental-selection={〈value〉}
In the above example, only the sample entry is listed in the main document, even though
the supplementary document also references the goose, html and ssi entries. By default,
only those entries that are referenced in the main document will have supplementary locations
added (if found in the supplementary document’s .aux file). You can additionally include other
entries that are referenced in the supplementary document but not in the main document using
supplemental-selection. The 〈value〉 may be one of the following:

• all: add all the entries in the supplementary document that have been defined in the
.bib files listed in src for this resource set in the main document.

• selected: only add supplemental locations for entries that have already been selected
by this resource set.

• 〈label-1〉,. . . ,〈label-2〉: in addition to all those entries that have already been selected by
this resource set, also add the entries identified in the comma-separated list. If a label
in this list doesn’t have a record in the supplementary document’s .aux file, it will be
ignored.

Any records in the supplementary .aux file that aren’t defined by the current resource set
(through the .bib files listed in src) will be ignored. Entry aliases aren’t taken into account
when including supplementary locations.

For example:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
supplemental-locations=suppl,
supplemental-selection={html,ssi},
src=entries]

\begin{document}
\Gls{sample} document.

\printunsrtglossaries

\end{document}

This will additionally add the html and ssi entries even though they haven’t been used in this
document. The goose entry used in the supplementary document won’t be included.

If an entry has both a main location list and a supplementary location list (such as the sample
entry above), the lists will be separated by \bibglssupplementalsep.

84

supplemental-category={〈value〉}
The category for entries containing supplemental location listsmay be set using supplemental
-category. If unset, 〈value〉 defaults to the same as that given by the category option. The
〈value〉may either be a known identifier (as per category) or the category label. For example:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
supplemental-locations=suppl,
supplemental-selection={html,ssi},
supplemental-category={supplemental},
src=entries]

\begin{document}
\Gls{sample} document.

\printunsrtglossaries

\end{document}

5.8 Sorting

Entries are typically sorted (for example, alphabetically or in order of use), but the glossaries-
extra package is versatile enough to be used in wider contexts than simple terms, symbols or
abbreviations. For example, entries could contain theorems or problems where the name sup-
plies the title and the description provides a description of the theorem or problem. Another
field might then contain the proof or solution. Therefore, somewhat unusually for an indexing
application, bib2gls also provides the option to shuffle the entries instead of sorting them.

sort={〈value〉}
The sort key indicates how entries should be sorted. The 〈value〉 may be one of:

• none (or unsrt): don’t sort the entries. (The entries will be in the order they were
processed when parsing the data.)

• random: shuffles rather than sorts the entries. This won’t work if there are hierarchical
entries, so it’s best to use this option with flatten. The seed for the random generator
can be set using shuffle (which also automatically sets sort={random} and flatten).

85

• 〈lang tag〉: sort according to the rules of the locale given by the IETF language tag 〈lang
tag〉. (Use with break-at to determine whether or not to split at word boundaries.)

• locale: equivalent to sort={〈lang tag〉} where 〈lang tag〉 is obtained from the operat-
ing system (or Java Runtime Environment).

• doc: sort the entries according to the document language. This is equivalent to sort=
{〈lang tag〉}where 〈lang tag〉 is the locale associatedwith the document language. In the
case of a multi-lingual document, 〈lang tag〉 is the locale of the last language resource
file to be loaded through tracklang’s interface. It’s best to explicitly set the locale for
multi-lingual documents to avoid confusion. If no languages have been tracked, this
option is equivalent to sort={locale}.

• custom: sort the entries according to the rule provided by sort-rule.

• use: sort in order of use. (This order is determined by the records written to the .aux
file by the record package option.)

• letter-case: case-sensitive letter (character code) sort.

• letter-case-reverse: reverse case-sensitive letter (character code) sort.

• letter-nocase: case-insensitive letter (character code) sort. Use sort={〈lang tag〉}
with break-at={none} to emulate xindy’s locale letter ordering.

• letter-nocase-reverse: reverse case-insensitive letter (character code) sort.

• integer: integer sort. This is for integer sort values. Any value that isn’t an integer is
treated as 0.

• integer-reverse: as above but reverses the order.

• hex: hexadecimal integer sort. This is for hexadecimal sort values. Any value that isn’t
a hexadecimal number is treated as 0.

• hex-reverse: as above but reverses the order.

• octal: octal integer sort. This is for octal sort values. Any value that isn’t a octal number
is treated as 0.

• octal-reverse: as above but reverses the order.

• binary: binary integer sort. This is for binary sort values. Any value that isn’t a binary
number is treated as 0.

• binary-reverse: as above but reverses the order.

• float: single-precision sort. This is for decimal sort values. Any value that isn’t a
decimal is treated as 0.0.

86

• float-reverse: as above but reverses the order.

• double: double-precision sort. This is for decimal sort values. Any value that isn’t a
decimal is treated as 0.0.

• float-reverse: as above but reverses the order.

If the 〈value〉 is omitted, sort={doc} is assumed. If the sort option isn’t used then sort=
{locale} is assumed.

Note that sort={locale} can provide more detail about the locale than sort={doc}, de-
pending on how the document language has been specified.

For example, with:

\documentclass{article}
\usepackage[ngerman]{babel}
\usepackage[record]{glossaries}
\GlsXtrLoadResources[src={german-terms}]

the language tag will be de-1996, which doesn’t have an associated region. Whereas with

\documentclass[de-DE-1996]{article}
\usepackage[ngerman]{babel}
\usepackage[record]{glossaries}
\GlsXtrLoadResources[src={german-terms}]

the language tag will be de-DE-1996 because tracklang has picked up the locale from the
document class options. This is only likely to cause a difference if a language has different
sorting rules according to the region or if the language may be written in multiple scripts.

A multilingual document will need to have the sort specified when loading the resource to
ensure the correct language is chosen. For example:

\GlsXtrLoadResources[src={english-terms},sort={en-GB}]
\GlsXtrLoadResources[src={german-terms},sort={de-DE-1996}]

sort-rule={〈value〉}
If the sort={custom} option is used, the sort rule must be provided with sort-rule. In
this case the collation is performed using Java’s RuleBasedCollator class. Remember that the
options will be expanded as they are written to the .aux file, so be careful of any special
characters that occur in the rule. You can use \string\u〈hex〉 (where 〈hex〉 is a hexadecimal
code) to represent a Unicode character. For example:

\GlsXtrLoadResources[
sort={custom},
sort-rule={< a,A < b,B < c,C < ch,Ch,CH < d,D
< dd,Dd,DD < e,E < f,F < ff,Ff,FF
< g,G < ng,Ng,NG < h,H < ij,Ij,IJ

87

http://docs.oracle.com/javase/8/docs/api/java/text/RuleBasedCollator.html

< i,I < j,J < k,K < l,L < ll,Ll,LL < m,M
< n,N < o,O < p,P < ph,Ph,PH < q,Q < r,R < rh,Rh,RH
< s,S < t,T < th,Th,TH < u,U < v,V < w,W < x,X < y,Y < z,Z
< \string\u00E6,\string\u00C6}

]

You can also use \protect instead of \string. This will cause a space to appear between \u
and the hexadecimal value in the .aux file (if 〈hex〉 starts with a decimal digit), but bib2gls
will accept a single space between \u and 〈hex〉 to allow for this. However it’s safer to just use
\string (in case 〈hex〉 start with a letter).

If sort is not set to custom, the sort-rule setting will be ignored.

break-at={〈option〉}
The rule-based sort options (sort={〈lang tag〉} and sort={custom}) typically list punctua-
tion characters (such as space) before alphabetical characters. This means that the rule-based
sort options are naturally in a letter order, similar to xindy’s ord/letorder module. This
isn’t the same as sort={letter-nocase} as the locale letter ordering is rule-based rather
than according to the Unicode value.

In order to replicate makeindex and xindy’s default word order, bib2gls splits up the sort
value at word boundaries and inserts a marker (identified by break-marker).

For example, if the sort value is “sea lion” then it’s actually converted to sea|lion|whereas
“sea” becomes sea| and “seal” becomes seal|. The default marker is | which is commonly
placed in collation rules before digits but after the ignored characters, such as spaces and hy-
phens.

You can changewhere the break points are insertedwith break-at={〈option〉}where 〈option〉
may be one of:

• word: break at word boundaries (default). For example, the sort value “Tom, Dick, and
Harry” becomes Tom|Dick|and|Harry.

• character: break after each character.

• sentence: break after each sentence.

• none: don’t create break points. Use this option to emulate makeindex or xindy’s letter
ordering.

This option is ignored when used with the non-locale sort options. Use the --debug switch
to show the break points. (This will also show the collation rule.)

break-marker={〈marker〉}
The break marker can be changed using break-marker={〈marker〉}, where 〈marker〉 is the
character to use. For example, break-marker={-} will use a hyphen. The marker may be

88

empty, which effectively strips the inter-word punctuation. For example, with break-marker
={}, “Tom, Dick, and Harry” becomes TomDickandHarry and “sea lion” simply becomes
sealion. If 〈marker〉 is omitted, break-marker={} is assumed.

sort-field={〈field〉}
The sort-field key indicates which field provides the sort value. The default is the sort
field. For example

\GlsXtrLoadResources[
src={entries-terms},% data in entries-terms.bib
sort-label=category,% sort by 'category' field
sort=letter-case% case-sensitive letter sort

]

This sorts the entries according to the category field using a case-sensitive letter comparison.
You may also use sort-field={id} to sort according to the label.

If an entry is missing a value for 〈field〉, then the value of the fallback field will be used
instead. For example, with the default sort-field={sort}, then for an entry defined with
@entry, if the sort field is missing the fallback field will be the name or the parent field if
the name field is missing. If the entry is instead defined with @abbreviation (or @acronym)
then if the sort field is missing, bib2gls will start with the same fallback as for @entry but
if neither the name or parent field is set, it will fallback on the short field.

If no fallback field can be found, the entry’s label will be used.

shuffle={〈seed〉}
Automatically sets sort={random} and flatten. The value 〈seed〉 may be omitted. If
present, it should be an integer used as a seed for the random number generator.

strength={〈value〉}
The collation strength used by sort={〈locale〉} can be set to the following values: primary
(default), secondary, tertiary or identical. These indicate the difference between two
characters, but the exact assignment is locale dependent. See the documentation for Java’s
Collator class for further details.

For example, suppose the file entries.bib contained:

@index{resume}

@index{RESUME}

@index{resumee,
name={r\'esum\'e}}

89

http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html

@index{rat}

@index{rot}

@index{aardvark}

@index{zoo}

and the document contained:

\documentclass{article}

\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[sort={en},src={entries}]

\begin{document}
\gls{resumee}, \gls{resume}, \gls{RESUME},
\gls{aardvark}, \gls{rat}, \gls{rot}, \gls{zoo}.

\printunsrtglossaries
\end{document}

then this uses the default strength={primary}, so the entries are listed as aardvark, rat,
résumé, resume, RESUME, rot, zoo.

If the strength is changed to secondary:

\GlsXtrLoadResources[sort={en},src={entries},strength=secondary]

then the entries are listed as aardvark, rat, resume, RESUME, résumé, rot, zoo.
If the strength is changed to tertiary or identical, there’s no difference from strength

={secondary} for this particular example.
This option is ignored by non-locale sorts (such as letter or numeric).

decomposition={〈value〉}
The collation decomposition used by sort={〈locale〉} can be set to the following values:
canonical (default), full or none. This determines how Unicode composed characters are
handled. The fastest mode is none but is only appropriate for languages without accents. The
slowest mode is full but is the most complete for languages with non-ASCII characters. See
the documentation for Java’s Collator class for further details. This option is ignored by
non-locale sorts (such as letter or numeric).

90

http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html

5.9 Dual Entries

dual-sort={〈value〉}
This option indicates how to sort the dual entries. The primary entries are sorted with the
normal entries according to sort, and the dual entries are sorted according to dual-sort un-
less dual-sort={combine} in which case the dual entries will be combined with the primary
entries and all the entries will sorted together according to the sort option.

If 〈value〉 isn’t set to combine then the dual entries are sorted separately according to 〈value〉
(as per sort) and the dual entries will be appended at the end of the .glstex file. The field
used by the comparator is given by dual-sort-field. If dual-sort={custom}, then the
dual entries according to the rule provided by dual-sort-rule.

For example:
\GlsXtrLoadResources[
src={entries-dual},
sort={en},
dual-sort={de-CH-1996}
]

This will sort the primary entries according to en (English) and the secondary entries according
to de-CH-1996 (Swiss German new orthography) whereas:
\GlsXtrLoadResources[
src={entries-dual},
sort={en-GB},
dual-sort={combine}
]

will combine the dual entries with the primary entries and sort them all according to the en-GB
locale (British English).

If not set, dual-sort defaults to combine. If 〈value〉 is omitted, locale is assumed.

dual-sort-field={〈value〉}
This option indicates the field to use when sorting dual entries (when they haven’t been com-
bined with the primary entries). The default value is the same as the sort-field value.

dual-sort-rule={〈value〉}
As sort-rule but for dual-sort={custom}.

dual-prefix={〈value〉}
This option indicates the prefix to use for the dual entries. The default value is dual. (including
the terminating period). Any references to dual entries within the .bib file should use the prefix
dual. which will be replaced by 〈value〉 when the .bib file is parsed.

91

dual-type={〈value〉}
This option sets the type field for all dual entries. (The primary entries obey the type option.)
This will override any value of type provided in the .bib file (or created through a mapping).
The 〈value〉 is required.

The 〈value〉 may be:

• same as entry: sets the type to the entry type. For example, if the entry was defined
with @dualentry, the type will be set to dualentry.

• same as primary: sets the type to the same as the corresponding primary entry’s type
(which may have been set with type). If the primary entry doesn’t have the type field
set, the dual’s type will remain unchanged.

• 〈label〉: sets the type field to 〈label〉.

Remember that the glossary with that label must have already been defined.
For example:

\newglossary*{english}{English}
\newglossary*{french}{French}

\GlsXtrLoadResources[src={entries},sort={en},dual-sort={fr},
type=english,
dual-type=french]

Alternatively:

\newglossary*{dictionary}{Dictionary}

\GlsXtrLoadResources[src={entries},sort={en},dual-sort={fr},
type=dictionary,
dual-type={same as primary}]

dual-category={〈value〉}
This option sets the categoryfield for all dual entries. (The primary entries obey the category
option.) This will override any value of category provided in the .bib file (or created through
a mapping). The 〈value〉 may be empty.

The 〈value〉 may be:

• same as entry: sets the category to the entry type. For example, if the entry was
defined with @dualentry, the category will be set to dualentry.

• same as primary: sets the category to the same as the corresponding primary entry’s
category (which may have been set with category). If the primary entry doesn’t have
the category field set, the dual’s category will remain unchanged.

92

• same as type: sets the category to the same as the value of the entry’s type field
(which may have been set with dual-type). If the entry doesn’t have the type field set,
the category will remain unchanged.

• 〈label〉: sets the category field to 〈label〉.

dual-short-case-change={〈value〉}
As short-case-change but applies to the dualshort field instead.

dual-entry-map={{〈list1〉},{〈list2〉}}

This setting governs the behaviour of @dualentry definitions. The value consists of two
comma-separated lists of equal length identifying the field mapping used to create the dual
entry from the primary one. Note that the alias field can’t be mapped.

The default setting is:

dual-entry-map=
{
{name,plural,description,descriptionplural},
{description,descriptionplural,name,plural}

}

The dual entry is created by copying the value of the field in the first list 〈list1〉 to the field in
the corresponding place in the second list 〈list2〉. Any additional fields are copied over to the
same field.

For example:

@dualentry{cat,
name={cat},
description={chat},
see={dog}

}

defines two entries. The primary entry is essentially like

@entry{cat,
name={cat},
plural={cat\glspluralsuffix },
description={chat},
descriptionplural={chat\glspluralsuffix },
see={dog}

}

and the dual entry is essentially like

93

@entry{dual.cat,
description={cat},
descriptionplural={cat\glspluralsuffix },
name={chat},
plural={chat\glspluralsuffix },
see={dog}

}

(except they’re defined using \bibglsnewdualentry instead of \bibglsnewentry, and each
is considered dependent on the other.)

The see field isn’t listed in dual-entry-map so its value is simply copied directly over to the
see field in the dual entry. Note that themissing plural fields (plural and descriptionplural)
have been filled in.

In general bib2gls doesn’t try to supply missing fields, but in the dual entry cases it needs to
do this for themapped fields. This is because the shuffled fieldsmight have different default val-
ues from the glossaries-extra package’s point of view. For example, \longnewglossaryentry
doesn’t provide a default for descriptionplural if if hasn’t been set.

dual-abbrv-map={{〈list1〉},{〈list2〉}}

This is like dual-entry-map but applies to @dualabbreviation rather than @dualentry.
Note that the alias field can’t be mapped. The default setting is:

dual-abbrv-map=
{
{short,shortplural,long,longplural,dualshort,dualshortplural,
duallong,duallongplural},

{dualshort,dualshortplural,duallong,duallongplural,short,shortplural,
long,longplural}

}

This essentially flips the short field with the dualshort field and the long field with the
duallong field. See @dualabbreviation for further details.

dual-entryabbrv-map={{〈list1〉},{〈list2〉}}

This is like dual-entry-map but applies to @dualentryabbreviation rather than @dualentry.
Note that the alias field can’t be mapped. The default setting is:

dual-entryabbrv-map=
{
{long,short,shortplural},
{name,text,plural}

}

See @dualentryabbreviation for further details.

94

dual-symbol-map={{〈list1〉},{〈list2〉}}

This is like dual-entry-map but applies to @dualsymbol rather than @dualentry. Note that
the alias field can’t be mapped. The default setting is:

dual-symbol-map=
{
{name,plural,symbol,symbolplural},
{symbol,symbolplural,name,plural}

}

This essentially flips the name field with the symbol field.

dual-entry-backlink={〈boolean〉}
This is a boolean setting. When used with @dualentry, if 〈boolean〉 is true, this will wrap the
contents of first mapped field with \glshyperlink. If 〈boolean〉 is missing true is assumed.

The field is obtained from the first mapping listed in dual-entry-map.
For example, if the document contains:

\GlsXtrLoadResource[dual-entry-backlink,
dual-entry-map={
{name,plural,description,descriptionplural},
{description,descriptionplural,name,plural}

},
src={entries-dual}]

and if the .bib file contains

@dualentry{child,
name={child},
plural={children},
description={enfant}

}

Then the definition of the primary entry (child) in the .glstex filewill have the description
field set to

{\glshyperlink[enfant]{dual.child}}

and the dual entry (dual.child) will have the description field set to

{\glshyperlink[child]{child}}

The reason the description field is chosen for the modification is because the first field
listed in the first list in dual-entry-map is the name field which maps to description (the
first field in the second list). This means that the hyperlink for the dual entry should be put in
the description field.

95

For the primary entry, the name field is looked up in the second list from the dual-entry-map
setting. This is the third item in this second list, so the third item in the first list is selected,
which also happens to be the description field, so the hyperlink for the primary entry is put
in the description field.

dual-abbrv-backlink={〈boolean〉}
This is analogous to dual-entry-backlink but for entries definedwith @dualabbreviation
instead of @dualentry.

dual-symbol-backlink={〈boolean〉}
This is analogous to dual-entry-backlink but for entries definedwith @dualsymbol instead
of @dualentry.

dual-entryabbrv-backlink={〈boolean〉}
This is analogous to dual-entry-backlink but for entries definedwith @dualentryabbreviation
instead of @dualentry.

dual-backlink={〈boolean〉}
Shortcut for dual-entry-backlink={〈boolean〉}, dual-entryabbrv-backlink={〈boolean〉},
dual-abbrv-backlink={〈boolean〉}, and dual-symbol-backlink={〈boolean〉}.

dual-field={〈value〉}
If this option is used, this will add \glsxtrprovidestoragekey to the start of the .glstex
file providing the key given by 〈value〉. Any entries defined using @dualentry will be written
to the .glstex file with an extra field called 〈value〉 that is set to the mirror entry. If 〈value〉
is omitted dual is assumed.

For example, if the .bib file contains

@dualentry{child,
name={child},
plural={children},
description={enfant}

}

Then with dual-field={dualid} this will first add the line

\glsxtrprovidestoragekey{dualid}{}{}

at the start of the file and will include the line

dualid={dual.child},

96

for the primary entry (child) and the line

dualid={child},

for the dual entry (dual.child). It’s then possible to reference one entry from the other. For
example, the post-description hook could contain:

\ifglshasfield{dualid}{\glscurrententrylabel}
{%
\space
(\glshyperlink{\glsxtrusefield{\glscurrententrylabel}{dualid}})%

}%
{}%

Note that this new field won’t be available for use within the .bib file (unless it was previously
defined in the document before \glsxtrresourcefile).

97

6 Provided Commands

When bib2gls creates the .glstex file, it writes some definitions for custom commands in
the form \bibgls... which may be changed as required. The command definitions all use
\providecommand which means that you can define the command with \newcommand before
the resource file is loaded.

6.1 Entry Definitions

This section lists the commands (\bibglsnew...) used to define entries. Note that the entry
definition commands are actually used when TEX inputs the resource file, so redefining them
after the resource file is loaded won’t have an effect on the entries defined in that resource file
(but will affect entries defined in subsequent resource files). Each provided command is defined
in the .glstex file immediately before the first entry that requires it, so only the commands
that are actually needed are provided.

After each entry is defined, if it has any associated locations, the locations are added using

\glsxtrfieldlistadd{〈label〉}{loclist}{〈record〉}

This command is provided by glossaries-extra (v1.12).

\bibglsnewentry

\bibglsnewentry{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define terms identified with the @entry type. The definition provided
in the .glstex file is:

\providecommand{\bibglsnewentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

This uses the starred form of \longnewglossaryentry that doesn’t automatically append
\nopostdesc (which interfereswith the post-description hooks provided by category attributes).

\bibglsnewsymbol

\bibglsnewsymbol{〈label〉}{〈options〉}{〈name〉}{〈description〉}

98

This command is used to define terms identified with the @symbol type. The definition pro-
vided in the .glstex file is:

\providecommand{\bibglsnewsymbol}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category={symbol},#2}{#4}%

}

Note that this sets the sort field to the label, but this may be overridden by the 〈options〉 if the
sort field was supplied or if bib2gls has determined the value whilst sorting the entries.

This also sets the category to symbol, but again this may be overridden by 〈options〉 if
the entry had the category field set in the .bib file or if the category was overridden with
category={〈value〉}.

\bibglsnewnumber

\bibglsnewnumber{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define terms identified with the @number type. The definition pro-
vided in the .glstex file is:

\providecommand{\bibglsnewnumber}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category={number},#2}{#4}%

}

This is much the same as \bibglsnewsymbol above but sets the category to number. Again
the sort and category keys may be overridden by 〈options〉.

\bibglsnewindex

\bibglsnewindex{〈label〉}{〈options〉}

This command is used to define terms identified with the @index type. The definition provided
in the .glstex file is:

\providecommand*{\bibglsnewindex}[2]{%
\newglossaryentry{#1}{name={#1},description={},#2}%

}

This makes the name default to the 〈label〉 and sets an empty description. These settings
may be overridden by 〈options〉. Note that the description doesn’t include \nopostdesc to
allow for the post-description hook used by category attributes.

99

\bibglsnewabbreviation

\bibglsnewabbreviation{〈label〉}{〈options〉}{〈short〉}{〈long〉}

This command is used to define terms identified with the @abbreviation type. The definition
provided in the .glstex file is:

\providecommand{\bibglsnewabbreviation}[4]{%
\newabbreviation[#2]{#1}{#3}{#4}%

}

Since this uses \newabbreviation, it obeys the current abbreviation style for its given category
(which may have been set in 〈options〉, either from the category field in the .bib file or
through the category option). Similarly the type will obey \glsxtrabbrvtype unless the
value is supplied in the .bib file or through the type option.

\bibglsnewacronym

\bibglsnewacronym{〈label〉}{〈options〉}{〈short〉}{〈long〉}

This command is used to define terms identified with the @acronym type. The definition pro-
vided in the .glstex file is:

\providecommand{\bibglsnewacronym}[4]{%
\newacronym[#2]{#1}{#3}{#4}%

}

This works in much the same way as \bibglsnewabbreviation. Remember that with the
glossaries-extra package \newacronym is redefined to just use \newabbreviation with the
default type set to \acronymtype and the default category set to \acronym.

\bibglsnewdualentry

\bibglsnewdualentry{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define terms identified with the @dualentry type. The definition
provided in the .glstex file is:

\providecommand{\bibglsnewdualentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

100

\bibglsnewdualentryabbreviation

\bibglsnewdualentryabbreviation{〈label〉}{〈options〉}{〈short〉}{〈long〉}
{〈description〉}

This command is used to define primary terms identified with the @dualentryabbreviation
type. The definition provided in the .glstex file is:
\providecommand{\bibglsnewdualentryabbreviation}[5]{%
\newabbreviation[#2]{#1}{#3}{#4}%

}

Note that this definition ignores the 〈description〉 argument.

\bibglsnewdualentryabbreviationsecondary

\bibglsnewdualentryabbreviationsecondary{〈label〉}{〈options〉}{〈short〉}
{〈long〉}{〈description〉}

This command is used to define secondary terms identifiedwith the @dualentryabbreviation
type. The definition provided in the .glstex file is:
\providecommand{\bibglsnewdualentryabbreviationsecondary}[5]{%
\longnewglossaryentry*{#1}{#2}{#5}%

}

Note that this definition ignores the 〈short〉 and 〈long〉 arguments (which will typically be
empty unless the default mappings are changed).

\bibglsnewdualsymbol

\bibglsnewdualsymbol{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define terms identified with the @dualsymbol type. The definition
provided in the .glstex file is:
\providecommand{\bibglsnewdualsymbol}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category={symbol},#2}{#4}}

\bibglsnewdualnumber

\bibglsnewdualnumber{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define terms identified with the @dualnumber type. The definition
provided in the .glstex file is:
\providecommand{\bibglsnewdualnumber}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category={symbol},#2}{#4}}

101

\bibglsnewdualabbreviation

\bibglsnewdualabbreviation{〈label〉}{〈options〉}{〈short〉}{〈long〉}

This command is used to define terms identified with the @dualabbreviation type where the
duallong field is swapped with the long field and the dualshort field is swapped with the
short field. The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualabbreviation}[4]{%
\newabbreviation[#2]{#1}{#3}{#4}%

}

\bibglsnewdualacronym

\bibglsnewdualacronym{〈label〉}{〈options〉}{〈short〉}{〈long〉}

This command is used to define terms identified with the @dualacronym type. The definition
provided in the .glstex file is:

\providecommand{\bibglsnewdualacronym}[4]{%
\newacronym[#2]{#1}{#3}{#4}%

}

This works in much the same way as \bibglsnewdualabbreviation. Remember that with
the glossaries-extra package \newacronym is redefined to just use \newabbreviation with
the default type set to \acronymtype and the default category set to \acronym.

6.2 Location Lists and Cross-References

These commands deal with the way the location lists and cross references are formatted. The
commands typically aren’t used until the entry information is displayed in the glossary, so you
may redefine these commands after the resource file has been loaded.

\bibglsseesep

\bibglsseesep

Any entries that provide a see field (and that field hasn’t be omitted from the location list
with see={omit}) will have \bibglsseesep inserted between the see part and the loca-
tion list (unless there are no locations, in which case just the see part is displayed without
\bibglsseesep).

This command is provided with:

\providecommand{\bibglsseesep}{, }

102

You can define this before you load the .bib file:

\newcommand{\bibglsseesep}{; }
\GlsXtrLoadResources[src={entries}]

Or you can redefine it afterwards:

\GlsXtrLoadResources[src={entries}]
\renewcommand{\bibglsseesep}{; }

\bibglsseealsosep

\bibglsseealsosep

This is like \bibglsseesep but is used with cross-reference lists provided with the seealso
field, if supported.

\bibglspassim

\bibglspassim

If max-loc-diff is greater than 1, then any ranges that have skipped over gaps will be
followed by \bibglspassim, which is defined as:

\providecommand{\bibglspassim}{ \bibglspassimname}

You can define this before you load the .bib file:

\newcommand{\bibglspassim}{}
\GlsXtrLoadResources[src={entries}]

Or you can redefine it afterwards:

\GlsXtrLoadResources[src={entries}]
\renewcommand{\bibglspassim}{}

\bibglspassimname

\bibglspassimname

The default definition is obtained from the language resource file. For example, with bib2gls-en.
xml the provided definition is

\providecommand{\bibglspassimname}{passim}

103

\bibglsrange

\bibglsrange{〈start〉\delimR 〈end〉}

Explicit ranges formed using format={(} and format={)} or format={(〈csname〉} and
format={)〈csname〉} (where 〈csname〉matches and is a text-block command without the ini-
tial backslash) in the optional argument of commands like \gls or \glsadd are encapsulated
within the argument of \bibglsrange. By default this simply does its argument. This com-
mand is not used with ranges that are formed by collating consecutive locations.

\bibglsinterloper

\bibglsinterloper{〈location〉}

If an explicit range conflicts with a record, a warning will be issued and the conflicting
record will be shifted to the front of the range inside the argument of \bibglsinterloper.
The default definition just does 〈location〉\delimN so that it fits neatly into the list.

For example, suppose on page 4 of my document I start a range with

\glsadd[format={(}]{sample}

and end it on page 9 with

\glsadd[format={)}]{sample}

This forms an explicit range, but let’s suppose on page 6 I have

\gls[format={hyperbf}]{sample}

This record conflicts with the explicit range (which doesn’t include hyperbf in the format).
This causes a warning and the conflicting entry will be moved before the start of the explicit
range resulting in 6, 4–9.

Note that implicit ranges can’t be formed from interlopers (nor can implicit ranges be merged
with explicit ones), so if \gls[format={hyperbf}]{sample} also occurs on pages 7 and 8
then the result will be 6, 7, 8, 4–9. Either remove the explicit range or remove the conflict-
ing entries. (Alternatively, redefine \bibglsinterloper to ignore its argument, which will
discard the conflicting entries.)

\bibglspostlocprefix

\bibglspostlocprefix

If the loc-prefix option is on, \bibglslocprefix will be inserted at the start of location
lists. The command \bibglspostlocprefix is placed after the prefix text. This command is
provided with:

104

\providecommand{\bibglspostlocprefix}{\ }

which puts a space between the prefix text and the location list. You can define this before you
load the .bib file:

\newcommand{\bibglspostlocprefix}{: }
\GlsXtrLoadResources[src={entries},loc-prefix]

Or you can redefine it afterwards:

\GlsXtrLoadResources[src={entries},loc-prefix]
\renewcommand{\bibglspostlocprefix}{: }

\bibglslocprefix

\bibglslocprefix{〈n〉}

If the loc-prefix option is on, this command will be provided. If the glossary type has
been provided by type (and dual-type if there are any dual entries) then the definition of
\bibglslocprefix will be appended to the glossary preamble for the given type (or types if
there are dual entries). For example, if the document has

\GlsXtrLoadResources[type=main,loc-prefix={p.,pp.},src={entries}]

and there are no dual entries, then the following will be added to the .glstex file:

\apptoglossarypreamble[main]{%
\providecommand{\bibglslocprefix}[1]{%
\ifcase##1
\or p.\bibglspostlocprefix
\else pp.\bibglspostlocprefix
\fi
}%

}

However, if the type key is missing, then the following will be added instead:

\appto\glossarypreamble{%
\providecommand{\bibglslocprefix}[1]{%
\ifcase#1
\or p.\bibglspostlocprefix
\else pp.\bibglspostlocprefix
\fi
}%

}

105

\bibglspagename

\bibglspagename

If loc-prefix={true} is used, then this command is provided using the value of tag.page
from the language resource file. For example with bib2gls-en.xml the definition is:

\providecommand{\bibglspagename}{Page}

\bibglspagesname

\bibglspagesname

If loc-prefix={true} is used, then this command is provided using the value of tag.pages
from the language resource file. For example with bib2gls-en.xml the definition is:

\providecommand{\bibglspagesname}{Pages}

\bibglslocsuffix

\bibglslocsuffix{〈n〉}

If the loc-suffix option is on, this command will be provided. If the glossary type has
been provided by type (and dual-type if there are any dual entries) then the definition of
\bibglslocsuffix will be appended to the glossary preamble for the given type (or types if
there are dual entries).

This commands definition depends on the value provided by loc-suffix. For example,
with loc-suffix={\@.} the command is defined as:

\providecommand{\bibglslocsuffix}[1]{\@.}

(which ignores the argument).
Whereas with loc-suffix={〈A〉,〈B〉,〈C〉} the command is defined as:

\providecommand{\bibglslocsuffix}[1]{\ifcase#1 A\or B\else C\fi}

Note that this is slightly different from \bibglslocprefix as it includes the 0 case, which in
this instance means that there were no locations but there was a cross-reference. This command
isn’t added when the location list is empty.

106

\bibglslocationgroup

\bibglslocationgroup{〈n〉}{〈counter〉}{〈list〉}

When the loc-counters option is used, the locations for each entry are grouped together
according to the counter (in the order specified in the value of loc-counters). Each group of
locations is encapsulated within \bibglslocationgroup, where 〈n〉 is the number of loca-
tions within the group, 〈counter〉 is the counter name and 〈list〉 is the formatted location sub-
list. By default, this simply does 〈list〉, but may be defined (before the resources are loaded) or
redefined (after the resources are loaded) as required.

For example:

\newcommand*{\bibglslocationgroup}[3]{%
\ifnum#1=1
#2:

\else
#2s:

\fi
#3%

}

\GlsXtrLoadResources[
loc-counters={equation,page},% group locations by counter
src={entries}% data in entries.bib

]

This will prefix each group with the counter name, if there’s only one location, or the counter
name followed by “s”, if there are multiple locations within the group.

There are various ways to adapt this to translate the counter name to a different textual label,
such as:

\providecommand{\pagename}{Page}
\providecommand{\pagesname}{Pages}
\providecommand{\equationname}{Equation}
\providecommand{\equationsname}{Equations}

\newcommand*{\bibglslocationgroup}[3]{%
\ifnum#1=1
\ifcsdef{#2name}{\csuse{#2name}}{#2}:

\else
\ifcsdef{#2sname}{\csuse{#2sname}}{#2s}:

\fi
#3%

}

107

\bibglslocationgroupsep

\bibglslocationgroupsep

When the loc-counters option is set, this command is used to separate each location sub-
group. It may be defined before the resources are loaded:

\newcommand*{\bibglslocationgroupsep}{; }

\GlsXtrLoadResources[
loc-counters={equation,page},% group locations by counter
src={entries}% data in entries.bib

]

or redefined after the resources are loaded:

\GlsXtrLoadResources[
loc-counters={equation,page},% group locations by counter
src={entries}% data in entries.bib

]

\renewcommand*{\bibglslocationgroupsep}{; }

\bibglssupplemental

\bibglssupplemental{〈n〉}{〈list〉}

When the supplemental-locations option is used, the locations from a supplementary
document are encapsulated within the 〈list〉 part of \bibglssupplemental. The first argu-
ment 〈n〉 (ignored by default) is the number of supplementary locations.

\bibglssupplementalsep

\bibglssupplementalsep

The separator between the main location list and the supplementary location list. By default
this is just \delimN. This may be defined before the resources are loaded:

\newcommand{\bibglssupplementalsep}{; }

\GlsXtrLoadResources[
supplemental-locations=supplDoc,
src={entries}]

or redefined after the resources are loaded:

108

\GlsXtrLoadResources[
supplemental-locations=supplDoc,
src={entries}]

\renewcommand{\bibglssupplementalsep}{; }

6.3 Letter Groups

The commands listed in this section are provided for use with the --group switch and glossary
styles that display the letter group title. If these need their definitions altered, they should be
defined before the resource file is loaded (rather than redefined afterwards).

The base glossaries package determines group titles through a fairly simplistic rule. Both
makeindex and xindy write the line

\glsgroupheading{〈heading〉}

to the associated glossary file at the start of each new letter group. For example, the “A” letter
group will be written as:

\glsgroupheading{A}

This is quite straightforward and the heading title can just be “A”. The “Symbols” group is
written as

\glsgroupheading{glssymbols}

To allow for easy translation, the base glossaries package has the simple rule:

• if \〈heading〉groupname exists use that;

• otherwise just use 〈heading〉.

There’s no \Agroupname provided, but \glssymbolsgroupname is provided and is supported
by the associated language modules, such as glossaries-french. (Similarly for the “Numbers”
group.)

The glossary styles that provide hyperlinks to the groups (such as indexhypergroup) use
〈heading〉 to form the target name. A problem arises when active characters occur in 〈heading〉,
which happens with extended characters and inputenc.

The glossaries-extra package (as from version 1.14) provides

\glsxtrsetgrouptitle{〈label〉}{〈title〉}

to set the title for a group with the given label. The internal workings of \glsgroupheading
are modified to use a slightly altered rule:

• if a title has been set using \glsxtrsetgrouptitle{〈heading〉}{〈title〉} for the given
〈heading〉, use that;

109

• if \〈heading〉groupname exists, use that;

• just use 〈heading〉 for the title.

So if \glsxtrsetgrouptitle hasn’t been used, it falls back on the original rule.
The problem is now how to make the indexing application use the desired label in the ar-

gument of \glsgroupheading instead of selecting the heading based on the first character of
each sort value for each top-level entry in that group. This can’t be done with makeindex, and
with xindy it requires a custom language module, which isn’t a trivial task.

With bib2gls, a different approach is used. The .glstex file created isn’t comparable
to the .gls file created by makeindex or xindy. There’s nowhere for bib2gls to write
the \glsgroupheading line as it isn’t creating the code that typesets the glossary list. In-
stead it’s creating the code that defines the entries. The actual group heading is inserted by
\printunsrtglossary and it’s only able to do this by checking if the entry has a group field
and comparing it to the previous entry’s group field.

The collators used by the locale and letter-based rules save the following information for
each entry based on the first significant letter of the sort field (if the letter is recognised as
alphabetical, according to the rule):

• 〈title〉 The group’s title. This is typically title-cased. For example, if the rule recognises
the digraph “dz”, then the title is “Dz”. Exceptions to this are included in the language
resource file. If the key grouptitle.case.〈lc〉 exists, where 〈lc〉 is the lower case
version of 〈title〉, then the value of that key is used instead. For example, the Dutch
digraph “ij” should be converted to “IJ”, so bib2gls-en.xml includes:

<entry key="grouptitle.case.ij">IJ</entry>

(See the --group switch for more details.)

• 〈letter〉 This is the actual letter at the start of the given entry’s sort field, which may be
lower case or may contain diacritics that don’t appear in 〈title〉.

• 〈id〉 A numeric identifier. This may be the collation key or the code point for the given
letter, depending on the sort method.

• 〈type〉 The entry’s glossary type. If not known, this will be empty. (bib2glswon’t know
if you’ve modified the associated \bibglsnew... command to set the type. It can only
know the type if it’s in the original .bib definition or is set using resource options such
as type.)

The group field is then set using:

group={\bibglslettergroup{〈title〉}{〈letter〉}{〈id〉}{〈type〉}}

This field needs to expand to a simple label, which \bibglslettergroup is designed to do.
Note that non-letter groups are dealt with separately (see below).

110

\bibglssetlettergrouptitle

For each group that’s detected, bib2gls will write the line:

\bibglssetlettergrouptitle{{〈title〉}{〈letter〉}{〈id〉}{〈type〉}}

in the .glstex file, which sets the group’s title using

\glsxtrsetgrouptitle{〈group label〉}{〈group title〉}

where the 〈group label〉 part matches the corresponding group value.
Note that \bibglssetlettergrouptitle only has a single argument, but that argument

contains the four arguments needed by \bibglslettergroup and \bibglslettergrouptitle.
These arguments are as described above.

If \glsxtrsetgrouptitle has been defined (glossaries-extra version 1.14 onwards), then
\bibglssetlettergrouptitle will be defined as

\providecommand{\bibglssetlettergrouptitle}[1]{%
\glsxtrsetgrouptitle{\bibglslettergroup#1}{\bibglslettergrouptitle#1}}

If an earlier version of glossaries-extra is used, then this function can’t be supported and the
command will be defined to simply ignore its argument. This will fall back on the original
method of just using 〈title〉 as the label.

Since \bibglssetlettergrouptitle is used in the .glstex file to set the group titles, the
associated commands need to be defined before the resource file is loaded if their definitions
require modification. After the resource file has been loaded, you can adjust the title of a
specific group, but you’ll need to check the .glstex file for the appropriate arguments. For
example, if the .glstex file contains:

\bibglssetlettergrouptitle{{Æ}{æ}{7274496}{}}

but you actually want the group title to appear as “Æ (AE)” instead of just “Æ”, then after the
resource file has been loaded you can do:

\glsxtrsetgrouptitle
{\bibglslettergroup{Æ}{æ}{7274496}{}}% label
{Æ (AE)}% title

\bibglslettergroup

\bibglslettergroup{〈title〉}{〈letter〉}{〈id〉}{〈type〉}

This command is used to determine the letter group label. The default definition is 〈type〉〈id〉,
which ensures that no problematic characters occur in the label since 〈type〉 can’t contains spe-
cial characters and 〈id〉 is numeric. The 〈type〉 is included in case there are multiple glossaries,
since the hyperlink name must be unique.

111

\bibglslettergrouptitle

\bibglslettergrouptitle{〈title〉}{〈letter〉}{〈id〉}{〈type〉}

This command is used to determine the letter group title. The default definition is \unexpanded
{〈title〉}, which guards against any expansion issues that may arise with characters outside the
basic Latin set.

For example:

@entry{angstrom,
name={\AA ngstr\"om}
description={a unit of length equal to one hundred-millionth

of a centimetre}
}

The sort value is “ Ångström ”. With sort={en} the 〈title〉 part will be A but with sort={sv}
the 〈title〉 part will be Å. In both cases the 〈letter〉 argument will be Å.

Take care if you are using a script that needs encapsulating. For example, with the CJKutf8
package the CJK characters need to be placed within the CJK environment, so any letter group
titles that contain CJK characters will need special attention.

For example, suppose the .bib file contains entries in the form:

@dualentry{〈label〉,
name = {\cjkname{〈CJK characters〉}},
description = {〈English description〉}

}

and the document contains:

\usepackage{CJKutf8}
\usepackage[record,style=indexgroup,nomain]{glossaries-extra}

\newglossary*{japanese}{Japanese to English}
\newglossary*{english}{English to Japanese}

\newrobustcmd{\cjkname}[1]{\begin{CJK}{UTF8}{min}#1\end{CJK}}
\glsnoexpandfields

\GlsXtrLoadResources[
src=testcjk,% bib file
sort={ja-JP},% locale used to sort primary entries
dual-sort={en-GB},% locale used to sort secondary entries
type=japanese,% put the primary entries in the 'japanese' glossary
dual-type=english,% put the primary entries in the 'english' glossary
dual-prefix={en.}

]

112

then CJK characters will appear in the 〈title〉 argument of \bibglslettergrouptitlewhich
causes a problem because they need to be encapsulated within the CJK environment. This
can be more conveniently done with the user supplied \cjkname, but the CJK characters
need to be protected from expansion so \unexpanded is also needed. The new definition
of \bibglslettergrouptitle needs to be defined before \GlsXtrLoadResources. For
example:

\newcommand{\bibglslettergrouptitle}[4]{\unexpanded{\cjkname{#1}}}

There’s a slight problem here in that the English letter group titles also end up encapsulated.
An alternative approach is to use the 〈type〉 part to provide different forms. For example:

\newcommand*{\englishlettergroup}[1]{#1}
\newcommand*{\japaneselettergroup}[1]{\cjkname{#1}}
\newcommand{\bibglslettergrouptitle}[4]{%
\unexpanded{\csuse{#4lettergroup}{#1}}}

(\csuse is provided by etoolbox, which is automatically loaded by the glossaries package.)

\bibglssetothergrouptitle

The group label and title for non-alphabetic characters (symbols) are dealt with in a similar
way to the letter groups, but in this case the title is set using

\bibglssetothergrouptitle{{〈character〉}{〈id〉}{〈type〉}}

This is defined in an analogous manner:

\providecommand{\bibglssetothergrouptitle}[1]{%
\glsxtrsetgrouptitle{\bibglsothergroup#1}{\bibglsothergrouptitle#1}}

where the group label is obtained using \bibglsothergroup and the group title is obtained
from \bibglsothergrouptitle. Note that since non-alphabetic characters don’t have upper
or lower case versions, there are only three arguments. The other difference between this and
the letter group version is that the 〈id〉 is given in hexadecimal format (corresponding to the
character code).

For example, suppose my .bib file contains:

@entry{sauthor,
name={/Author},
description = {author string}

}

If a locale sort is used, the leading slash / will be ignored and this entry will belong to the
“A” letter group using the letter commands described above. If, instead, one of the character
code sort methods are used, such as sort={letter-case}, then this entry will be identified
as belonging to a symbol (or “other”) group and the title will be set using:

\bibglssetothergrouptitle{{/}{2F}{}}

113

\bibglsothergroup

\bibglsothergroup{〈character〉}{〈id〉}{〈type〉}

This expands to the group label for symbol groups. This just defaults to glssymbols (ignor-
ing all arguments), which replicates the label used when makeindex or xindy generate the
glossary files.

\bibglsothergrouptitle

\bibglsothergrouptitle{〈character〉}{〈id〉}{〈type〉}

This expands to the group title for symbol groups. This just expands to \glssymbolsgroupname
by default.

\bibglssetnumbergrouptitle

The numeric sort methods all create number groups instead of letter or symbol groups. These
behave in an analogous way to the above.

\bibglssetnumbergrouptitle{{〈value〉}{〈id〉}{〈type〉}}

In this case 〈value〉 is the actual numeric sort value, and 〈id〉 is a decimal number obtained
from converting 〈value〉 to an integer. This command is defined as

\providecommand{\bibglssetnumbergrouptitle}[1]{%
\glsxtrsetgrouptitle{\bibglsnumbergroup#1}{\bibglsnumbergrouptitle#1}}

\bibglsnumbergroup

The number group label is obtained from:

\bibglsnumbergroup{〈value〉}{〈id〉}{〈type〉}

This just defaults to glsnumbers.

\bibglsnumbergrouptitle

The number group title is obtained from:

\bibglsnumbergrouptitle{〈value〉}{〈id〉}{〈type〉}

This just defaults to \glsnumbersgroupname.

114

\bibglshypergroup

\bibglshypergroup{〈type〉}{〈group id〉}

If the .log file indicates that hyperref has been loaded and the --group switch is used,
then this command will be used to create the navigation information for glossary styles such
as indexhypergroup.

6.4 Flattened Entries

These commands relate to the way the name field is altered when flattening lonely child entries
with the flatten-lonely option.

\bibglsflattenedhomograph

\bibglsflattenedhomograph{〈name〉}{〈parent label〉}

The default definition simply does 〈name〉.
This command is used if the child and parent name’s are identical. For example, suppose

the .bib file contains:

@index{super.glossary, name={glossary}}

@entry{glossarycol,
parent={super.glossary},
description={collection of glosses}

}

@entry{glossarylist,
parent={super.glossary},
description={list of technical words}

}

The child entries don’t have a name field, so the value is assumed to be the same as the parent’s
name field. Here’s an example document where both child entries are used:

\documentclass{article}

\usepackage[record,subentrycounter,style=treenoname]{glossaries-extra}

\GlsXtrLoadResources[src={entries}]

\begin{document}
\gls{glossarycol} (collection) vs \gls{glossarylist} (list).

115

\printunsrtglossary
\end{document}

This uses one of the glossary styles designed for homographs and the glossary has the structure:

glossary
1) collection of glosses 1
2) list of technical words 1

If only one child entry is selected, then the result looks a little odd. For example:

glossary
1) collection of glosses 1

With the flatten-lonely option, the parent is removed and the child is moved up a hierarchi-
cal level. With flatten-lonely={postsort} this would normally adjust the name so that it
appears as 〈parent name〉, 〈child name〉 but in this case it would look a little odd for the name
to appear as “glossary, glossary” so instead the name is set to

\bibglsflattenedhomograph{glossary}{super.glossary}

(where the first argument is the original name and the second argument is the label of the parent
entry).

This means that the name simply appears as “glossary”, even if the flatten-lonely=
{postsort} option is used. Note that if the parent entry is removed, the parent label won’t be
of much use. You can test for existence using \ifglsentryexists (provided by the glossaries
package) in case you want to vary the way the name is displayed according to whether or not
the parent is still present.

\bibglsflattenedchildpresort

\bibglsflattenedchildpresort{〈child name〉}{〈parent name〉}

Used by the flatten-lonely={presort} option. This defaults to just 〈child name〉. If you
want to change this, remember that you can let the interpreter know by adding the definition to
@preamble. For example:

@preamble{"\providecommand{\bibglsflattenedchildpresort}[2]{#1 (#2)}"}

\bibglsflattenedchildpostsort

\bibglsflattenedchildpostsort{〈parent name〉}{〈child name〉}

Used by the flatten-lonely={postsort} option. This defaults to 〈parent name〉, 〈child
name〉.

116

Note that the arguments are in the reverse order to those of the previous command. This is
done to assist the automated first letter upper-casing. If either command is redefined to alter
the ordering, then this can confuse the case-changing mechanism, in which case you may want
to consider switching on the expansion of the name field using:

\glssetexpandfield{name}

(before \GlsXtrLoadResources).

117

7 Converting Existing .tex to .bib

If you have already been using the glossaries or glossaries-extra package with a large file con-
taining all your definitions using commands like \newglossaryentry, then you can use the
supplementary tool convertgls2bib to convert the definitions to the .bib format required by
bib2gls. The syntax is:

convertgls2bib [〈options〉] 〈tex file〉 〈bib file〉

where 〈tex file〉 is the .tex file and 〈bib file〉 is the .bib file. This application is less secure
than bib2gls as it doesn’t use kpsewhich to check openin_any and openout_any. Take
care not to accidentally overwrite existing .bib files as there’s no check to determine if 〈bib
file〉 already exists.

The 〈options〉 are:

--texenc 〈encoding〉 The character encoding of the .tex file. If omitted, the operating sys-
tem’s default encoding is assumed (or the Java Virtual Machine’s).

--bibenc 〈encoding〉 The character encoding of the .bib file. If omitted, the same encoding
as the .tex file is assumed.

--space-sub 〈replacement〉 The .bib format doesn’t allow spaces in labels. If your original
definitions in your .tex file have spaces, use this option to replace spaces in labels.
Each space will be substituted with 〈replacement〉. The cross-referencing fields, see,
seealso and alias, will also be adjusted, but any references using \gls etc will have
to be substituted manually (or use a global search and replace in your text editor). If you
want to strip the spaces, use an empty string for 〈replacement〉. You’ll need to delimit
this according to your operating system. For example:

gls2bib --space-sub '' entries.tex entries.bib

--help or -h Display help message and quit.

--version or -v Display version information and quit.

This application recognises the commands listed below. Avoid any overly complicated code
within the .tex file. The TEX parser library isn’t a TEX engine! In all cases below, if 〈key=value
list〉 contains

see=[\seealsoname]{〈label(s)〉}

this will be substituted with

118

seealso={〈label(s)〉}

For example:

\newterm[see={[\seealsoname]goose}]{duck}

will be written as

@index{duck,
seealso = {goose}

}

(The seealso key is provided by glossaries-extra v1.16+.)
Additionally, if 〈key=value list〉 contains

type={\glsdefaulttype}

then this field will be ignored. (This type value is recommended in 〈key=value list〉 when
loading files with \loadglsentries[〈type〉]{〈file〉} to allow the optional argument to set the
type. With bib2gls you can use the type option instead.)

7.1 \newglossaryentry

The base glossaries package provides:

\newglossaryentry{〈label〉}{〈key=value list〉}

This is converted to:

@entry{〈label〉,
〈key=value list〉

}

\newentry (provided by the glossaries-extra shortcuts option) is recognised as a synonym
of \newglossaryentry.

7.2 \provideglossaryentry

The base glossaries package provides:

\provideglossaryentry{〈label〉}{〈key=value list〉}

This is converted to:

@entry{〈label〉,
〈key=value list〉

}

but only if 〈label〉 hasn’t already been defined.

119

7.3 \longnewglossaryentry

The base glossaries package provides:

\longnewglossaryentry{〈label〉}{〈key=value list〉}{〈description〉}

This is converted to:

@entry{〈label〉,
〈key=value list〉,
description = {〈description〉}

}

The starred version provided by the glossaries-extra package is also recognised. The un-
starred version strips trailing spaces from 〈description〉. (This doesn’t add \nopostdesc, but
glossaries-extra defaults to nopostdot.)

7.4 \longprovideglossaryentry

The base glossaries package provides:

\longprovideglossaryentry{〈label〉}{〈key=value list〉}{〈description〉}

As above, but only if 〈label〉 hasn’t already been defined.

7.5 \newterm

The base glossaries package provides:

\newterm[〈key=value list〉]{〈label〉}

(when the index option is used).
This is converted to:

@index{〈label〉,
〈key=value list〉

}

if the optional argument is present, otherwise it’s just converted to:

@index{〈label〉}

If --space-sub is used and 〈label〉 contains one or more spaces, then name will be set if
not included in 〈key=value list〉. For example, if entries.bib contains

\newterm{sea lion}
\newterm[seealso={sea lion}]{seal}

120

then

gls2bib --space-sub '-' entries.bib entries.tex

will write the terms to entries.tex as

@index{sea-lion,
name = {sea lion}

}

@index{seal,
seealso = {sea-lion}

}

whereas just

gls2bib entries.bib entries.tex

will write the terms to entries.tex as

@index{sea lion}

@index{seal,
seealso = {sea lion}

}

which will cause a problem when the .bib file is parsed by bib2gls (and will probably also
cause a problem for bibliographic management systems).

7.6 \newabbreviation

The glossaries-extra package provides:

\newabbreviation[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉}

This is converted to:

@abbreviation{〈label〉,
short = {〈short〉},
long = {〈long〉},
〈key=value list〉

}

if the optional argument is present, otherwise it’s converted to:

@abbreviation{〈label〉,
short = {〈short〉},
long = {〈long〉}

}

121

7.7 \newacronym

The base glossaries package provides:

\newacronym[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉}

(which is redefined by glossaries-extra to use \newabbreviation).
As above but uses @acronym instead.

7.8 \glsxtrnewsymbol

The glossaries-extra package provides:

\glsxtrnewsymbol[〈key=value list〉]{〈label〉}{〈symbol〉}

(when the symbols option is used).
This is converted to:

@symbol{〈label〉,
name = {〈symbol〉}

}

if the optional argument is missing, otherwise it’s converted to:

@symbol{〈label〉,
name = {〈symbol〉},
〈key=value list〉

}

unless 〈key=value list〉 contains the name field, in which case it’s converted to:

@symbol{〈label〉,
〈key=value list〉

}

\newsym (provided by the shortcuts option) is recognised as a synonym for \glsxtrnewsymbol.

7.9 \glsxtrnewnumber

The glossaries-extra package provides:

\glsxtrnewnumber[〈key=value list〉]{〈label〉}

(when the numbers option is used).
This is converted to:

122

@number{〈label〉,
name = {〈label〉}

}

if the optional argument is missing, otherwise it’s converted to:

@number{〈label〉,
name = {〈label〉},
〈key=value list〉

}

if name isn’t listed in 〈key=value list〉, otherwise it’s converted to:

@number{〈label〉,
〈key=value list〉

}

\newnum (provided by the shortcuts option) is recognised as a synonym for \glsxtrnewnumber.

7.10 \newdualentry

\newdualentry[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉}{〈description〉}

This command isn’t provided by either glossaries or glossaries-extra but is used as an example
in the glossaries user manual and in the sample file sample-dual.tex that accompanies the
glossaries package. Since this command seems to be used quite a bit (given the number of times
it crops up on sites like TEX on StackExchange), convertgls2bib also supports it unless this
command is defined using \newcommand or \renewcommand in the input file. In which case
the default definition will be overridden.

If the command definition isn’t overridden, then it’s converted to

@dualentryabbreviation{〈label〉,
short = {〈short〉},
long = {〈long〉},
description = {〈description〉},
〈key=value list〉

}

if 〈key=value list〉 is supplied, otherwise it’s converted to:

@dualentryabbreviation{〈label〉,
short = {〈short〉},
long = {〈long〉},
description = {〈description〉}

}

123

https://tex.stackexchange.com/

For example, if the original .tex file contains

\newcommand*{\newdualentry}[5][]{%
\newglossaryentry{main-#2}{name={#4},%
text={#3\glsadd{#2}},%
description={#5},%
#1
}%
\newacronym{#2}{#3\glsadd{main-#2}}{#4}

}

\newdualentry{svm}% label
{SVM}% abbreviation
{support vector machine}% long form
{Statistical pattern recognition technique}% description

then the .bib file will contain

@entry{main-svm,
name = {support vector machine},
description = {Statistical pattern recognition technique},
text = {SVM\glsadd{svm}}

}

@acronym{svm,
short = {SVM\glsadd{main-svm}},
long = {support vector machine}

}

since \newdualentry was defined with \newcommand. However, if the original file uses
\providecommand or omits the definition of \newdualentry, then the .bib file will con-
tain:

@dualentryabbreviation{svm,
short = {SVM},
description = {Statistical pattern recognition technique},
long = {support vector machine}

}

124

Index

\@, 80, 106
\@gls@hypergroup, 18

@abbreviation entry type, 29, 30, 89, 100,
121

abbreviation style
long-noshort-desc, 30
long-postshort-user-desc, 39
long-short-desc, 37, 38
long-short-sc, 30, 70
long-short-sm, 30
long-short-user, 36
long-short-user-desc, 39
short-long, 61

abbreviations, 33
\abbrvpluralsuffix, 70
\ac, 15
\acronym, 100, 102
@acronym entry type, 30, 89, 100, 122
\acronymtype, 100, 102
\acrpluralsuffix, 70
alias field, 22, 31, 33, 34, 78, 93–95, 118
amssymb, 7
\AtEndDocument, 1
automake, 1

bib2gls-en.xml, 5, 103, 106, 110
bib2gls.bat, 5
bib2gls.jar, 5
bib2gls.sh, 5
\bibglsflattenedchildpostsort, 53, 116
\bibglsflattenedchildpresort, 56, 116
\bibglsflattenedhomograph, 56, 115
\bibglshypergroup, 19, 115
\bibglsinterloper, 104
\bibglslettergroup, 17, 110, 111

\bibglslettergrouptitle, 111–113
\bibglslocationgroup, 81, 107
\bibglslocationgroupsep, 81, 108
\bibglslocprefix, 78–80, 104–106
\bibglslocsuffix, 80, 106
\bibglsnewabbreviation, 30, 100
\bibglsnewacronym, 30, 100
\bibglsnewdualabbreviation, 35, 102
\bibglsnewdualacronym, 39, 102
\bibglsnewdualentry, 31, 62, 94, 100
\bibglsnewdualentryabbreviation, 33,

101
\bibglsnewdualentryabbreviationsecondary,

33, 101
\bibglsnewdualnumber, 33, 101
\bibglsnewdualsymbol, 33, 101
\bibglsnewentry, 28, 94, 98
\bibglsnewindex, 29, 62, 99
\bibglsnewnumber, 28, 99
\bibglsnewsymbol, 28, 98, 99
\bibglsnumbergroup, 18, 114
\bibglsnumbergrouptitle, 114
\bibglsothergroup, 17, 113, 114
\bibglsothergrouptitle, 113, 114
\bibglspagename, 79, 106
\bibglspagesname, 79, 106
\bibglspassim, 5, 77, 103
\bibglspassimname, 103
\bibglspostlocprefix, 79, 80, 104
\bibglsrange, 71, 104
\bibglsseealsosep, 78, 103
\bibglsseesep, 78, 102, 103
\bibglssetlettergrouptitle, 111
\bibglssetnumbergrouptitle, 114
\bibglssetothergrouptitle, 113

125

\bibglssupplemental, 83, 108
\bibglssupplementalsep, 84, 108
bibtex, 1
\boldsymbol, 9
bpchem, 7

category attributes
aposplural, 70
externallocation, 83
glossname, 8
noshortplural, 70
targetname, 57, 59
targeturl, 57, 59

category field, 31, 33, 35, 45, 49, 61, 62,
70, 89, 92, 93, 99, 100, 102

CJK environment, 112, 113
\cjkname, 112
CJKutf8, 112
\color, 42
command line options

-d, 13, 14
--debug, 7, 9, 12, 73, 88
--dir, 13, 14, 46
--group, 10, 11, 17, 67, 109, 110, 115
-h, 12
--help, 12
--interpret, 7, 14
-l, 13
--locale, 4, 13
--log-file, 13
-m, 16
--map-format, 16, 73
--mfirstuc-math-protection, 8, 15
--mfirstuc-protection, 8, 14, 15
--nested-link-check, 15
--no-debug, 7, 12
--no-group, 20
--no-interpret, 7, 14
--no-mfirstuc-math-protection, 15
--no-mfirstuc-protection, 15
--no-nested-link-check, 15
--no-trim-fields, 20
--no-verbose, 13
--nodebug, 12

--noverbose, 13
--shortcuts, 15, 16
--silent, 13
-t, 13
--tex-encoding, 20, 43
--trim-fields, 20
-u, 14
-v, 12
--verbose, 10–12
--version, 12

convertgls2bib, 118
convertgls2bib.jar, 5
convertgls2bib.sh, 5
custom groups, 18

\delimN, 73, 74, 81, 104, 108
\delimR, 74, 104
description field, 27, 28, 30–32, 37, 85,

95, 96, 99
descriptionplural field, 31, 94
digraph, 18
@dualabbreviation entry type, 34, 35, 39,

94, 96, 102
@dualacronym entry type, 39, 102
@dualentry entry type, 21, 30, 32–35, 62,

92–96, 100, 112
@dualentryabbreviation entry type, 30,

32, 33, 94, 96, 101, 123
duallong field, 34–36, 38, 39, 94, 102
duallongplural field, 34, 35
@dualnumber entry type, 33, 101
dualplural field, 67
dualshort field, 34, 35, 93, 94, 102
dualshortplural field, 34, 35, 71
@dualsymbol entry type, 33, 95, 96, 101

\emph, 66
\entry, 62
@entry entry type, 8, 27–30, 89, 98, 119,

120
entry types

@abbreviation, 29, 30, 89, 100, 121
@acronym, 30, 89, 100, 122
@dualabbreviation, 34, 35, 39, 94,

96, 102

126

@dualacronym, 39, 102
@dualentry, 21, 30, 32–35, 62, 92–

96, 100, 112
@dualentryabbreviation, 30, 32, 33,

94, 96, 101, 123
@dualnumber, 33, 101
@dualsymbol, 33, 95, 96, 101
@entry, 8, 27–30, 89, 98, 119, 120
@index, 29, 32, 53, 62, 99, 120
@number, 28, 99, 123
@preamble, 8, 9, 23, 24, 41–43, 56,

116
@string, 22
@symbol, 8, 28, 99, 122

equation counter, 81
etoolbox, 71, 113

fields
alias, 22, 31, 33, 34, 78, 93–95, 118
category, 31, 33, 35, 45, 49, 61, 62,

70, 89, 92, 93, 99, 100, 102
description, 27, 28, 30–32, 37, 85,

95, 96, 99
descriptionplural, 31, 94
duallong, 34–36, 38, 39, 94, 102
duallongplural, 34, 35
dualplural, 67
dualshort, 34, 35, 93, 94, 102
dualshortplural, 34, 35, 71
first, 15, 69
firstplural, 15, 69
group, 17, 20, 53, 67, 110, 111
location, 71, 73, 74, 78
loclist, 71, 73, 74
long, 15, 29, 30, 32–35, 70, 94, 102
longplural, 15, 35, 69, 70
name, 7, 8, 15, 23, 24, 27–29, 31–33,

43, 44, 52, 53, 55, 56, 69, 85, 89,
95, 96, 99, 115, 117, 120, 122, 123

parent, 27–29, 47, 49, 53, 59, 61, 89
plural, 15, 31–33, 69, 94
see, 22, 47, 48, 50, 56, 59, 71, 73, 77,

78, 94, 102, 118

seealso, 22, 47, 50, 56, 59, 71, 73, 78,
103, 118, 119

short, 15, 29, 30, 32–35, 38, 66, 67,
70, 89, 94, 102

shortplural, 15, 32, 35, 69, 70
sort, 8–10, 21, 23, 28–30, 33, 34, 38,

89, 99, 110, 112
symbol, 15, 33, 95
symbolplural, 33
text, 15, 32, 53, 56, 69
topic, 49
type, 18, 19, 31, 48, 61, 62, 67, 79, 92,

93, 100, 102, 110, 119
user1, 24, 25, 28, 29, 34, 37

file formats
.aux, 1, 7, 12–14, 16, 18, 20, 40, 47,

48, 59, 71, 73, 84, 86–88
.bat, 5
.bib, 1, 3, 7, 11, 13, 14, 20, 21, 24, 25,

a, 27, 30, 41–48, 58, 59, 61, 63–
67, 69, 79, 82, 84, 91, 92, 95–97,
99, 100, 103, 105, 110, 112, 113,
115, 118, 121

.glg, 9, 13, 14

.gls, 110

.glstex, 14, 18, 20, 24, 28, 31, 34, 40,
43, 44, 46, 47, 49, 59–61, 68, 91,
95, 96, 98–102, 105, 110, 111

.jar, 6

.log, 115

.sh, 5

.tex, 1, a, 118
first field, 15, 69
firstplural field, 15, 69
fontspec, 20

glossaries, 1, 19, 32, 43, 67, 69, 70, 73, 74,
109, 116, 118–120, 122, 123

glossaries-extra, 1, 4, 14, 15, 19, 20, 22, 24,
25, 34, 40, 69–73, 78, 82, 83, 85,
94, 98, 100, 102, 109, 111, 118–
123

glossary style
alttree, 43

127

indexgroup, 17, 20
indexhypergroup, 18, 109, 115

glossary-hypernav, 19
\glossentry, 73
\Gls, 14
\gls, 15, 16, 22, 47, 56, 59, 64, 69, 71, 77,

80, 104, 118
counter, 80
format, 71, 104

\glsadd, 1, 71, 82, 83, 104
format, 72, 83
theHvalue, 83
thevalue, 82, 83

\glsaddall, 1, 47
\glsaddallunused, 72
\glsaddkey, 22
\glsaddstoragekey, 22
\glsdefaulttype, 119
\glsentryname, 44
\glsentrytext, 34
\glsfieldfetch, 71
\glsgroupheading, 109, 110
\glshyperlink, 95
\glsignore, 72
\glslink, 25
\glsnavhypertarget, 19
\glsnoidxdisplayloc, 71
\glsnoidxloclist, 73
\glsnoidxloclisthandler, 73
\glsnumbersgroupname, 114
\glspl, 69
\glspluralsuffix, 69, 70
\glssee, 22
\glsseeformat, 71
\glssetwidest, 43, 44
\glssymbolsgroupname, 109, 114
\glsxtr@record, 73
\glsxtrabbrvpluralsuffix, 70
\glsxtrabbrvtype, 100
\glsxtrentryfmt, 25
\glsxtrfielddolistloop, 71
\glsxtrfieldforlistloop, 71
\glsxtrfieldlistadd, 98
\glsxtrfmt, 24, 25

\GlsXtrFmtDefaultOptions, 25
\GlsXtrFmtField, 24
\glsxtrifhasfield, 69
\glsxtrindexseealso, 22
\GlsXtrLoadResources, 2, 4, 21, 22, 40,

47, 59, 60, 67, 113, 117
\glsxtrnewnumber, 122, 123
\glsxtrnewsymbol, 122
\glsxtrp, 22
\glsxtrpostdescabbreviation, 35
\glsxtrprovidestoragekey, 34, 96
\glsxtrresourcefile, 3, 40, 41, 46, 47,

60, 76, 78, 97
alias-loc, 78
break-at, 86, 88
break-marker, 88, 89
category, 61, 62
charset, 43
decomposition, 90
dual-abbrv-backlink, 96
dual-abbrv-map, 94
dual-backlink, 96
dual-category, 92
dual-entry-backlink, 95, 96
dual-entry-map, 93–96
dual-entryabbrv-backlink, 96
dual-entryabbrv-map, 94
dual-field, 96
dual-prefix, 21, 31, 91
dual-short-case-change, 93
dual-short-plural-suffix, 71
dual-sort, 31, 91
dual-sort-field, 91
dual-sort-rule, 91
dual-symbol-backlink, 96
dual-symbol-map, 95
dual-type, 92
ext-prefixes, 64
flatten, 49, 85, 89
flatten-lonely, 49–52, 54, 56
flatten-lonely-rule, 50, 56
group, 67
ignore-fields, 49, 61
interpret-preamble, 43

128

label-prefix, 63
loc-counters, 80, 81
loc-prefix, 5, 78, 79, 106
loc-suffix, 80, 106
master, 59
master-resources, 60
match, 48, 49
match-op, 49
max-loc-diff, 76, 77
min-loc-range, 74
save-child-count, 68
save-locations, 74, 81
secondary, 44
secondary-sort-rule, 46
see, 77, 102
seealso, 78
selection, 22, 47, 48
set-widest, 43
short-case-change, 66, 67
short-plural-suffix, 70
shuffle, 89
sort, 85–90
sort-field, 89
sort-rule, 87
src, 46, 47, 82
strength, 89, 90
suffixF, 77
suffixFF, 77
supplemental-category, 85
supplemental-locations, 82
supplemental-selection, 84
type, 62, 79, 105

\glsxtrsetaliasnoindex, 78
\GlsXtrSetDefaultNumberFormat, 71
\GlsXtrSetField, 68
\glsxtrsetgrouptitle, 109–111
\glsxtrusefield, 34
\glsxtruserfield, 36
\glsxtrusesee, 77, 78
\glsxtruseseealso, 78
\glsxtruseseealsoformat, 22, 71
group field, 17, 20, 53, 67, 110, 111

hyperref, 19, 25, 57, 83, 115

\ifcase, 78, 79
\ifglsentryexists, 116
\ifglshasfield, 69
\immediate, 1
index, 120
@index entry type, 29, 32, 53, 62, 99, 120
\input, 1, 22
inputenc, 20, 21, 109

\jobname, 40, 46, 47, 60

kpsewhich, 4, 6, 13, 46, 118

label prefixes
dual., 21, 31, 63, 91
ext1., 65
ext〈n〉., 21, 63, 64

letter groups, 17
\loadglsentries, 1, 22, 119
location field, 71, 73, 74, 78
loclist field, 71, 73, 74
long field, 15, 29, 30, 32–35, 70, 94, 102
\longnewglossaryentry, 33, 94, 98, 120
longplural field, 15, 35, 69, 70
\longprovideglossaryentry, 120

\makefirstuc, 14
\makeglossaries, 4
makeglossaries, 1
makeindex, 3, 4, 13, 63, 72, 74, 88, 109,

110, 114
\MakeTextLowercase, 66
\MakeTextUppercase, 66
mfirstuc, 14, 15
mhchem, 7

name field, 7, 8, 15, 23, 24, 27–29, 31–33,
43, 44, 52, 53, 55, 56, 69, 85, 89,
95, 96, 99, 115, 117, 120, 122, 123

\newabbreviation, 33, 100, 102, 121, 122
\newacronym, 100, 102, 122
\newcommand, 98, 124
\newdualentry, 32, 123, 124
\newentry, 119
\newglossary, 63

129

\newglossaryentry, 21, 22, a, 118, 119
\newignoredglossary, 63
\newnum, 123
\newsym, 122
\newterm, 120
\NoCaseChange, 67
nomain, 63
non-letter groups, 17
nonumberlist, 73, 74
\nopostdesc, 98, 99, 120
nopostdot, 120
@number entry type, 28, 99, 123
number groups, 18
numbers, 122

package options
abbreviations, 33
automake, 1
index, 120
nomain, 63
nonumberlist, 73, 74
nopostdot, 120
numbers, 122
record, 4, 17, a, 40, 47, 71, 82, 86
shortcuts, 15, 16, 119, 122, 123
symbols, 122
undefaction, 47

page counter, 81
\pagelistname, 79
parent field, 27–29, 47, 49, 53, 59, 61, 89
pifonts, 7
plural field, 15, 31–33, 69, 94
@preamble entry type, 8, 9, 23, 24, 41–43,

56, 116
\printglossaries, 4
\printglossary, 4
\printunsrtglossaries, 4, 63
\printunsrtglossary, 4, 17, 41, 73, 110
\protect, 88
\providecommand, 79, 98, 124
\provideglossaryentry, 119
\provideignoredglossary*, 44, 59

record, 4, 17, a, 40, 47, 71, 82, 86

sample-dual.tex, 123
section counter, 83
see field, 22, 47, 48, 50, 56, 59, 71, 73, 77,

78, 94, 102, 118
seealso field, 22, 47, 50, 56, 59, 71, 73,

78, 103, 118, 119
\seealsoname, 22, 118
short field, 15, 29, 30, 32–35, 38, 66, 67,

70, 89, 94, 102
shortcuts, 15, 16, 119, 122, 123
shortplural field, 15, 32, 35, 69, 70
\si, 7
siunitx, 7
sort field, 8–10, 21, 23, 28–30, 33, 34, 38,

89, 99, 110, 112
stix, 7
\string, 87, 88
@string entry type, 22
\subglossentry, 73
@symbol entry type, 8, 28, 99, 122
symbol field, 15, 33, 95
symbol groups, 17
symbolplural field, 33
symbols, 122

texparserlib.jar, 5, 7, 8
text field, 15, 32, 53, 56, 69
textcase, 67
topic field, 49
tracklang, 86, 87
trigraph, 18
type field, 18, 19, 31, 48, 61, 62, 67, 79,

92, 93, 100, 102, 110, 119

\u, 87, 88
undefaction, 47
\unexpanded, 112, 113
user1 field, 24, 25, 28, 29, 34, 37

wasysym, 7
\write18, 1

xindy, 3, 4, 13, 22, 63, 72–74, 86, 88, 109,
110, 114

130

	Introduction
	Example Use
	Security
	Localisation
	Manual Installation

	TeX Parser Library
	Command Line Options
	–help (or -h)
	–version (or -v)
	–debug [n]
	–no-debug (or –nodebug)
	–verbose
	–no-verbose (or –noverbose)
	–silent
	–locale lang (or -l lang)
	–log-file filename (or -t filename)
	–dir dirname (or -d dirname)
	–interpret
	–no-interpret
	–mfirstuc-protection (or -u)
	–no-mfirstuc-protection
	–mfirstuc-math-protection
	–no-mfirstuc-math-protection
	–nested-link-check list|none
	–no-nested-link-check
	–shortcuts value
	–map-format format1:format2 or -m format1:format2
	–group
	–no-group
	–tex-encoding name
	–trim-fields
	–no-trim-fields

	.bib Format
	@string
	@preamble
	@entry
	@symbol
	@number
	@index
	@abbreviation
	@acronym
	@dualentry
	@dualentryabbreviation
	@dualsymbol
	@dualnumber
	@dualabbreviation
	@dualacronym

	Resource File Options
	General Options
	charset={encoding-name}
	interpret-preamble={boolean}
	set-widest={boolean}
	secondary={list}
	secondary-sort-rule={value}

	Selection Options
	src={list}
	selection={value}
	match={key=value list}
	match-op={value}
	flatten={boolean}
	flatten-lonely={value}
	flatten-lonely-rule={value}

	Master Documents
	master={name}
	master-resources={list}

	Field and Label Options
	ignore-fields={list}
	category={value}
	type={value}
	label-prefix={tag}
	ext-prefixes={list}
	short-case-change={value}
	group={value}
	save-child-count={boolean}

	Plurals
	short-plural-suffix={value}
	dual-short-plural-suffix={value}

	Location List Options
	save-locations={boolean}
	min-loc-range={value}
	max-loc-diff={value}
	suffixF={value}
	suffixFF={value}
	see={value}
	seealso={value}
	alias-loc={value}
	loc-prefix={value}
	loc-suffix={value}
	loc-counters={list}

	Supplemental Locations
	supplemental-locations={basename}
	supplemental-selection={value}
	supplemental-category={value}

	Sorting
	sort={value}
	sort-rule={value}
	break-at={option}
	break-marker={marker}
	sort-field={field}
	shuffle={seed}
	strength={value}
	decomposition={value}

	Dual Entries
	dual-sort={value}
	dual-sort-field={value}
	dual-sort-rule={value}
	dual-prefix={value}
	dual-type={value}
	dual-category={value}
	dual-short-case-change={value}
	dual-entry-map={{list1},{list2}}
	dual-abbrv-map={{list1},{list2}}
	dual-entryabbrv-map={{list1},{list2}}
	dual-symbol-map={{list1},{list2}}
	dual-entry-backlink={boolean}
	dual-abbrv-backlink={boolean}
	dual-symbol-backlink={boolean}
	dual-entryabbrv-backlink={boolean}
	dual-backlink={boolean}
	dual-field={value}

	Provided Commands
	Entry Definitions
	\bibglsnewentry
	\bibglsnewsymbol
	\bibglsnewnumber
	\bibglsnewindex
	\bibglsnewabbreviation
	\bibglsnewacronym
	\bibglsnewdualentry
	\bibglsnewdualentryabbreviation
	\bibglsnewdualentryabbreviationsecondary
	\bibglsnewdualsymbol
	\bibglsnewdualnumber
	\bibglsnewdualabbreviation
	\bibglsnewdualacronym

	Location Lists and Cross-References
	\bibglsseesep
	\bibglsseealsosep
	\bibglspassim
	\bibglspassimname
	\bibglsrange
	\bibglsinterloper
	\bibglspostlocprefix
	\bibglslocprefix
	\bibglspagename
	\bibglspagesname
	\bibglslocsuffix
	\bibglslocationgroup
	\bibglslocationgroupsep
	\bibglssupplemental
	\bibglssupplementalsep

	Letter Groups
	\bibglssetlettergrouptitle
	\bibglslettergroup
	\bibglslettergrouptitle
	\bibglssetothergrouptitle
	\bibglsothergroup
	\bibglsothergrouptitle
	\bibglssetnumbergrouptitle
	\bibglsnumbergroup
	\bibglsnumbergrouptitle
	\bibglshypergroup

	Flattened Entries
	\bibglsflattenedhomograph
	\bibglsflattenedchildpresort
	\bibglsflattenedchildpostsort

	Converting Existing .tex to .bib
	\newglossaryentry
	\provideglossaryentry
	\longnewglossaryentry
	\longprovideglossaryentry
	\newterm
	\newabbreviation
	\newacronym
	\glsxtrnewsymbol
	\glsxtrnewnumber
	\newdualentry

	Index

