
The cool TEX automation tool

User Manual

Paulo R. M. Cereda
cereda@users.sf.net

Marco Daniel Brent Longborough
marco.daniel@mada-nada.de brent@longborough.org

Version 3.0

cereda@users.sf.net
marco.daniel@mada-nada.de
brent@longborough.org




Prologue

Moral of the story: never read
the documentation, bad things
happen.

David Carlisle

When I released the very first version of arara on a Friday 13th, April
2012, I never thought the tool would receive so many positive comments
and feedback. To be honest, since arara was written for helping me with
my own personal LATEX projects, I really doubted if the tool could be of
service to anyone else. And, to my surprise, it seems arara did good. To
a lot of people around the TEX world.

I never intended to release the tool to the whole world, since I wasn’t
sure if other people could benefit from arara’s features. After all, there’s
already a plethora of tools available to the TEX community in general,
although with different approaches. The reason I decided to make arara
publicly available is quite simple: I wanted to somehow contribute to the
TEX community, and I wanted to give my best to make such community
even more awesome.

As time goes by, I’m quite satisfied with the current state of arara –
this is our 3rd major release. We have reached a very mature code and
a great team of developers, translators and testers. Since version 1.0, the
code evolved a lot – new features, lots of bug fixes, improvements – thanks
to all the feedback I received. In my humble opinion, that’s how any project
should evolve: based on what our users expect and want to achieve. I’m
proud to see arara being 100% community-driven, it’s a big achievement
for a project with less than one year old.

i



ii

First of all, I’d like to thank some friends of mine that really made arara
possible: Alan Munn, for providing great ideas and suggestions to the man-
ual; Andrew Stacey, for heavily testing arara, providing great user cases,
and for suggesting improvements to the program; Brent Longborough, a
member of the core team, for providing great suggestions and ideas to the
program logic, writing rules, testing the code and also for working with
the Portuguese and Turkish translations; Clemens Niederberger, for testing
arara, and also writing a great tutorial about it in his blog on chemistry
and LATEX; David Carlisle, for reminding me to work on arara, and also
encouraging me to write answers about it in our TEX community; Enrico
Gregorio, for reviewing the original manual, testing arara, providing great
ideas and suggestions to the manual and to the program itself, and for
working with the Italian translation; Francesco Endrici, for providing the
very first arara rule outside our core team; Harish Kumar, for being a
heavy arara user and integrating it with WinEdt and Inlage; İlhan Polat
for working with Brent in the Turkish translation; Joseph Wright, for test-
ing it, providing contributed code for Linux and Mac installations, and also
blogging about arara in his personal blog; Gonzalo Medina, for providing
the Spanish translation; Mikaël Maunier, for providing the French transla-
tion; Marco Daniel, one of core team members, for heavily testing arara,
suggesting enhancements to the manual and to the program itself, providing
lots of contributed rules for common tasks, and also for the German version;
Patrick Gundlach, for advertising arara in the official Twitter channel of
Dante – the German TEX User Group; Sergey Ulyanov, for providing the
Russian translation and contributed rules; Stefan Kottwitz, for encourag-
ing me to write an article about arara, published in the LATEX Community
forum, and also tweeting about it. Thank you very much. I’m sorry if I
forgot to mention somebody, I really have so much people to thank and my
memory happens to be very short.

That said, I still believe that the warning featured in the first version of
this manual still applies: Hic Sunt Dracones. Though the code really
evolved from the first commit I made, arara is far from being bug-free.
And you will learn that arara gives you enough rope. In other words, you
will be responsible for how arara behaves and all the consequences from
your actions. Sorry to sound scary, but I really needed to tell you this.
After all, one of arara’s greatest features is the freedom it offers. But as
you know, freedom always comes at a cost. Please, don’t send us angry
letters – or e-mails, perhaps – if something bad happen.

Feedback is surely welcome for me to improve this humble tool, just
write an e-mail to me or any other member of the team and we will reply as
soon as possible. The source code is fully available at http://github.com/

http://www.mychemistry.eu/2012/06/arara-automate-latex-birds-music/
http://www.mychemistry.eu/2012/06/arara-automate-latex-birds-music/
http://www.texdev.net
http://www.dante.de
http://latex-community.org/know-how/435-gnuplot-arara
http://github.com/cereda/arara
http://github.com/cereda/arara


iii

cereda/arara, feel free to contribute to the project by forking it, submitting
bugs, sending pull requests or even translating it to your language. If you
want to support the LATEX development by a donation, the best way to do
this is donating to the TEX Users Group. Please also consider joining our
TEX community at StackExchange.

Paulo Roberto Massa Cereda
on behalf of the arara team

Proudly made on Earth

http://github.com/cereda/arara
http://github.com/cereda/arara
http://www.tug.org/
http://tex.stackexchange.com




v

Special thanks

Alan Munn Andrew Stacey Brent Longborough

Clemens Niederberger David Carlisle Enrico Gregorio

Francesco Endrici Harish Kumar İlhan Polat

Joseph Wright Gonzalo Medina Mikaël Maunier

Marco Daniel Patrick Gundlach Sergey Ulyanov

Stefan Kottwitz

arara also makes use of some specific opensource Java projects and libraries
in order to properly work. I would like to thank the following projects and
their respective developers:

1. Apache Commons, a project from the Apache Foundation focused
on all aspects of reusable Java components. arara uses three of
the Commons libraries: CLI, which provides a command line argu-
ments parser, Collections, a library which extends the Java Collec-
tions Framework, and Exec, an API for dealing with external process
execution and environment management in Java.

2. Logback, a logging framework intended to be the successor to the
popular log4j project. According to some benchmarks, it is faster and
has a smaller footprint than all existing logging systems, sometimes
by a wide margin.

3. SnakeYAML, a YAML parser and emitter for the Java programming
language. YAML is a data serialization format designed for human
readability and interaction with scripting languages. arara uses
YAML as the rule format.

4. SLF4J, a simple facade or abstraction for various logging frameworks,
allowing the end user to plug in the desired logging framework at
deployment time.

5. MVEL, a powerful expression language for Java-based applications.
It provides a plethora of features and is suited for everything from
the smallest property binding and extraction, to full blown scripts.
arara relies on MVEL to provide the expansion mechanism for rules.

http://commons.apache.org
http://commons.apache.org/cli/
http://commons.apache.org/collections/
http://commons.apache.org/exec/
http://logback.qos.ch
http://logging.apache.org/log4j/
http://code.google.com/p/snakeyaml
http://www.slf4j.org/
http://mvel.codehaus.org


vi

6. Apache Maven, a software project management and comprehension
tool. Based on the concept of a project object model, Maven can
manage a project’s build, reporting and documentation from a central
piece of information.

7. IzPack, a Java-based software installer builder that will run on any
operating system coming with a Java Virtual Machine that is compli-
ant with the Oracle JVM 1.5 or higher.

A special thanks goes to my great friend Antoine Neveux for encouraging
me to try out the Apache Maven software project management. In the past,
arara was released as a NetBeans project, which is based on Apache Ant,
another great tool from the Apache Foundation. Although I’m really fine
with Ant, thanks to Maven, now it is way easier to build and to maintain
the code. And it’s always nice to learn another tool.

And at last but not least, I want to thank you, dear reader and potential
user, for giving arara a try. Do not despair if you don’t succeed with arara
at first; just try again. I’m sure you will find your way. This humble project
is opensource and it will always be. Let the bird be your guide through the
journey to the typographic land. Have a good read.

http://maven.apache.org/
http://izpack.github.com
http://antoineneveux.fr/
http://maven.apache.org
http://ant.apache.org/


vii

Release information

Version 3.0
new Localizated messages in English, Brazilian Portuguese, German, Ital-

ian, Spanish, French, Turkish and Russian.

fixed Improved error analysis for rules and directives.

new Friendly and very detailed messages instead of generic ones.

new An optional configuration file is now available in order to customize
and enhance the application behaviour.

fixed Improved rule syntax, new keys added.

new Now rules are unified in a plain format. No more compiled rules.

new Rules can allow an arbitrary number of commands instead of just one.

new Built-in functions in the rule context to ease the writing process.

fixed Improved expansion mechanism.

Table 1: Lines of code for version 3.0.

Language Files Blank Comment Code

Java 25 847 2722 1659

XML 2 12 0 181

Sum 27 859 2722 1840

Version 2.0
new Added the --timeout n flag to allow setting a timeout for every task.

If the timeout is reached before the task ends, arara will kill it and
interrupt the processing. The n value is expressed in milliseconds.

fixed Fixed the --verbose flag to behave as a realtime output.



viii

new There’s no need of noninteractive commands anymore. arara can
now handle user input through the --verbose tag. If the flag is not
set and the command requires user interaction, the task execution is
interrupted.

fixed Fixed the execution of some script-based system commands to ensure
cross-platform compatibility.

new Added the @{SystemUtils} orb tag to provide specific operating sys-
tem checks. The orb tag maps the SystemUtils class from the amazing
Apache Commons Lang library and all of its methods and properties.

Table 2: Lines of code for version 2.0.

Language Files Blank Comment Code

Java 20 608 1642 848

XML 1 0 0 12

Sum 21 608 1642 860

Version 1.0.1
new Added support for .tex, .dtx and .ltx files. When no extension is

provided, arara will automatically look for these extensions in this
specific order.

new Added the --verbose flag to allow printing the complete log in the
terminal. A short -v tag is also available. Both stdout and stderr

are printed.

fixed Fixed exit status when an exception is thrown. Now arara also
returns a non-zero exit status when something wrong happened. Note
that this behaviour happens only when arara is processing a file.

Version 1.0
new First public release.

http://commons.apache.org/lang/


ix

Table 3: Lines of code for version 1.0.1.

Language Files Blank Comment Code

Java 20 585 1671 804

XML 1 0 6 12

Sum 21 585 1677 816

Table 4: Lines of code for version 1.0.

Language Files Blank Comment Code

Java 20 524 1787 722

XML 1 0 6 12

Sum 21 524 1793 734





xi

License
arara is licensed under the New BSD License. It’s important to observe
that the New BSD License has been verified as a GPL-compatible free
software license by the Free Software Foundation, and has been vetted as
an open source license by the Open Source Initiative.

X

arara – the cool TEX automation tool
Copyright © 2012, Paulo Roberto Massa Cereda
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

• Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copy-
right notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

This software is provided by the copyright holders and
contributors “as is” and any express or implied warranties,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are
disclaimed. In no event shall the copyright holder or con-
tributors be liable for any direct, indirect, incidental,
special, exemplary, or consequential damages (including,
but not limited to, procurement of substitute goods or
services; loss of use, data, or profits; or business inter-
ruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use
of this software, even if advised of the possibility of such
damage.

http://www.opensource.org/licenses/bsd-license.php
http://www.fsf.org/
http://www.opensource.org/




xiii

To my cat Fubá, who loves birds.





Contents

I The application 1

1 Introduction 3
1.1 What is arara? . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 How does it work? . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Common uses . . . . . . . . . . . . . . . . . . . . . . . . . . 7
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Installation 11
2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Obtaining arara . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Using the cross-platform installer . . . . . . . . . . . . . . . 13
2.4 Manual installation . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Updating arara . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Uninstalling arara . . . . . . . . . . . . . . . . . . . . . . . 22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Building from sources 27
3.1 Obtaining the sources . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Building arara . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Notes on the installer and wrapper . . . . . . . . . . . . . . 30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 IDE integration 33
4.1 TEXworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 WinEdt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Inlage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xv



xvi Contents

4.4 TEXShop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 TEXnic Center . . . . . . . . . . . . . . . . . . . . . . . . . . 44
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Important concepts 47
5.1 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Orb tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Configuration file 55
6.1 Search paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 File patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Running arara 61
7.1 Command line . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.4 Command output . . . . . . . . . . . . . . . . . . . . . . . . 64
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

II For authors 67

8 Quick start 69
8.1 Predefined rules . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2 Organizing directives . . . . . . . . . . . . . . . . . . . . . . 83

9 Reference for rule library 85
9.1 Directive arguments . . . . . . . . . . . . . . . . . . . . . . . 85
9.2 Special orb tags . . . . . . . . . . . . . . . . . . . . . . . . . 86
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

III For rulemakers 89

10 Quick start 91
10.1 Writing rules . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.2 Cross-platform rules . . . . . . . . . . . . . . . . . . . . . . 98
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



Contents xvii

11 Reference for rule library 105
11.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11.2 Notes on expansion . . . . . . . . . . . . . . . . . . . . . . . 111





List of Figures

1.1 A lovely photo of an arara. . . . . . . . . . . . . . . . . . . . . . 5

2.1 Language selection screen. . . . . . . . . . . . . . . . . . . . . . 14
2.2 Welcome screen. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Packs screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 License agreement screen. . . . . . . . . . . . . . . . . . . . . . 17
2.5 Installation path screen. . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Target directory confirmation. . . . . . . . . . . . . . . . . . . . 18
2.7 Progress screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Final screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Installation scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.10 The uninstaller screen. . . . . . . . . . . . . . . . . . . . . . . . 24
2.11 The uninstaller screen, after the execution. . . . . . . . . . . . . 24

4.1 Opening the preferences screen in TEXworks. . . . . . . . . . . . 34
4.2 The TEXworks preferences screen. . . . . . . . . . . . . . . . . . 34
4.3 The new tool screen. . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Using arara in the TEXworks compilation profile. . . . . . . . . 36
4.5 The Options Interface window in WinEdt. . . . . . . . . . . . . 38
4.6 The WinEdt TEX menu. . . . . . . . . . . . . . . . . . . . . . . 38
4.7 The arara button in WinEdt. . . . . . . . . . . . . . . . . . . . 38
4.8 The Edit Commands window in Inlage. . . . . . . . . . . . . . . 40
4.9 The Add Command window in Inlage. . . . . . . . . . . . . . . 40
4.10 arara added to the Edit Commands window in Inlage. . . . . . 41
4.11 The Settings window in Inlage. . . . . . . . . . . . . . . . . . . 42
4.12 Adding a new profile in Inlage. . . . . . . . . . . . . . . . . . . 42
4.13 Adding a compiler in Inlage. . . . . . . . . . . . . . . . . . . . . 43
4.14 arara added to the menu in Inlage. . . . . . . . . . . . . . . . 43

xix



xx List of Figures

4.15 arara available in TEXshop. . . . . . . . . . . . . . . . . . . . . 44
4.16 The Profiles window in TEXnic Center. . . . . . . . . . . . . . . 45
4.17 Creating a new profile in TEXnic Center. . . . . . . . . . . . . . 45
4.18 Configuring arara in TEXnic Center. . . . . . . . . . . . . . . . 46



List of Tables

1 Lines of code for version 3.0. . . . . . . . . . . . . . . . . . . . . vii
2 Lines of code for version 2.0. . . . . . . . . . . . . . . . . . . . . viii
3 Lines of code for version 1.0.1. . . . . . . . . . . . . . . . . . . . ix
4 Lines of code for version 1.0. . . . . . . . . . . . . . . . . . . . . ix

2.1 Available packs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Default installation paths. . . . . . . . . . . . . . . . . . . . . . 16

4.1 Configuring arara in TEXworks. . . . . . . . . . . . . . . . . . 35

6.1 Languages and codes. . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1 The list of available arara flags. . . . . . . . . . . . . . . . . . 62

10.1 Other directive options for bibliography. . . . . . . . . . . . . . 98
10.2 Most relevant properties of SystemUtils. . . . . . . . . . . . . . 100

xxi





List of Codes

1 mydoc.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Running arara on mydoc.tex. . . . . . . . . . . . . . . . . . . . 6
3 article.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 manual.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Checking if java is installed. . . . . . . . . . . . . . . . . . . . . 12
6 Running the installer in a Unix-based system – method 1. . . . 13
7 Running the installer in a Unix-based system – method 2. . . . 13
8 Running the installer in the Windows command prompt as ad-

ministrator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9 Creating a batch file for arara in Windows. . . . . . . . . . . . 21
10 Creating a script for arara in Linux and Mac. . . . . . . . . . . 21
11 Testing if arara is working properly. . . . . . . . . . . . . . . . 23
12 Running the uninstaller in a Unix-based system – method 1. . . 23
13 Running the uninstaller in a Unix-based system – method 2. . . 23
14 Running the uninstaller in the Windows command prompt as

administrator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
15 Cloning the project repository. . . . . . . . . . . . . . . . . . . . 27
16 Building arara with Maven, first attempt. . . . . . . . . . . . . 29
17 The Maven error message about missing localization files. . . . . 29
18 Converting the localization files. . . . . . . . . . . . . . . . . . . 30
19 Adding an entry to arara in Main Menu.ini. . . . . . . . . . . . 37
20 arara.engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
21 makefoo.yaml, a basic structure of an arara rule. . . . . . . . . 48
22 makefoobar.yaml, an arara rule with multiple commands. . . . 49
23 makebar.yaml, a rule with arguments. . . . . . . . . . . . . . . . 50
24 Example of directives in a .tex file. . . . . . . . . . . . . . . . . 52
25 A few examples on how orb tags are expanded. . . . . . . . . . 53

xxiii



xxiv List of Codes

26 An example of a new search path for the configuration file. . . . 56
27 An arbitrary number of paths added in the configuration file. . . 56
28 Using the special orb tag for mapping the home directory in the

configuration file. . . . . . . . . . . . . . . . . . . . . . . . . . . 56
29 Changing the language in the configuration file. . . . . . . . . . 57
30 Rearranging the list of filetypes in the configuration file. . . . . 58
31 Three directives with different formatting patterns. . . . . . . . 58
32 Changing the search pattern for .dtx files. . . . . . . . . . . . . 59
33 A sample hello.c code. . . . . . . . . . . . . . . . . . . . . . . 59
34 Adding support for .c files in the configuration file. . . . . . . . 59
35 Rearranging items of arbitrary extensions in the configuration file. 60
36 Adding support for Sketch files in the configuration file. . . . . . 60
37 drawing.sk, a sample Sketch file. . . . . . . . . . . . . . . . . . 60
38 arara.log from arara helloindex --log. . . . . . . . . . . . . 65
39 pdflatex.yaml, first attempt. . . . . . . . . . . . . . . . . . . . 92
40 helloworld.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
41 arara output for the pdflatex task. . . . . . . . . . . . . . . . 92
42 pdflatex.yaml, second attempt. . . . . . . . . . . . . . . . . . . 93
43 pdflatex.yaml, third attempt. . . . . . . . . . . . . . . . . . . . 94
44 makeindex.yaml, first attempt. . . . . . . . . . . . . . . . . . . . 94
45 makeindex.yaml, second attempt. . . . . . . . . . . . . . . . . . 95
46 helloindex.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
47 Running helloindex.tex. . . . . . . . . . . . . . . . . . . . . . 96
48 bibliography.yaml . . . . . . . . . . . . . . . . . . . . . . . . . 97
49 biblio.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
50 Running biblio.tex. . . . . . . . . . . . . . . . . . . . . . . . . 98
51 List of all files after running arara helloindex. . . . . . . . . . 99
52 clean.yaml, first attempt. . . . . . . . . . . . . . . . . . . . . . 101
53 helloindex.tex with the new clean directive. . . . . . . . . . . 101
54 Running helloindex.tex with the new clean rule. . . . . . . . . 102
55 clean.yaml, second attempt. . . . . . . . . . . . . . . . . . . . . 102
56 clean.yaml, third attempt. . . . . . . . . . . . . . . . . . . . . . 103
57 clean.yaml, fourth attempt. . . . . . . . . . . . . . . . . . . . . 104



Part I

The application

1





Chapter 1
Introduction

You can do such a lot with a
Wompom, you can use every
part of it too. For work or for
pleasure, it’s a triumph, it’s a
treasure, oh there’s nothing that
a Wompom cannot do.

Flanders & Swann

Hello there, welcome to arara! I’m glad you were not intimidated by
the threatening message in the prologue. This chapter is actually a quick
introduction to what you can expect from arara. Don’t be afraid, it will
be easy to digest, I promise.

1.1 What is arara?
Good question! arara is a TEX automation tool based on rules and di-
rectives. It is, in some aspects, similar to other well-known tools like
latexmk [2] and rubber [4]. The key difference might be the fact that arara
aims at explicit instructions in the source code in order to determine what
to do instead of relying on other resources, such as log file analysis. It’s
a different approach for an automation tool, and we have both advantages
and disadvantages of such decision. Let’s talk about disadvantages first.

Since we need to explicitly tell arara what we want it to do, it might
not be intuitive for casual users. Tools like latexmk and rubber rely on
a analysis scheme in which the document is generated with a simple call
to latexmk mydoc.tex or rubber --pdf mydoc.tex, while a similar call to

3



4 Chapter 1. Introduction

arara mydoc.tex does absolutely nothing; it’s not wrong, it’s by design:
arara needs to know what you want. We do this by adding a directive in
our .tex file, as shown in line 1 of Code 1. Don’t worry with the terms now,
we will come back to the concepts later on in this manual, in Chapter 5.

Code 1: mydoc.tex

1 % arara: pdflatex

2 \documentclass{article}

3

4 \begin{document}

5 Hello world.

6 \end{document}

When we add a directive in our source code, we are explicitly telling
arara what we want it to do, but I’m afraid that’s not sufficient. So far,
arara knows what to do, but now it needs to know how the task should
be done. Then, for every directive, we need to have an associated rule.
In other words, if we want arara to run pdflatex on mydoc.tex, we need
to have a set of instructions which tells our tool how to run that specific
application. Although the core team provides a lot of rules shipped with
arara out of the box, with the possibility of extending the set by adding
more rules, some users might find this decision rather annoying, since other
tools have most of their rules hardcoded, making the automation process
even more transparent.

Now, let’s talk about some advantages. In my humble opinion, since
arara doesn’t rely on a specific automation or compilation scheme, it be-
comes more extensible. The use of directives in the source code make the
automation steps more fluent, which allows the specification of complex
workflows very easily. Maybe arara’s verbosity on automation steps might
not be suitable for small documents, but the tool really shines when you
have a document which needs full control of the automation process.

Another advantage that comes to my mind right now is the fact that
directives and rules can be parametrized. In other words, you can create
conditional branches, execution workflows based on parameters, flags, and
so on, by simply providing a parameter in a directive. Besides, arara also
provides a lot of helper functions in order to enhance rules; for example,
you can have a rule which executes a certain command when in Windows,
and a different one when in Unix.

The rules are written in a human-readable format. The reason for this
decision came as an attempt to simplify the life of many casual users which



1.2. How does it work? 5

are not versed into programming. Sadly, writing complex XML mappings
or even deliberately injecting code into an application is not a trivial task,
so we opted for an easy way of declaring the set of instructions that tells
arara how to do a task. We will discuss about the format later on, in
Section 5.1.

Now that arara was properly introduced, let me explain the meaning
of the name. Arara is the Brazilian name of a macaw bird (Figure 1.1).
Have you ever watched Rio: the movie, produced by Blue Sky Studios?
The protagonist is a blue arara. The word arara comes from the Tupian
word a’rara, which means big bird [5].

Figure 1.1: A lovely photo of an arara.

Lovely bird, isn’t it? Now, you are probably wondering why I chose this
name. Well, araras are colorful, noisy, naughty and very funny. Everybody
loves araras. So why can’t you love a tool with the very same name?
And there is also another motivation of the name arara: the chatroom
residents of TEX.sx – including myself – are fans of palindromes, especially
palindromic numbers. As you can already tell, arara is a palindrome.

1.2 How does it work?
Now that we know what arara is, let’s take a look on how the tool actually
works. The whole idea is pretty straightforward, but some concepts might
be confusing at first. Do not despair, we will come back to them later on
in the manual, in Chapter 5.

First of all, we need to add at least one instruction in the source code
to tell arara what to do. This instruction is named directive and it will
be parsed during the preparation phase. By default, an arara directive is

http://chat.stackexchange.com/rooms/41


6 Chapter 1. Introduction

defined in a line of its own, started with a comment, followed by the word
arara: and the name of the task. Code 1 has one directive, referencing
pdflatex. It’s important to observe that pdflatex is not the command to
be executed, but the name of the rule associated with that directive.

Once arara finds a directive, it will look for the associated rule. In our
example, it will look for a rule named pdflatex which will evidently run
the pdflatex command line application. The rule is analyzed, all possible
parameters are defined, the command line call is built and then it goes to
a queue of commands to be executed.

After extracting all directives from a source code and mapping each one
of them to their respective rules, arara then executes the queue of com-
mands. The execution chain requires that the command i was successfully
executed to then proceed to the command i + 1, and so forth. This is also
by design: arara will halt the execution if any of the commands in the
queue had raised an error. If we run arara on mydoc.tex – we can also run
arara mydoc too, we will discuss this later on – presented in Code 1, we get
the output presented in Code 2.

Code 2: Running arara on mydoc.tex.

$ arara mydoc
__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

\__,_|_| \__,_|_| \__,_|

Running PDFLaTeX... SUCCESS

That is pretty much how arara works: directives in the source code are
mapped to rules, which are converted to commands and added to a queue.
The queue is then executed and the status is reported. We will cover more
details about the expansion process later on in the manual. In short, we
teach arara to do a task by providing a rule, and tell it to execute it via
directives in the source code.

1.3 Features
To name a few features I like in arara, I’d mention the ability to write
rules in a human-readable format called YAML, which rhymes with the
word camel. YAML is actually a recursive acronym for YAML Ain’t Markup



1.4. Common uses 7

Language, and it’s known as a human friendly data serialization standard for
all programming languages [7]. So far, I think this format is quite suitable
to write rules, specially if you want to avoid the need of writing complicated
XML mappings or even injecting code directly into the application.

Another feature worth mentioning is the fact that arara is platform
independent. The application was written in Java, so arara runs on top
of a Java virtual machine, available on all the major operating systems – in
some cases, you might need to install the proper virtual machine. We tried
very hard to keep both code and libraries compatible with older virtual
machines or from other vendors. Currently, arara is known to run on
Oracle’s Java 5, 6 and 7, and OpenJDK 6 and 7. In Chapter 3, there
are instructions on how to build arara from sources. Even if you use
multiple operating systems, arara should behave the same, including the
rules. There are helper functions available in order to provide support for
system-specific rules based on the underlying operating system, presented
in Section 11.1.

From version 3.0 on, arara can now display localized messages. The de-
fault language is set to English, but the user can receive feedback from the
execution process and logging in other languages as well, such as Brazil-
ian Portuguese, German, Italian, French, Spanish, Russian and Turkish.
There’s also a way to redefine the default language by adding an entry in
the configuration file, discussed later on in Section 6.2.

Speaking of which, arara has now an optional configuration file in
which we can add rule paths, set the default language and define custom
extensions and directive patterns, located in the user home directory. That
way, we can extend arara’s behaviour to deal with other extensions, such
as .c files, and use the tool with other formats. We will come back on this
subject later on in Chapter 6.

arara is also easily integrated with other TEX integrated development
environment, such as TEXworks [3], an environment for authoring TEX doc-
uments shipped with both TEX Live and MiKTEX. Chapter 4 covers the
integration of arara with several environments.

1.4 Common uses
arara can be used in complex workflows, like theses and books. You can
tell arara to compile the document, generate indices and apply styles,
remove temporary files, compile other .tex documents, create glossaries,
call pdfcrop, move files, run METAPOST or METAFONT, and so forth. You
can easily come up with your own rules.



8 Chapter 1. Introduction

There’s an article available in the LATEX community which describes the
integration of gnuplot and arara [1]. This article was submitted as an
entry to a contest organized by Stefan Kottwitz. It might be worth a read.

Let’s see a few examples. Code 3 contains the workflow I used for
another article I recently wrote. Note that the first call to pdflatex creates
the .aux file, then bibtex will extract the cited publications. The next calls
to pdflatex will insert and refine the references.

Code 3: article.tex

1 % arara: pdflatex

2 % arara: bibtex

3 % arara: pdflatex

4 % arara: pdflatex

5 \documentclass[journal]{IEEEtran}

6 ...

Code 4 contains another workflow I used for a manual. I had to use a
package that required shell escape, so the calls to pdflatex had to enable it.
Also, I had an index with a custom formatting, then makeindex was called
with the proper style.

Code 4: manual.tex

1 % arara: pdflatex: { shell: yes }

2 % arara: makeindex: { style: mystyle }

3 % arara: pdflatex: { shell: yes }

4 % arara: pdflatex: { shell: yes }

5 \documentclass{book}

6 ...

And of course, the arara user manual is also compiled with arara. You
can take a look in the source code and check the header. By the way, note
that I had to use a trick to avoid arara to read the example directives
in this manual. As we will see later, arara reads directives everywhere.
Actually, I could have changed the directive pattern for .tex files through
the configuration file, but that’s another story.

Other workflows can be easily created. There can be an arbitrary num-
ber of instructions for arara to execute, so feel free to come up with your
own workflow. arara will handle it for you. My friend Joseph Wright

http://latex-community.org/know-how/435-gnuplot-arara


References 9

wrote a great article about arara in his personal blog, it’s really worth a
read [6].

I really hope you like my humble contribution to the TEX community.
Let arara enhance your TEX experience, it will help you when you’ll need
it the most. Enjoy the manual.

References
[1] Paulo Roberto Massa Cereda. Fun with gnuplot and arara. This article

was submitted to the LATEX and Graphics contest organized by the
LATEX community. 2012. url: http://latex-community.org/know-
how/435-gnuplot-arara (cit. on p. 8).

[2] John Collins. Latexmk. 2001. url: http://www.phys.psu.edu/~collins/
latexmk/ (cit. on p. 3).

[3] Jonathan Kew, Stefan Löffler, and Charlie Sharpsteen. TEXworks: low-
ering the entry barrier to the TEX world. 2009. url: http://www.tug.
org/texworks/ (cit. on p. 7).

[4] Rubber. The tool was originally developed by Emmanuel Beffara but
the development largely ceased after 2007. The current team was formed
to help keep the tool up to date. 2009. url: https://launchpad.net/
rubber (cit. on p. 3).

[5] Tupi – Portuguese Dictionary. url: http://www.redebrasileira.com/
tupi/vocabulario/a.asp (cit. on p. 5).

[6] Joseph Wright. arara: making LATEX files your way. 2012. url: http:
//www.texdev.net/2012/04/24/arara-making-latex-files-your-

way/ (cit. on p. 9).
[7] YAML. 2001. url: http://www.yaml.org/ (cit. on p. 7).

http://latex-community.org/know-how/435-gnuplot-arara
http://latex-community.org/know-how/435-gnuplot-arara
http://www.phys.psu.edu/~collins/latexmk/
http://www.phys.psu.edu/~collins/latexmk/
http://www.tug.org/texworks/
http://www.tug.org/texworks/
https://launchpad.net/rubber
https://launchpad.net/rubber
http://www.redebrasileira.com/tupi/vocabulario/a.asp
http://www.redebrasileira.com/tupi/vocabulario/a.asp
http://www.texdev.net/2012/04/24/arara-making-latex-files-your-way/
http://www.texdev.net/2012/04/24/arara-making-latex-files-your-way/
http://www.texdev.net/2012/04/24/arara-making-latex-files-your-way/
http://www.yaml.org/




Chapter 2
Installation

Adjust \hsize: old man Fermat
couldn’t.

Enrico Gregorio

Spledid, so you decided to give arara a try? This chapter will cover
the installation procedure. We basically have two methods of installing
arara: the first one is through a cross-platform installer, which is of course
the recommended method; the second one is a manual deployment, with
the provided .jar file – a self-contained, batteries-included executable Java
archive file. If you have a recent TEX Live distribution, good news: arara
is already available in your system!

2.1 Prerequisites
I know I’ve mentioned this before in Section 1.3 and, at the risk of being
repetitive, there we go again: arara is written in Java and thus depends
on a virtual machine in the underlying operating system. If you use a Mac
or even a fairly recent Linux distribution, I have good news for you: it’s
mostly certain that you already have a Java virtual machine installed.

It’s very easy to check if you have a Java virtual machine installed: try
running java -version in the terminal (bash, command prompt, you name
it) and see if you get an output similar to the one provided in Code 5.

If the output goes along the lines of java: command not found, I’m
afraid you don’t have a Java virtual machine installed in your operating
system. Since the virtual machine is a prerequisite for arara to run, you
can install one via your favorite package manager or manually install it from

11



12 Chapter 2. Installation

Code 5: Checking if java is installed.

$ java -version

java version "1.6.0_24"

OpenJDK Runtime Environment (IcedTea6 1.11.1)

OpenJDK Client VM (build 20.0-b12, mixed mode)

the binaries available in the official Java website. Make sure to download
the correct version for your operating system. The installation procedure
is very straightforward. If you get stuck, take a look on the installation
instructions.

It’s important to mention that arara runs also with the Java virtual
machine from the OpenJDK project [7], which is already available in most
of the recent Linux distributions – actually the output from Code 5 shows
the OpenJDK version from my Fedora machine. Feel free to use the virtual
machine you feel most comfortable with.

Speaking of virtual machines, arara requires at least Java 5 to run.
Don’t worry, it’s quite easy to spot the Java version: just look at the second
digit of the version string. For example, Code 5 outputs 1.6.0_24, which
means we have Java 6 installed.

2.2 Obtaining arara
Before proceeding, we need to choose the installation method. We have two
options: the first option is the easiest one, which installs arara through a
cross-platform installer; the second option is a manual deployment.

From version 3.0 on, arara is also available as part of the TEX Live
distribution. If you have a recent TEX distro, it’s almost certain that you
already have arara; make sure to select it in the tlmgr application.

If we opt for the installer, go to the downloads section of the project
repository and download arara-3.0-installer.jar for all operating sys-
tems or arara-3.0-installer.exe for Windows. Please note that the .exe

version is only a wrapper which will launch arara-3.0-installer.jar under
the hood. The installer also requires Java.

If we want to do things the complicated way, go to the downloads section
of the project repository and download the arara.jar file, which is a self-
contained, batteries-included executable Java archive file.

In case you want to build arara from source, please refer to Chapter 3
which will cover the whole process. Thanks to Apache Maven, the build

http://www.java.com
http://github.com/cereda/arara/downloads
http://github.com/cereda/arara/downloads


2.3. Using the cross-platform installer 13

process is very easy.

2.3 Using the cross-platform installer
After downloading arara-3.0-installer.jar (or its .exe counterpart), it’s
now just a matter of running it. The installer is built with IzPack [4], an
amazing tool for packaging applications on the Java platform. Of course
the source is also available at the project repository. Personally, I suggest
you to run the installer in privileged mode, but you can also run it in
user mode – just keep in mind that some features might not work, like
creating symbolic links or adding the application to the system path, which
inevitably requires a privileged mode.

When running arara-3.0-installer.jar or its .exe wrapper on Win-
dows by simply double-clicking it, the installer will automatically run in
privileged mode. A general Unix-based installation can be triggered by
the command presented in Code 6. There’s also an alternative command
presented in Code 7.

Code 6: Running the installer in a Unix-based system – method 1.

$ sudo java -jar arara-3.0-installer.jar

Code 7: Running the installer in a Unix-based system – method 2.

$ su -c 'java -jar arara-3.0-installer.jar'

Since Windows doesn’t have a similar command to su or sudo, you need
to open the command prompt as administrator and then run the command
presented in Code 8. You can right-click the command prompt shortcut
and select the “Run as administrator. . . ” option.

Code 8: Running the installer in the Windows command prompt as ad-
ministrator.

C:\> java -jar arara-3.0-installer.jar

The installation process will begin. Hopefully, the first screen of the
installer will appear, which is the language selection (Figure 2.1). By the



14 Chapter 2. Installation

way, if you called the installer through the command line, please do not
close the terminal! It might end the all running processes, including our
installer.

Figure 2.1: Language selection screen.

The installer currently supports six languages: English, German, French,
Italian, Spanish, and Brazilian Portuguese. I plan to add more languages
to the list in the near feature.

The next screen welcomes you to the installation (Figure 2.2). There’s
the application name, the current version, the team, and the project home-
page. We can proceed by clicking the Next button. Note that you can quit
the installer at any time by clicking the Quit button – please, don’t do it;
a kitten dies every time you abort the installation1.

Moving on, the next screen shows the license agreement (Figure 2.4).
arara is licensed under the New BSD License [6]. It’s important to observe
that the New BSD License has been verified as a GPL-compatible free
software license by the Free Software Foundation [5], and has been vetted
as an open source license by the Open Source Initiative [3]. The full license
is also available in this document (page xi). You need to accept the terms
of the license agreement before proceeding.

The next screen is probably the most important section of the installa-
tion: in here we will choose the packs we want to install (Figure 2.3). All
packs are described in Table 2.1. Note that the grayed packs are required.

It’s very important to mention that all these modifications in the oper-
ating system – the symbolic link creation for Unix or the addition to the

1Of course, this statement is just a joke. No animals were harmed, killed or severely
wounded during the making of this user manual. After all, arara is environmentally
friendly.

http://www.opensource.org/licenses/bsd-license.php


2.3. Using the cross-platform installer 15

Figure 2.2: Welcome screen.

Figure 2.3: Packs screen.



16 Chapter 2. Installation

Table 2.1: Available packs.

Pack name OS Description

Main application All This pack contains the core applica-
tion. It also provides an .exe wrap-
per for Windows and a bash file for
Unix.

Include the arara user
manual

All This pack installs this user man-
ual into the docs/ subdirectory of
arara.

Include predefined rules All Of course, arara has a set of pre-
defined rules for you to start with.
If you prefer to write your own
rules from scratch, do not select
this pack.

Add a symbolic link to
arara in /usr/local/bin

Unix If you ran the installer in privileged
mode, a symbolic link to arara can
be created in the /usr/local/bin

directory. There’s no magic here,
the installer uses the good old ln

command.

Add arara to the system
path

Windows Like the Unix task, arara can also
add itself to the system path. This
feature is provided by a Windows
script named Modify Path [1].

path for Windows – are safely removed when you run the arara uninstaller.
We will talk about it later, in Section 2.6.

In the next screen, we will select the installation path (Figure 2.5). The
installer will automatically set the default installation path according to the
Table 2.2, but feel free to install arara in your favorite structure – even
/opt or your home folder.

Table 2.2: Default installation paths.

OS Default installation path

Windows C:\Program Files\arara

Unix /usr/local/arara

After selecting the installation path, the installer will then confirm the
creation of the target directory (Figure 2.6). We simply click OK to accept

http://legroom.net/software/modpath


2.3. Using the cross-platform installer 17

Figure 2.4: License agreement screen.

Figure 2.5: Installation path screen.



18 Chapter 2. Installation

it. For convenience, the full installation path defined in the installation
path screen (Figure 2.5) will be referred as ARARA_HOME from now on.

Figure 2.6: Target directory confirmation.

Now, just sit back and relax while arara is being installed (Figure 2.7).
All selected packs will be installed accordingly. The post installation tasks
– like creating the symbolic link or adding arara to the system path – are
performed here as well. If the installation has completed successfully, we
will reach the final screen of the installer congratulating us for installing
arara (Figure 2.8).

Figure 2.7: Progress screen.

The full installation scheme is presented in Figure 2.9. The directory
structure is presented here as a whole; keep in mind that some parts will
be omitted according to your operating system and pack selection. For
example, the etc/ subdirectory will only be installed if and only if you are



2.4. Manual installation 19

Figure 2.8: Final screen.

in Windows and the system path pack is selected. Other files are platform-
specific, such as arara.exe for Windows and the arara bash file for Unix.

That’s it, arara is installed in your operating system. If you opted for
the symbolic link creation or the path addition, arara is already available
in your terminal by simply typing arara. Have fun!

2.4 Manual installation
Thankfully, arara is also very easy to be manually deployed. First of all,
we must create the application directory. Feel free to create this directory
anywhere in your computer; it can be C:\arara, /opt/arara or another
location of your choice. This procedure is similar to the installation path
screen (Figure 2.5) from Section ??. Again, for convenience, the full instal-
lation path will be referred as ARARA_HOME from now on. Although it’s not
mandatory, try to avoid folders structures with spaces in the path. In any
case, arara can handle such spaces.

After downloading arara.jar from the downloads section of the project
repository, let’s copy it to the ARARA_HOME directory we’ve created in the
previous step. Since arara.jar is a self-contained, batteries-included exe-
cutable Java archive file, arara is already installed.

http://github.com/cereda/arara/downloads


20 Chapter 2. Installation

ARARA_HOME/

arara.jar

arara.exe

arara

docs/

arara-usermanual.pdf

etc/

modpath.exe

Uninstaller/

uninstaller.jar

rules/

biber.yaml

...

xetex.yaml

Figure 2.9: Installation scheme.

In order to run arara from a manual installation, we should open a
terminal and run java -jar $ARARA_HOME/arara.jar, but that is far from
being intuitive. To make our lives easier, we will create a shortcut for this
command.

If you are deploying arara in Windows, there are two methods for
creating a shortcut: the first method – the easiest – consists of downloading
the arara.exe wrapper from the downloads section and copying it to the
ARARA_HOME directory, in the same level of arara.jar. This .exe wrapper,
provided by Launch4J [2], wraps .jar files in Windows native executables
and allows to run them like a regular Windows program.

The second method for creating a shortcut in Windows is to provide a
batch file which will call java -jar $ARARA_HOME/arara.jar for us. Create
a file named arara.bat or arara.cmd inside the ARARA_HOME directory, in the
same level of arara.jar, and add the content from Code 9.

After creating the batch file, add the full ARARA_HOME path to the system
path. Unfortunately, this manual can’t cover the path settings, since it’s
again a matter of personal taste. I’m sure you can find tutorials on how to
add a directory to the system path.

http://github.com/cereda/arara/downloads
http://launch4j.sourceforge.net


2.4. Manual installation 21

Code 9: Creating a batch file for arara in Windows.

@echo off

java -jar "%~dp0\arara.jar" %*

If you are deploying arara in Linux or Mac, we also need to create a
shortcut to java -jar $ARARA_HOME/arara.jar. Create a file named arara

inside the ARARA_HOME directory, in the same level of arara.jar, and add
the content from Code 10.

Code 10: Creating a script for arara in Linux and Mac.

#!/bin/bash

# Example script of arara

# Installation and usage are described in the documentation

SOURCE="${BASH_SOURCE[0]}"

while [ -h "$SOURCE" ] ; do SOURCE="$(readlink "$SOURCE")";

done

DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && cd -P "$(

dirname "$SOURCE" )" && pwd )"

java -jar "$DIR/arara.jar" "$@"

We now need to add execute permissions for our newly created script
through chmod +x arara. The arara script can be invoked through path
addition or symbolic link. I personally prefer to add ARARA_HOME to my user
path, but a symbolic link creation seems way more robust – it’s what the
installer does. Anyway, it’s up to you to decide which method you want to
use. There’s no need to use both.

Once we conclude the manual installation, it’s time to check if arara
is working properly. Try running arara in the terminal and see if you get
the output shown in Code 11.

If the terminal doesn’t display the arara logo and usage, please re-
view the manual installation steps. Every step is important in order to
make arara available in your system. You can also try the cross-platform
installer. If you still have any doubts, feel free to contact us.



22 Chapter 2. Installation

2.5 Updating arara
If there is a newer version of arara available in the downloads section of
the project repository, simply download the arara.jar file and copy it to
the ARARA_HOME directory, replacing the current one. No further steps are
needed, the newer version is deployed. Try running arara --version in the
terminaland see if the version shown in the output is equal to the one you
have downloaded.

Anyway, for every version, arara has the proper cross-platform installer
available for download in the project repository. You can always uninstall
the old arara setup and install the new one. Please note that only major
versions are released with the installer.

If you have arara through the TEX Live distribution, the update process
is straightforward: simply open a terminal and run tlmgr update arara in
order to update the application. This is of course the preferred method.

2.6 Uninstalling arara
If you want to uninstall arara, there are two methods available. If you
installed arara through the cross-platform installer, I have good news for
you: it’s just a matter of running the uninstaller. Now, if arara was
deployed through the manual installation, we might have to remove some
links or path additions.

A general Unix-based uninstallation can be triggered by the command
presented in Code 12. There’s also an alternative command presented in
Code 13.

Since Windows doesn’t have a similar command to su or sudo, you need
to open the command prompt as administrator and then run the command
presented in Code 14. You can right-click the command prompt shortcut
and select the “Run as administrator. . . ” option.

The uninstallation process will begin. Hopefully, the first and only creen
of the uninstaller will appear (Figure 2.10). By the way, if you called the
uninstaller through the command line, please do not close the terminal! It
might end the all running processes, including our uninstaller.

There’s nothing much to see in the uninstaller. We have an option to
force the deletion of the ARARA_HOME directory, but that’s all. By clicking
the Uninstall button, the uninstaller will remove the symbolic link or the
path entry for arara from the operating system, if selected during the
installation. Then it will erase the ARARA_HOME directory (Figure 2.11).

http://github.com/cereda/arara/downloads


2.6. Uninstalling arara 23

Code 11: Testing if arara is working properly.

$ arara
__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

\__,_|_| \__,_|_| \__,_|

arara 3.0 - The cool TeX automation tool

Copyright (c) 2012, Paulo Roberto Massa Cereda

All rights reserved.

usage: arara [file [--log] [--verbose] [--timeout N]

[--language L] | --help | --version]

-h,--help print the help message

-L,--language <arg> set the application language

-l,--log generate a log output

-t,--timeout <arg> set the execution timeout (in milliseconds)

-v,--verbose print the command output

-V,--version print the application version

Code 12: Running the uninstaller in a Unix-based system – method 1.

$ sudo java -jar $ARARA_HOME/Uninstaller/uninstaller.jar

Code 13: Running the uninstaller in a Unix-based system – method 2.

$ su -c 'java -jar $ARARA_HOME/Uninstaller/uninstaller.jar'

Code 14: Running the uninstaller in the Windows command prompt as
administrator.

C:\> java -jar $ARARA_HOME/Uninstaller/uninstaller.jar



24 Chapter 2. Installation

Figure 2.10: The uninstaller screen.

Figure 2.11: The uninstaller screen, after the execution.

Unfortunately, even if you force the deletion of the ARARA_HOME directory
in Windows, the operating system can’t remove the Uninstaller subdirec-
tory because the uninstaller was being executed from there. But that’s
the only trace left. You can safely delete ARARA_HOME after running the
uninstaller.

If arara was manually installed, we need to remove the symbolic link
reference or the path entry, if any, then delete the ARARA_HOME directory.
Don’t leave any traces of arara in system directories or configuration files;
a broken symbolic link or a wrong path entry might cause trouble in the
future.

References
[1] Jared Breland. Modify Path. This tool in released under the GNU

Lesser General Public License (LGPL), version 3. 2012. url: http:
//legroom.net/software/modpath (cit. on p. 16).

[2] Grzegorz Kowal. Launch4J, a cross-platform Java executable wrapper.
2005. url: http://launch4j.sourceforge.net/ (cit. on p. 20).

[3] Bruce Perens and Eric Steven Raymond. Open Source Initiative. Non-
profit corporation with global scope formed to educate about and ad-
vocate for the benefits of open source and to build bridges among dif-

http://legroom.net/software/modpath
http://legroom.net/software/modpath
http://launch4j.sourceforge.net/


References 25

ferent constituencies in the open source community. 1998. url: http:
//www.opensource.org/ (cit. on p. 14).

[4] Julien Ponge. IzPack. The project is developed by a community of
benevolent contributors. 2001. url: http : / / izpack . org/ (cit. on
p. 13).

[5] Richard Stallman. Free Software Foundation. Nonprofit organization
with a worldwide mission to promote computer user freedom and to
defend the rights of all free software users. 1985. url: http://www.
fsf.org/ (cit. on p. 14).

[6] The New BSD License. url: http://www.opensource.org/licenses/
bsd-license.php (cit. on p. 14).

[7] The OpenJDK Project. 2006. url: http://openjdk.java.net/ (cit. on
p. 12).

http://www.opensource.org/
http://www.opensource.org/
http://izpack.org/
http://www.fsf.org/
http://www.fsf.org/
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://openjdk.java.net/




Chapter 3
Building from sources

Knowledge brings fear.

From a Futurama episode

Although arara already features a self-contained, batteries-included ex-
ecutable Java archive file, an .exe wrapper, and a cross-platform installer,
you can easily build it from sources. The only requirements are a working
Java Development Kit [2] and the Apache Maven software project manage-
ment [1]. The next sections will cover the entire process, from obtaining
the sources to the build itself. Sadly, this manual doesn’t cover Java and
Maven deployments, so I kindly ask you to check their websites and read
the available documentation.

3.1 Obtaining the sources
First of all, we need to get the source code, available in the project repository
hosted on GitHub. We have two options on how to obtain the sources: either
by clicking the Zip button in the project page and download a snapshot
of the whole structure in an archive file, or by using git and clone the
repository into our machine. The second option is easily done by executing
the command presented in Code 15, provided of course that you have git

installed.

Code 15: Cloning the project repository.

$ git clone git://github.com/cereda/arara.git

27

https://github.com/cereda/arara
https://github.com/cereda/arara/archive/master.zip


28 Chapter 3. Building from sources

After cloning the project repository (Code 15), a new subdirectory
named arara is created in the current directory with the project struc-
ture – the very same available in the project repository on GitHub. The
application source code is inside arara/arara. Note that there are other
source codes for the cross-platform installer and the .exe wrapper, as well
as the predefined rules, each one in a subdirectory of its own.

If you opted for downloading the archive file, you’ll have a file named
arara-master.zip generated automatically by GitHub. Just extract the file
somewhere in your computer and you’ll end up with the very same project
structure as the one available in the project repository.

3.2 Building arara
Inside the arara/arara directory, we have the most important file for build-
ing arara: a file named pom.xml. We now just need to call the mvn command
with the proper target and relax while Maven takes care of the building pro-
cess for us. First of all, let’s take a look at some targets available in our
pom.xml file:

compile

This target compiles the source code, generating the Java bytecode.

package

The package target is very similar to the compile one, but instead of
only compiling the source code, it also packs the Java bytecode into
an executable Java archive file without dependencies. The file will be
available inside the arara/arara/target directory.

assembly:assembly

This target is almost identical to the package one, but it also includes
all the dependencies into a final Java archive file. The file will be
available inside the arara/arara/target directory. This is of course our
preferred target, since arara is shipped as a self-contained executable
Java archive file.

clean

The clean target removes all the generated Java bytecode and deploy-
ment traces, cleaning the project structure.

Now that we know the targets, we only need to call mvn with the target
we want. If you want to generate the very same Java archive file we use for
releases, execute the command presented in Code 16.



3.2. Building arara 29

Code 16: Building arara with Maven, first attempt.

$ mvn assembly:assembly

Actually, the command presented in Code 16, as the project structure
is at the moment, will fail! Let me explain why: the application is not yet
linked with the localized messages, so we need to convert our translation
files into a correct format and then run the target in Maven. The error
message after running mvn assembly:assembly presented in Code 17 gives
us a hint on what we should do.

Code 17: The Maven error message about missing localization files.

Failed tests: testLocalizationFile(com.github.arara.AraraTest):

arara requires at least the default localization file

Messages.properties located at the translations/ directory in

the project repository. Rename Messages.input to

Messages.properties and copy the new file to the src/

directory, under com/github/arara/localization, and build

arara again.

Tests run: 1, Failures: 1, Errors: 0, Skipped: 0

[INFO] ---------------------------------------------

[INFO] BUILD FAILURE

[INFO] ---------------------------------------------

Let’s go into arara/translations and run the commands presented in
Code 18. Since we are dealing with languages that require an encoding
in UTF-8 while the localization files are set in ASCII, we need to run a
conversion program in order to generate valid .properties files.

Now we can simply rerun the command presented in Code 16. Hopefully,
we won’t have trouble this time. Relax while Maven takes care of the
building process. It might take a while, since all dependencies will be
downloaded to your Maven repository. After a while, Maven will tell us
that the project was built successfully!

After a successful build via Maven, we can now get the generated exe-
cutable Java archive file arara-3.0-with-dependencies.jar which is inside
the arara/arara/target directory, rename it to arara.jar and use it as we
have seen in the previous chapters.



30 Chapter 3. Building from sources

Code 18: Converting the localization files.

$ native2ascii -encoding utf8 Messages.input ../application/src

/main/resources/com/github/arara/localization/Messages.

properties

$ native2ascii -encoding utf8 Messages_de.input ../application/

src/main/resources/com/github/arara/localization/Messages_de

.properties

$ native2ascii -encoding utf8 Messages_es.input ../application/

src/main/resources/com/github/arara/localization/Messages_es

.properties

$ native2ascii -encoding utf8 Messages_fr.input ../application/

src/main/resources/com/github/arara/localization/Messages_fr

.properties

$ native2ascii -encoding utf8 Messages_it.input ../application/

src/main/resources/com/github/arara/localization/Messages_it

.properties

$ native2ascii -encoding utf8 Messages_pt_BR.input ../

application/src/main/resources/com/github/arara/localization

/Messages_pt_BR.properties

$ native2ascii -encoding utf8 Messages_ru.input ../application/

src/main/resources/com/github/arara/localization/Messages_ru

.properties

$ native2ascii -encoding utf8 Messages_tr.input ../application/

src/main/resources/com/github/arara/localization/Messages_tr

.properties

3.3 Notes on the installer and wrapper
The project directory has additional subdirectories regarding the arara
cross-platform installer and the .exe wrapper. It’s important to observe
that only the build files are available, which means that you need to review
the compilation process and make adjustments according to your directory
structure.

The cross-platform installer Java archive file is generated with IzPack [4],
while the .exe wrapper is built with Launch4J [3]. Both build files are
written in plain XML, so you can easily adapt them to your needs. Sadly,
the main purpose of this chapter is to cover the build process of arara
itself and not its helper tools; if you want to generate your own wrapper or
installer, please refer to the available documentation on how to build each



References 31

file. The build process is also very straightforward.

References
[1] Apache Maven. Software project management and comprehension tool.

url: http://maven.apache.org/ (cit. on p. 27).
[2] Java Development Kit. url: http://www.oracle.com/technetwork/

java/javase/downloads/index.html (cit. on p. 27).
[3] Grzegorz Kowal. Launch4J, a cross-platform Java executable wrapper.

2005. url: http://launch4j.sourceforge.net/ (cit. on p. 30).
[4] Julien Ponge. IzPack. The project is developed by a community of

benevolent contributors. 2001. url: http : / / izpack . org/ (cit. on
p. 30).

http://maven.apache.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://launch4j.sourceforge.net/
http://izpack.org/




Chapter 4
IDE integration

The answer to “can Emacs. . . ”
is always “yes”.

David Carlisle

This chapter covers the integration of arara with several integrated
development environments. For obvious reasons, it’s almost impossible for
us to cover the full range of editors available nowadays, so we tried to focus
only on a couple of them. If you use arara with an IDE other than the
ones listed here, please let us know! It would be great to include your
contribution in this user manual.

4.1 TEXworks
arara can be easily integrated with TEXworks [1], an environment for au-
thoring TEX documents shipped with both TEX Live and MiKTEX. In this
section, we will learn how to integrate arara and this cross-platform TEX
front-end program.

First of all, make sure arara is properly installed in your operating
system. Thankfully, it’s very easy to add a new tool in TEXworks, just open
the program and click in Edit → Preferences. . . to open the preferences
screen (Figure 4.1).

The next screen is the TEXworks preferences (Figure 4.2). There are
several tabs available. Navigate to the Typesetting tab, which contains two
lists: the paths for TEX and related programs, and the processing tools. In
the second list – the processing tools – click the Plus (+) button to add
another tool.

33



34 Chapter 4. IDE integration

Figure 4.1: Opening the preferences screen in TEXworks.

Figure 4.2: The TEXworks preferences screen.



4.1. TEXworks 35

We are now in the new tool screen (Figure 4.3). TEXworks provides an
very straightforward interface for adding new tools; we just need to provide
the tool name, the executable path, and the parameters. Table 4.1 helps us
on what to type in each field. When done, just click OK and our new tool
will be available.

Figure 4.3: The new tool screen.

Field name Value Description

Name arara The tool name. You can actually type what-
ever name your heart desires. This value will
be displayed in the compilation profile.

Program $ARARA_HOME/arara The full executable path. Just browse the
filesystem and select the correct arara path.
Observe that symbolic links are resolved
to their full targets. For Windows, select
the .exe wrapper; for Unix, select the bash
script.

Arguments $fullname

--verbose

--log

The tool arguments. Note that you need
to type one argument at a time, by clicking
the Plus (+) button. The first argument is
a TEXworks variable which will expand to
the current filename. The second and third
arguments are arara flags, discussed later,
in Chapter 7.

Table 4.1: Configuring arara in TEXworks.

We are now back to the preferences screen (Figure 4.2). Hopefully,
arara is in the list of processing tools. Just click OK to confirm the new



36 Chapter 4. IDE integration

addition. Congratulations, now arara is available as a compilation profile
in TEXworks (Figure 4.4).

Figure 4.4: Using arara in the TEXworks compilation profile.

And we are done, arara is now integrated with TEXworks! Just make
sure to select the correct profile when running the compilation process.

4.2 WinEdt
The following procedure is kindly provided by Harish Kumar. It’s very easy
to integrate arara with WinEdt, let’s take a look at the steps.

Getting images for icons and toolbar
WinEdt uses 16 × 16 .png images for menu items, the toolbar and the
tree control. They are available in %B\Bitmaps\Images1 folder and they
are automatically loaded on startup or later through the Options Interface
(or ReloadImages macro function). Restricted users can place additional
images in their %b\Bitmaps\Images2 folder. At the moment all images have
a 16× 16 dimension and use 32-bit transparent .png format.

The images for the arara toolbar can be downloaded from the down-
loads area of the project repository. It would suffice to have a 16× 16 .png

image for WinEdt v7 while for WinEdt v6, one has to use 16 × 16 .bmp

image. The downloaded images must be copied to %B\Bitmaps\Images or
%b\Bitmaps\Images (depending upon the admin privileges). Once copied,
WinEdt has to be restarted to load the images. Now the images should be
available for use.

1%B maps to C:\Program Files\WinEdt Team\WinEdt 7 for default installation.
2%b maps to C:\Users\<username>\AppData\Roaming\WinEdt Team\WinEdt 7 for de-

fault installation

http://github.com/cereda/arara/downloads
http://github.com/cereda/arara/downloads


4.2. WinEdt 37

Adding a menu entry
The following steps describe how to add a menu entry for arara in WinEdt
v6 and v7.

1. Go to Options → Options Interface. A side window will appear on
the left side as shown in Figure 4.5.

2. From the Menus and Toolbar drop down list, select Main Menu and
double click to open the file Main Menu.ini.

3. In the Main Menu.ini file, type the code presented in Code 19 some-
where in the file.

4. Save the file. Now the current script has to be loaded by clicking the
Load current script button, which is the first button in the tool bar
in Options Interface window shown in Figure 4.5.

5. Now in the WinEdt TEX menu, a submenu called Arara should be
visible and functional (Figure 4.6).

6. From theMenus and Toolbar drop down list, select Toolbar and double
click to open the file Toolbar.ini.

7. In the Toolbar.ini file, type the following line, somewhere in the file:
BUTTON="arara".

8. Save the file Toolbar.ini. Now the current script has to be loaded
by clicking the Load current script button, which is the first button
in the tool bar in Options Interface window (Figure 4.5).

9. Now a button for arara should be visible as shown in Figure 4.7.

Code 19: Adding an entry to arara in Main Menu.ini.

ITEM="Arara"

CAPTION="Arara"

IMAGE="arara16"

SAVE_INPUT=1

MACRO=:RunConsole('arara "\%F"','\%P','arara...');

REQ_FILTER=:"\%!M=TeX"|"\%!M=TeX:STY"|"\%!M=TeX:AUX"

And we are done! arara is successfully integrated in WinEdt. Now
you can add directives to your files and click the buttons to trigger the
execution.



38 Chapter 4. IDE integration

Figure 4.5: The Options Interface window in WinEdt.

Figure 4.6: The WinEdt TEX menu.

Figure 4.7: The arara button in WinEdt.



4.3. Inlage 39

4.3 Inlage
The following procedure is kindly provided by Harish Kumar. It’s very easy
to integrate arara with Inlage, let’s take a look at the steps.

Inlage v4
The following steps describe how to add a menu entry for arara in Inlage
v4. It’s an easy procedure.

1. Go to Build → User Commands. A window named Edit Commands
will appear as shown in Figure 4.8.

2. Now press the Plus (+) button to get the Add Command window as
shown in Figure 4.9.

3. Under the Name textfield, type arara and under the Command Line
textarea, type arara \%f. Now the new configuration should be saved
using the Save button. Now an entry for arara should be visible as
seen in Figure 4.10.

4. These settings must be then updated using the Update button in the
Edit Commands window shown in Figure 4.8.

5. Now a menu entry for arara should be visible in Build → Execute
→ arara.

That’s it, arara is now successfully integrated in Inlage v4. Have fun!

Inlage v5
The following steps describe how to add a menu entry for arara in Inlage
v5. It’s an easy procedure.

1. Go to Build → Compiler Options. . . . A Settings window will appear
as shown in Figure 4.11.

2. Under Profiles, create a new profile clicking the New button. A new
window will open; now let’s type the name for the new profile as
arara, as shown in Figure 4.12. Now press Okay.

3. Under Compiler Order, press Add Compiler, as shown in Figure 4.13.

4. Under Binaries, change the following:



40 Chapter 4. IDE integration

Figure 4.8: The Edit Commands window in Inlage.

Figure 4.9: The Add Command window in Inlage.



4.4. TEXShop 41

Figure 4.10: arara added to the Edit Commands window in Inlage.

a) In Implementation, choose Custom.
b) In Binary Name, choose the executable for arara using the

Browse button.
c) In Parameters, you can choose the parameters, such as --verbose.
d) In Target File, choose Active File/Masterfile.

5. Save these settings. After the previous steps, you should get a menu
for arara in Inlage v5 as seen in Figure 4.14.

That’s it, arara is successfully integrated with Inlage v5. Have fun!

4.4 TEXShop
Integrating arara with TEXshop is probably one of the easiest procedures.
Simply open your terminal, go to ~/Library/TeXShop/Engines and create a
file named arara.engine with the content presented in Code 20.

Now, we need to add execute permissions to our newly created file. A
simple chmod +x arara.engine will do the trick. Now, open TEXshop and
you will see arara available for use in the list of engines (Figure 4.15).

No more steps are needed, arara is successfully deployed in TEXshop.
If you want to remove arara from TEXshop, just remove arara.engine

from the Engines directory.



42 Chapter 4. IDE integration

Figure 4.11: The Settings window in Inlage.

Figure 4.12: Adding a new profile in Inlage.

Code 20: arara.engine

#!/bin/bash

export PATH=/usr/texbin:/usr/local/bin:${PATH}

arara "$1"



4.4. TEXShop 43

Figure 4.13: Adding a compiler in Inlage.

Figure 4.14: arara added to the menu in Inlage.



44 Chapter 4. IDE integration

Figure 4.15: arara available in TEXshop.

4.5 TEXnic Center
TEXnic Center has also an easy integration with arara. The first step is
to go to Build → Define Output Profiles. . . . The Profiles window should
open, as shown in Figure 4.16.

Let’s now create a new profile! Click the Add button. A window will
pop up and ask for the new profile name (Figure 4.17). Type arara as the
profile name and click OK.

The last step is the easiest one. With the arara profile selected, check
the box which says Run (La)TEXin this profile, then enter the full path
to arara in the textbox named Path to the (La)TEXcompiler and write
--log --verbose "%wm" in the texbox named Command line arguments to
pass to the compiler ; click OK, as shown in Figure 4.18.

That’s it, now arara is integrated with TEXnic Center! Just make sure
to select arara in the dropdown list of available profiles.

References
[1] Jonathan Kew, Stefan Löffler, and Charlie Sharpsteen. TEXworks: low-

ering the entry barrier to the TEX world. 2009. url: http://www.tug.
org/texworks/ (cit. on p. 33).

http://www.tug.org/texworks/
http://www.tug.org/texworks/


References 45

Figure 4.16: The Profiles window in TEXnic Center.

Figure 4.17: Creating a new profile in TEXnic Center.



46 Chapter 4. IDE integration

Figure 4.18: Configuring arara in TEXnic Center.



Chapter 5
Important concepts

Beware of bugs in the above
code; I have only proved it
correct, not tried it.

Donald Knuth

Time for our first contact with arara! It’s important to understand a
few concepts in which arara relies before we proceed to the usage itself.
Do not worry, these concepts are easy to follow, yet they are vital to the
comprehension of the application and the logic behind it.

5.1 Rules
Do you remember mydoc.tex from Code 1 in page 4? When we tried to
mimic rubber and run arara mydoc, nothing happened. We should tell
arara how it should handle this execution. Let’s start with the rules.

A rule is a formal description of how arara should handle a certain
task. For example, if we want to use pdflatex with arara, we should have
a rule for that. Once a rule is defined, arara automatically provides an
access layer to that rule through directives, a concept to be introduced in
Section 5.2.

A rule is a plain text file written in the YAML format [2]. I opted
for this format because it’s cleaner and more intuitive to use than other
markup languages, besides of course being a data serialization standard for
all programming languages. As a bonus, the acronym YAML rhymes with
the word camel, so arara is heavily environmentally friendly1.

1Perl, I’m looking at you.

47



48 Chapter 5. Important concepts

The default rules, that is, the rules shipped with arara, are placed
inside a special subdirectory named rules/ inside ARARA_HOME. We will
learn in Section 6.1 that we can add an arbitrary number of paths for storing
our own rules, in order of priority, so don’t worry with the location of the
default rules, although it’s important to understand and acknowledge their
existance. The basic structure of an arara rule is presented in Code 21.

Code 21: makefoo.yaml, a basic structure of an arara rule.

1 !config

2 # I am a comment

3 identifier: makefoo

4 name: MakeFoo

5 command: makefoo @{file}

6 arguments: []

The !config keyword (line 1) is mandatory and it must be the first line
of any arara rule. Note that the format also accepts comments (line 2) by
simply starting a line with the # symbol. The following keys are defined:

identifier

This key (line 3) acts as a unique identifier for the rule. It’s highly
recommended to use lowercase letters without spaces, accents or punc-
tuation symbols. As a convention, if you have an identifier named
makefoo, the rule filename must be makefoo.yaml.

name

The name key (line 4) holds the name of the task. When running arara,
this value will be displayed in the output. In our example, arara will
display Running MakeFoo in the output when dealing with this task.

command

This key (line 5) contains the system command to be executed. You
can use virtually any type of command, interactive or noninteractive.
But beware: if arara is running in silent mode, which is the default
behaviour, an interactive command wich might require the user input
will be halted and the execution will fail. Don’t despair, you can use
a special --verbose flag with arara in order to interact with such
commands – we will talk about flags in Chapter 7. There are cases in
which you might want to have a list of commands instead of a single
one; arara has support for multiple commands inside one rule, we just



5.1. Rules 49

need to replace command by commands and provide a list of commands
to be executed, as seen in Code 22. You probably noticed a strange
element @{file} in the command line: this element is called orb tag. For
now, just admit these elements exist. We will come back to them later
on, in Section 5.3, I promise.

arguments

The arguments key (line 6) denotes a list of arguments for the rule
command. In our example, we have an empty list, denoted as []. You
can define as many arguments as your command requires. Please check
Code 23 for an example of a list of arguments.

There are cases in which we need to run more than just one command
for a certain rule. Take, for example, the frontespizio rule released with
arara: when using the frontespizio package2, the document has to pro-
cessed by the choosen engine, say pdflatex, no less than three times; if
latex is used, there’s an additional run of dvips. In that case, the logic is
enclosed inside the rule, so there’s no need to write every compilation step
as required by the package as directives in the source code; a simple call to
frontespizio is enough to generate the proper results.

If you need to run more than one command inside a rule, replace the
command identifier by commands and add one command per line, preceeded
by - to indicate an item in the list. Code 22 presents a sample makefoobar

rule which runs the makefoo program two times, followed by one run of the
makebar program.

Code 22: makefoobar.yaml, an arara rule with multiple commands.

1 !config

2 identifier: makefoobar

3 name: MakeFooBar

4 commands:

5 - makefoo @{file}

6 - makefoo @{file}

7 - makebar @{file}

8 arguments: []

For more complex rules, we might want to use arguments. Code 23
presents a new rule which makes use of them instead of an empty list as we
saw in Code 21.

2http://ctan.org/pkg/frontespizio, written by Enrico Gregorio.

http://ctan.org/pkg/frontespizio


50 Chapter 5. Important concepts

Code 23: makebar.yaml, a rule with arguments.

1 !config

2 identifier: makebar

3 name: MakeBar

4 command: makebar @{one} @{two} @{file}

5 arguments:

6 - identifier: one

7 flag: -i @{parameters.one}

8 - identifier: two

9 flag: -j @{parameters.two}

For every argument in the arguments list, we have a - mark and the
proper indentation. The required keys for an argument are:

identifier

This key (lines 6 and 8) acts as a unique identifier for the argument. It’s
highly recommended to use lowercase letters without spaces, accents
or punctuation symbols.

flag

The flag key (lines 7 and 9) represents the argument value. Note that
we have other orb tags in the arguments definitions, @{parameters.one}
and @{parameters.two}; we will discuss them later on, in Section 5.3.
Just to give some context, parameters is a special keyword which maps
the elements available in the directives. For example, if we have one: 1

in a directive, parameters.one will resolve to 1. The argument flag

value is only triggered, that is, resolved, if and only if there’s an explicit
directive argument. Say, if one is not defined as a directive argument,
the flag value of the argument one will be resolved to an empty string.
There’s a way of overriding the default empty string value when a
directive argument is not specified, which is done by using the default
key. By the way, the flag key is not really mandatory, but for most of
the rules, you’ll need it. At least one of the flag and default keys is
mandatory.

If we need to set a default value other than an empty string to a rule
argument, we can use the default key. When a rule argument just needs a
default value, you can safely ignore the flag key and rely on the default

key. If you need to map a directive argument into a rule argument without



5.2. Directives 51

falling back to a default value different than an empty string, just use the
flag key. Now, if you need mapping and fallback, stick with both keys.

For now, we need to keep in mind that arara uses rules to tell it how to
do a certain task. In the next sections, when more concepts are presented,
we will come back to this subject. Just a taste of things to come, as we
mentioned before already: directives are mapped to rules through orb tags.
Don’t worry, I’ll explain how things work.

5.2 Directives
A directive is a special comment inserted in the .tex file in which you
indicate how arara should behave. You can insert as many directives as
you want, and in any position of the .tex file. arara will read the whole
file and extract the directives. A directive should be placed in a line of its
own, in the form % arara: <directive> – actually, we will see in Section 6.3
that the prefix search can be altered. There are two types of directives:

empty directive
An empty directive, as the name indicates, has only the rule identifier,
as we seen in Section 5.1. Lines 1 and 3 of Code 24 show an example
of empty directives. Note that you can suppress arguments (line 3
in contrast to line 2), but we will see that arara assumes that you
know exactly what you are doing. The syntax for an empty directive
is % arara: makefoo.

parametrized directive
A parametrized directive has the rule identifier followed by its argu-
ments. Line 2 of Code 24 shows an example of a parametrized directive.
It’s very important to mention that the arguments are mapped by their
identifiers and not by their positions. The syntax for a parametrized
directive is % arara: makefoo: { arglist }. The argument is in the
form arg: value; a list of arguments and their respective values is
separated by comma.

The arguments are defined according to the rule mapped by the direc-
tive. For example, the rule makebar (Code 23) has a list of two arguments,
one and two. So you can safely write makebar: { one: hello }, but trying
to map a nonexisting argument with makebar: { three: hi } will raise an
error.

If you want to disable an arara directive, there’s no need of removing it
from the .tex file. Simply replace % arara: by % !arara: and this directive



52 Chapter 5. Important concepts

Code 24: Example of directives in a .tex file.

1 %% arara: makefoo

2 %% arara: makebar: { one: hello, two: bye }

3 %% arara: makebar

4 \documentclass{article}

5 ...

will be ignored. arara always look for a line that, after removing the
leading and trailing spaces, starts with a comment % and has the keyword
arara: in it. In Section 6.3, we will learn how to override this search pattern,
but the arara: keyword is always immutable.

Directives are mapped to rules. In Section 5.3 we will learn about orb
tags and then revisit rules and directives. I hope the concepts will be clearer
since we will understand what an orb tag is and how it works. How about
a nice cup of coffee?

5.3 Orb tags
When I was planning the mapping scheme, I opted for a templating mech-
anism. I was looking for flexibility, and the powerful MVEL expression
language [1] was perfect for the job. I could extend my mapping plans by
using orb tags. An orb tag consists of a @ character followed by braces {...}
which contain regular MVEL expressions. In particular, arara uses the @{}
expression orb, which contains a value expression which will be evaluated to
a string, and appended to the output template. For example, the following
template Hello, my name is @{name} with the name variable resolving to
Paulo will be expanded to the string Hello, my name is Paulo. Cool, isn’t
it? Code 25 presents a few examples on how orb tags are expanded.

In the first example of Code 25, @{name} simply indicates the expansion
of the variable into its value, so the output is a concatenation of the text
with the variable value. The second example is a conditional test, that is,
whether the name variable has its value equals to Paulo; the result of this
evaluation is then expanded, which is true. The third example presents a
more complex construction: since name holds a string, MVEL resolves this
variable to a String object and automatically all methods from the String

class in Java are available to the variable, so the method toUpperCase() is
called in order to make all characters in the string to be capitalized, and the
output is presented. The fourth and last example presents a ternary oper-

http://mvel.codehaus.org


5.3. Orb tags 53

Code 25: A few examples on how orb tags are expanded.

# always consider: name = Paulo

In[1]: Hello, my name is @{name}.

Out[1]: Hello, my name is Paulo.

In[2]: @{name == "Paulo"}

Out[2]: true

In[3]: @{name.toUpperCase()}

Out[3]: PAULO

In[4]: Hello, I am @{name == "Paulo" ? "John" : "Mary"}.

Out[4]: Hello, I am John.

ation, which starts with a conditional to be evaluated; if this test evaluates
to true, the first string is printed, with the second string being printed in
case the test is false.

When mapping rules, every command argument will be mapped to
the form @{identifier} with value equals to the content of the flag key.
The @{identifier} orb tag might hold the value of the default key in-
stead, if the key is defined and there were no directive parameters refer-
ring to identifier. There are three reserved orb tags, @{file}, @{item}
and @{parameters} – actually, that’s not true, there’s a fourth reserved
orb tag which plays a very special role in arara – @{SystemUtils} – but
we will talk about it later on. The @{file} orb tag refers to the file-
name argument passed to arara. The @{file} value can be overriden,
but we will discuss it later. The second reserved orb tag @{item} refers
to a list of items, in case the rule might use some sort of list iteration,
discussed later on. The third reserved orb tag @{parameters} is a map
which can expand to the argument value passed in the directive. If you
have makebar: { one: hello }, the flag key of argument one will be ex-
panded from the original definition -i @{parameters.one} to -i hello.
Now @{one} contains the expanded flag value, which is -i hello. All
arguments tags are expanded in the rule command. If one of them is not
defined in the directive, arara will admit an empty value, so the command

flag will be expanded to makebar -i hello mydoc, unless of course the cur-
rent argument doesn’t have a default elements in its definition. The whole
procedure is summarized as follows:



54 Chapter 5. Important concepts

1. arara processes a file named mydoc.tex.

2. A directive makebar: { one: hello } is found, so arara will look up
the rule makebar.yaml (Code 23) inside the default rules directory.

3. The argument one is defined and has value hello, so the corresponding
flag key will have the orb tag @{parameters.one} expanded to hello.
The new value is now added to the template referenced by the command
key and then @{one} is expanded to -i hello.

4. The argument two is not defined, so the template referenced by the
command key has @{two} expanded to an empty string, since there’s no
default key in the argument definition.

5. There are no more arguments, so the template referenced by the
command key now expands @{file} to mydoc.

6. The final command is now makebar -i hello mydoc.

There’s a reserved directive key named files, which is in fact a list. In
case you want to override the default value of the @{file} orb tag, use the
files key, like makebar: { files: [ thedoc.tex ] }. This will result in
makebar thedoc.tex instead of makebar mydoc.tex. The very same concept
applies to the other reserved directive key named items, which is also a list,
and the expansion happens in the @{item} orb tag.

If you provide more than one element in the list, arara will replicate
the directive for every file found, so makebar: { files: [ a, b, c ] } will
result in three commands: makebar a, makebar b and makebar c. If you
happen to have a rule which makes use of both files and items in the
directive, you’ll end up with a cartesian product of those two lists.

References
[1] Mike Brock. MVEL, the MVFLEX Expression Language. MVEL is a

powerful expression language for Java-based applications. url: http:
//mvel.codehaus.org/ (cit. on p. 52).

[2] YAML. 2001. url: http://www.yaml.org/ (cit. on p. 47).

http://mvel.codehaus.org/
http://mvel.codehaus.org/
http://www.yaml.org/


Chapter 6
Configuration file

An algorithm must be seen to be
believed.

Donald Knuth

arara has support for an optional configuration file in order to enhance
and override some settings of the application without the need of delving
into the source code. The optional configuration file has to reside inside
the user home directory, which is usually C:\Users\Username for Windows
Vista and superior, or ~/username for the Unix world, under the name
araraconfig.yaml. arara always looks for a configuration file during every
execution. In fact, araraconfig.yaml is just a plain text file written in the
YAML format, starting with the !config line and at with least one of the
three settings presented in the following sections. The order doesn’t matter,
as long as they are consistent.

6.1 Search paths
When looking for rules, arara always searches the default rule path located
at ARARA_HOME/rules; if no rule is found, the execution halts with an error.
It’s not wise to mess with the default rule path, so we use the configuration
file to add search paths, that is, a list of directories in which arara should
look for rules. An example of a new search path is presented in Code 26.

According to Code 26, from now on, arara will look for rules first in
the /home/paulo/rules; if the rule is not found, then the search falls back
to the default search path located at ARARA_HOME/rules. We can even add
an arbitrary number of paths, as seen in Code 27.

55



56 Chapter 6. Configuration file

Code 26: An example of a new search path for the configuration file.

1 !config

2 paths:

3 - /home/paulo/rules

Code 27: An arbitrary number of paths added in the configuration file.

1 !config

2 paths:

3 - /home/paulo/rules

4 - /opt/arara/rules

5 - /home/paulo/myrules

The items order defines the search priority. arara also features a special
orb tag for search paths named @{userhome} which maps the variable to the
user home directory, for example, /home/paulo, according to your operating
system. But before we proceed, a word on the YAML format.

Sadly, we can’t start values with @ because this symbol is reserved for
future use in the YAML format. For example, foo: @bar is an invalid
YAML format, so the correct usage is to enclose it in quotes: foo: '@bar'

or foo: "@bar". We also need to enclose our strings with quotes in arara,
but now we can save them by simply adding the <arara> prefix to the value.
In other words, foo: <arara > @bar is correctly parsed; when that keyword
in that specific position is found, arara removes it. That means that the
orb tag presented in Code 28 will be correctly parsed.

Code 28: Using the special orb tag for mapping the home directory in the
configuration file.

1 !config

2 - '@{userhome}/rules'

3 - /opt/arara/rules

4 - <arara> @{userhome}/myrules

It’s important to observe that the <arara> prefix is also valid in the
rules context, presented in Section 5.1. The idea of using this prefix is to
actually ease the writing of rules that involve quoting without the need of
escaping all internal quotes or even alternating between single and double
quotes. It’s also a way of writing cleaner rules.



6.2. Language 57

6.2 Language
arara currently features localized messages in English, French, Italian,
German, Spanish, Brazilian Portuguese, Russian and Turkish. The default
language fallback is English, but we can easily change the language by
adding language: <code> to the configuration file, as seen in Code 29. The
list of languages and codes is presented in Table 6.1.

Code 29: Changing the language in the configuration file.

1 !config

2 language: en

Table 6.1: Languages and codes.

Language Code

English en

Brazilian Portuguese ptbr

Italian it

Spanish es

German de

French fr

Russian ru

Turkish tr

There’s also a --language command line flag which has a higher priority,
so it overrides the configuration file setting, if any. Beware of the terminal
you use; the Windows command prompt has serious troubles in understand-
ing UTF-8. You probably won’t run into problems with the applications
shipped in Mac or Linux.

6.3 File patterns
arara accepts the following filetypes: tex, dtx and ltx. If no file extension
is provided in the command line, for example, calling arara mydoc instead



58 Chapter 6. Configuration file

of arara mydoc.tex, the application will automatically look for files that
match the filetypes in that specific order, that is, mydoc.tex, mydoc.dtx

and mydoc.ltx. Let’s say we want to change the order by promoting dtx to
the first match; we can easily achieve that by rearranging the items of the
list of filetypes in the configuration file according to Code 30.

Code 30: Rearranging the list of filetypes in the configuration file.

1 !config

2 filetypes:

3 - extension: dtx

4 - extension: tex

5 - extension: ltx

The filetypes key in the configuration file is actually way more powerful
than the example shown in Code 30. Before we continue, let’s start with
some basics. Consider the three directives presented in Code 31.

Code 31: Three directives with different formatting patterns.

1 % arara: foo

2 % arara: foo

3 % arara: foo

4 \documentclass{book}

5 ...

The default setting for arara is to recognize the three directives shown
in Code 31. In other words, the search pattern for all the three extensions
is ^(\\s)*%\\s+ plus arara:\\s which is immutable, of course. Let’s say
that, for the dtx format, you want arara to look for directives that have
no spaces in the beginning of the line, that is, the line must start with only
one percentage sign followed by at least one space and the default prefix.
We can easily achieve such requirement by adding a pattern element to our
list, as presented in Code 32.

Now, only the first directive of Code 31 is recognized, if the analyzed file
has the .dtx extension. All other extensions – .tex and .ltx – will follow
the default search pattern.

We can also extend arara to analyze files with arbitrary extensions.
As an example, let’s suppose we have a sample hello.c file, presented in
Code 33. Note that the code was omitted for obvious reasons, since we are
interested in the header.



6.3. File patterns 59

Code 32: Changing the search pattern for .dtx files.

1 !config

2 !config filetypes:

3 - extension: dtx

4 pattern: ^%\\s+

5 - extension: tex

6 - extension: ltx

Code 33: A sample hello.c code.

1 // arara: gcc

2 #include <stdio.h>

3 ...

We can add the .c extension to be recognized by arara by simply
adding the extension and search pattern entries in the configuration file, as
presented in Code 34.

Code 34: Adding support for .c files in the configuration file.

1 !config

2 filetypes:

3 - extension: c

4 pattern: ^\\s*//\\s*

Done, now arara can support .c files! We can run arara hello.c

and have our code compiled, provided we have a gcc rule, of course. The
extensions list will be .tex, .dtx, .ltx and .c. If you want to change the
order, it’s a matter of rearranging the items, as shown in Code 35.

From now on, the .c has priority over all other extensions. It’s very im-
portant to note that for customized extensions, the pattern key is manda-
tory. For default extensions, use the pattern key if and only if you want to
override the search pattern.

arara comes with a rule for Sketch [1], written by Sergey Ulyanov. We
can easily add % arara: sketch: { files: [ drawing.sk ] } and Sketch
will be properly called. Let’s say we want to make arara recognize Sketch
files; it’s just a matter of adding the extension and the search pattern in
our configuration file, as presented in Code 36.



60 Chapter 6. Configuration file

Code 35: Rearranging items of arbitrary extensions in the configuration
file.

1 !config

2 filetypes:

3 - extension: c

4 pattern: ^\\s*//\\s*
5 - extension: tex

6 - extension: dtx

7 - extension: ltx

Code 36: Adding support for Sketch files in the configuration file.

1 !config

2 filetypes:

3 - extension: sk

4 pattern: ^(\\s)*[%#]\\s+

Now arara supports .sk files! We can write a sample Sketch file (bor-
rowed from the documentation) presented in Code 37 and add a sketch

directive. The comments in the Sketch language allow both % and # sym-
bols at the beginning of the line.

Code 37: drawing.sk, a sample Sketch file.

1 % arara: sketch

2 polygon(0,0,1)(1,0,0)(0,1,0)

3 line(-1,-1,-1)(2,2,2)

With the new settings presented in Code 36, we can run arara drawing

or arara drawing.sk (Code 37) and Sketch will be properly executed through
arara with no problems.

References
[1] Eugene Ressler. Sketch. Sketch is a small, simple system for producing

line drawings of two or three-dimensional objects and scenes. url:
http://www.frontiernet.net/~eugene.ressler (cit. on p. 59).

http://www.frontiernet.net/~eugene.ressler


Chapter 7
Running arara

Never trust a computer you
can’t throw out a window.

Steve Wozniak

Now that we have learned some basics, it’s time to run arara! Thank-
fully, the application is very user-friendly; if something goes wrong, we can
easily find out what happened through messages and the log file.

7.1 Command line
arara has a very simple command line interface. A simple arara mydoc

does the trick – provided that mydoc has the proper directives. The default
behaviour is to run in silent mode, that is, only the name and the execution
status of the current task are displayed. The idea of the silent mode is
to provide a concise output. Sadly, in some cases, we want to follow the
compilation workflow and even interact with a command which requires
user input. If you have an interactive command, arara won’t even bother
about it: the execution will halt and the command will fail. Well, that’s
the silent mode. Thankfully, arara has a set of flags that can change the
default behaviour or even enhance the compilation workflow. Table 7.1
shows the list of available arara flags, with both short and long options.

arara can recognize three types of files based on their extension, in this
order: .tex, .dtx and .ltx. Other extensions are not recognized, unless of
course you provide the correct mapping for them in the configuration file,
as discussed in Section 6.3.

61



62 Chapter 7. Running arara

Flag Behaviour

-h --help This flag prints the help message, as seen in
Code 11, and exits the application. If you run
arara without any flags or a file to process, this
is the default behaviour.

-L c --language c The --language flag sets the language of the cur-
rent execution of arara, where c is the language
code presented in Table 6.1, on page 57. Note
that this flag has higher priority than the lan-
guage set in the configuration file.

-l --log The --log flag enables the logging feature of
arara. All streams from all commands will
be logged and, at the end of the execution, an
arara.log file will be generated. The logging fea-
ture is discussed in Section 7.3.

-t n --timeout n This flag sets an execution timeout for every
task. If the timeout is reached before the task
ends, arara will kill it and interrupt the process-
ing. The n value is expressed in milliseconds.

-v --verbose The --verbose flag enables all streams to be
flushed to the terminal – exactly the opposite of
the silent mode. This flag also allows user input
if the current command requires so. The user in-
put interaction is possible thanks to the amazing
Apache Commons Exec library [2].

-V --version This flag, as the name indicates, prints the cur-
rent arara version and exits the application.

Table 7.1: The list of available arara flags.

The combination of flags is very useful to enhance the TEX experience.
They can provide nice features for integrating arara with TEX IDEs, as
seen in Chapter 4. Note that both --log and --verbose flags are the most
common combo to use in an IDE, so we can have both terminal and file
output at the same time without any cost.

7.2 Messages
Messages are the first type of feedback provided by arara. They are ba-
sically related to rules, directives and configuration settings. Bad syntax,
nonexisting rules, malformed directives, wrong expansion, arara tries to



7.3. Logging 63

tell you what went wrong. Those messages are usually associated with er-
rors. We tried to include useful messages, like telling in which directive
and line an error ocurred, or that a certain rule does not exist or has an
incorrect format. arara also checks if a command is valid. For example, if
you try to call a rule that executes a nonexisting makefoo command, arara
will complain about it.

These messages usually cover the events that can happen during the
preprocessing phase. Don’t panic, arara will tell you what happened. Of
course, an error halts the execution, so we need to fix the reported issue
before proceeding. Note that arara can also complain about nonexisting
commands – in this case, the error will be raised in runtime, since it’s an
underlying operating system dependency.

If you use the --language flag or set up the language key in the configu-
ration file, arara will be able to display localized messages according to the
provided language code. In other words, users will be able to read messages
from the application in languages other English. Currently, arara is able
to display messages in English, Brazilian Portuguese, Spanish, German,
Italian, French, Russian and Turkish. Have fun!

7.3 Logging
Another way of looking for an abnormal behaviour is to read the proper .log
file. Unfortunately, not every command emits a report of its execution and,
even if the command generates a .log file, multiple runs would overwrite
the previous reports and we would have only the last call. arara provides
a more consistent way of monitoring commands and their own behaviour
through a global .log file that holds every single bit of information. You
can enable the logging feature by adding either the --log or -l flags to the
arara application.

Before we continue, I need to explain about standard streams, since
they constitute an important part of the generated .log file by arara.
Wikipedia [1] has a nice definition of them:

“In computer programming, standard streams are preconnected
input and output channels between a computer program and
its environment (typically a text terminal) when it begins ex-
ecution. The three i/o connections are called standard input
(stdin), standard output (stdout) and standard error (stderr).”

Basically, the operating system provides two streams directed to display
data: stdout and stderr. Usually, the first stream is used by a program to



64 Chapter 7. Running arara

write its output data, while the second one is typically used to output error
messages or diagnostics. Of course, the decision of what output stream to
use is up to the program author.

When arara traces a command execution, it logs both stdout and
stderr. The log entry for both stdout and stderr is referred as Output
logging. Again, an output to stderr does not necessarily mean that an error
was found in the code, while an output to stdout does not necessarily mean
that everything ran flawlessly. It’s just a naming convention, as the program
author decides how to handle the messages flow. That’s why arara logs
them both in the same output stream. Read the log entries carefully. A
excerpt of the resulting arara.log from arara helloindex --log is shown
in Code 38 – several lines were removed in order to leave only the more
important parts.

The arara log is useful for keeping track of the execution flow as well
as providing feedback on how both rules and directives are being expanded.
The log file contains information about the directive extraction and pars-
ing, rules checking and expansion, deployment of tasks and execution of
commands. The arara messages are also logged.

If by any chance your code is not working, try to run arara with the
logging feature enabled. It might take a while for you to digest the log
entries, but I’m sure you will be able to track every single step of the
execution and fix the offending line in your code.

7.4 Command output
Even when the --log flag is enabled, arara still runs in silent mode.
There’s a drawback of this mode: if there’s an interactive command wich
requires the user input, arara will simply halt the task and the execution
will fail. We need to make stdin – the standard input stream – available for
us. Thanks to the amazing Apache Commons Exec library [2], arara can
also provide an access layer to the standard input stream in order to inter-
act with commands, when needed. We just need to use a special --verbose
flag.

It’s important to note that both --log and --verbose flags can be used
together; arara will log everything, including the input stream. I usually
recommend those two flags when integrating arara with TEX IDEs, like
we did in Chapter 4.



7.4. Command output 65

Code 38: arara.log from arara helloindex --log.

09 Abr 2012 11:27:58.400 INFO Arara - Welcome to Arara!

09 Abr 2012 11:27:58.406 INFO Arara - Processing file helloindex.tex, please

wait.

09 Abr 2012 11:27:58.413 INFO DirectiveExtractor - Reading directives from

helloindex.tex.

09 Abr 2012 11:27:58.413 TRACE DirectiveExtractor - Directive found in line 1

with pdflatex.

...

09 Abr 2012 11:27:58.509 INFO DirectiveParser - Parsing directives.

09 Abr 2012 11:27:58.536 INFO TaskDeployer - Deploying tasks into commands.

09 Abr 2012 11:27:58.703 INFO CommandTrigger - Ready to run commands.

09 Abr 2012 11:27:58.704 INFO CommandTrigger - Running PDFLaTeX.

09 Abr 2012 11:27:58.704 TRACE CommandTrigger - Command: pdflatex helloindex.

tex

09 Abr 2012 11:27:59.435 TRACE CommandTrigger - Output logging: This is pdfTeX,

Version 3.1415926-2.3-1.40.12 (TeX Live 2011)

...

Output written on helloindex.pdf (1 page, 12587 bytes).

Transcript written on helloindex.log.

09 Abr 2012 11:27:59.435 INFO CommandTrigger - PDFLaTeX was successfully

executed.

09 Abr 2012 11:27:59.655 INFO CommandTrigger - Running MakeIndex.

09 Abr 2012 11:27:59.655 TRACE CommandTrigger - Command: makeindex helloindex.

idx

09 Abr 2012 11:27:59.807 TRACE CommandTrigger - Output logging: This is

makeindex, version 2.15 [TeX Live 2011] (kpathsea + Thai support).

...

Generating output file helloindex.ind..done (9 lines written, 0 warnings).

Output written in helloindex.ind.

Transcript written in helloindex.ilg.

09 Abr 2012 11:27:59.807 INFO CommandTrigger - MakeIndex was successfully

executed.

...

09 Abr 2012 11:28:00.132 INFO CommandTrigger - All commands were successfully

executed.

09 Abr 2012 11:28:00.132 INFO Arara - Done.



66 Chapter 7. Running arara

References
[1] Standard streams. Wikipedia, the free encyclopedia. url: http://en.

wikipedia.org/wiki/Standard_streams (cit. on p. 63).
[2] The Apache Software Foundation. Apache Commons Exec. 2010. url:

http://commons.apache.org/exec/ (cit. on pp. 62, 64).

http://en.wikipedia.org/wiki/Standard_streams
http://en.wikipedia.org/wiki/Standard_streams
http://commons.apache.org/exec/


Part II

For authors

67





Chapter 8
Quick start

Snakes! Why did it have to be
snakes?

Indiana Jones, Raiders of the
Lost Ark (1981)

This chapter covers a quick start of arara, including an overview of the
predefined rules and some notes on how to properly organize directives in
the source code.

8.1 Predefined rules
Let’s take a look on the predefined rules and a brief description of their
parameters. Note that these rules are constantly updated; the most recent
versions are available in the project repository.

For convenience, we will use yes and no for representing boolean values.
Note that you can also use other pairs: on and off, and true and false.
These values are also case insensitive, so entries like True or NO are valid.

Note that the latex, pdflatex, xelatex and lualatex rules have a
shell parameter resolving to --shell-escape. This flag is also available
in MiKTEX, but as an alias to the special --enable-write18 flag. If you
want to use arara with an outdated MiKTEX distribution which doesn’t
support the --shell-escape alias, make sure to edit the predefined rules ac-
cordingly – these rules are located inside $ARARA_HOME/rules – and replace
all occurrences of --shell-escape by --enable-write18. Another option
is to add another search path in the configuration file with modified rules,

69



70 Chapter 8. Quick start

since custom search paths have higher priority than the default rules direc-
tory. If you use TEX Live or a recent MikTEX installation, there’s no need
to edit the rules, since the --shell-escape flag is already available.

biber
Description

This rule maps biber, calling the biber command with the proper pa-
rameters, when available. All parameters are optional.

Syntax
% arara: biber

Parameters

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

BIBTEX
Description

This rule maps BIBTEX, calling the bibtex command with the proper
parameters, when available. All parameters are optional.

Syntax
% arara: bibtex

Parameters

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

Clean
Description

This rule maps the removal command from the underlying operating
system. There are no parameters for this rule, except the the reserved
directive key files which must be used. If files is not used in the
directive, arara will simply ignore this rule.



8.1. Predefined rules 71

Syntax
% arara: clean

dvips
Description

This rule maps dvips, calling the dvips command with the proper
parameters, when available. All parameters are optional.

Syntax
% arara: dvips

Parameters

output

This parameter is used to set the output PostScript filename. If not
provided, the default output name is set to @{getBasename(file)}.ps.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

frontespizio
Description

This rule maps a compilation chain defined in frontespizio, a package
written by Enrico Gregorio; it calls a defined TEX engine three times
with the proper parameters, when available. All parameters are op-
tional. If no engine is provided, pdflatex is used as default. When
latex is the chosen engine, there’s an additional call to dvips.

Syntax
% arara: frontespizio

Parameters

engine

This parameter is used to set the TEX engine. If not provided, pdflatex
is used as a default value.



72 Chapter 8. Quick start

LATEX
Description

This rule maps LATEX, calling the latex command with the proper
parameters, when available. All parameters are optional.

Syntax
% arara: latex

Parameters

action

This parameter sets the interaction mode flag. Possible options are
batchmode, nonstopmode, scrollmode, and errorstopmode. If not de-
fined, no flag will be set.

shell

This is a boolean parameter which sets the shell escape mode. If true,
shell escape will be enabled; if the value is set to false, the feature will
be completely disabled. If not defined, the default behaviour is rely on
restricted mode.

synctex

This parameter is defined as boolean and sets the generation of SyncTEX
data for previewers. If true, data will be generated; false will disable
this feature. If not defined, no flag will be set.

draft

This is a boolean parameter which sets the draft mode, that is, no
PDF output is generated. When value set to true, the draft mode is
enabled, while false disables it. If not defined, no flag will be set.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

Latexmk cleanup
Description

This rule calls the cleanup option of Latexmk, according to the pro-
vided parameters. All parameters are optional.

Syntax
% arara: lmkclean



8.1. Predefined rules 73

Parameters

include

This parameter, if equals to all, will remove all generated files, leaving
only the source code intact; otherwise only the auxiliary files will be
removed.

LuaLATEX
Description

This rule maps LuaLATEX, calling the lualatex command with the
proper parameters, when available. All parameters are optional.

Syntax
% arara: lualatex

Parameters

action

This parameter sets the interaction mode flag. Possible options are
batchmode, nonstopmode, scrollmode, and errorstopmode. If not de-
fined, no flag will be set.

shell

This is a boolean parameter which sets the shell escape mode. If true,
shell escape will be enabled; if the value is set to false, the feature will
be completely disabled. If not defined, the default behaviour is rely on
restricted mode.

synctex

This parameter is defined as boolean and sets the generation of SyncTEX
data for previewers. If true, data will be generated; false will disable
this feature. If not defined, no flag will be set.

draft

This is a boolean parameter which sets the draft mode, that is, no
PDF output is generated. When value set to true, the draft mode is
enabled, while false disables it. If not defined, no flag will be set.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.



74 Chapter 8. Quick start

Latexmk with LuaLATEX
Description

This rule calls Latexmk with LuaLATEX as engine. All parameters are
optional.

Syntax
% arara: lualatexmk

action

This parameter sets the interaction mode flag. Possible options are
batchmode, nonstopmode, scrollmode, and errorstopmode. If not de-
fined, no flag will be set.

shell

This is a boolean parameter which sets the shell escape mode. If true,
shell escape will be enabled; if the value is set to false, the feature will
be completely disabled. If not defined, the default behaviour is rely on
restricted mode.

synctex

This parameter is defined as boolean and sets the generation of SyncTEX
data for previewers. If true, data will be generated; false will disable
this feature. If not defined, no flag will be set.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

style

This parameter is used in case you want to provide a style for makeindex,
if different than the default style.

LuaTEX
Description

This rule maps LuaTEX, calling the luatex command with the proper
parameters, when available. All parameters are optional.

Syntax
% arara: luatex



8.1. Predefined rules 75

Parameters

action

This parameter sets the interaction mode flag. Possible options are
batchmode, nonstopmode, scrollmode, and errorstopmode. If not de-
fined, no flag will be set.

shell

This is a boolean parameter which sets the shell escape mode. If true,
shell escape will be enabled; if the value is set to false, the feature will
be completely disabled. If not defined, the default behaviour is rely on
restricted mode.

synctex

This parameter is defined as boolean and sets the generation of SyncTEX
data for previewers. If true, data will be generated; false will disable
this feature. If not defined, no flag will be set.

draft

This is a boolean parameter which sets the draft mode, that is, no
PDF output is generated. When value set to true, the draft mode is
enabled, while false disables it. If not defined, no flag will be set.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

Make
Description

This rule maps Make, calling the make command with the proper pa-
rameters, when available. All parameters are optional.

Syntax
% arara: make

Parameters

task

This parameter is used to set the task name for make to execute.



76 Chapter 8. Quick start

MakeGlossaries
Description

This rule maps MakeGlossaries, calling the makeglossaries command
with the proper parameters, when available. All parameters are op-
tional.

Syntax
% arara: makeglossaries

Parameters

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

MakeIndex
Description

This rule maps MakeIndex, calling the makeindex command with the
proper parameters, when available. All parameters are optional.

Syntax
% arara: makeindex

Parameters

style

This parameter sets the index style. If not defined, makeindex relies on
the default index style.

german

This is a boolean parameter which sets the German word ordering in
the index. If true, the German word ordering will be employed; if the
value is set to false, makeindex will rely on the default behaviour.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.



8.1. Predefined rules 77

Nomencl
Description

This rule maps Nomencl, which is in fact a call to the makeindex com-
mand with the the nomenclature feature. All parameters are optional.

Syntax
% arara: nomencl

Parameters

style

This parameter sets the nomenclature style. If not defined, makeindex
relies on the default nomenclature style.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

pdfLATEX
Description

This rule maps pdfLATEX, calling the pdflatex command with the
proper parameters, when available. All parameters are optional.

Syntax
% arara: pdflatex

Parameters

action

This parameter sets the interaction mode flag. Possible options are
batchmode, nonstopmode, scrollmode, and errorstopmode. If not de-
fined, no flag will be set.

shell

This is a boolean parameter which sets the shell escape mode. If true,
shell escape will be enabled; if the value is set to false, the feature will
be completely disabled. If not defined, the default behaviour is rely on
restricted mode.

synctex

This parameter is defined as boolean and sets the generation of SyncTEX



78 Chapter 8. Quick start

data for previewers. If true, data will be generated; false will disable
this feature. If not defined, no flag will be set.

draft

This is a boolean parameter which sets the draft mode, that is, no
PDF output is generated. When value set to true, the draft mode is
enabled, while false disables it. If not defined, no flag will be set.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

Latexmk with pdfLATEX
Description

This rule calls Latexmk with pdfLATEX as engine. All parameters are
optional.

Syntax
% arara: pdflatexmk

action

This parameter sets the interaction mode flag. Possible options are
batchmode, nonstopmode, scrollmode, and errorstopmode. If not de-
fined, no flag will be set.

shell

This is a boolean parameter which sets the shell escape mode. If true,
shell escape will be enabled; if the value is set to false, the feature will
be completely disabled. If not defined, the default behaviour is rely on
restricted mode.

synctex

This parameter is defined as boolean and sets the generation of SyncTEX
data for previewers. If true, data will be generated; false will disable
this feature. If not defined, no flag will be set.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

style

This parameter is used in case you want to provide a style for makeindex,
if different than the default style.



8.1. Predefined rules 79

pdfTEX
Description

This rule maps pdfTEX, calling the pdftex command with the proper
parameters, when available. All parameters are optional.

Syntax
% arara: pdflatex

Parameters

action

This parameter sets the interaction mode flag. Possible options are
batchmode, nonstopmode, scrollmode, and errorstopmode. If not de-
fined, no flag will be set.

shell

This is a boolean parameter which sets the shell escape mode. If true,
shell escape will be enabled; if the value is set to false, the feature will
be completely disabled. If not defined, the default behaviour is rely on
restricted mode.

synctex

This parameter is defined as boolean and sets the generation of SyncTEX
data for previewers. If true, data will be generated; false will disable
this feature. If not defined, no flag will be set.

draft

This is a boolean parameter which sets the draft mode, that is, no
PDF output is generated. When value set to true, the draft mode is
enabled, while false disables it. If not defined, no flag will be set.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

ps2pdf
Description

This rule maps pdf2pdf, calling the ps2pdf command with the proper
parameters, when available. All parameters are optional.

Syntax
% arara: ps2pdf



80 Chapter 8. Quick start

Parameters

output

This parameter is used to set the output PDF filename. If not provided,
the default output name is set to @{getBasename(file)}.pdf.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

Sketch
Description

This rule maps Sketch, a small, simple system for producing line draw-
ings of two or three-dimensional objects and scenes. All parameters
are optional.

Syntax
% arara: sketch

Parameters

input

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

songidx
Description

This rule maps songidx, a command line tool used to extract songs
metadata from an file generated by the songs package1 The parameter
is mandatory.

Syntax
% arara: songidx

Parameters

input

This parameter sets the name of the file generated by songs in which
songidx will extract the songs metadata.

1http://songs.sourceforge.net, written by Kevin Hamlen.

http://songs.sourceforge.net


8.1. Predefined rules 81

TEX
Description

This rule maps TEX, calling the tex command with the proper param-
eters, when available. All parameters are optional.

Syntax
% arara: pdflatex

Parameters

action

This parameter sets the interaction mode flag. Possible options are
batchmode, nonstopmode, scrollmode, and errorstopmode. If not de-
fined, no flag will be set.

shell

This is a boolean parameter which sets the shell escape mode. If true,
shell escape will be enabled; if the value is set to false, the feature will
be completely disabled. If not defined, the default behaviour is rely on
restricted mode.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

X ELATEX
Description

This rule maps X ELATEX, calling the xelatex command with the proper
parameters, when available. All parameters are optional.

Syntax
% arara: xelatex

Parameters

action

This parameter sets the interaction mode flag. Possible options are
batchmode, nonstopmode, scrollmode, and errorstopmode. If not de-
fined, no flag will be set.

shell

This is a boolean parameter which sets the shell escape mode. If true,



82 Chapter 8. Quick start

shell escape will be enabled; if the value is set to false, the feature will
be completely disabled. If not defined, the default behaviour is rely on
restricted mode.

synctex

This parameter is defined as boolean and sets the generation of SyncTEX
data for previewers. If true, data will be generated; false will disable
this feature. If not defined, no flag will be set.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

Latexmk with X ELATEX
Description

This rule calls Latexmk with X ELATEX as engine. All parameters are
optional.

Syntax
% arara: xelatexmk

action

This parameter sets the interaction mode flag. Possible options are
batchmode, nonstopmode, scrollmode, and errorstopmode. If not de-
fined, no flag will be set.

shell

This is a boolean parameter which sets the shell escape mode. If true,
shell escape will be enabled; if the value is set to false, the feature will
be completely disabled. If not defined, the default behaviour is rely on
restricted mode.

synctex

This parameter is defined as boolean and sets the generation of SyncTEX
data for previewers. If true, data will be generated; false will disable
this feature. If not defined, no flag will be set.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.



8.2. Organizing directives 83

style

This parameter is used in case you want to provide a style for makeindex,
if different than the default style.

X ETEX
Description

This rule maps X ETEX, calling the xetex command with the proper
parameters, when available. All parameters are optional.

Syntax
% arara: xelatex

Parameters

action

This parameter sets the interaction mode flag. Possible options are
batchmode, nonstopmode, scrollmode, and errorstopmode. If not de-
fined, no flag will be set.

shell

This is a boolean parameter which sets the shell escape mode. If true,
shell escape will be enabled; if the value is set to false, the feature will
be completely disabled. If not defined, the default behaviour is rely on
restricted mode.

synctex

This parameter is defined as boolean and sets the generation of SyncTEX
data for previewers. If true, data will be generated; false will disable
this feature. If not defined, no flag will be set.

options

This parameter is used to provide flags which were not mapped. It is
recommended to enclose the value with single or double quotes.

8.2 Organizing directives
Actually, there’s nothing much to say about directives, they are really easy
to use. The important part when dealing with directives is to make sure
we will only use the right amount of them. Remember, for each directive,
there will be call to the command line tool, and this might take some time.



84 Chapter 8. Quick start

Since a directive can have as many parameters as its corresponding rule
has, we need to take care. If an argument value has spaces, enclose it with
quotes. Again, try to avoid at all costs values with spaces, but if you really
need them, enclose the value with single quotes. If you want to make sure
that both rules and directives are being mapped and expanded correctly,
enable the logging option with the --log flag and verify the output. All
expansions are logged.

Although arara reads the whole file looking for directives, it’s a good
idea to organize them at the top of the file. It will surely make your life
easier, as you can quickly spot the compilation chain to be applied to the
current document. If there’s something wrong with a directive, don’t worry,
arara will be able to track the inconsistency down and warn us about it.



Chapter 9
Reference for rule library

Your brain may give birth to
any technology, but other brains
will decide whether the
technology thrives. The number
of possible technologies is
infinite, and only a few pass
this test of affinity with human
nature.

Robert Wright

This chapter aims at discussing the reserved keywords of arara for
directive arguments and special orb tags, their purpose and how to correctly
use them in the context of a document.

9.1 Directive arguments
As seen in the previous chapters, arara has two reserved keywords for
directive arguments which cannot be defined as arguments of a rule: files
and items. Those variables do not hold a single value as the usual directive
argument does, but they actually refer to a list of values instead. in the
YAML format, a list is defined as a sequence of elements separated by a
comma and enclosed with []. For example, items: [ a, b, c ] is a list
and refers to the elements a, b and c. Let’s see in more details about each
directive argument.

files

When not defined with a proper value in the directive definition, files

85



86 Chapter 9. Reference for rule library

contains only one value: the current file reference. When we ex-
plicitly add this argument to a directive, the value is overriden, and
arara considers one iteration per element. In order words, if we have
foo: { files: [ a, b, c ] }, arara will perform the execution of
the task foo three times, one for each value of files. Each value of
files is expanded to the @{file} orb tag in the rule context.

items

The items directive argument, although it has the exact behaviour of
files in the processing phase, happens to have a different semantics.
Think of a rule that needs to process a list of elements, say, a list of
extensions, files to copy, and so forth; for every value defined in items,
arara will perform the execution the current task. It’s important to
note that items has an empty list by default. Each value of items is
expanded to the @{item} orb tag in the rule context.

Both files and items can be used in any directive, if the rule of course
makes use of their corresponding @{file and @{item} orb tags. Please note
that, if those two lists are defined in the directive, arara will resolve the
variables as the cartesian product of the lists.

9.2 Special orb tags
In the rule context, arara has four reserved keywords which cannot be
assigned as arguments identifiers; each one of them has its own purpose
and semantics, besides of course mapping different values. These orb tags
are @{file}, @{item}, @{parameters} and @{SystemUtils}.

file

This orb tags always resolve to the filename processed by arara. If the
files directive argument is used in the directive definition, @{file} will
resolve, in each iteration, to the current value of that list. The variable
always hold an string value and it’s never empty.

item

The @{item} orb tag resolves to each element of the list of items defined
through the items directive argument. In each iteration of the items

list, @{item} will resolve to the current value of that list. The variable
always hold an string value and it is empty by default.

parameters

This orb tag is actually a map, that is, a collection of variables. The



References 87

@{parameters} orb tag is set with all the directive arguments and
their corresponding values. The access to a variable is done through
parameters.<variable>, so if we want to access the foo directive ar-
gument value, we simply write @{parameters.foo}.

SystemUtils

This orb tag maps the SystemUtils class from the Apache Commons
Lang library [1] and provides a lot of methods and properties in order
to write cross-platform rules. Table 10.2 on page 100 presents the list
of properties available in the @{SystemUtils} orb tag.

Since these are reserved keywords used for special orb tags, arara will
raise an error if there’s an attempt of assigning one of them as rule argument
identifier.

References
[1] The Apache Software Foundation. Apache Commons Lang. 2001. url:

http://commons.apache.org/lang/ (cit. on p. 87).

http://commons.apache.org/lang/




Part III

For rulemakers

89





Chapter 10
Quick start

Cause and effect act in webs,
not chains.

Steve Grand

Now that we know about rules, directives and orb tags, it’s time to
come up with some examples. I know it might not be trivial to understand
how arara works in a glance, but I’m sure the examples will help with
the concepts. Please note that there might have platform-specific rules, so
double-check the commands before running them – actually, don’t worry,
arara has a card up its sleeve.

10.1 Writing rules
Before we proceed, I think it’s important to mention this note again: we
can’t start values with @ because this symbol is reserved for future use in
the YAML format. For example, foo: @bar is an invalid YAML format, so
the correct usage is to enclose it in quotes: foo: '@bar' or foo: "@bar".
We also need to enclose our strings with quotes in arara, but we can save
them by simply adding the <arara> prefix to the value. In other words,
foo: <arara > @bar is correctly parsed; when that keyword in that specific
position is found, arara removes it.

Our first example is to add support to pdfLATEX instead of using the
default rule. Our first attempt to write this rule is presented in Code 39.
Make sure to create a directory to store your own rules and don’t forget to
add this directory to the search path in the configuration file (Chapter 6).

91



92 Chapter 10. Quick start

Code 39: pdflatex.yaml, first attempt.

1 !config

2 identifier: pdflatex

3 name: PDFLaTeX

4 command: pdflatex "@{file}"

5 arguments: []

So far, so good. The command flag has the pdflatex program and the
@{file} orb tag. Now we can add the pdflatex directive to our .tex file,
as we can see in Code 40.

Code 40: helloworld.tex

1 % arara: pdflatex

2 \documentclass{article}

3

4 \begin{document}

5 Hello world.

6 \end{document}

It’s just a matter of calling arara helloworld – you can also provide
the .tex extension by calling arara helloworld.tex, after all the extension
will be removed anyway – and arara will process our file, according to the
Code 41.

Code 41: arara output for the pdflatex task.

$ arara helloworld
__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

\__,_|_| \__,_|_| \__,_|

Running PDFLaTeX... SUCCESS

Great, our first rule works like a charm. Once we define a rule, the
directive is automatically available for us to call it as many times as we
want. What if we make this rule better? Consider the following situation:



10.1. Writing rules 93

Sometimes, we need to use \write18 to call a package that
makes use of it (for example, minted). It’s very dangerous to en-
able shell escape globally, but changing the pdflatex call every
time we need it sounds boring.

arara has a special treatment for cases like this. We will rewrite our
pdflatex rule to include a flag for shell escape. Another cool feature will
be presented now, as we can see in the new rule shown in Code 42.

Code 42: pdflatex.yaml, second attempt.

1 !config

2 identifier: pdflatex

3 name: PDFLaTeX

4 command: pdflatex @{shell} "@{file}"

5 arguments:

6 - identifier: shell

7 flag: <arara> @{parameters.shell == "yes" ? "--shell-escape"

: "--no-shell-escape" }

Line 7 from Code 42 makes use of the ternary operator ?: which defines
a conditional expression. In the first part of the evaluation, we check if
parameters.shell is equal to the string "yes". If so, "--shell-escape" is
defined as the result of the operation. If the conditional expression is false,
"--no-shell-escape" is set instead.

What if you want to allow true and on as valid options as well? We
can easily rewrite our orb tag to check for additional values, but arara has
a clever way of doing that: a function to look for boolean values! In this
case, we will use a function named isTrue(), available in the rule context.
Please refer to Section 11.1 for a list of the available functions and their
meanings. The new attempt is presented in Code 43

With this new rule, it’s now easy to enable the shell escape option in
pdflatex. Simply go with the directive pdflatex: { shell: yes }. You
can also use true or on instead of yes. Any other value for shell will disable
the shell escape option. It’s important to observe that arara directives
have no mandatory arguments. If you want to add a dangerous option like
--shell-escape, consider calling it as an argument with a proper check and
rely on a safe state for the argument fallback.

For the next example, we will create a rule for MakeIndex. To be hon-
est, although makeindex has a lot of possible arguments, I only use the
-s flag once in a while. Code 44 shows our first attempt of writing this



94 Chapter 10. Quick start

Code 43: pdflatex.yaml, third attempt.

1 !config

2 identifier: pdflatex

3 name: PDFLaTeX

4 command: pdflatex @{shell} "@{file}"

5 arguments:

6 - identifier: shell

7 flag: <arara> @{ isTrue( parameters.shell, "--shell-escape" ,

"--no-shell-escape" ) }

rule. Note that we are making use of another built-in function of arara
named getBasename(); this function returns the name of the file without
the extension.

Code 44: makeindex.yaml, first attempt.

1 !config

2 identifier: makeindex

3 name: MakeIndex

4 command: makeindex @{style} "@{ getBasename(file) }.idx"

5 arguments:

6 - identifier: style

7 flag: <arara> -s @{parameters.style}

As a follow-up to our first attempt, we will now add support for the
-g flag that employs German word ordering in the index. Since this flag is
basically a switch, we can borrow the same tactic used for enabling shell
escape in the pdflatex rule from Code 43. The new rule is presented in
Code 45.

The new makeindex rule presented in Code 45 looks good. We can now
test the compilation workflow with an example. Consider a file named
helloindex.tex which has a few index entries for testing purposes, pre-
sented in Code 46. As usual, I’ll present my normal workflow, that involves
calling pdflatex two times to get references right, one call to makeindex and
finally, a last call to pdflatex. Though there’s no need of calling pdflatex

two times in the beginning, I’ll keep that as a good practice from my side.
By running arara helloindex or arara helloindex.tex in the terminal,

we will obtain the same output from Code 47. The execution order is defined



10.1. Writing rules 95

Code 45: makeindex.yaml, second attempt.

1 !config

2 identifier: makeindex

3 name: MakeIndex

4 command: makeindex @{style} "@{ getBasename(file) }.idx"

5 arguments:

6 - identifier: style

7 flag: <arara> -s @{parameters.style}

8 - identifier: german

9 flag: <arara> @{ isTrue( parameters.german, "-g" ) }

Code 46: helloindex.tex

1 % arara: pdflatex

2 % arara: pdflatex

3 % arara: makeindex

4 % arara: pdflatex

5 \documentclass{article}

6

7 \usepackage{makeidx}

8

9 \makeindex

10

11 \begin{document}

12

13 Hello world\index{Hello world}.

14

15 Goodbye world\index{Goodbye world}.

16

17 \printindex

18

19 \end{document}



96 Chapter 10. Quick start

by the order of directives in the .tex file. If any command fails, arara halts
at that position and nothing else is executed.

You might ask how arara knows if the command was successfully exe-
cuted. The idea is quite simple: good programs like pdflatex make use of
a concept known as exit status. In short, when a program had a normal
execution, the exit status is zero. Other values are returned when an ab-
normal execution happened. When pdflatex successfully compiles a .tex

file, it returns zero, so arara intercepts this number. Again, it’s a good
practice to make command line applications return a proper exit status
according to the execution flow, but beware: you might find applications
or shell commands that don’t feature this control (in the worst case, the
returned value is always zero). arara relies on the Apache Commons Exec
library to provide the system calls.

Code 47: Running helloindex.tex.

$ arara helloindex
__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

\__,_|_| \__,_|_| \__,_|

Running PDFLaTeX... SUCCESS

Running PDFLaTeX... SUCCESS

Running MakeIndex... SUCCESS

Running PDFLaTeX... SUCCESS

According to the terminal output shown in Code 47, arara executed
all the commands successfully. In Section 7.3 we discuss how arara works
with commands and how to get their streams for a more detailed analysis.

For the next example, we will write a rule for both BIBTEX and biber.
Instead of writing two rules – one for each command – I’ll show how we
can use conditional expressions and run different commands in a single rule.
The common scenario is to have each tool mapped to its own rule, but as we
can see, rules are very flexible. Let’s see how arara handles this unusual
bibliography rule presented in Code 48.

The bibliography rule is quite simple, actually. If no engine is provided
in the bibliography directive, the default element of the engine argument
will be set to bibtex. Otherwise, if the engine parameter is set to biber –
and only this value – the engine orb tag will expand the result to biber.

http://commons.apache.org/exec/


10.1. Writing rules 97

Code 48: bibliography.yaml

1 !config

2 identifier: bibliography

3 name: Bibliography

4 command: <arara> @{engine} @{args} @{ getBasename(file) }

5 arguments:

6 - identifier: engine

7 flag: <arara> @{ isTrue( parameters.engine == "biber", "biber

", "bibtex" ) }

8 default: bibtex

9 - identifier: args

10 flag: <arara> @{parameters.args}

Code 49 presents only the header of our biblio.tex file using the new
bibliography directive. Other options are shown in Table 10.1.

Code 49: biblio.tex

1 % arara: pdflatex

2 % arara: bibliography

3 % arara: pdflatex

4 \documentclass{article}

5 ...

It’s important to note that bibtex and biber differ in their flags, so I
used a global args parameter. It is recommended to enclose the args value
with single or double quotes. Use this parameter with great care, since the
values differ from tool to tool. The output is presented in Code 50.

According to the terminal output shown in Code 50, arara executed all
the commands successfully. A friendly warning: this rule is very powerful
because of its flexibility, but the syntax – specially the conditional expres-
sion and the expansion tricks – might mislead the user. My advice is to
exhaustively test the rules before deploying them into production. After
all, better be safe than sorry.

Note that arara already includes both bibtex and biber rules. We
believe this is the best approach to deal with such tools instead of a generic
bibliography rule. Take a look on the existing rules, they might help the
learning process.



98 Chapter 10. Quick start

Directive Behaviour

bibliography: {

engine: bibtex }

This directive sets the engine parameter to
bibtex, which will expand the command to
bibtex in the rule. Note that any value other
than biber will expand the command to bibtex.

bibliography: {

engine: biber }

This directive sets the engine parameter to
biber, which will expand the command to biber

in the rule. This is the only possible value that
will set biber as the rule command.

bibliography: {

engine: bibtex, args:

’-min-crossrefs=2’ }

This directive sets the engine parameter to
bibtex and also provides an argument to the
command. Note that the args value is specific to
bibtex – using this argument value with biber

will surely raise an error.

bibliography: {

engine: biber, args:

’--sortcase=true’ }

This directive sets the engine parameter to biber

and also provides an argument to the command.
Note that the args value is specific to biber –
using this argument value with bibtex will surely
raise an error.

Table 10.1: Other directive options for bibliography.

Code 50: Running biblio.tex.

$ arara biblio
__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

\__,_|_| \__,_|_| \__,_|

Running PDFLaTeX... SUCCESS

Running Bibliography... SUCCESS

Running PDFLaTeX... SUCCESS

10.2 Cross-platform rules
One of the goals when writing arara was to provide a cross-platform tool
which behaves exactly the same on every single operating system. Similarly,
the rules also follow the same idea, but sadly that’s not always possible.
After all, at some point, commands are bounded to the underlying operating
system.



10.2. Cross-platform rules 99

A rule that call pdflatex, for example, is easy to maintain; you just need
to ensure there’s an actual pdflatex command available in the operating
system – in the worst case, arara warns about a nonexisting command.
But there are cases in which you need to call system-specific commands.
You could write two or three rules for the same task, say makefoowin,
makefoolinux, and makefoomac, but this approach is not intuitive. Be-
sides, if you share documents between operating systems, you’d have to
also change the respective directive in your .tex file in order to reflect
which operating system you are on.

Thankfully, there’s a better solution for writing cross-platform rules
which require system-specific commands. In Section 9.2, we mentioned
about a special orb tag called @{SystemUtils} – it’s now time to unveil its
power. This orb tag is available for all rules and maps the SystemUtils

class from the Apache Commons Lang library [1]. In other words, we have
access to all methods and properties from that class.

Even though we have access to all public methods of the SystemUtils

class, I believe we won’t need to use them – the available properties are far
more useful for us. Table 10.2 shows the most relevant properties for our
context. The Apache Commons Lang documentation contains the full class
description.

Every time we want to call any of the available properties presented in
Table 10.2, we just need to use the SystemUtils.PROPERTY syntax, check the
corresponding value through conditional expressions and define commands
or arguments according to the underlying operating system.

Let’s go back to our examples and add a new plain rule featuring the new
@{SystemUtils} orb tag. Right after running arara helloindex successfully
(Code 47), we now have as a result a new helloindex.pdf file, but also a
lot of auxiliary files, as we can see in Code 51.

Code 51: List of all files after running arara helloindex.

$ ls

helloindex.aux helloindex.ilg helloindex.log helloindex.tex

helloindex.idx helloindex.ind helloindex.pdf

What if we write a new clean rule to remove all the auxiliary files? The
idea is to use rm to remove each one of them. For now, let’s stick with a
system-specific rule – don’t worry, we will improve this rule later on.

Since we want our rule to be generic enough, it’s now a good opportunity
to introduce the use of the reserved directive key files. This special key is

http://commons.apache.org/lang/api/org/apache/commons/lang3/SystemUtils.html


100 Chapter 10. Quick start

Property Description

IS_OS_AIX True if this is AIX.

IS_OS_FREE_BSD True if this is FreeBSD.

IS_OS_HP_UX True if this is HP-UX.

IS_OS_IRIX True if this is Irix.

IS_OS_LINUX True if this is Linux.

IS_OS_MAC True if this is Mac.

IS_OS_MAC_OSX True if this is Mac.

IS_OS_NET_BSD True if this is NetBSD.

IS_OS_OPEN_BSD True if this is OpenBSD.

IS_OS_OS2 True if this is OS/2.

IS_OS_SOLARIS True if this is Solaris.

IS_OS_SUN_OS True if this is Sun OS.

IS_OS_UNIX True if this is a Unix-like system, as in any of AIX,
HP-UX, Irix, Linux, Mac OS X, Solaris or Sun OS.

IS_OS_WINDOWS True if this is Windows.

IS_OS_WINDOWS_2000 True if this is Windows 2000.

IS_OS_WINDOWS_2003 True if this is Windows 2003.

IS_OS_WINDOWS_2008 True if this is Windows 2008.

IS_OS_WINDOWS_7 True if this is Windows 7.

IS_OS_WINDOWS_95 True if this is Windows 95.

IS_OS_WINDOWS_98 True if this is Windows 98.

IS_OS_WINDOWS_ME True if this is Windows ME.

IS_OS_WINDOWS_NT True if this is Windows NT.

IS_OS_WINDOWS_VISTA True if this is Windows Vista.

IS_OS_WINDOWS_XP True if this is Windows XP.

Table 10.2: Most relevant properties of SystemUtils.



10.2. Cross-platform rules 101

a list that overrides the default @{file} value and replicates the directive
for every element in the list. I’m sure this will be the easiest rule we’ve
written so far. The clean rule is presented in Code 52.

Code 52: clean.yaml, first attempt.

1 !config

2 identifier: clean

3 name: CleaningTool

4 command: rm -f "@{file}"

5 arguments: []

Note that the command rm has a -f flag. As mentioned before, com-
mands return an exit status after their calls. If we try to remove a nonex-
isting file, rm will complain and return a value different than zero. This
will make arara halt and print a big “failure” on screen, since a non-zero
exit status is considered an abnormal execution. If we provide the -f flag,
rm will not complain of a nonexisting file, so we won’t be bothered for this
trivial task.

Now we need to add the new clean directive to our helloindex.tex file
(Code 46). Of course, clean will be the last directive, since it will only be
reachable if everything executed before was returned withno errors. The
new header of helloindex.tex is presented in Code 53.

Code 53: helloindex.tex with the new clean directive.

1 % arara: pdflatex

2 % arara: pdflatex

3 % arara: makeindex

4 % arara: pdflatex

5 % arara: clean: { files: [ helloindex.aux, helloindex.idx,

helloindex.ilg, helloindex.ind, helloindex.log ] }

6 \documentclass{article}

7 ...

The reserved directive key files has five elements, so the clean rule
will be replicated five times with the orb tag @{file} being expanded to
each element. Time to run arara helloindex again and see if our new
clean rule works! Code 54 shows both arara execution and directory
listing. We expect to find only our source helloindex.tex and the resulting
helloindex.pdf file.



102 Chapter 10. Quick start

Code 54: Running helloindex.tex with the new clean rule.

$ arara helloindex
__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

\__,_|_| \__,_|_| \__,_|

Running PDFLaTeX... SUCCESS

Running PDFLaTeX... SUCCESS

Running MakeIndex... SUCCESS

Running PDFLaTeX... SUCCESS

Running CleaningTool... SUCCESS

Running CleaningTool... SUCCESS

Running CleaningTool... SUCCESS

Running CleaningTool... SUCCESS

Running CleaningTool... SUCCESS

$ ls

helloindex.pdf helloindex.tex

Great, the clean rule works like a charm! But we have a big issue: if
we try to use this rule in Windows, it doesn’t work – after all, rm is not a
proper Windows command. Worse, replacing rm by the equivalent del won’t
probably work. Commands like del must be called in the form cmd /c del.
Should we write another system-specific rule, say, cleanwin? Of course not,
there’s a very elegant way to solve this issue: the @{SystemUtils} orb tag.

The idea is very simple: we check if arara is running in a Windows
operating system; if true, we set the command to cmd /c del, or rm -f

otherwise. The new version of our clean rule is presented in Code 55.

Code 55: clean.yaml, second attempt.

1 !config

2 identifier: clean

3 name: CleaningTool

4 command: <arara> @{ SystemUtils.IS_OS_WINDOWS ? "cmd /c del" :

"rm -f" } "@{file}"

5 arguments: []

There we go, our first cross-platform rule! There’s no need of writing a



10.2. Cross-platform rules 103

bunch of system-specific rules; only one cross-platform rule is enough. We
know that the clean rule will work as expected in every operating system,
even if the task to be performed relies on system-specific commands. With
cross-platform rules, we are able to write cleaner and more concise code.

There’s another way of writing the clean rule, now with a built-in func-
tion instead of the @{SystemUtils} orb tag: we can use a function named
isWindows() to check if arara is running in a Windows operating System.
The third attempt of our clean rule is presented in Code 56.

Code 56: clean.yaml, third attempt.

1 !config

2 identifier: clean

3 name: CleaningTool

4 command: <arara> @{ isWindows( "cmd /c del" , "rm -f" ) } "@{

file}"

5 arguments: []

Note that the clean rule is expecting @{file} to be overriden, since we
rely on the reserved directive key files. If by any chance this rule is called
without the files directive key, that is, an empty directive % arara: clean,
I have very bad news to you: the rule will be expanded to rm -f mydoc.tex

and your .tex file will be gone! Is there any way to avoid this behaviour?
Yes, there is.

For our fourth attempt of rewritting the clean rule, we will make use
of two new built-in functions. The first one is named isFalse(), which
only expands the value if the conditional expression resolves to false; the
second one is named getOriginalFile(), which holds the original reference
to the file processed by arara. The idea here is very simple: if the current
@{file} is different than the original file, run the task; otherwise, the whole
command is expanded to an empty string – empty commands are discarded
by arara. We will use a rule argument to hold the whole command, but
note that the flag element is not important here, since we won’t use this
argument in the directive; only default matters in this context. The new
clean rule is presented in Code 57.

Now we have a safe version of the clean rule. If we try to run arara on
our document with % arara: clean, nothing will happen and our original
file won’t be removed. That means that clean will only take action when
we have an explicit list of files to be removed, and even if the element in
the files list is different than the original file.



104 Chapter 10. Quick start

Code 57: clean.yaml, fourth attempt.

1 !config

2 identifier: clean

3 name: CleaningTool

4 command: <arara> @{remove}

5 arguments:

6 - identifier: remove

7 default: <arara> @{ isFalse( file == getOriginalFile(),

isWindows( "cmd /c del", "rm -f" ).concat(' "').concat(

file).concat('"')) }

Take a look in all the default rules available in the project directory on
GitHub. They are very easy to understand. If you get stuck in any part,
a good advice is to enable the logging feature through the --log flag, since
arara logs every expansion and command.

References
[1] The Apache Software Foundation. Apache Commons Lang. 2001. url:

http://commons.apache.org/lang/ (cit. on p. 99).

http://github.com/cereda/arara
http://commons.apache.org/lang/


Chapter 11
Reference for rule library

I first saw the TEXbook lying
beside a brand new Macintosh
Plus back in 1985 and was
instantly amazed by both.

Enrico Gregorio

This chapter presents a list of built-in functions of arara available in
the rule context, as well as some notes on expansion. These functions have
to be used always inside an orb tag, that is, @{ <function> }, in order to
properly work, since they are written for the MVEL expression language.

11.1 Functions
arara features some functions in order to ease trivial tasks during the
writing process of a rule. In this section, we will present a list of these
functions, including their parameters and return value.

getOriginalFile
Syntax

string getOriginalFile()

Description
Returns the original file reference processed by arara as string.

105



106 Chapter 11. Reference for rule library

isEmpty
Syntax

boolean isEmpty(string s)

Description
Checks if s is empty and returns a boolean value: true if s is empty,
false otherwise.

Syntax
string isEmpty(string s1, string s2)

Description
Checks if s1 is empty and returns a string value: s2 if s1 is empty, or
an empty string otherwise.

Syntax
string isEmpty(string s1, string s2, string s3)

Description
Checks if s1 is empty and returns a string value: s2 if s1 is empty, or
s3 otherwise.

isNotEmpty
Syntax

boolean isNotEmpty(string s)

Description
Checks if s is not empty and returns a boolean value: true if s is not
empty, false otherwise.

Syntax
string isNotEmpty(string s1, string s2)

Description
Checks if s1 is not empty and returns a string value: s2 if s1 is not
empty, or an empty string otherwise.

Syntax
string isNotEmpty(string s1, string s2, string s3)

Description
Checks if s1 is not empty and returns a string value: s2 if s1 is not
empty, or s3 otherwise.



11.1. Functions 107

isTrue
Syntax

boolean isTrue(string s)

Description
Checks if s has any of the values in the arara context that are con-
sidered true – true, yes, y and 1 – and returns a boolean value: true
if s has a valid true value, or false otherwise.

Syntax
string isTrue(string s1, string s2)

Description
Checks if s1 has any of the values in the arara context that are con-
sidered true – true, yes, y and 1 – and returns a string value: s2 if
s1 has a valid true value, or an empty string otherwise.

Syntax
string isTrue(string s1, string s2, string s3)

Description
Checks if s1 has any of the values in the arara context that are con-
sidered true – true, yes, y and 1 – and returns a string value: s2 if
s1 has a valid true value, or s3 otherwise.

Syntax
string isTrue(string s1, string s2, string s3, string s4)

Description
Checks if s1 has any of the values in the arara context that are con-
sidered true – true, yes, y and 1 – and returns a string value: s2 if
s1 has a valid true value, s3 if s1 has any of the values in the arara
context that are considered false – false, no, n and 0 – or s4 otherwise
as a default fallback.

Syntax
string isTrue(boolean b, string s)

Description
Returns s if b is true, or an empty string otherwise.

Syntax
string isTrue(boolean b, string s1, string s2)



108 Chapter 11. Reference for rule library

Description
Returns s1 if b is true, or s2 otherwise.

isFalse
Syntax

boolean isFalse(string s)

Description
Checks if s has any of the values in the arara context that are con-
sidered false – false, no, n and 0 – and returns a boolean value: true
if s has a valid false value, or false otherwise.

Syntax
string isFalse(string s1, string s2)

Description
Checks if s1 has any of the values in the arara context that are con-
sidered false – false, no, n and 0 – and returns a string value: s2 if
s1 has a valid false value, or an empty string otherwise.

Syntax
string isFalse(string s1, string s2, string s3)

Description
Checks if s1 has any of the values in the arara context that are con-
sidered false – false, no, n and 0 – and returns a string value: s2 if
s1 has a valid false value, or s3 otherwise.

Syntax
string isFalse(string s1, string s2, string s3, string s4)

Description
Checks if s1 has any of the values in the arara context that are con-
sidered false – false, no, n and 0 – and returns a string value: s2 if
s1 has a valid false value, s3 if s1 has any of the values in the arara
context that are considered true – true, yes, y and 1 – or s4 otherwise
as a default fallback.

Syntax
string isFalse(boolean b, string s)

Description
Returns s if b is false, or an empty string otherwise.



11.1. Functions 109

Syntax
string isFalse(boolean b, string s1, string s2)

Description
Returns s1 if b is false, or s2 otherwise.

trimSpaces
Syntax

string trimSpaces(string s)

Description
Returns s with the trailing and leading spaces trimmed.

getFilename
Syntax

string getFilename(string s)

Description
This function takes a file path in the form of a string and returns a
string containing only the file name, or an empty string in case of
error.

getBasename
Syntax

string getBasename(string s)

Description
Returns the base name of s as a string, that is, the file name without
the extension, or an empty string in case of error.

getFiletype
Syntax

string getFiletype(string s)

Description
Returns the file type of s as a string, that is, the extension of the file
name, or an empty string in case of error.



110 Chapter 11. Reference for rule library

getDirname
Syntax

string getDirname(string s)

Description
This function takes a file path in the form of a string and returns a
string containing only the directory structure without the file name,
or an empty string in case of error.

isFile
Syntax

boolean isFile(string s)

Description
Returns true if s is a valid reference to a file, or false otherwise.

isDir
Syntax

boolean isDir(string s)

Description
Returns true if s is a valid reference to a directory, or false otherwise.

isWindows
Syntax

string isWindows(string s1, string s2)

Description
Returns s1 if arara is running in a Windows operating system, or s2
otherwise.

isLinux
Syntax

string isLinux(string s1, string s2)

Description
Returns s1 if arara is running in a Linux operating system, or s2

otherwise.



11.2. Notes on expansion 111

isUnix
Syntax

string isUnix(string s1, string s2)

Description
Returns s1 if arara is running in a Unix operating system, or s2

otherwise.

isMac
Syntax

string isMac(string s1, string s2)

Description
Returns s1 if arara is running in a Mac operating system, or s2 oth-
erwise.

All the functions described are available in the rule context and can be
concatenated in order to create more complex checkings.

11.2 Notes on expansion
It’s important to observe that arara always try to rely on a smooth fallback
to empty strings in case of function errors or unused arguments. This
approach allows the application to not halt in case of a recoverable situation.
If, for example, arara finds an empty command to execute – like in the
clean rule presented in Code 57 when files isn’t used – the task is simply
ignored. That way, we can make more robust rules without worrying too
much with expansion.

Remember that arara basically deals with string values, and some
times, with boolean operations. We decided to stick with those two types
because of simplicity. Taking care of string comparisons, using the built-in
functions and limiting the scope of the command is sufficient to write good
rules.


	The application
	Introduction
	What is arara?
	How does it work?
	Features
	Common uses
	References

	Installation
	Prerequisites
	Obtaining arara
	Using the cross-platform installer
	Manual installation
	Updating arara
	Uninstalling arara
	References

	Building from sources
	Obtaining the sources
	Building arara
	Notes on the installer and wrapper
	References

	IDE integration
	TeXworks
	WinEdt
	Inlage
	TeXShop
	TeXnic Center
	References

	Important concepts
	Rules
	Directives
	Orb tags
	References

	Configuration file
	Search paths
	Language
	File patterns
	References

	Running arara
	Command line
	Messages
	Logging
	Command output
	References


	For authors
	Quick start
	Predefined rules
	Organizing directives

	Reference for rule library
	Directive arguments
	Special orb tags
	References


	For rulemakers
	Quick start
	Writing rules
	Cross-platform rules
	References

	Reference for rule library
	Functions
	Notes on expansion



