
Lollipop Unwrapped

https://github.com/persian-tex/lollipop

Victor Eijkhout (Original author)

Vafa Khalighi (Current developer)

A manual for the Lollipop TEX format

Version 1.06
Last updated 14 May 2016

Pages: xi+60=71.

1 Contents

Chapter 1

Contents

1.1 Regular sections

1 Contents ii
1.1 Regular sections ii
1.2 All of the options iv
1.3 All of the commands iv
1.4 Bibliography v

2 Preliminaries vi
2.1 What is Lollipop? vi
2.2 But is it compatible? vi
2.3 How to Use Lollipop vii
2.4 Processing a Lollipop file vii
2.5 The errors of Lollipop/ known bugs viii
2.6 About this manual viii
2.7 The most boring section in this manual ix

3 The structure of Lollipop 1
3.1 Lollipop Files 1
3.2 Generic Constructs 1
3.3 Options 2
3.4 Popular error messages. Not! 2

4 Headings 4
4.1 Examples 4

5 Lists 7
5.1 Label alignment 7
5.2 List indentation 8
5.3 Label style 8
5.4 Label width 8
5.5 Description lists 8
5.6 Suspended lists 9
5.7 Item counter manipulation 10
5.8 List titles and list tails 10
5.9 Between the items 10
5.10 Indentation in lists 11

6 Text Blocks 12
6.1 The text option 12
6.2 More examples 13

7 Output 14
7.1 Page dimensions 14
7.2 Positioning the page on the paper 15ii

Regular sections 1.1

7.3 Page head, foot, text 15
7.4 The page number 18
7.5 Page tests 18
7.6 Running heads / footers 19
7.7 Alternating page grids 21
7.8 Additional User Control 22

8 Referencing 23
8.1 What and how do you reference? 23
8.2 The shape of the reference 24
8.3 Local references 26
8.4 Bibliography citations 26
8.5 Obscure details 28

9 External Files 29
9.1 Declaring and loading an external file 29
9.2 Generating external files 29
9.3 Formatting an external file 30
9.4 Example 31

10 Options 32
10.1 Titles 32
10.2 Counters 33
10.3 Chunks of text 34
10.4 Labels 37
10.5 Break before / after 37
10.6 Indentation 37
10.7 Rules 38
10.8 Embedded constructs 38
10.9 Obscure options 39
10.10 Testing 39

11 Commands 40
11.1 Counters 40
11.2 Font selection 42
11.3 Baselineskip 45
11.4 Indentation Control 45
11.5 Margins 47
11.6 White Space 48
11.7 Distances 48
11.8 Input Files 49
11.9 Tests 50
11.10 Goodies 50

12 Tracing 52
12.1 Do you really want to see this? 52

13 Example styles 53
13.1 The style definition for this book 53
13.2 Address book 56

iii

1 Contents

1.2 All of the options

(You know, this section and the next look much better if you sort the manual.oix
and manual.cix files before you format the document the last time. Do put lines

\Writeopindex:no

\Writecsindex:no

somewhere in the top of the manual.tex file in order to prevent overwriting of
these files after you’ve sorted them.)
title 4 indentafter 4 item 7 indentation 8 itemsign 8
itemCounter 8 labeloverflow 8 description 8 text 10
breakbetween 10 whitebetween 11 indentinside 11 text 12
height 15 text 15 textband 15 band 16 pagerule 17
topskip 18 PageCounter 18 NextPageGrid 21 label 24
haslabel 28 external 30 file 30 item 30 FooLabel 30
title 32 HasTitle 32 counter 33 HasCounter 33 block 34
stickout 34 line 35 textcolumn 36 label 37 breakbefore 37
breakafter 37 indentafter 37 indentinside 37 indentfirst 37
hrule 38 embedded 38 noimplicitclose 39

1.3 All of the commands

\StartCommand 1 \OptionsMacro 2 \DefineHeading 4
\DefineList 7 \SetItemSign 8 \SetItemCounterRepresentation 8
\PopIndentLevel 9 \DefineTextBlock 12 \DefinePageGrid 14
\Height 15 \PageCounter 18 \FirstPlaced 19 \LastPlaced 19
\PreviousPlaced 19 \EjectPage 22 \ToRecto 22 \ToVerso 22
\NoPages 22 \PagesOut 22 \WholePage 22 \CurrentShipout 22
\CountSheetsno 22 \SuspendOutput 22 \ResumeOutput 22
\ref 23 \pgref 23 \label 24 \LocalReferences 26
\DefineBBL 28 \bibref 28 \RefLabel 28 \DefineExternalFile 29
\WriteFoo 29 \WriteExtern 29 \LoadExternalFile 29
\ToExternalFile 30 \DefineExternalItem 30 \FooLabel 30
\FooTitle 32 \BlockWidth 35 \arg 39 \> 39 \>] 39
\FooCounter 40 \CounterRepresentation 40 \NewCounter 40
\StartCounter 41 \StepCounter 41 \BackStepCounter 41
\SetCounter 41 \AddToCounter 41 \GoverningCounter 41
\NewCounter 41 \label 42 \AdaptiveCounter 42 \Typeface 42
\Style 42 \PointSize 42 \SetFont 43 \PointSizeLarger 43
\PointSizeSmaller 43 \script 43 \scriptscript 43
\normal 43 \DefineTypeface 44 \SaveFont 45 \RestoreFont 45
\tt 45 \AlwaysIndent 45 \Indent 45 \basicindent 46
\BasicIndentIsSet 46 \LevelIndent 47 \levelindentii 47
\PushIndentLevel 47 \PopIndentLevel 47 \FlushRight 47
\FlushLeft 47 \rightmarginstretch 47 \leftmarginstretch 47iv

Bibliography 1.4

\hwhite 48 \vwhite 48 \white 48 \fillup 48 \Distance 48
\AdaptiveDistance 49 \InputFile 49 \NewList 50 \EmptyList 50
\TheList 50 \AppendToList 50 \UndefinedCS 50 \EqualString 50
\EqualStringX 50 \StringBefore 51 \NextChar 51
\IsEmptyList 51 \loop 51 \EveryParagraph 51 \EveryMath 51
\EveryDisplay 51 \SaveAlloc 51 \RestoreAlloc 51

1.4 Bibliography

[-1-] Victor Eijkhout. TEX by topic.
http://eijkhout.net/texbytopic/texbytopic.html,
1992.

[-2-] Victor Eijkhout. Just give me a lollipop (it makes my heart go
giddy-up). TUGboat, 13:341–346, 1992.

[-3-] Victor Eijkhout and Andries Lenstra. The document style designer as a
separate entity. TUGboat, 12:31–34, 1991.

[-4-] Donald E. Knuth. The TEX Book. Addison-Wesley, 1984, reprinted with
corrections 1989.

[-5-] Leslie Lamport. LATEX A Document Preparation System.
Addison-Wesley, 1986.

[-6-] Alan Perlis. Epigrams on programming. ACM Sigplan Notices, 17:7–13,
1982.

[-7-] Raymond Seroul and Silvio Levy. A Beginner’s Book of TEX. Springer
Verlag, 1990.

v

2 Preliminaries

Chapter 2

Preliminaries

2.1 What is Lollipop?

Lollipop is ‘TEX made easy’. Lollipop is a macro package that functions as a
toolbox for writing TEX macros. It was my intention to make macro writing so
easy that implementing a fully new layout in TEX would become a matter of less
than an hour for an average document, and that it would be a task that could be
accomplished by someone with only a very basic training in TEX programming.

Lollipop is an attempt to make structured text formatting available for
environments where previously only wysiwyg packages could be used because
adapting the layout is so much more easy with them than with traditional TEX
macro packages.

2.2 But is it compatible?

Lollipop, like LATEX, is not compatible with plain TEX. I don’t consider this a real
problem. Most plain TEX commands will work in Lollipop with the exception of
anything output routine related. (See also below.)

Lollipop is also not compatible with LATEX, although it has a lot of the
same functionality. There are two reasons why Lollipop still has a reason for
existing, even though LATEX is used pretty much all over the scientific world.

For one, Lollipop is targeted in part to different users than the typical
plain TEX or LATEX user. For another, I have a vain hope that I can capture
some of the LATEX market share. Since developing styles in Lollipop is so much
more easier than in LATEX, I may stand a fighting chance.

2.2.1 Lollipop and plain TEX

Having said the above, I’ll conceded that Lollipop is more compatible with plain
TEX than with LATEX. You can use quite some plain TEX commands in Lollipop.
However, stay away from the following:

\everypar This one is heavily used by Lollipop. You may use \EveryParagraph
instead, which functions pretty much like \everypar; see section 11.10.3.

\everymath This one is heavily used by Lollipop. You may use \EveryMath

instead, which functions pretty much like \everymath; see section 11.10.
4.

\everydisplay This one is heavily used by Lollipop. You may
use \EveryDisplay instead, which functions pretty much like
\everydisplay; see section 11.10.5.vi

Processing a Lollipop file 2.4

\output Page output is done so very differently from plain TEX that all
commands pertaining to page numbers and head/footlines have been
eradicated. (Well, \pageno still gives the page number.) See chapter 7.

The current version of Lollipop is based on the plain TEX file that comes with
TEX version 3.141592653.

2.2.2 Lollipop and TEX programming

The tools in Lollipop allow you to program in a simple manner quite complicated
macros. Still you may want to have some knowledge of ordinary TEX macro
programming. If you are just starting in TEX you can pick up the basics from
the book by Seroul and Levy [7], and after that there is the book by the original
author of TEX [4] and my own TEX reference guide [1].

2.3 How to Use Lollipop

The following files comprise the Lollipop format:
lollipop-define.tex lollipop-document.tex

lollipop-float.tex lollipop-fontdefs.tex

lollipop-fonts.tex lollipop-heading.tex

lollipop-lists.tex lollipop-output.tex

lollipop-plain.tex lollipop-text.tex

lollipop-tools.tex lollipop.tex

To process a file, say test.tex, with Lollipop you then type:
> lollipop test.tex

to get the dvi output.

2.4 Processing a Lollipop file

Files that you make to be processed with Lollipop contain of course the input
text, but they also have to contain the design macros that determine the layout.
There are two possibilities for these design macros:

• You can simply put them in the same file, either in the beginning or
wherever they are first needed, or

• You can put the layout definition in a separate file and call this definition
file in your main file. For instance, you can put the layout definition of
a book in a file bookstyle.tex, and then call this definition file in your
main Lollipop file by putting
\InputLollipop:bookstyle.tex

somewhere in your main Lollipop file.
If you have used TEX before, you will notice that the page numbers

get reported slightly differently from the usual way. See section 7.4 for
the explanation. vii

2 Preliminaries

2.5 The errors of Lollipop/ known bugs

Since Lollipop is an order of magnitude more powerful (and hence
complicated) than formats such as LATEX, its error messages can also be
an order of magnitude more cryptic (see section 3.4 for the possible origin
of some of the more obscure error messages).

Fortunately, Lollipop is also quite a bit better than existing formats
at catching potential errors. Typos in a style definition will usually lead
to warning messages, and also during run time Lollipop is able to track
down ommisions.

In addition, you can switch on various trace modes to get more
detailed information about Lollipop’s thought processes. See chapter 12.

These are the known bugs in Lollipop at the moment.

1 Local references have been insufficiently tested, and the code
definitely is buggy.

2 The ‘firstpage’ test in the page grids does not work.
3 The table of contents example is slightly wrong.
4 Titles get written to the aux file with double spaces. This shouldn’t

cause any problem, but it has to be fixed.
5 Rules in page grids get white space around them.
6 External items shouldn’t declare \FooTitle or \FooCounter.
7 \ToExternalFile doesn’t work.

If you find any other issues, or if you have any fixes/workarounds for any
existing issues, then please post them on GitHub.

2.6 About this manual

This manual consists of a main file lollipop-manual.tex, and the
following input files:
titlepag.tex prelim.tex struct.tex head.tex list.tex

out.tex extern.tex opt.tex comm.tex trace.tex appendix.tex

and the style definition file mandefs.tex.
In addition, you need comment.tex which is used to format this

manual, and btxmac.tex for the BibTEX interface, but these are not
really a part of Lollipop.

If you format this manual (which you’ll have to do three times to
get the page numbering and the table of contents straight) you’ll notice
something strange. The file example.tex is read in many, many times.
This is because this manual formats its examples along the way, first
writing them out, and then reading them in to show both their code and
their output. This way it is guaranteed that the examples in the manual
will always work.

As a result of formatting this manual you will wind up with,viii

The most boring section in this manual 2.7

apart from the usual pdf and log file, with lollipop-manual files
with extensions aux, toc, and imp; oix and cix for indexes of options
and commands, and tct, filetix which are for the examples. For the
bibliography there are the BibTEX input file lollipop-manual.bib and
output file lollipop-manual.bbl.

This manual needs quite some resources: here’s what TEX told me
it needed.

Here is how much of TeX’s memory you used:

1187 strings out of 496577

16107 string characters out of 6202674

66696 words of memory out of 5000000

3268 multiletter control sequences out of 15000+600000

10531 words of font info for 38 fonts, out of 8000000 for

9000

19 hyphenation exceptions out of 8191

24i,4n,24p,189b,562s stack positions out of 5000i,500n,10000p,200000b,80000s

Because of all the examples this manual takes quite some time to process.
A factor of four over the time for a regular document of similar length
should be expected. Ordinary Lollipop documents will proceed far faster.

2.7 The most boring section in this manual

There are a few things about Lollipop that I want to be clear about.

2.7.1 I am going to hurt you and I am not sorry

In the secret handbook for the software industry it says that the final test
phase of a product consists of putting it in stores and having innocent
suckers pay good money for it. (You guessed it, this is the disclaimer
section.) So let me just say that Lollipop is probably good for nothing,
at least, I don’t claim it is. And if you hurt yourself by using it, don’t
blame me. I warned you.

2.7.2 Get a Lollipop, give one away

Lollipop is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.

The easiest way to get the current copy of Lollipop is to use a more
recent TEX distribution (TEXLive or MikTEX).

2.7.3 The status of Lollipop

Lollipop is still under development. Although I will try not to make ix

2 Preliminaries

any drastic changes in the user interface (this says nothing about the
internals!) I really cannot guarantee anything. However, I do listen to
complaints and suggestions.

If you have suggestions or complaints about the useability
of Lollipop or the implementation, feel free to contact me at
persian-tex@tug.org on the Internet.

2.7.4 The wish list

Lollipop is not quite perfect. Here’s a list of things that I am going to be
adding in the near future. If you want to add items to this list, just open
a ticket on the tickets.

1 Raggedbottom should really, really be added. Soon!
2 Capitalization and initial capping of titles. If a title appears in

mixed case, it should be possible to have it in all uppercase in
running heads. Some code has been disabled now.

3 A better multi-column mode.
4 Interface to BibTEX seems to largely in place; what happens if you

don’t load btxmac?
5 Inserts, in particular footnotes. At the moment floating figures are

entirely lacking. (As a matter of fact, the plain TEX macros are
availble, but I’m not telling that.)

6 A ‘nomarks’ option to prevent wasting two token lists. Maybe other
recourse saving optio for the expert designer?

7 More sophisticated white space right before and after page breaks.
(Use at least so and so much.)

8 Dynamic topskip.
9 Support for RTL languages (such as Persian).
The following points are debatable: maybe I should just steal a few
components from LATEX. Maybe this sort of stuff does not belong in
Lollipop.
10 A tabular mode. Personally I always felt \halign to be more than

sufficient, but some people seem to think otherwise.
11 Maths constructs. Some things in the \eqalign vein would be nice.

2.7.5 A bit of history

The Lollipop format was begun in late 1989 to typeset Victor Eijkhout’s
Ph.D. thesis, ‘Vectorizable and Parallelizable Preconditioners for the
Conjugate Gradient Method’. At that time Victor was using TEX on an
Atari 1040ST. Loading the style definition for the thesis took about two
minutes. Lollipop was heavily augmented in late 1991 to typeset his book
‘TEX by Topic’, for which he used Sun 3 and Sun 4 computers. Writing
this manual brought Lollipop to its version 0.96; the first public release
(version 0.9) was announced on the internet in October 1992.x

The most boring section in this manual 2.7

Between 1992 and 2014, Lollipop was unmaintained and Vafa
Khalighi took over the development of Lollipop in April 2014.

The name ‘Lollipop’ refers to a quote by Alan Perlis [6], quoted
on page 365 of the TEXbook [4]. In a way it’s rather pretentious. The
philosophy of the Lollipop format is described [3, 2].

xi

Generic Constructs 3.2

Chapter 3

The structure of Lollipop

Lollipop provides tools for realizing the style or layout of a document. Some of
these tools are macros ready to be used by the end user; they concern for instance
selection of fonts. Others, the ‘generic constructs’, are for the style designer so
that she can use them to program the macros for the user.

3.1 Lollipop Files

Any Lollipop document has to have a \Start and \Stop command. Before the
\Start there can be style definition commands, but no text. For a number of
reasons it is advisable to put as much of the style definition before the \Start

command as possible. You can do that easily by loading the style as an input file,
or by first dumping it as a format (see section 2.4).

Both the start and the stop file load the .aux auxiliary file. None of
this should concern you, really. Expert users who want to have certain actions
performed at the start of the document may want to use \StartCommand to
specify what they wish done. See section 11.7.2 for an example.

3.2 Generic Constructs

There are five ‘generic constructs’: headings, lists, text blocks, page grids, and
external items. For each construct type there is a defining command, for instance
\DefineHeading which is followed a list of ‘options’, terminated by the word
‘Stop’.

Options (possibly with values) have to be separated by a space or a line
end; the keyword Stop has to be followed by a space or a line end. Options may
have zero, one or two values; if there are values, then the first one is separated
from the option by a colon, the second is separated from the first by an equals
sign.
\DefineFoo:Bar optiona optionb optionc:value

optiond:valuea=valueb optione

optionf Stop

As a result of this definition, a command \Bar is created. If the Foo construct
was a List or TextBlock, an additional command \BarStop is created.

This command can then be used in the ordinary way, for instance after
\DefineHeading:Foo you can type
\Foo The title

and after \DefineList:Foo you can type

\Foo

\item One item 1

3 The structure of Lollipop

\item And another

\FooStop

3.3 Options

Options are mostly used to specify how a construct will look. Some options, for
instance title, indicate material that will appear on the page. Other options
are interpreted as commands, for instance IndentAfter:yes in the definition of
a heading indicates that the first paragrah after such a heading will indent.

In addition to keywords that only exist as options, commands can be
used as options. Also, single characters are accepted as options. For instance a
definition of a subsection heading can contain:
\DefineHeading:SubSection

[...]

SectionCounter . SubSectionCounter

[...] Stop

(Here and later the [...] will denote arbitrary omitted text.) This definition
contains the commands \SectionCounter and \SubSectionCounter and the .

character.
If a number of options appears together in a number of constructs it

is convenient to have an abbreviation for them. This can be done with the
command \OptionsMacro as follows. The options that appear together are given
a common name
\OptionsMacro:baz=optiona optionb:value optionc

Stop

(be sure to leave no spaces around the equals sign) and this name is then used as
macro:baz

in the option list wherever the options are needed.
This is for instance a good way of specifying identical white space around

all sorts of constructs without duplicating the typing each time. However, it is
only for your convenience: it doesn’t save any TEX resources or processing time.

3.4 Popular error messages. Not!

Lollipop is a macro package on top of an existing program, TEX. Therefore it is
inevitable that you will get TEX error messages every once in a while. Some of
these may confuse you.

Here are a few of the errors that I keep making.

3.4.1 Missing \endcsname inserted

If you forget the second parameter in a \Distance or \SetCounter command,
writing for instance
\Distance:TheWidth2

Popular error messages. Not! 3.4

instead of
\Distance:TheWidth=15pt

TEX will scan forward, and it can easily bump into something that is highly
unexpected given the context. If this is a \def or \Define... command, a
‘missing \endcsname’ results. If a blank line follows the incomplete declaration,
the following section applies.

3.4.2 Paragraph ended before something was complete

TEX has found a blank line (or a \par command) where this was not expected.
See for instance the previous section.

3.4.3 Missing number

You have used something that you thought was the name of a control sequence,
but it wasn’t. Example:
\Distance:parskip=parundent

Since \parundent is undefined, Lollipop thought you were writing something like
\Distance:parskip=5pt

And yes, the message refers to ‘number’ even though what is missing is a distance.

3

4 Headings

Chapter 4

Headings

Headings for sections, chapters, and such, are an essential part of any TEX macro
package. In Lollipop they are maybe a bit less special: all options for headings
are general options, meaning that they also apply to text blocks and lists. There
are only two things that distinguish headings:

1 there will be no page break after a heading;
2 there is no closing command for a heading.

4.1 Examples

Headings are defined by \DefineHeading. The most obvious element in a
heading is the title, marked by the option title. The title is anything that
follows the heading command, upto the first empty line.
\SomeHeading Some title

And some text following it.

The title has to be included in a line or a textcolumn for proper handling (see also
section 10.3.5). For titles that do not exceed one line, the line option suffices
(section 10.3.3); if a title is possibly more than one line long, the textcolumn

option has to be used (section 10.3.4.

Example 4.1

\DefineHeading:TestSection Style:bold

line:start TestSectionCounter Spaces:2 title line:stop

Stop

\TestSection The Title

The text after the heading.

1 The Title

The text after the heading.

By default, the text after a heading is indented. Overriding this default behaviour
is done with the option indentafter.

Example 4.2

\AlwaysIndent:no % as a default, don’t indent paragraphs

\DefineHeading:TestSection Style:bold

line:start TestSectionCounter Spaces:2 title line:stop

indentafter:yes Stop4

Examples 4.1

\TestSection The Title

The text after the heading.\par

The second paragraph after the heading

1 The Title

The text after the heading.
The second paragraph after the heading

Usually headings come in a hierarchy, where the counter of one type, for instance
a subsection, is reset everytime the counter of a higer level is stepped. In
Lollipop, this subordinating of headings is done by declaring one counter to be
governed by another (counters are explained in full detail in section 11.1).

Example 4.3

\DefineHeading:TestChapter Style:bold

line:start TestChapterCounter Spaces:1 title line:stop

Stop

\DefineHeading:TestSection Style:italic

line:start TestChapterCounter : TestSectionCounter . Spaces:1

title line:stop Stop

\GoverningCounter:TestSection=TestChapter

\TestChapter Level One Heading\par

\TestSection Level Two Heading\par

Some text.

\TestSection Level Two again\par

More text.

\TestChapter Level One is Stepped\par

\TestSection Level Two\par

Again text.

1 Level One Heading

1:1. Level Two Heading

Some text.

1:2. Level Two again

More text.

2 Level One is Stepped

2:1. Level Two

Again text.
5

4 Headings

Headings will often wind up in a table of contents. For this, the table of contents
will have to be declared:
\DefineExternalFile:contents=toc

and its formatting will have to be specified, but also every construct that writes
to this file has to be declared as such.
\DefineHeading:TestSection

[...]

external:contents title external:stop

Stop

Usually, the title is all that has to be written out (the counter value is written by
default), but the possibility exists for writing out other information as well. See
section 9.2.

6

Label alignment 5.1

Chapter 5

Lists

Lists in Lollipop are defined by \DefineList:
\DefineList:Foo [...]

item:start [...] item:stop

[...] Stop

and the resulting list is used as
\Foo

\item [..text..]

\item [...]

\FooStop

where the closing command can be abbreviated as \>.

5.1 Label alignment

In general there is a default position for labels; either aligning with the left or
the right side of the margin over which the list is indented. The two ways are
indicated with the option item:

item:left [...] item:stop

and
item:right [...] item:stop

respectively. Specifying item:start gives the default left aligning position.

Example 5.1

\DefineList:enumerate

item:start itemCounter) item:stop Stop

\DefineList:enumerateright

item:right (itemCounter) Spaces:1 item:stop Stop

\enumerate\item Some item

\item And another

\enumerateright\item First nested item

\item Next nested item\>

\item And back to the original list.\>

1) Some item
2) And another

(A) First nested item
(B) Next nested item

3) And back to the original list.
7

5 Lists

5.2 List indentation

The amount over which the text of a list (excluding the item labels) is indented
is controled by a list of indentations. This is explained in section 11.4. The
indentation amount is most of the time also equal to the value of the paragraph
indentation outside that list.

In the rare case where the indentation of a list has to be controlled
explicitly, there is an option indentation with one value.
\DefineList:SomeList indentation=30pt [...] Stop

5.3 Label style

Every list that uses the itemsign option is an ‘itemize’ list, no matter what it’s
name, and there is a counter in Lollipop that keeps track of how deep you are in
itemize lists. Similarly, every list that uses itemCounter is an ‘enumerate’ lists,
and these are counted too.

On every next level a new style of item sign or counter is used. For item
signs this is in sequence: •, ◦, –, and · for all higher levels. The style of sign can
be changed by \SetItemSign:
\SetItemSign:6=m

where the letter indicating the sign is interpreted as: b • (bullet), c ◦ (circle), d ⋄

(diamond), m — (em-dash), n – (en-dash), . ·.
Similarly, the counter style can be set by \SetItemCounterRepresentation:

\SetItemCounterRepresentation:2=i

where the letter representing the style is interpreted as: 1 Arabic, I uppercase
roman, i lowercase roman, A uppercase characters, a lowercase characters.

5.4 Label width

The default width for a label is at most the width of the margin over which the
list is indented. Using item:left or item:right will have the label pushed to
the left or right side of this margin respectively. Now what if the label material is
wider than this margin? Usually you want the label then to expand to the right,
and that is indeed what happens, unless you specify labeloverflow with value
left, in which case the right boundary of the label will not budge, and the label
will start protruding into the outer margin.

5.5 Description lists

A common type of list is the type where each item label consists of a piece of
text. Such a list is called a ‘description’ list in Lollipop, and it recognized by the
occurrence of the option description in its definition. A description list can
also use the item sign or the item counter, of course.8

Suspended lists 5.6

Using a description list, the description text is everything that follows the
command \item, up to the end of the line.

Example 5.2

\DefineList:TestList

item:left Style:bold itemCounter . Spaces:1 description

Spaces:2 item:stop Stop

\TestList\item Do

A deer, a female deer.\item Re

According to mr. Fowler only a legal term.

\item Mimi Jett

The owner/founder of ETP\>

1. Do A deer, a female deer.
2. Re According to mr. Fowler only a legal term.
3. Mimi Jett The owner/founder of ETP

As you can see, the problem of label overflow can easily occur with description
lists. Thus it is a good idea to end the item material with some white space, as
in the above example.

Exceptional situation: if you use an empty description text, you should
write \item{}.

5.6 Suspended lists

Occasionally the is a need to resume an enumerate list, that is, after a piece of
text that is not part of the list an enumerate list should start counting from the
previous value on. In Lollipop this phenomenon can be realized by never ending
the enumerate list, and simply moving the text one indentation level back with
\PopIndentLevel.

Example 5.3

\DefineList:enumerate item:left itemCounter item:stop Stop

\enumerate\item First some item\par

{\PopIndentLevel \Indent:no

This text seems to be outside the list. Don’t you believe it.\par}

\item And another item\>

1 First some item
This text seems to be outside the list. Don’t you believe it.
2 And another item

Note that the ‘popped’ text has to be in a group (otherwise the subsequent items
will also be popped back), and it has to be separated from the preceding and
following text by \par; the trailing \par has to be in the group. 9

5 Lists

5.7 Item counter manipulation

The item counter can be manipulated explicitly. This is necessary for instance
for starting a list at another value than one. What you need to realize here is
that the command \item starts by incrementing the counter. Furthermore, the
only way to access the item counter is through the commands for counters; see
section 11.1.

Example 5.4

\DefineList:enumerate item:left itemCounter item:stop Stop

\enumerate \SetCounter:item=-1

\item Escape: usually the backslash.

\item Begin Group.\>

0 Escape: usually the backslash.
1 Begin Group.

5.8 List titles and list tails

Lists can have titles. The title follows the command that invokes the list, in the
usual manner. Material to follow the list can also be specified: anything following
the option text is considered to be trailing material.

Example 5.5

\DefineList:TestList hrule line:start Style:bold title line:stop

item:left Style:italic itemCounter item:stop

text vwhite:3pt hrule Stop

\TestList In the last fiscal year, have you:\par

\item Eaten peanuts? \item Walked the dog?

\item Bought a Frank Zappa record?\>

In the last fiscal year, have you:
1 Eaten peanuts?
2 Walked the dog?
3 Bought a Frank Zappa record?

In case you wonder what happens with textual material after item:stop and
before any text, well, that is taken to be inserted immediately after each item
label.

5.9 Between the items

There are special list options controlling what happens in between items. Lollipop
has an option breakbetween, analogous to breakbefore and breakafter; see10

Indentation in lists 5.10

section 10.5. This item be default has a value of −50, implying that breaks in
between items should be preferred slightly over breaks in between the lines of an
item.

Similarly, there is an option whitebetween controlling the amount of
white space in between items that is analogous to whitebefore and whiteafter.
Like these two options, it can also be set by the \Distance command
(section 11.7).

5.10 Indentation in lists

An item can be considered to be consisting of at least one paragraph. That
paragraph is never indented. For the behaviour of any next paragraph within
the same item, the option indentinside can be used. This option has values
yes/no. In case paragraphs inside an item indent, the indentation amount is
level-controlled; see section 11.4.

11

6 Text Blocks

Chapter 6

Text Blocks

The ‘text block’ is a way of treating a moderate sized chunk of text in a different
way from the surrounding text. Text blocks are created by \DefineTextBlock.
Here is a small example.

Example 6.1

\DefineTextBlock:Quote

PushIndentLevel PointSize:9 SetFont text Stop

\Indent:no In some context it has been written that

\Quote No man is an island.\QuoteStop

In another:

\Quote Run don’t walk to the nearest island.\>

Sometimes one would wish women weren’t so logical.

In some context it has been written that

No man is an island.

In another:

Run don’t walk to the nearest island.

Sometimes one would wish women weren’t so logical.

Note that the text block has an explicit closing command, consisting of the name
of the block followed by Stop, and that implicit closing by \> is possible.

6.1 The text option

Text blocks have only one specific option: text. This option is used to separate
material heading the block from material trailing the block. Example:

Example 6.2

\DefineTextBlock:DisplayEq

whitebefore:abovedisplayskip whiteafter:belowdisplayskip

line:start white:parindent $ displaystyle text $ line:stop Stop

The formula

\DisplayEq e^{\pi i}+1=0\>

contains nature’s five most interesting constants.

The formula

e
πi + 1 = 0

contains nature’s five most interesting constants.
12

More examples 6.2

Here one dollar comes before the text, and one after, so the first is inserted by
\DisplayEq and the second by the corresponding closing command.

Material before and after the text should usually not be broken. Hence
\nobreak is automatically inserted. See the \Example macro for this manual:
pages should not be broken after rules, or around the text ‘example xyz’.

6.2 More examples

A text block can encompass more than one paragraph, so the options
indentinside and indentfirst are particularly useful here.

Example 6.3

\AlwaysIndent:no

\DefineTextBlock:TestBlock PushIndentLevel

indentafter:yes indentfirst:no indentinside:yes

text unskip hfill $ bullet $ par Stop

One paragraph.\par The next paragraph

\TestBlock Inside the block one paragraph.\par

Inside the block the next paragraph.\>

Outside the following paragraph.\par And the last paragraph.

One paragraph.
The next paragraph

Inside the block one paragraph.
Inside the block the next paragraph. •

Outside the following paragraph.
And the last paragraph.

13

7 Output

Chapter 7

Output

Every page is formatted according to a ‘page grid’ consisting of three elements:

1 the page head, this is everything that’s over the running text;
2 the page foot, this is everything that is below the running text;
3 the running text. TEX acts as if text is on a long scroll, and the running

text part of a page is simply a portion cut off from this scroll.

Either or both of the head and foot of the page can be empty, but usually one of
the two contains a page number.

Example 7.1

\OptionsMacro:ManPageSize=raggedbottom:10pt topskip:12pt

height:page=5cm width:page=6cm Stop

\DefinePageGrid:TestPage macro:ManPageSize

pagerule textband:start text textband:stop

pagerule band:start PageCounter band:stop Stop

\TestPage

This page does not contain much special.\EjectPage

This page is hardly better.

This page does not contain
much special.

14

This page is hardly
better.

15

This example illustrates how you first define a page grid by \DefinePageGrid,
and then activate it by calling its name. That last action is in fact not necessary:
each definition of a page grid automatically installs that grid as the current one.

7.1 Page dimensions

Most of the time it is easiest to specify the total height of a page, that is,
including head and bottom, but sometimes it is more convenient to specify the
height of the text, and let the head and foot simply go over and under that.14

Page head, foot, text 7.3

In the first case you can give the command \Height with two parameters:

\Height:Page=23.5cm

or inside a page grid definition the option height:page=....
In the second case you can give the command

\Height:Text=19.55cm

or inside a page grid definition the option height:text=....
In page grid definitions there is the additional option height:lines=23.
The \Height command cannot be used in a page grid definition.

7.2 Positioning the page on the paper

If your printer driver is up to specs (and you have not done any creative macro
writing) it should have the upper left corner of the text landing at 2.54cm from
the top and left side of the paper. If the result is not to your liking, you can shift
the page by

\Distance:hoffset= ...

\Distance:voffset= ...

These offset parameters are zero ordinarily, and they indicate the extra shift
added to the customary 2.54cm in horizontal and vertical direction.

7.3 Page head, foot, text

Somewhere in the page grid the option text has to appear. This option has to
be inside a textband:

textband:start text textband:stop

This is not a case of overspecification, because inside a textband the text option
can appear more than once. In this manner a multicolumn page grid can be
specified.

Example 7.2

\DefinePageGrid:TestPage macro:ManPageSize

pagerule textband:start text hwhite:10pt text textband:stop

pagerule band:start PageCounter band:stop Stop

\FlushRight:no \sometext

15

7 Output
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of

words, words.
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.

15

Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.

16

Next to the option textband there is band. Both are ways of creating a page
wide band. The option band is used for all material that is not a text column,
for instance footers, as in the above examples.

The option band can have one unusual parameter: invisible. This
makes the band act as if it has zero height or width, depending on whether it is
below or above the text, respectively.

Example 7.3

\DefinePageGrid:TestPage macro:ManPageSize

pagerule textband:start text hwhite:10pt text textband:stop

pagerule

band:invisible block:start Style:bold PageCounter Spaces:2

stickout:left band:stop Stop

\FlushRight:no \sometext

Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of

words, words.
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.

16

Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.

17

7.3.1 More about text bands

The text band is that part of the page that has the text in it. You can also put
other material in it, such as rules or white space.

Example 7.4

\DefinePageGrid:TestPage macro:ManPageSize pagerule

textband:start vrule white:3pt text white:3pt vrule textband:stop

pagerule band:start white:fillup PageCounter band:stop Stop

\TestPage This page contains some text, a bit more text,16

Page head, foot, text 7.3

and even more than that. In all still just a few lines.\EjectPage

This page contains more text, still more text, and still more.

This page contains some text,
a bit more text, and even more
than that. In all still just a few
lines.

17

This page contains
more text, still more text, and
still more.

18

In the previous example the width of the page was specified. If we only give
the width of the text, the page width is calculated dynamically.

Example 7.5

\DefinePageGrid:TestPage macro:ManPageSize

textband:start vrule white:3pt text white:3pt vrule textband:stop

pagerule band:start white:fillup PageCounter band:stop Stop

\noindent This page contains some text, a bit more text,

and even more than that. In all still just a few lines.\EjectPage

This page contains more text, still more text, and still more.

This page contains some text,
a bit more text, and even more
than that. In all still just a few
lines.

17

This page contains
more text, still more text, and
still more.

18

Note how the pagerule and band objects stretch with the page.

7.3.2 Topskip

In between the page head and the text is some white space, the topskip, with
special properties. The topskip is defined from the bottom of the head to
the bottom of the first line of the text. If the height of this first line varies
from page to page the topskip acts as a buffer, keeping the bottom-to-bottom
distance constant. 17

7 Output

Topskip is set by the option topskip, for example
topskip:25pt

but if this option is left out, the page grid uses the value of \topskip that was
current at the time of the definition. Unfortunately there is no way to change
this value after the definition.

7.4 The page number

The page number behaves as if it had been defined by
\NewCounter:Page

\CounterRepresentation:Page=1

Thus you can use any command from section 11.1 on it. For instance, you can
have page numbers in roman numerals by specifying
\CounterRepresentation:Page=I

The page number is typically used as the option PageCounter, but for some
applications the corresponding command \PageCounter can be used.

If you process a Lollipop document you see that everytime a page is
generated, an item such as [8,7] is written on the log file or the screen. Most
of the time the two numbers will be the same, as in [8,8], but they will differ
if you have tinkered with the page number. The first number is the ‘sheet
counter’: it counts how many pages you have produced so far. The second
number is the value of \PageCounter for the page that was written out. Take a
look at the log file for this manual for an example.

7.5 Page tests

The page grid definition can set/query several properties of the page. The
following tests have been provided (see section 11.9 for tests):
\DefineTest:IsRightPage

\DefineTest:IsLeftPage

\DefineTest:FirstPage

\DefineTest:LastPage

\DefineTest:FlushBottom

• The tests for left/right pages are done by testing whether the page
number of odd or even.

• The first/last page tests can be used either for the whole document, or
for a file that’s loaded as an \InputFile.

• The first page test doesn’t work at present.

Example 7.6

\DefinePageGrid:TestPage macro:ManPageSize

pagerule textband:start text textband:stop pagerule

band:start ifIsLeftPage else hwhite:fillup fi PageCounter18

Running heads / footers 7.6

band:stop Stop \SetCounter:Page=12

This is a left hand page. \EjectPage

This page is on the right side of a spread.

This is a left hand page.

12

This page is on the right
side of a spread.

13

7.6 Running heads / footers

Above it was explained how pages can be given a head and foot part. Quite
often you want changing information in such parts, for instance the head of a
left page often contains the number or title of section that was current when
that page started; the head of a right page often contains the number or title of
the section that was current when that page ended.

In Lollipop all constructs that have a title or a counter can have that
information referenced in page grids.

\FirstPlaced:SectionTitle Take the title of the first section that started on
this page, or the last one that started before this page if no section
started on this page.

\LastPlaced:SubSectionCounter Take the title of the last subsection that
started on this page, or the last one that started before this page if no
subsection started on this pgae.

\PreviousPlaced:SectionCounter Take the counter value of the last section
that started before this page.

Example 7.7

\DefinePageGrid:TestPage macro:ManPageSize

pagerule textband:start text textband:stop pagerule

band:start Style:italic FirstPlaced:HeadTitle

white:fillup PageCounter band:stop Stop

\DefineHeading:TestHeading Style:bold

line:start TestHeadingCounter Spaces:2 title line:stop Stop

\TestHeading A first section\par And some text.\EjectPage

This page contains text. \TestHeading A second Section\par 19

7 Output

And more text.

1 A first section

And some text.

20

This page contains text.

2 A second Section

And more text.

21

The commands \FirstPlaced and \PreviousPlaced are typically used on left
pages; \LastPlaced is more common on right pages. You can test on what sort
of page you are; see section 7.5.

Example 7.8

\DefinePageGrid:TestPage macro:ManPageSize

pagerule textband:start text textband:stop pagerule

band:start Style:italic

ifIsLeftPage FirstPlaced:HeadTitle white:fillup fi

PageCounter

ifIsRightPage white:fillup LastPlaced:HeadTitle fi

band:stop Stop \SetCounter:Page=10

\DefineHeading:TestHeading Style:bold

line:start TestHeadingCounter Spaces:2 title line:stop Stop

\TestHeading A first section\par And some text.

\TestHeading Second section\par More text.\EjectPage

\TestHeading Third section\par Is on the right page.

\TestHeading Fourth section\par Concludes this page.

1 A first section

And some text.

2 Second section

More text.

10

3 Third section

Is on the right page.

4 Fourth section

Concludes this page.

11
20

Alternating page grids 7.7

7.7 Alternating page grids

In Lollipop it is very easy to switch page grids with the option NextPageGrid:
you simply specify

NextPageGrid:otherpage

as one of the options in the definition. If no next grid is indicated, the same page
grid keeps being used continuously until another page grid is activated explicitly.

Example 7.9

\DefinePageGrid:LTestPage macro:ManPageSize

pagerule textband:start text textband:stop pagerule

band:start Style:italic

PageCounter white:fillup FirstPlaced:HeadTitle

band:stop NextPageGrid:RTestPage Stop

\DefinePageGrid:RTestPage macro:ManPageSize

pagerule textband:start text textband:stop pagerule

band:start Style:italic

LastPlaced:HeadTitle white:fillup PageCounter

band:stop NextPageGrid:LTestPage Stop

\SetCounter:Page=42

\DefineHeading:TestHeading Style:bold

line:start TestHeadingCounter Spaces:2 title line:stop Stop

\LTestPage

\TestHeading A first section\par And some text.

\TestHeading Second section\par More text.\EjectPage

\TestHeading Third section\par Is on the right page.

\TestHeading Fourth section\par Concludes this page.

1 A first section

And some text.

2 Second section

More text.

42

3 Third section

Is on the right page.

4 Fourth section

Concludes this page.

43

Another very useful application of this mechanism is to have a special definition
for the opening page of a chapter. This manual uses a one-shot page grid
\EmptyPage to remove the header and footer on the title page. It installs
\LeftPage as the next grid. 21

7 Output

7.8 Additional User Control

7.8.1 Elementary manipulation

There are a few commands for simple page manipulation:

\EjectPage The current page is filled up with white space, and a new page is
started.

\ToRecto As \EjectPage but if the next page is a left page (meaning that the
page number is even) then the page number is increased by one, so that
the next page is a right hand page.

\ToVerso As \ToRecto, except that the next page is a left page.

Additionally, \NoPages lets all formatting and updating of values be performed,
but no pages are written to the dvi file; \PagesOut reverts the effect of previous
command. Note that \NoPages does not incur any savings in time: full processing
of the document is performed.

When a page is finished it rests in box \WholePage. Then a call is made
to \CurrentShipout, which is by default \shipout\box\WholePage. However,
you are free to define it otherwise. If your \CurrentShipout does not actually
ship out pages, you may want to set \CountSheetsno to prevent the effective
page counter from being updated.

Redefining \CurrentShipout usually goes together with
\SuspendOutput and \ResumeOutput. These commands temporarily
save the page number and the current state of the page, including the
current definition of \CurrentOutput. (This is necessary because a number of
parameters concerned are changed by global assignments.) See the definition of
\OutputExample in the appendix of this manual for an elaborate example.

If you want to see te output routines in action, specify
\Trace:out

In addition
\Trace:mark

tells you what information is being saved for running head and foot lines.

22

What and how do you reference? 8.1

Chapter 8

Referencing

In manuals and scientific documents you often want to write something like ‘see
Chapter 4’. But what if you shuffle the chapters a bit? It would be nice if the
number would be updated automatically. With Lollipop, as with many other
TEX macro packages, this is easily done.

Here is an example to set the mood for the rest of this chapter. The sort
of thing that is referred to most is a heading. So suppose you want to refer to a
section number.

Example 8.1

\DefineHeading:TestSection

line:start Style:italic TestSectionCounter Spaces:2 title

line:stop Stop

\TestSection[one:section?] First section\par

After this section will come section~\ref[other:section!].

\TestSection[other:section!] Another section\par

This is the section that came after section~\ref[one:section?].

1 First section

After this section will come section 2.

2 Another section

This is the section that came after section 1.

8.1 What and how do you reference?

You can reference not only headings but everything that has a counter. Thus
all generic constructs can be referenced, and in addition you can reference item
numbers in a list (there are examples of this latter possibility in section 8.4). The
simplest way of referencing something is to put the key in square brackets behind
it:

\Section[this:section] The title of This Section

You can then reference the key by \ref, or the page where it appeared
by \pgref:

Section \ref[this:section] on page \pgref[this:section]

As you may have guessed from the above examples, keys can contain all sorts of
characters. Only brackets, braces, and the hash sign are excepted. You get an
error message if you try to use the same key twice. 23

8 Referencing

Another way of declaring a key is to use the command \label carrying
the key

\label[the:key]

This can be useful if you want to declare two keys for a single reference. Make
sure that the \label command is not part of the title. Unexplained phenomena
occur if you do that. Instead put the label after the construct you want to
reference:

\Section Precautions and remedies

\label[sec:precautions]\label[sec:remedies]

In this section ...

8.2 The shape of the reference

By default, a reference consists of just the number of the thing you reference.
There are two ways in which you can change this, one systematic, and one
on-the-fly.

8.2.1 Defining the shape of the reference

You can customize the way an object is referenced by using the option label in
its definition. For instance, often you want things like parentheses around
references. Putting this information in the label definition saves you a lot of work
in case you change your mind later.

Example 8.2

\DefineHeading:TestSection

line:start Style:italic TestSectionCounter Spaces:2 title

line:stop

label:start (TestSectionCounter) label:stop Stop

\TestSection[one:section?2] First section\par

After this section will come section~\ref[other:section!2].

\TestSection[other:section!2] Another section\par

This is the section that came after section~\ref[one:section?2].

1 First section

After this section will come section (2).

2 Another section

This is the section that came after section (1).

Another use of customized labels is including other counters in the reference:24

The shape of the reference 8.2

Example 8.3

\DefineHeading:TestChapter

line:start Style:bold TestChapterCounter / title line:stop Stop

\DefineHeading:TestSection

line:start Style:italic TestSectionCounter Spaces:2 title

line:stop

label:start TestChapterCounter .

TestSectionCounter label:stop Stop

\TestChapter First chapter\par

Pretty short chapter

\TestChapter Second chapter\par

\TestSection[one:section?3] First section\par

After this section will come section~\ref[other:section!3].

\TestSection[other:section!3] Another section\par

This is the section that came after section~\ref[one:section?3].

1/First chapter

Pretty short chapter

2/Second chapter

1 First section

After this section will come section 2.2.

2 Another section

This is the section that came after section 2.1.

A more surprising application of explicit definition of labels is inclusion of the
title in the reference.

Example 8.4

\DefineHeading:TestSection

line:start Style:italic TestSectionCounter Spaces:2 title

line:stop

label:start TestSectionCounter literal: Spaces:1

Style:italic title label:stop Stop

\TestSection[one:section?4] First section\par

After this section will come section~\ref[other:section!4].

\TestSection[other:section!4] Another section\par

This is the section that came after section~\ref[one:section?4].

1 First section

After this section will come section 2 Another section. 25

8 Referencing

2 Another section

This is the section that came after section 1 First section.

8.2.2 Explicit specification of the reference

For every specific object referenced you can specify the reference by using an
optional argument before the label key. Have a look at the next example.

Example 8.5

\DefineHeading:TestSection counter:A

line:start Style:bold TestSectionCounter . Spaces:2 title

line:stop

Stop

\TestSection[ref:one] Lalala\par

This is before section \ref[ref:two].

\TestSection<‘the Didi section’>[ref:two] Dididi\par

This is after section \ref[ref:one].

A. Lalala

This is before section ‘the Didi section’.

B. Dididi

This is after section A.

This mechanism is also used in lists, where it’s mostly useful for bibliographies
generated by BibTEX; see section 8.4.2.

8.3 Local references

Some documents are collated out of parts that were documents in themselves.
The Lollipop command \InputFile facilitates in a number of ways working with
such a segmented file (see section 11.8). One of the problems with input files is
that in such a case it may happen that the same reference key is used in more
than one part of the document. This phenomenon is not at all unknown in
multiple authored documents. Ordinarily this would result in incorrect references.

To prevent such collisions Lollipop can use local references: the command
\LocalReferences has default no, and specifying
LocalReferences:yes

creates local aux files for each input file.

8.4 Bibliography citations

Lollipop has an interface to BibTEX. However, since a bibliography is just a list,
referencing items in it is quite easy, even if you don’t use BibTEX.26

Bibliography citations 8.4

8.4.1 Bibliographies without BibTEX

This section doesn’t tell you anything that cannot be found elsewhere in this
manual. The following two examples define a bibliography as just a list, and by
giving labels to the items you can refer to them.

Example 8.6

\DefineList:BibList item:left [itemCounter] item:stop

label:start [itemCounter] label:stop Stop

In this example we shall have occasion to refer to

\ref[Abee80] and~\ref[Ceede79].\par

\Indent:no Bibliography

\BibList \item[Ace55] C.D. Ace, Inscrutible title.

\item[Abee80] E.F. Abee, Worthless drivel.

\item[Ceede79] G.H. Ceede, Contractual obligation.

\>

In this example we shall have occasion to refer to [2] and [3].
Bibliography

[1] C.D. Ace, Inscrutible title.
[2] E.F. Abee, Worthless drivel.
[3] G.H. Ceede, Contractual obligation.

Here is a way to customize the label (if you need to refresh your memory about
description lists, see section 5.5).

Example 8.7

\DefineList:BibList item:left [itemCounter] item:stop

label:start (description) label:stop Stop

In this example we shall have occasion to refer to

\ref[Abe80] and~\ref[Ceedee79].\par

\Indent:no Bibliography

\BibList \item[Aace55] Aace55

C.D. Aace, Inscrutible title.

\item[Abe80] Abe80

E.F. Abe, Worthless drivel.

\item[Ceedee79] Ceedee79

G.H. Ceedee, Contractual obligation.

\>

In this example we shall have occasion to refer to (Abe80) and (Ceedee79).
Bibliography

[1] C.D. Aace, Inscrutible title.
[2] E.F. Abe, Worthless drivel. 27

8 Referencing

[3] G.H. Ceedee, Contractual obligation.

8.4.2 Bibliographies with BibTEX

Lollipophas an interface to the popular BibTEX bibliography database program,
based on the ‘BtxMac’ macros by Karl Berry and Oren Patashnik. Lollipop is
set up for them, you only have to \input the file btxmac.tex. (The version
of btxmac used to test this is 0.99h.) You can find global information about
BibTEX in the LATEX book [5], since BibTEX was originally written for LATEX.

Since there is some redefining going on between btxmac and Lollipop you
have to load the btxmac file before the \Start command (see section 3.1).

Since the btxmac file already has a default way of formatting the
bibliography you can get away with just putting the lines
\bibliography{ <bfile> }

\bibliographystyle{ <bstyle> }

in your file wherever you want the bibliography.
If you want to define your own bibliography, you have to use

\DefineBBL which is practically a synonym for \DefineList:BBL, so you can
see in the ‘lists’ chapter of this manual what options apply.

For example:
\DefineBBL line:start Style:italic literal:Literature line:stop

item:left [begingroup Style:bold itemCounter

endgroup] item:stop

Stop

You refer to a bibliography item by \bibref, as in \bibref[Knuth80]. This
command has a very simple definition
\def\bibref[#1]{[\ref[#1]]\nocite{#1}}

so you can easily redefine it. For instance
\def\supref[#1]{$^{\rm \ref[#1]}$\nocite{#1}}

will make your references into superscripts. Make sure that the call to \nocite

appears, because that generates the request for BibTEX.
The Lollipop command \WriteExtern:no (see section 9.1) defines

\noauxfile to prevent regeneration of the bib entries in the .aux file. You don’t
have to do that anymore.

8.5 Obscure details

For the sake of efficiency, not all macros in Lollipop automatically accept labels
for referencing, only the ones that use the label option, or that have a counter
(remember, the default form of the reference is just the counter). If you want a
macro that has no counter and no label specification to accept a label, use the
option haslabel. One reason for doing this is that you have access to the label
itself through the control sequence \RefLabel.

28

Generating external files 9.2

Chapter 9

External Files

Some document require information to be collected during a run. Such
information typically is a table of contents or index, and it is gathered in an
external file. (The reason for gathering such information in a file at all is that
often some external manipulation, for instance sorting of an index, is needed.)
Since there are many possibilities for external files (mathematical monographs
may have a list of definitions, or a list of notations) Lollipop does not predefine
such files, but supplies all of the tools for creating them.

External files involve four actions:

1 The file should be declared.
2 It should be specified what information is to be written to the file.
3 The formatting of the contents of the file has to be specified.
4 The file has to be loaded.

You can have at most 15 external files per document.

9.1 Declaring and loading an external file

The first act, declaring the existence of the external file is very easy with the
command \DefineExternalFile: an internal name and a three-character file
name extension have to be given as parameters.
\DefineExternalFile:contents=toc

With this definition, if the document is called book.tex then the ‘contents’ will
be gathered in a file called book.toc. (The declaration of an external file has to
come before any calls to \ExternalItem or any options external that write to
this file.)

For each external file Foo there is a command to determine whether that
file will be regenerated in the next run of TEX: \WriteFoo with values yes/no
will allow or prevent the file being regenerated. The value yes is default. The
command \WriteExtern (values yes/no) can be used to prevent writing out any
external files (including the .aux file that keeps track of references).

The final act, loading an external file, is as easy as declaring it: use
\LoadExternalFile as in
\LoadExternalFile:contents

This does not cause any page breaks or headings to be set over the loaded
material, so you have to do that explicitly.

9.2 Generating external files

Next, macros that write to the table of contents have to declare this information. 29

9 External Files

The external option is used for this. Any counter that the construct has will
be written out automatically, and the style designer usually has to specify only
that the title will be written out.
\DefineHeading:Section

[...]

external:contents title external:stop

There is no objection to a construct writing information to more than one
external file.

If you write more than just title to an external file, know that any
control sequence you specify is automatically protected from expansion. See
section ?? for an exception to this.

Other titles can be included by specifying title:OtherThing. Using
OtherThingTitle would not work, because of the protection of control sequences
mentioned above.

You can write arbitrary information to an external file, if you see a reason
to do so, by \ToExternalFile, which takes a file name and an text argument.
The example below has an instance of this command. In order to format this
information you have to define an external construct of type \anon.

9.3 Formatting an external file

The hardest part is declaring the formatting of an external file. For this a
separate generic construct exists: the ‘external item’ with defining command
\DefineExternalItem. For example, if \Section writes to contents, than an
external item Section corresponding to this file has to be declared. The option
file is use to declare to which file the external item belongs. This way the same
name can be reused for more than one file.
\DefineExternalItem:Section file:contents

[...] Stop

An external item is basically a list with just one item. Thus, the option item is
available. The elements of an external item are the label (the counter value),
the page number where the information was generated, and the title. For the
label (say for a construct \Foo) an option FooLabel is created. Thus the typical
formating looks like
\DefineExternalItem:Chapter file:contents

item:left ChapterLabel item:stop

title begingroup Spaces:2 Style:italic Page endgroup

Stop

In fact, a control sequence \FooLabel is created, which can be used in other
external items.

Since an external item is a list in itself, you have to pull a certain trick to
get items for subsections to indent further than those for sections. This is what
the command \PushIndentLevel was designed for.

A typical indented item looks like:30

Example 9.4

\DefineExternalItem:SubSection file:contents

PushIndentLevel PushIndentLevel

item:left SectionLabel . SubSectionLabel item:stop

title begingroup Spaces:2 Style:italic Page endgroup

Stop

9.4 Example

The following example is for a typical table of contents that records sections
and subsections. In good old-fashioned style, the subsections are indented with
respect to the sections.

31

10 Options

Chapter 10

Options

This chapter discusses the various options that are common to all Lollipop
constructs.

10.1 Titles

Any construct can have a title, although of course it is most useful for headings.
A construct has a title if the option title appears. Example:

\DefineHeading:Section [...]

Style:bold title

[...] Stop

will define a \Section macro that has a title. The macro is then used as

\Section The title of this section

Some text in this section.

that is, the title is delimited by an empty line.
The title is actually available as a macro \FooTitle, so that you can

write a macro, for instance

\def\ComplicatedTitle{ .. \hrule ...

\vrule ... \vbox \bgroup ...

\FooTitle ...

}

and use this macro instead of the title option

\DefineBar:Foo ...

ComplicatedTitle

... Stop

However, since the option title now doesn’t appear anymore, it becomes
necessary to specify explicitly that there is a title. This can be done with the
HasTitle option. For instance, you define

\DefineBar:Foo ...

HasTitle

ComplicatedTitle

... Stop

where \ComplicatedTitle is a macro that formats the title.

10.1.1 Short titles

The option HasTitle can have a parameter short, denoting that the title is not
delimited by an empty line (or \par) but by the line end. For an example see
section 13.2.32

Counters 10.2

10.2 Counters

There are three ways for Lollipop to figure out that a generic construct has a
counter. First of all, in
\DefineFoo:Bar [...]

BarCounter [...]

the \BarCounter will be defined automatically.
Additionally there is the option counter, which can be used to declare

the representation of the option, for instance counter:i allocated a counter that
is printed in lowercase roman numerals. For the available representations, see 11.
1.1.

Finally, if the counter is only used in a macro, the option HasCounter will
cause the counter to be created anyhow. This is analogous to the HasTitle

option.

10.2.1 Counter synonyms

Every once in a while you may want different constructs to use the same counter.
For instance, if your book has definitions, theorems, lemmas, corollaries and
notations, it may confuse the reader if they all have their own counter. The
numbering would seem to jump all over the place.

A ‘counter synonym’ can be declared in Lollipop by a slight abuse of the
counter option.

Example 10.1

\DefineTextBlock:Theorem counter:1 begingroup Style:bold

literal:Theorem Spaces:1 TheoremCounter Spaces:2 endgroup

text Stop

\DefineTextBlock:Corollary counter:Theorem begingroup Style:italic

literal:Corollary Spaces:1 CorollaryCounter Spaces:2 endgroup

text Stop

\DefineTextBlock:Definition counter:Theorem begingroup Style:roman

literal:Definition Spaces:1 DefinitionCounter Spaces:2 endgroup

text Stop

\Definition We define a {\it Foo} to be an arbitrary object\>

\Theorem Foos have arbitrary properties\>

\Corollary Foos are extremely valuable\>

\Corollary Foos are extremely worthless\>

\Theorem Foos don’t exist\>

Definition 1 We define a Foo to be an arbitrary object

Theorem 2 Foos have arbitrary properties

Corollary 3 Foos are extremely valuable

Corollary 4 Foos are extremely worthless 33

10 Options

Theorem 5 Foos don’t exist

You can only declare a counter to be synonym for something that has already
been created. In the above example you cannot define the \Theorem after the
\Corollary.

10.3 Chunks of text

Especially in headings, short chunks of text may need a special treatment. For
instance, the number may have to be filled to a certain width, or a line may have
to be drawn of the exact length of the title. Lollipop have various general options
(so they can also be used in other contexts than headings) for handling pieces of
text.

10.3.1 The block option

The block option takes up a piece of text and fits it on one line. It can measure
the text, or set the size. Also there are a number of ways of placing a block.

Basic usage:
block:start [...] block:stop

This takes the enclosed text, and reproduces it. This is mostly interesting in
combination with textcolumn, see 10.3.4.

block:hang [...] block:stop

The resulting block is dropped until its top touches the baseline. For uniformity
of appearance, the resulting width of the block can be specified:

block:start [...] fillupto:20pt

The name of a \Distance parameter can be used here.

Example 10.2

\DefineHeading:TestHeading

line:start block:hang PointSize:8 SetFont

TestHeadingCounter fillupto:20pt

block:hang PointSize:14 SetFont title block:stop

line:stop Stop

\TestHeading Top Aligning the Title

1 Top Aligning the Title

The block is usually in between the margins of the text, but it can be made to
stick out into the margin, by closing it with the option stickout. For the left
margin this done as

block:start [...] stickout:left34

Chunks of text 10.3

and for the right margin
block:start [...] stickout:right

The size of the box can be specified, for instance as
block:start [...] stickout:left=20pt

For a left box the material in it is pushed to the left edge, for a right sticking box
it is shifted to the right.

10.3.2 Block Measuring

All blocks are immediately measured when they are placed. This makes it
possible for instance to underline a title exactly. After a block has been placed,
its width is available as \BlockWidth.

Example 10.3

\def\rulespecs{height 1pt width \BlockWidth\relax}

\DefineHeading:TestHeading Style:bold

line:start block:start TestHeadingCounter . Spaces:2 stick-

out:left

block:start title block:stop line:stop

vwhite:2pt hrule rulespecs vwhite:10pt Stop

\TestHeading The Title Is Underlined

The text follows.

1. The Title Is Underlined

The text follows.

Observe how a control sequence \rulespecs is used to sneak the height and
width of the rule into the definition. This is necessary because control sequences
are not allowed in a construct definition.

10.3.3 The line option

The option line is used to create a single strip of text that fits exactly in
between the margins of the page. Most of the time, titles will be in a line.

Example 10.4

\DefineHeading:TestHeading

line:start block:start TestHeadingCounter Spaces:1.5 stick-

out:left

title line:stop Stop

\TestHeading A Title

1 A Title
35

10 Options

Another example was above. Here is another use of a line:

Example 10.5

\DefineHeading:TestHeading

line:start TestHeadingCounter fillup title line:stop Stop

\TestHeading The title

1 The title

10.3.4 The textcolumn option

In the examples above all titles fit on one line comfortably. If this is not the case,
the title can be put in a textcolumn which can span several lines.

Example 10.6

\DefineHeading:TestHeading

line:start block:start TestHeadingCounter Spaces:2 block:stop

textcolumn:topline title textcolumn:stop

line:stop Stop

\TestHeading A very very very very very very very very very very

very

very very very very very very very very very very very very very

very very very very very very very very long title

1 A very very very very very very very very very very very very very very very
very very very very very very very very very very very very very very very
very very long title

This option is mostly interesting in combination with others such as block and
line. As is apparent from the above example: a block placed in the same line as
a text column will detract from the latter’s width.

(In fact it is the other way around: Lollipop sets the line with a text
column of width zero to determine the remaining space. Then the line is set
again. This may give problems if you manipulate parameters inside the line,
because the line is in effect typeset twice. Also make sure not to have other
\vbox-es in the line than the text column.)

10.3.5 Traps

It is a bad idea to have material in headings and such that is not inside a block,
textcolumn, or line. For instance:

Example 10.7

\DefineHeading:TestHeading36

Indentation 10.6

block:start TestHeadingCounter Spaces:2 block:stop

title Stop

\TestHeading Where does the title go?

1
Where does the title go?

10.4 Labels

References to any counter will always be correct, no matter if that counter
has changed after retypesetting the document, if symbolic references are used.
Referencing is explained in detail in chapter 8.

The way a symbolic reference is formatted can be altered from the default
(just give the counter) by using the label option.

\DefineHeading:TestSection

line:start Style:italic TestSectionCounter Spaces:2 title

line:stop

label:start (TestSectionCounter) label:stop Stop

See further section 8.2.

10.5 Break before / after

The options breakbefore and breakafter control how eager TEX will be
to break the page before or after a construct. These options take one value,
a so-called ‘penalty’ value, meaning that the higher the value you specify, the
higher the penalty is, and therefore the less likely it is that the page will be
broken there.

Numerical values are typically in the tens or hundreds; any value of
10 000 or more means that there will never be a break at that point; a value of
-10 000 or less means a guaranteed break. If you don’t want to remember these
rules, values of yes and no mean a guaranteed break, and no break respectively.

A further exceptional value is breakbefore/after:0, this will cause no penalty to be placed.

The reason for this is highly TEXnical.

10.6 Indentation

The option indentafter controls the behaviour of the first paragraph after a
generic construct., indentinside, indentfirst. 37

10 Options

10.7 Rules

There is an option hrule. You should not write
\def\rulemacro{\hrule height [...] }

\DefineHeading [...] rulemacro [...] Stop

because then Lollipop cannot prevent page breaks around the rule. Instead write
\def\rulespecs{ height [...] }

\DefineHeading [...] hrule rulespecs [...] Stop

so that the option hrule is used. See section 10.3.2 for an example.

10.8 Embedded constructs

Most generic constructs will be vertically separated from the surrounding text.
However, in rare cases (and for unusual applications) it be desired to have a
construct that is part of a paragraph. For this the option embedded exists.

This option has the following values.
embedded:no

This is the default.
embedded:left

The construct continues an already started paragraph, but after the construct a
vertical break follows.

embedded:right

After the construct a paragraph can continue, but the construct is separated
vertically from preceding text.

embedded:yes

The construct is both left and right embedded.
Embedding a construct has an interesting application to generating

indexes. (See chapter 9 for general information about external files.) This can be
done by having embedded headings that write their title to the index file.

Example 10.8

\DefineExternalFile:tIndex=tix

\DefineHeading:NewWord embedded:yes

block:start Style:bold title block:stop

external:tIndex title external:stop Stop

\def\introword#1{\NewWord #1\par}

In this sentence two \introword{flubrious} words are

\introword{stinselsed}.

In this sentence two flubrious words are stinselsed.

Cute, ain’t it?
A word of warning though. Headings and such generate TEX ‘marks’

which take up main memory. You only need these if you are going to be referring
to that object with \LastPlaced or such; see section 7.6. Embedded headings38

Testing 10.10

used as above usually don’t need these marks, so you can prevent TEX overflow
by putting the option nomarks in their definition.

10.9 Obscure options

10.9.1 Arguments

In case you want to interface to other macro packages, you may want to let a
construct generate a call to the other package. For this, the Lollipop macro
should be able to produce sequences such as \begin{itemize}. The problem
here is the braces. The option \arg produces a braced expression.

For instance
\DefineTextBlock:LaTeXlist begin arg:{itemize} text

end arg:{itemize} Stop

makes it possible to use call LATEX macros from Lollipop.

10.9.2 Implicit closing

The control sequence \> closes the current group, and \>] closes all currently
open groups. Every once in a while this is too drastic. Hence there is an option
noimplicitclose that can be used to prevent a construct from being closed
implicitly. Using \>] inside such a construct will close all enclosed constructs.

See the definition of \EExample in this manual for an example.

10.10 Testing

There is an option test.

39

11 Commands

Chapter 11

Commands

11.1 Counters

Counters can be declared explicitly by the user, but more often they are defined
automatically in some generic construct:

The \Foo defined by
\DefineBar:Foo ...

counter:i ...

Stop

will have a counter that counts in roman lowercase, and which is accessible as
\FooCounter. Everytime \Foo is used, this counter is increased by one.

The use of the counter option is described in 10.2. Here are the
commands for explicit manipulation of counters.

11.1.1 Allocation and representation

A counter is created by for instance
\NewCounter:Things

This will create control sequence \ThingsCounter that will print the value of the
counter. The counter will usually be printed as an Arabic numeral, but other
counter representations can be specified by \CounterRepresentation. Here are
their codes:

1 numeric

a lowercase character

A uppercase character

i lowercase roman

I lowercase roman

for instance
\CounterRepresentation:Things=i

will cause \ThingsCounter to print a lowercase Roman numeral.
However, a call such as

\CounterRepresentation:Theorem=Lemma

will make the \TheoremCounter a synonym of an earlier created \LemmaCounter

11.1.2 Counter manipulation

The following commands can be used to manipulate counters, both when
they are created by hand using \NewCounter and when they were generated
automatically in some generic construct:40

Counters 11.1

With \StartCounter reset the counter to one:
\StartCounter:things

With \StepCounter increase the counter by one:
\StepCounter:things

With \BackStepCounter decrease the counter by one:
\BackStepCounter:things

With \SetCounter set the counter to some specified value:
\SetCounter:things=5

With \AddToCounter increase the counter by some specified value:
\AddToCounter:things=7

The last two commands accept names of numerical parameters, for instance the
value of a counter:
\NewCounter:Favourite

\AddToCounter:things=FavouriteValue

More about this ‘value’ thing in the next section.

11.1.3 What do you get when you define a counter?

After you define a counter as
\NewCounter:MyThings

there are two commands that it is important to distinguish between. First of all,
\MyThingsCounter gives the printed value of the counter. This is the command
that you will use mostly. It uses whatever representation you have specified for
the counter, or plain Arabic numerals if haven’t specified anything.

Secondly, \MyThingsValue gives the value of the counter. You can not
use this command on its own: you will get a ‘number expected’ error.

11.1.4 Counter hierarchies

Often counters are related to each other. For instance, when a new section
begins, the subsection counter has to be reset. The same may be true for
equation counters. In Lollipop such a relation is indicated by a call to
\GoverningCounter, for instance
\GoverningCounter:SubSection=Section

All of the counter manipulation commands applied to a governing counter will
cause all governed counters to be reset. Such a reset also occurs if the counter
was created in some generic construct.

For examples, see section 4.1.

11.1.5 Referencing counters

All counters that are declared as part of a generic construct, or explicitly through
\NewCounter automatically become the current reference when they are altered.
Thus \label[bar] will make \ref[bar] refer to the value of the counter most
recently changed. The way the counter is referenced can be altered by the label

option in generic constructs; see section 10.4. 41

11 Commands

For generic constructs with a counter no explicit \label commands need
to be given; such commands take an optional argument with the label key:
\Section[sec:examples] Examples

11.1.6 Adaptive counters

It may happen that you want to compute a value during one run of TEX, and use
it in the next. An example is the fact that this manual states the total number of
pages on the title page. For this you can use \AdaptiveCounter

\AdaptiveCounter:LastPage

which is like \NewCounter, except that the value of this counter gets written to
the .aux file.

There are two ways of setting an adaptive counter: you can
simply use it in some construct (for instance through a counter synonym;
section ref[sec:counter:repr]), or you can set it explicitly, for instance as
\SetCounter:LastPage=PageValue

See how this manual does it.

11.1.7 Examples of counter usage

Items start at the value of one, so if a starting value of zero is necessary, the
following will work
\Enumerate \SetCounter:item=-1

\item ...

11.2 Font selection

In Lollipop, choosing a font is done through three parameters:

Typeface A collection of related styles and sizes. The typeface is set by the
command \Typeface.

Style Italic, bold, roman, typewriter. You know. The style is set by the
command \Style.

PointSize The size of a font in typographical points (72.27 per inch). The
pointsize is set by the command \PointSize.

The most common change of font is a change in style. Therefore, issuing a
command such as
\Style:bold

immediately changes the font to the bold of the current typeface in the current
pointsize.

However, issuing a command such as
\Typeface:GoudyOldStyle

or
\PointSize:2842

Font selection 11.2

will not change the font, since such changes are usually accompanied by a
change in style. In case that an immediate switch is necessary, the command
\SetFont can be given. This evaluates the current value of the typeface, style,
and pointsize commands, and sets the font accordingly.

A number of typeface names have been predefined in Lollipop, however,
in order to print them your printer (software) must have them available.

Example 11.1

\SerifFace \PointSize:12

\Style:roman This \Style:italic sentence \PointSize:10 has

\SetFont way \SansFace \Style:roman too \SetFont many

\PointSize:12 \SetFont font \Style:bold changes.

This sentence has way too many font changes.

(The commands \SerifFace and \SansFace are defined in the master file of this
manual, and serve to make this manual formattable on any system.)

11.2.1 Relative size changes

Apart from setting the pointsize explicitly, it is also possibly to make size
changes relative to the current size. For instance, \PointSizeLarger and
\PointSizeSmaller with an optional argument indicating the size of the change
can be used. These commands are not cumulative.

Example 11.2

\SerifFace

\PointSize:9 \SetFont Every once in a while,\SaveFont

\PointSizeLarger[2] shouting \PointSizeLarger helps.

\PointSizeSmaller[2]But most of the times it doesn’t.

\RestoreFont Unfortunately.

Every once in a while, shouting helps. But most of the times it doesn’t. Unfortunately.

Similar to the changes in mathematics mode to script and scriptscript size, the
same relative changes are available in text mode through the control sequences
\script and \scriptscript. The control sequence \normal can be used to
restore the default size.

Here is one application of such relative changes:
L\kern -.3em\raise .35ex\hbox {\script A}\kern -.1em\TeX

which gives definition of the LATEX logo that is independent of typeface, size and
style.

The relative sizes of script and scriptscript fonts are by default at 70%
and 50%, but they can be set explicitly by
\PointSizeScriptSizes:10=10,7,5

This also gives the possibility to have the \normal size to be different from the
surrounding pointsize. 43

11 Commands

11.2.2 Typeface definition

Defining a typeface means telling Lollipop how the external font name, that is,
the name of the tfm file, is to be constructed from the internal parameters. The
command \DefineTypeface takes four parameters and an optional fifth. The
parameters are in sequence

1 The internal name of the typeface: the name that is given to the
\Typeface command.

2 The root of the external file name. It is assumed that all font names of
different styles and sizes are constructed by appending characters to this
base.

3 Suffixes corresponding to the styles that are available.
4 Suffixes corresponding to the sizes that are available.

Here is the definition of the Computer Modern typeface:
\DefineTypeface{ComputerModern}{cm}

{roman:r; slant:sl; italic:ti; mitalic:mi; bold:bx; type-

writer:tt;

default:r;}

{<6:5; <7:6; <8:7; <9:8; <10:9; <11:10;

<12:10 \scaled\magstephalf;

<14:10 \scaled\magstep1; <16:10 \scaled\magstep2;

<20:10 \scaled\magstep3; >19:10 \scaled\magstep4;

default:10;}

Actually, not all combinations of styles and sizes are available. That’s where the
optional argument comes in. This argument can be used to specify with TEX
conditionals exceptional style/size combinations. Here some trickery is needed:
internally the size is stored in \Fsize, and in order to use this parameter we need
to make the at-sign a letter temporarily.
\makeatletter

\DefineTypeface{Compu ...

...

default:10;}

[\ifStyle:italic \ifnum\Fsize<7 ti7\fi\fi

\ifStyle:typewriter \ifnum\Fsize<8 tt8\fi\fi]

You may have noticed that this scheme is not all-powerful. Thus I found
it easier to move all Computer Modern sans serif fonts into a new typeface:
ComputerSans.

For other typefaces specifying the size suffix may be much easier than for
Computer Modern. For instance, here is the definition of the PostScript Helvetica
typeface.
\makeatletter

\DefineTypeface{psHelvetica}{helv}

{roman:; italic:i; mitalic:i; bold:b; default:;}

{default: at \Fsize pt;}44

Indentation Control 11.4

\makeatother

11.2.3 Math fonts

Switching styles in math mode should be possible:

xyz

11.2.4 Other font matters

The combination \SaveFont with a subsequent \RestoreFont can be used to
save and restore the current font.

An abbreviation for a font can be defined by
\DefineFont:name=face,size,style

This has the same effect as
\def\name{\TypeFace:face \PointSize:size \Style:style }

but it takes considerable less processing inside TEX.
Even if you don’t use Computer Modern as your main typeface, the

typewriter style is not bad, so a control sequence
\def\tt{\Typeface:ComputerModern \Style:typewriter }

has been given that makes \tt always refer to the cmtt fonts. You’re at liberty
to change this, of course.

11.3 Baselineskip

Corresponding to a font size usually the baseline skip has to change. By default
a fixed ratio of 1.2 for this is taken, for instance using a 12 point baseline skip for
10 point fonts. Changing the ratio can be done by
\BaselineSkipPointSizeRatio:1.3

If only for some specific size the baseline skip has to deviate from the default
ratio, then this can be set by
\SetPointSizeBaselineSkip:9=12

11.4 Indentation Control

11.4.1 To indent or not to indent

In most documents there is a general rule that all paragraphs indent unless a
certain condition, or that they do not indent unless certain special conditions hold.
For Lollipop documents this is determined by the command \AlwaysIndent,
with values yes/no.

To override this default setting a command \Indent (with values
yes/no) exists, but that is mostly useful as an option in generic constructs, and
even there it will not be used much. See section 10.6 for options relating to
indentation. 45

11 Commands

Important: never set \parindent to zero. Preventing indentation
globally should be done through \AlwaysIndent:no.

11.4.2 Basic indent

There is a quantity \basicindent that is used on the first indentation level (see
the next section for an explanation of these levels). At the start of a document
it is set to the then current value of \parindent. You can override that by
\BasicIndentIsSet: give
\BasicIndentIsSet:no

before the \Start command.
This way, setting \parindent in the style definition controls the

indentation in the whole document.

11.4.3 Indentation levels; indentation size

When Lollipop decides that text should be indented, it refers to a list of
indentations for the exact amount. This list contains indentation amounts for
each ‘level’ of indentation: initially the level is one, and if you nest constructs
that indent (for instance using a list inside a list) the level goes up one step per
nested construct.

By default the indentation on different levels is a fraction of the
\basicindent. Thus you can regulate the indentation on all levels simultaneously
by resetting the \basicindent.

Example 11.3

\Distance:basicindent=15pt

\DefineList:TestList item:left itemCounter item:stop Stop

\TestList\item Level one \TestList\item Level two

\TestList\item Level three\>]

\Distance:basicindent=25pt

\TestList\item Level one \TestList\item Level two

\TestList\item Level three\>]

1 Level one

A Level two

I Level three

1 Level one

A Level two

I Level three

46

Margins 11.5

The amount of indentation on a certain level can be set explicitly with
\LevelIndent.

Example 11.4

\Distance:basicindent=15pt

\LevelIndent:2=20pt

\DefineList:TestList item:left itemCounter item:stop Stop

\TestList\item Level one \TestList\item Level two

\TestList\item Level three\>]

1 Level one

A Level two

I Level three

In fact, sometimes you may want to know the name of the indentation on a
certain level. This is a control sequence such as \levelindentii for the second
level. You get the idea.

11.4.4 Manipulating the indentation level

Every once in a while it can be useful to move to a next indentation level, or to
return to a previous level. For this the two commands \PushIndentLevel and
\PopIndentLevel are available. One application is for ‘interrupted lists’:

Example 11.5

\Itemize\item One

{\par\PopIndentLevel Interrupted text!\par}

\item Two\>

• One
Interrupted text!

• Two

See chapter 9 for examples of the use of \PushIndentLevel

11.5 Margins

By default, Lollipop tries to keep straight margins. You can change its mind
about that by \FlushRight and \FlushLeft which are tests:
\FlushRight:no \FlushLeft:no

If the margins are not flush, the stretchable white space used is
\rightmarginstretch and \leftmarginstretch, which can be set by
\Distance. 47

11 Commands

You have to set the amount of stretch before specifying that the margins
will not be flush. The \FlushRight/Left commands take the current value
whenever they are called.

11.6 White Space

White space can be indicated by \hwhite and \vwhite. They are often useful
in style definitions. Use:

\vwhite:15pt

or

\hwhite:{15pt minus 3pt}

for stretch and shrink. The command \white is independent of the mode, and it
expands to \hwhite or \vwhite depending on the prevailing mode of TEX.

The command \fillup is mostly useful in style definitions: it tries to
fill up as much white space as is possible. For instance

line:start litteral:foo fillup litteral:bar line:stop

will push foo and bar as far apart as is possibly within the margins.

11.7 Distances

The command \Distance can be used to declare a name for a certain distance,
or in more correct TEXnical lingo, for a certain piece of glue. For instance,
declaring that

\Distance:oneline=15pt

means that you can specify in some constructs

\DefineFoo:Bar whitebefore:oneline whiteafter:oneline

If you change your mind later about the value of oneline you only need to
change one line in the style definition.

Since the second parameter of \Distance is bounded by a space (or the
line end, whatever comes first), you can specify stretchable distances by enclosing
plus and minus parts in braces:

\Distance:oneline={15pt plus 2pt minus 3pt}

The effect of \Distance is global. Let me know if you don’t like it.

11.7.1 Distance synonyms

Another use of \Distance is to define one distance as a synonym of another.
This may come in handy if you use some basic distance, such as oneline for
several purposes. Example: if you specify

\Distance:whitebefore=oneline

than the whitespace before a construct will be taken to be oneline if you don’t
use the whitebefore option explicitly.48

Input Files 11.8

11.7.2 Adaptive distances

Suppose you want to declare a section heading as

\DefineHeading:Section ...

block:start [...] fillupto:widelabel title

where \widelabel is the width of the widest label that occurs in your document.
This requires just a tad of TEX programming. Just copy the details from the
example below, which is the definition of \Section in this manual.

By declaring something a \AdaptiveDistance instead of just \Distance
its value gets written to the .aux file at the end of the run, and restored in the
next run. The second argument is simply the default value, in case you don’t
have an auxiliary file yet.

\AdaptiveDistance:WidestLabel=15pt

\def\MeasureLabel{\ifdim\BlockWidth>\WidestLabel

\global\WidestLabel\BlockWidth\fi}

\DefineHeading:Section

whitebefore:{20pt plus 2pt} whiteafter:14pt

line:start PointSize:14 Style:italic

block:start block:start ChapterCounter . SectionCounter

Spaces:1 block:stop MeasureLabel

fillupto:WidestLabel

title line:stop

external:contents title external:stop

label:start ChapterCounter . SectionCounter label:stop

Stop

Note how two nested blocks are used: the first is to measure the label, and the
width is written to the adaptive distance by means of a small macro; the second
block is to fill out the white space.

If you want the paragraph indentation to depend on this adaptive width,
you can give

\StartCommand{\Distance:parindent=WidestLabel }

to set \parindent at the start of the document. See section 3.1 and 11.4.2.

11.8 Input Files

Parts of a document can be loaded by

\InputFile:parta

\InputFile:partb

et cetera. A document part loaded by \InputFile always starts on a new page.
In section 8.3 it was already explained how local references for such files can be
created.

Perhaps most importantly, loading files this way provides a form of error
checking; Lollipop checks at the end of such a file whether all used constructs are
balanced properly. 49

11 Commands

11.9 Tests

Users can define tests:

\DefineTest:SomethingTheMatter

which are set like any other test:

\SomethingTheMatter:yes

or

\SomethingTheMatter:no

Tests can be used as
\ifSomethingTheMatter ... \else ... \fi

Like any other conditional, test can be used inside constructs.

\DefineFoo:Bar [...]

ifSomethingTheMatter [...] fi

[...] Stop

11.10 Goodies

11.10.1 List commands

Lollipop does a lot of list processing internally, and a few of the commands have
been made available to the user.

\NewList creates a list, and sets it to empty:

\NewList:mylist

\EmptyList just empty a list.

\TheList inserts the list. This will typeset the contents of it.
\TheList:mylist

\AppendToList adds data to a list.
\AppendToList:mylist={my data}

The data are terminated by a space or line end, hence the braces.

11.10.2 Programming Tools

A few commands are useful for the Lollipop style designer who wants to write
more sophisticated macros (see for instance the address book macros in the last
chapter).

\UndefinedCS is a test on control sequences.

\if\UndefinedCS{testcs} ... \else ... \fi

\EqualString tests equality of strings.

\if\EqualString{one}{two} ... \else ... \fi

\EqualStringX tests equality of strings, using only expansion.

\if\EqualStringX{one}{two} ... \else ... \fi50

Goodies 11.10

\StringBefore tests lexicographic ordering of strings. The string are not
supposed to contain characters with char codes 0, 127, 255.
\if\StringBefore{one}{two} ... \else ... \fi

\NextChar chooses between two actions, based on the next character.
\if\NextChar[{\macro}{\macro[default]} ...

\IsEmptyList can test whether an argument is empty.
\if\IsEmptyList{#1} ...

is true for calls such as \macro{}.

\loop can be used for repeated execution of statements. (Users of plaing TEX
may recognize this macro; it is slightly extended here to include the
\else case.) It is used as:
\loop ... \if ... \repeat

of
\loop ... \if ... \else ... \repeat

11.10.3 \everypar

The TEX primitive \everypar should not be used any more. Instead use the
command \EveryParagraph as if you are setting a token list:
\EveryParagraph{ ... }

11.10.4 \everymath

The TEX primitive \everymath should not be used any more. Instead use the
command \EveryMath as if you are setting a token list:
\EveryMath{ ... }

11.10.5 \everydisplay

The TEX primitive \everydisplay should not be used any more. Instead use the
command \EveryDisplay as if you are setting a token list:
\EveryDisplay{ ... }

11.10.6 Allocation

The commands \SaveAlloc and subsequent \RestoreAlloc save and reset the
internal TEX allocation counters.

51

12 Tracing

Chapter 12

Tracing

12.1 Do you really want to see this?

You can get glimpses of Lollipop’s internal workings by enabling some of the
internal traces. The extreme positions

\Trace:yes

and
\Trace:no

cause all trace information and no trace at all respectively to be generated. You
may find this trace interesting, or it may dumbfound you. Of course, if your
name is Victor you find it pretty useful.

The following traces are available:
\NewTrace:def % definition of user constructs

\NewTrace:ref % cross references

\NewTrace:ext % external files

\NewTrace:doc % document structure

\NewTrace:font % font loading

\NewTrace:out % output routine

\NewTrace:indent % indentation control

\NewTrace:gen % general tools

52

The style definition for this book 13.1

Chapter 13

Example styles

To show you the strength of Lollipop, this chapter collects a few example style
definitions. The first one is that of this manual.

13.1 The style definition for this book

In case you were wondering how this book was typeset, here is the full style
definition. By the standards of what Lollipop can do it is pretty pedestrian.

One thing that may have provide intellectual titilation is the definition
of \Example and \OutExample. It allowed me to keep the examples in sync with
their output.

Of course that doesn’t really rely on Lollipop. It does illustrate the fact
that Lollipop is interfaceable to arbitrary macros. (But don’t try loading Lollipop
on top of LATEX! On second thought, do. It disables most of LATEX. Just kidding.)
% mandefs.tex style definition for the Lollipop manual

% copyright 1992/3 Victor Eijkhout

% copyright 2014--2016 Vafa Khalighi

%

%

% This program is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with this program. If not, see <http://www.gnu.org/licenses/>.

%

%

\def\con#1{{\tt#1}}

\def\n#1{{\tt#1}}

\def\file#1{{\tt#1}}

\def\Lollipop{Lollipop}

\Distance:rightmarginstretch={0cm plus 2.54cm}

\Distance:whitebefore={6pt plus 3pt minus 2pt}

\Distance:whiteafter=whitebefore

\FlushRight:no

\DefineExternalFile:contents=toc

\DefineHeading:Chapter

breakbefore:yes whiteafter:20pt

line:start PointSize:14 Style:bold literal:Chapter

Spaces:1 ChapterCounter line:stop

vwhite:15pt

line:start PointSize:16 Style:bold title line:stop

external:contents title external:stop 53

13 Example styles

Stop

\AdaptiveDistance:WidestLabel=15pt

\def\MeasureLabel{\ifdim\BlockWidth>\WidestLabel

\global\WidestLabel\BlockWidth\fi}

\StartCommand{\Distance:parindent=WidestLabel }

\DefineHeading:Section

whitebefore:{20pt plus 2pt} whiteafter:14pt

line:start PointSize:14 Style:italic

block:start block:start ChapterCounter . SectionCounter

Spaces:1 block:stop MeasureLabel

fillupto:WidestLabel

title line:stop

external:contents title external:stop

label:start ChapterCounter . SectionCounter label:stop

Stop

\GoverningCounter:Section=Chapter

\DefineHeading:SubSection

whitebefore:{14pt plus 2pt} whiteafter:8pt

line:start PointSize:10 Style:italic

ChapterCounter . SectionCounter . SubSectionCounter

Spaces:1 title line:stop

label:start ChapterCounter . Spaces:.2 SectionCounter

. Spaces:.2 SubSectionCounter label:stop

Stop

\GoverningCounter:SubSection=Section

\DefineExternalFile:impnotes=imp

\DefineHeading:iSection

whitebefore:{10pt plus 1pt} whiteafter:8pt

line:start PointSize:12 Style:bold I -

Style:italic iSectionCounter

Spaces:1 title line:stop

label:start I - iSectionCounter label:stop

external:impnotes title external:stop

Stop

%\GoverningCounter:iSection=Chapter

\DefineExternalItem:iSection file:impnotes PushIndentLevel

item:left I - Style:italic iSectionLabel item:stop

title begingroup Spaces:2 Style:italic Page endgroup

Stop

\DefineExternalItem:Chapter file:contents

item:left ChapterLabel item:stop

title begingroup Spaces:2 Style:italic Page endgroup

Stop

\DefineExternalItem:Section file:contents PushIndentLevel

item:left ChapterLabel . SectionLabel item:stop

title begingroup Spaces:2 Style:italic Page endgroup

Stop

\def\impnotetxt{Implementor’s Note}

\DefineTextBlock:ImpNote PushIndentLevel

whitebefore:12pt whiteafter:11pt

line:start PointSize:12 Style:italic impnotetxt line:stop

SansFace PointSize:9 SetFont text

Stop

\excludecomment{ImpNote}

\DefineTextBlock:WizNote

PushIndentLevel PointSize:9 SetFont text

Stop

\DefineList:Description

54

The style definition for this book 13.1

item:left description Spaces:2 item:stop whitebetween:6pt

Stop

\DefineList:cDescription

item:left tt char busje description Spaces:2 item:stop

whitebetween:6pt

Stop

\DefineList:Enumerate

item:left itemCounter item:stop

Stop

\DefineList:Itemize

item:left itemsign item:stop

Stop

\DefineBBL

item:left [- itemCounter -] item:stop

Stop

\SerifFace \SetFont

\newwrite\exfile

\def\HereAndOut#1{\immediate\write\exfile{#1}}

\specialcomment{Example}

{\EExample

\immediate\openout\exfile=example.tex\relax

\let\ThisComment\HereAndOut}

{\immediate\closeout\exfile

\begingroup \tt \SetFont

\verbatimfile{example.tex}\endgroup

\SaveAlloc \input example.tex\relax \RestoreAlloc

\EExampleStop}

\DefineTextBlock:EExample whiteafter:{6pt plus 5pt}

noimplicitclose rule:h vwhite:3pt

line:start literal:Example Spaces:1.5

ChapterCounter . EExampleCounter

line:stop

vwhite:3pt rule:h vwhite:3pt text vwhite:3pt rule:h

Stop

\GoverningCounter:EExample=Chapter

\specialcomment{OutExample}

{\EExample

\immediate\openout\exfile=example.tex\relax

\let\ThisComment\HereAndOut}

{\immediate\closeout\exfile

\begingroup \tt \SetFont

\verbatimfile{example.tex}\endgroup

\par\penalty0\relax

\SaveAlloc \SuspendOutput \begingroup \CountSheetsno

\global\setbox\PageRow\hbox{}%

\let\CurrentShipout\ToPageRow

\xInputFile:example

\endgroup

\ResumeOutput \RestoreAlloc

\noindent\unhbox\PageRow\hbox{}\par

\EExampleStop}

\newbox\PageRow\newbox\RowPage

\def\ToPageRow{\setbox\RowPage\box\WholePage \xToPageRow}

\def\xToPageRow{\global\setbox\PageRow

\hbox{\unhbox\PageRow\box\RowPage\hfill}}

\def\opt#1{{\tt#1}}

\DefineExternalFile:optindex=oix

\def\refopt#1{\OptToIdx #1\par} 55

13 Example styles

\DefineHeading:OptToIdx embedded:yes

block:start tt title block:stop

external:optindex title external:stop

nomarks Stop

\DefineExternalItem:OptToIdx file:optindex

embedded:yes

begingroup tt title endgroup

nobreak Spaces:1.5 Page Spaces:2.5 Stop

\DefineExternalFile:csindex=cix

\def\refcs#1{\CsToIdx #1\par}

\DefineHeading:CsToIdx embedded:yes

block:start tt char busje title block:stop

external:csindex title external:stop

nomarks Stop

\DefineExternalItem:CsToIdx file:csindex

embedded:yes

begingroup tt char busje title endgroup

nobreak Spaces:1.5 Page Spaces:2.5 Stop

\topskip20pt

\OptionsMacro:PageDims=width:page=15cm height:page=23cm Stop

\DefinePageGrid:LeftPage macro:PageDims

band:start block:start PointSize:9 Style:italic

FirstPlaced:ChapterCounter Spaces:2 stickout:left

FirstPlaced:ChapterTitle band:stop

textband:start text textband:stop

band:invisible block:start PointSize:9 Style:bold

PageCounter Spaces:2 stickout:left band:stop

NextPageGrid:RightPage Stop

\DefinePageGrid:RightPage macro:PageDims

band:start fillup PointSize:9 Style:italic

LastPlaced:SectionTitle

block:start Spaces:2 LastPlaced:ChapterCounter .

LastPlaced:SectionCounter stickout:right

band:stop

textband:start text textband:stop

band:invisible fillup

block:start PointSize:9 Style:bold Spaces:2

PageCounter stickout:right band:stop

NextPageGrid:LeftPage Stop

\DefinePageGrid:EmptyPage macro:PageDims

textband:start text textband:stop

NextPageGrid:LeftPage Stop

\AdaptiveCounter:LastInPage \CounterRepresentation:LastInPage=i

\AdaptiveCounter:LastRegPage \CounterRepresentation:LastRegPage=1

%\SetCounter:LastInPage=PageValue -- at the end of prelim.tex

%\SetCounter:LastRegPage=PageValue -- at the end of manual.tex

\endinput

% 92/11/05 stretch added

% 92/11/18 adaptive label width

% 92/11/19 adaptive last page

13.2 Address book

The following macros generate an address book. Several noteworthy features:

• Most titles are short, that is, delimited by the line end.56

Address book 13.2

• Since a page will now have several dozens of headings, the number of
marks placed will become a problem, therefore the option nomarks

is included everywhere. Without this you would easily have memory
overflows.

• The \At heading writes its information to an external file. This is then
parsed by the macro \CompNam. A slight amount of knowledge of Lollipop
internals is used here for parameter parsing, but not more than can be
gleaned from simply looking at the external file.
Then a token list is created for each company, and these lists are

printed somewhere down the file. This is a bit of TEX programming that
is not quite elementary, but still Lollipopsaves you a lot of work.

If you want to see the output, run TEX with Lollipop twice on the address.tex

file.
% address book macros

% copyright 1993 Victor Eijkhout

% copyright 2014--2016 Vafa Khalighi

%

%

% This program is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with this program. If not, see <http://www.gnu.org/licenses/>.

%

%

% These macros are based on the Lollipop macro package,

% copyright 1992/3 Victor Eijkhout

% copyright 2014--2016 Vafa Khalighi

%

% Format this file twice to get external files right.

%

% Some general options.

% Please use another typeface if you have it!

%

\Distance:whitebefore=0pt \Distance:whiteafter=0pt

\AlwaysIndent:no \FlushRight:no

\TypeFace:ComputerSans \PointSize:8 \Style:roman

\def\\{,\Spaces:1 }

% The page is four columns, no footers etc

%

\DefinePageGrid:ThePage width:page=6.5in height:page=5in

textband:start text white:10pt text white:10pt

text white:10pt text textband:stop Stop

% The main macro is the text block \Entity, representing one item

% in the address book.

%

\DefineTextBlock:Entity HasTitle:short

whitebefore:{6pt plus 6pt minus 3pt} whiteafter:whitebefore

line:start rule:v={height 7pt width7pt depth0pt} Spaces:2

Style:italic title line:stop Stop 57

13 Example styles

% Data in an entity is formatted as a number of headings.

% We declare all headings to be embedded, ie, they form a paragraph.

% The ’nomarks’ option is to prevent memory overflow.

%

\OptionsMacro:embed=embedded:yes nomarks

whitebefore:0pt whiteafter:0pt Stop

\DefineHeading:phone HasTitle:short macro:embed

literal:phone : Spaces:1.5 title , Spaces:2 Stop

\DefineHeading:fax HasTitle:short macro:embed

literal:fax : Spaces:1.5 title , Spaces:2 Stop

\DefineHeading:Address HasTitle:short macro:embed

title , Spaces:2 Stop

\DefineHeading:Note HasTitle:short macro:embed

(title) Spaces:2 Stop

% Here’s an example of non-standard handling of the title:

% email addresses are set in \tt, and can be broken differently

%

\def\breakemail{\hyphenchar\font=‘. }

\DefineHeading:email HasTitle:short macro:embed

begingroup tt breakemail title endgroup , Spaces:2 Stop

% This is invisible information; maybe later we’ll do something

% with it.

\DefineHeading:Route HasTitle:short Stop

% Here is the first really cute application.

% If a person is declared to be \At a certain company, then

% that fact is written out to an external file, which can be loaded

% later.

%

\DefineExternalFile:companies=ats

\def\WorksAt{Works at: }

\DefineHeading:At macro:embed

HasTitle:short WorksAt title Spaces:2

external:companies title unhskip title:Entity unhskip external:stop Stop

% When the ’companies’ file gets loaded the title only gets

% parsed by the macro \CompNam, and nothing else happens.

% The title is split into company and person; #1 becomes the name

% of a list to which #2 is added.

%

\def\CompNam#1\unhskip#2\unhskip{

\if\UndefinedCS{#1}\NewList:{#1} \fi

\AppendToList:#1={#2\unhskip, } }

\DefineExternalItem:At file:companies

expandafter CompNam title Stop

% The company lists are later simply loaded; see below.

% Even more complicated: birthdays.

% All birthdays are written to an external file.

%

\DefineExternalFile:births=brt

\DefineHeading:birthday HasTitle:short macro:embed

literal:Born : title Spaces:2

external:births title unhskip title:Entity unhskip external:stop Stop

% Later every month becomes something like an entity;

% here is how we generate a token list for each month.

%

\def\month#1{\ifcase#1\or jan\or feb\or mar\or apr\or may\or jun\or

jul\or aug\or sep\or oct\or nov\or dec\fi}

\tempcounta=1 \loop\ifnum\tempcounta<13

\xp\NewList\xp:\xp{\month\tempcounta}

\advance\tempcounta1 \repeat

% Formatting the caboodle means:

58

Address book 13.2

% -- loading the ’births’ file

% -- formatting each month separately by \OneMonth

% which is essentially a call to the text block \Month

%

\def\AllBirths{\LoadExternalFile:births

\tempcounta=1 \loop\ifnum\tempcounta<13

\OneMonth \advance\tempcounta1 \repeat}

\def\OneMonth{\xp\Month\month\tempcounta\par

\TheList:{\month\tempcounta} \>}

% Month is much like \Entity, just a bit different visually.

%

\DefineTextBlock:Month

whitebefore:{6pt plus 6pt minus 3pt} whiteafter:whitebefore

line:start rule:v={height 7pt width7pt depth0pt} Spaces:2

Style:italic title Spaces:2

fillup rule:v={height 7pt width7pt depth0pt} line:stop

Stop

% When the external file is loaded, every birthday is processed

% by \BirNam which splits it into #1 year #2 month #3 day and

% #4 person’s name. This is then written to the list for the

% appropriate month.

%

\def\BirNam#1 #2 #3\unhskip #4\unhskip

{\tempcounta#2\relax

\AppendToList:{\month\tempcounta}={\JollyFellow #3 #4 (#1)\par}

}

\DefineExternalItem:birthday file:births

expandafter BirNam title Stop

\DefineHeading:JollyFellow title nomarks Stop

% Phooeew! Now we can get down to business!

\WriteExtern:yes

\Start

\LoadExternalFile:companies

\Entity Adam Aardvark

\Address Page~1, English Language Dictionary

\>

\Entity Barbara Beeton

\At Tugbt

\Note Editor in chief

\>

\Entity Jane Doe

\email doe@re.mi.sol

\>

\Entity John Doe

\phone +1 212 555 4141

\>

\Entity Victor Eijkhout

\Address Department of Computer Science, University of Tennessee

\phone +1 615 974 8298

\At Tugbt

\Note merely associate editor

\email eijkhout@cs.utk.edu

\birthday 1959 11 29

\>

\Entity Elvis Presley

\birthday 1938(?) 01 08

\>

59

13 Example styles

\Entity Tugboat

\TheList:Tugbt

\>

\AllBirths

\Stop

60

