
The textpath.mp package∗

Stephan Hennig†

December 8, 2006

Abstract

The MetaPost package textpath.mp provides macros to set text along
a free path. It differs from the txp.mp package in that is uses LATEX to
typeset the text and therefore 8-bit characters, e.g., accented characters,
are supported and text is kerned.

1 A first example

The textpath.mp package provides a textpath macro, that takes three argu-
ments:

1. a text string that is valid LATEX input,

2. a path the text should follow, and

3. a numeric value that controls justification of the text on the path.

The macro returns a picture that contains the text transformed to the path. A
sample call to textpath could be

draw textpath("Greetings from MetaPost!", fullcircle scaled 50bp, 0);

The resulting output is shown in figure 1.
Interesting, but not what I’d expect. Well, figure 1 looks exactly as what we

formulated in our MetaPost programme above. The text is drawn along a circle
segment that starts at an angle of zero, runs counter clockwise and the text is
left aligned on the path. Left aligned in this context means that the text starts
at the beginning of the path.

But the text is inside the circle. Yes, by default, the text is typeset on the
left-hand side of the path if you were virtually walking down the path. There
are configuration options to change that behaviour (see section 4.6), but those
won’t help in this situation, since as a result the text would run right-to-left.

Instead, have a look at the following changes to our code and the resulting
figure 2:

∗This document describes textpath.mp v1.5.
†stephanhennig@arcor.de

1



G
re

eti
ngsfrom

M
etaPost!

Figure 1: Our first application.

G
re

et
in

gs
from MetaP

ost!
Figure 2: A refined variant.

path p;

p := reverse fullcircle rotated -90 scaled 50bp;

draw textpath("Greetings from MetaPost!", p, 0.5);

What a magic path declaration! The path now starts at an angle of −90
degrees and it runs clockwise. Did you notice the last parameter to textpath
changed to 0.5 in the programme? If it were zero, the text would start at the
bottom of the circle and run clockwise along the outside of the circle. With
the alignment parameter set to 0.5 the text is centered on the path. That’s the
reason for rotating the start and end points of the circle to −90 degrees.

By the way, do you notice anything wrong with figure 2? We’ll come back
to that problem at the end of this manual. The next section discusses the
parameters of the textpath macro in detail.

1.1 Text strings

1.1.1 Setting up the textpath.mp package

Internally, the string you pass to textpath as the first argument is processed
by LATEX by means of the latexmp package. This is hardcoded, currently, but
may change in future versions so that you can use conventional btex...etex
commands or the TEX macro.

The latexmp package has to be set up with a proper LATEX preamble. The
easiest way to do so is by providing a preamble file (without \begin{document})
and input latexmp.mp using the following lines:

input latexmp

setupLaTeXMP(preamblefile="mypreamble");

The last step in setting up the textpath.mp package is adding the following
line to the LATEX preamble in file mypreamble.tex:

\usepackage{textpathmp}

Note the trailing “mp” in the LATEX package name!

1.1.2 Restrictions on text input and output

Transforming text onto a path, i.e., rotating and shifting the text, should be
done character by character, since otherwise there could be characters that move

2



too far away from the path. Unfortunately, MetaPost doesn’t provide guaran-
teed character-wise access to a text picture generated by LATEX. Therefore,
some provisions have to be taken to enable characer-wise access. Internally, on
the LATEX side the text string passed to textpath is pre-processed by the soul
package.

Invalid input Therefore, input must not contain any material soul can’t
handle. If you’re encountering errors from the soul package on the console
delete the corresponding ltx-???.tmp file in your working directory and try
with a simpler text string. Explicitely, the following restrictions apply to input:

• Vertical material is not valid.

• Rules are not supported.

• Font selection commands aren’t allowed inside a text string. See section 2
for a solution.

• If you want to add arbitrary horizontal space in the copy, you should do
that with \<{\kernXpt}, where X is the desired space.

In general, try to stick to simple text.

Valid input However, input may contain:

• plain horizontal material,

• accented characters: These are fine in the input as long as you choose the
correct input encoding in the LATEX preamble and you have a font that
provides true accented characters, e.g., a font supporting T1 encoding.

• mathematical copy: Section 3 explains how to typeset formulae onto a
path.

Output The following restrictions apply to the output of textpath et al.:

• Ligatures are broken in the output.

1.2 Paths

As mentioned before, by default, text is typeset on the left-hand side of a path.
That is, the text is rotated to have the natural slope of the path at the de-
sired location. Configuration options to change that behaviour are described in
section 4.6.

In case total text width is larger than total path length characters that don’t
fit on the path are clipped by default (see figure 3). Configuration options to
change that behaviour are described in section 4.1.

3



tings from Meta

Greetings from MetaPost!

Figure 3: Text on a short horizontal
path clipped and unclipped.

Happy Birthday to
Daisy Duck!

Figure 4: Using different fonts in a
MetaPost graphic.

1.3 Text justification

Justification of the text on the path can be controlled by the third parameter j,
which is a numeric value. Setting it to zero makes the text left aligned, i.e.,
text starts right at be beginning of a path. A value of one makes the text right
aligned, i.e., text ends at the end point of a path. A value of 0.5 centers text
on a path.

There is a general rule: the point at fraction j of the total text width is
transformed to the point on the path at fraction j of the total path length.
Therefore, j should be from the intervall [0, 1].

2 Handling different fonts

The package provides a variant of the textpath macro called textpathFont,
that differs from textpath in only one respect. It takes an additional fourth
argument. That argument is a string containing a valid LATEX font selection
command such as \itshape. The font selection string has to be given as the
first argument. The remaining arguments are the same as for textpath (see
figure 4).

p := reverse fullcircle rotated -90;

draw textpathFont("\usefont{T1}{pzc}{m}{n}\huge", "Happy Birthday to",

p scaled 400bp, 0.5) withcolor (1, 0.6, 0.2);

draw textpathFont("\usefont{T1}{bch}{m}{n}\large", "Daisy Duck!",

p scaled 350bp, 0.5) withcolor (0.9, 0.3, 0.1);

Since the soul package can’t handle font selection commands in the copy,
one were stuck to the font that is setup in the LATEX preamble for the whole
MetaPost document. The textpathFont macro accounts for that by getting the
font selection separate from the text and applying it before the soul package
comes into play. Unfortunately, switching the font inside text still isn’t possible
that way.

3 The raw interface

In case you’re fine with textpath and textpathFont and you do not intend to
typeset mathematical formulae along a path, you may savely skip this section
and read on with section 4 where configuration options are described.

4



G
re

et
in

gs

from M
etaP

ost!

Figure 5: Transforming arbitrary
chunks of characters at once using
the raw interface.

x

2 + y2 =

r 2

Figure 6: A formula typeset along a
path.

The textpath.mp package provides a third macro textpathRaw to typeset
material along a path. This is the so called raw interface. As we’ve seen in
section 1.1.2, input to textpath and textpathFont is pre-processed by the
soul package. In contrast, input to the raw interface isn’t pre-processed. Have
a look at figure 5 to see how MetaPost accesses arbitrary chunks of characters
at once without pre-processing on the LATEX side.

Why is the word “MetaPost” broken between letters “P” and “o”? In fact,
MetaPost doesn’t process arbitrary chunks of characters. It rather collects and
processes chunks of characters that are typeset without artificial horizontal space
between them. That is, text is broken into chunks by MetaPost at inter word
space, kerning, etc. Clearly, in our example kerning took place between glyphs
“P” and “o” while other glyph pairs weren’t kerned.

Arguments to the textpathRaw macro are the same as to the textpath
macro. The differences between textpath and textpathRaw are:

• Font selection commands are allowed in input to textpathRaw.

• Rules are supported.

• Manual horizontal space is allowed in the input.

• Ligatures are preserved.

As we’ve seen in figure 5, macros textpath and textpathFont are much
better suited to typeset plain text along a path than textpathRaw. However,
there is one application where textpathRaw performs better than textpath:
mathematical formulae. Have a look at figure 6. Have you ever seen stuff like
that with any other text processing or graphics application?

The reason textpathRaw doesn’t fail as badly on mathematical input as it
does on plain text is that in formulae characters are rarely typeset without extra
space between each other. That is, MetaPost quite often breaks formulae into
chunks and hence naturally processes them character-wise. The exception to
this are operator names such as log, sin, arctan etc. and sometimes products
of variables. The latter can be avoided by explicitely inserting \cdot between
factors.

What about more complicated formulae with fractions etc.? Have a look at
figure 7. Since rules are explicitely supported by textpathRaw fractions are no
problem.

5



(x−u)2

a2
+

(y−v)2

b2 = 1

Figure 7: A formula containing fractions.

Awesome! The rules are curved, too! Yes, since formulae can look awful
otherwise the textpath.mp package puts some efforts into that. Section 4.8
describes an option that lets you choose between curved and straight rules.

Any restrictions? Well, on concave shapes formulae look even more ugly
than plain text. For a technical restriction, formulae shouldn’t be of too large
height and depth. Section 4.10 shows a solution to another problem with root
operators not discussed so far.

That’s it—almost. The remaining chapter describes global variables to con-
figure the textpath.mp package, i.e., the way macros textpath, textpathFont
and textpathRaw work. Quite some interesting effects can be achieved with
certain settings. So don’t miss the last chapter!

4 Configuration variables

The textpath.mp offers several configuration options through global variables.
Some of them have already been mentioned in the other sections. This chapter
summarizes all configuration variables.

4.1 textpathClip

As explained in section 1.2 when total text width is larger than path length text
that doesn’t fit into the path boundaries is clipped. Actually, the location of
characters that exeed path boundaries is clipped to the boundaries first. Then
variable textpathClip is read and if it is set to zero value those characters are
drawn at the boundary, acting as a visual marker that something went wrong,
or, if textpathClip is set to one, those characters are omitted (see figure 3).
By default, textpathClip is set to one, that is, characters may be clipped.

4.2 textpathRepeat

Variable textpathRepeat determines the number of copys of the text string
that should be typeset along a path. Valid are integer values greater or equal
to one. By default, textpathRepeat is set to one.

Note, that the alignment parameter j still works when setting textpathRepeat
to arbitrary values. That is, for a value of zero text starts at the beginning of
a path and for a value of one text ends at the end of a path.

6



H
H H

a
a ap
p pp
p py y yB B Bi i ir r rt t th h hd d

da a
ay y
y

Figure 8: Repeated text manually spaced and centered.

4.3 textpathStretch and textpathHSpace

When variable textpathRepeat is greater than one (see section 4.2), horizon-
tal spacing between single copies of the text string is determined manually or
automatically, depending on variable textpathStretch. If textpathStretch
is set to zero value variable textpathHSpace determines the spacing between
text string copies. If textpathStretch is set to one, spacing is automatically
calculated, which is the default.

Figure 8 shows an example of manually spaced text copies. Note, that the
space on the left and right of the total text is quite unrelated to textpathHSpace
and automatically results from path length, text width, the number of text
copies, textpathHSpace, and the justification parameter j.

f := "\usefont{T1}{pzc}{m}{n}\Large";

p := subpath (5.7,6.3) of fullcircle scaled 1400bp;

draw p withcolor .8white;

textpathRepeat := 3;

textpathStretch := 0;

textpathHSpace := 10pt;

draw textpathFont(f, "Happy Birthday", p, 0.5) withcolor (1, 0.6, 0.2);

In contrast, when text copies are automatically spaced, i.e., textpathStretch
is set to one, the sum of space before and after all text copies equals the space
between text copies. This is quite handy when typesetting text along a cyclic
path as in figure 9.

4.4 textpathShift

Variable textpathShift determines the amount all characters are shifted or-
thogonally to a path (the base line). Positive values result in characters shifted
to the left of a path—looking into the natural direction of a path—, while neg-
ative values shift characters to the right of a path.

In figure 9 the thick black border is both, the path our text should follow
and the background of the text. Therefore, we need to “vertically” center the
text on the path. A small negative value of textpathShift serves our purposes
well.

% Font Brush Script Italic is available on CTAN.

f := "\usefont{T1}{pbsi}{xl}{n}\fontsize{2.1pt}{2.1pt}\selectfont";

w := 210bp;

h := .276w;

r := .19h;

7



F

F

F F F F F F F F F F F F

F
F

F

FFFFFFFFFFFF

F
a

a

a a a a a a a a a a a

a

a
a

a

aaaaaaaaaaa

a

a
ß

ß

ß ß ß ß ß ß ß ß ß ß ß

ß

ß
ß

ß

ßßßßßßßßßßß

ß

ß
’

’

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’

’

’
’

’

’’’’’’’’’’’

’

’
D

D

D D D D D D D D D D D

D

D
D

D

DDDDDDDDDDD

D

D
i

i

i i i i i i i i i i i

i

i
i

i

iiiiiiiiiii

i

i
c

c

c c c c c c c c c c c

c

c
c

c

ccccccccccc

c

c
h

h

h h h h h h h h h h h

h

h
h

h

hhhhhhhhhhh

h

h
k

k

k k k k k k k k k k k

k

k
k

k

kkkkkkkkkkk

k

k
u

u

u u u u u u u u u u u

u

u
u

u

uuuuuuuuuuu

u

u
r

r

r r r r r r r r r r r

r

r
r

r

rrrrrrrrrrr

r

r
z

z

z z z z z z z z z z z

z

z
z

z

zzzzzzzzzzz

z

z
!

!

! ! ! ! ! ! ! ! ! ! !

!

!
!

!

!!!!!!!!!!!

!

! Telephonzelle

Figure 9: An attempt to resemble the style of classic labels. (Failed badly.)

p := (-.5w,0)--(-.5w,.5h-r)--quartercircle rotated -90 scaled (2r)

shifted (-.5w,.5h)--(0,.5h);

p := p--reverse p reflectedabout ((0,-1),(0,1));

p := p--reverse p reflectedabout ((-1,0),(1,0))--cycle;

draw p withpen pensquare scaled 3.5pt;

textpathRepeat := 30;

textpathShift := -.6pt;

draw textpathFont(f, "Fa\ss’ Dich kurz!", p, 0.5) withcolor white;

label(textext

("\usefont{T1}{bfu}{mb}{n}\fontsize{22pt}{22pt}\selectfont Telephonzelle"),

origin);% Bitstream Futura

4.5 textpathLetterSpace

If you’re typesetting text along a path with a high curvature the text may
look squeezed or letter-spaced, depending on path shape, because natural inter
letter space refers to unrotated characters and is only proper near the base line
of rotated characters. On a convex shape, therefore, text can look letter-spaced
where, in fact, it isn’t. In contrast, on a concave shape glyphs may touch each
other. Comparing figures 1 and 2 the latter looks lighter, since inter letter
space raises with the distance from the base line. The same effect can be seen
in figure 10, e.g., between characters “a” and “i”.

The textpath.mp package provides means to manually tweak inter letter
space. Before transforming a character onto the path the textpath.mp package
inserts an additional amount of horizontal space of width textpathLetterSpace
between all characters. This variable is a good friend when shifting or rotating
characters. By default, textpathLetterSpace is set to zero, that is, text is
typeset at its natural width.

Variable textpathLetterSpace has only effect when typesetting text through
macros textpath and textpathFont. In macro textpathRaw this variable is
ignored.

4.6 textpathRotation

In section 1.2 it was already mentioned that text turns out on the left-hand side
of a path, by default. This is an appropriate setting for cultures where text is
read left to right.

8



DaisyDaisy
Figure 10: The anchor point of a character.

The textpath.mp package, internally, calculates for each character in the
text string the position of its anchor point on the path and the slope of the
path at that location. The character is then rotated around its anchor point
by an angle corresponding to the slope. The anchor point of a character lies at
its horizontal center on the base line (see figure 10). Finally, the anchor point
is translated to the required coordinates on the path. As a result, characters
appear on the left-hand side of a path.

You can manually apply an additional rotation to every character by setting
variable textpathRotation to a non-zero value. A value of, e.g., 180 degrees
turns each character upside down, so that it turns out on the right-hand side
of a path. A value of, e.g., 90 degrees results in characters “floating” with the
path. By default, textpathRotation is set to zero.

In figure 11, note that the heart shape is derived from half circles and the
text would have been running on the inside of the path by default, cf. figure 1.

string f, t;

path heart;

f := "\usefont{T1}{pzc}{m}{it}\tiny";

t := "Love";

heart := halfcircle shifted (-0.5bp,0bp)..{dir-50}(0bp,-1.5bp);

heart := heart--reverse heart reflectedabout ((0,0),(0,1))--cycle;

heart := heart scaled 60bp;

textpathRotation := 90;

textpathLetterSpace := 1pt;

textpathRepeat := 30;

draw textpathFont(f, t, heart, 0) withcolor red+0.1green;

4.7 textpathAbsRotation

The interpretation of variable textpathRotation changes when variable textpathAbsRotation
is set to a value of one. Then characters are rotated by textpathRotation de-
grees only, ignoring path slope (see figure 12). By default, textpathAbsRotation
is set to zero.

picture pic;

f := "\usefont{T1}{fwb}{m}{n}\Large";% From the emerald package

t := "Don’t panic! Don’t panic! Don’t panic!";

p := origin

for i:=1 upto 20: ..(i, sind(i*45)) endfor;

9



L

L

L

LL

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

LL

L

L

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

o

ov

v

vv

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

vv

v

v

v

e

e

ee

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

ee

e

e

e

Figure 11: Automatically spaced text with an additional rotation of 90 degrees.

D
on

’ t pa
nic ! D on’t

pa n i c!
D
on ’ t pan

ic
!

Figure 12: Text without rotation.

p := p xscaled 20 yscaled 35;

textpathRotation := 0;

textpathAbsRotation := 1;

textpathLetterSpace := 6pt;

pic := textpathFont(f, t, p, 0);

background := black;

bboxmargin := 30bp;

unfill bbox pic;

draw pic withcolor red+green;

We could have used textpathRepeat instead of repeating the text manually
in the last example as well. But since that required some more letters to type
I chose not to do so. In case the path definition inside the for loop—or rather
the for loop inside the path definition—in the last listing looks uncommon to
you, have a look at chapter 10 of the MetaPost manual, where this usage is
explained.

10



y = v + b
√

1 − (x−u) 2
a2 )

Figure 13: Straight rules in a for-
mula.

y = v + b
√

1 − (x−u) 2
a2 )

Figure 14: Curved rules in a for-
mula.

4.8 textpathFancyStrokes

The remaining three variables apply only to macro textpathRaw. In section 3
figure 7 showed a formula containing fractions, where the rules were automat-
ically bent to the shape of the path. Variable textpathFancyStrokes deter-
mines if rules in the input to textpathRaw should appear curved or straight in
the output. A value of zero results in straight rules. If textpathFancyStrokes
is set to one, which is the default, the textpath.mp package tries to adjust the
shape of rules to that of the path.

Figures 13 and 14 show a similar formula as in figure 7. Clearly, both, the
square root and the fraction look more decent with curved strokes.

4.9 textpathStrokePrecision

When you’re typesetting formulae along paths with a high curvature it may
be difficult for rules to follow the path. Variable textpathStrokePrecision
determines the number of auxillary points that are calculated along a stroke.
For higher values of textpathStrokePrecision strokes follow a path more
precisely. By default, textpathStrokePrecision is set to a value of ten, which
should be enough for most cases.

This variable applies only if textpathFancyStrokes is set to one. Other-
wise, it is ignored.

4.10 textpathCureSqrt

Did you notice the small gap that is still present in the square root operator in
figure 14? A root sign actually consists of two parts, a leading V part and a
trailing horizontal rule spanning the arguments. The V part, in fact, is a single
glyph, while the rule is, well, a rule. If typeset horizontally, both parts overlap
so that they visually melt into one glyph.

When typeset onto a path, the V part is rotated according to the slope of
the path at its anchor point, which lies at the horizontal center of the glyph.
The resulting rotating angle is slightly different from the rotating angle that
should be applied to the top right corner of the glyph. Therefore, V and rule
part of a square root are missing each other and a gap becomes visible.

11



y = v + b
√

1 − (x−u) 2
a2 )

Figure 15: A curved square root
without a gap.

Pro &

Contra

Figure 16: Another logo that didn’t
fit as an example in the other sec-
tions.

The textpath.mp package tries to fill this gap automatically when variable
textpathCureSqrt is set to a value of one, which is the default. In fact, in
figure 14 this variable was manually set to zero to provoke the gap. In figure 15
the gap has been filled. Don’t expect too fancy results from this option in
difficult cases.

This variable applies only if textpathFancyStrokes is set to one. Other-
wise, it is ignored. Moreover, it only works when textpathRepeat is set to a
value of one, i.e., there are no multiple copies of formulae.

4.11 Summary

Table 1 lists all configuration variables, their default values and in what macros
they have effect.

5 Epilogue

Do you remember when we asked about a problem with figure 2 in section 1?
Yes, the first and last characters do not visually line up properly! Well spotted!
Actually, the code is correct. The problem is that “G” and “!” have quite
different glyph shapes. When virtually drawing the bounding boxes of the
rotated characters one realizes that the left-most and right-most points of the
text on the path do line up.

Is there a fix? There’s no automatic solution. If the text started, e.g., with
letters “B”, “E” or even “W” etc. those characters would visually line up with
an exclamation mark. As a work around for letters “C”, “G” etc. the alignment
parameter could be reduced to a value slightly less that 0.5. But honestly, did
you really notice the difference?

Where’s the source code of the last examples? The code of all figures shown
in this manual can be found in file textpathfigs.mp, which is part of this
package.

What is the nice calligraphic font you’re using throughout this manual? Since
we’re dealing with decorative graphics here, urw Zapf Chancery Medium Italic

12



variable name default value valid in macros
textpath textpathFont textpathRaw

textpathClip 1 + + +
textpathRepeat 1 + + +
textpathStretch 1 + + +
textpathHSpace 0pt + + +
textpathShift 0pt + + +
textpathLetterSpace 0pt + + −
textpathRotation 0 + + +
textpathAbsRotation 0 + + +
textpathFancyStrokes 1 − − +
textpathStrokePrecision 10 − − +
textpathCureSqrt 1 − − +

Table 1: Summary of configuration variables.

available through the psnfss package is used in many examples. Other decora-
tive fonts with ready-made LATEX support are Brush Script Italic or the fonts
from the Emerald package. Both packages are available on ctan.

Anything else? While you’re asking, don’t try to do too fancy stuff with this
package. Text—and mathematical copy—is most legible when typeset horizon-
tally. With increasing curvature of the base line legibility decreases fastly. A
decorative, but elegant look can be achieved best by just slightly indicating a
curved base line, similar to figure 4.

Happy TEXing!
Stephan Hennig

13


