
“fiziko” v. 0.1.3 package for MetaPost

Sergey Slyusarev

March 8, 2019

Abstract

This document describes a bunch of macros provided by “fiziko” li-
brary for MetaPost.

This document is distributed under CC-BY-SA 4.0 license
CC© BY:© C©

https://github.com/jemmybutton/fiziko

1 Introduction

This MetaPost library was initially written to automate some elements of black
and white illustrations for a physics textbook. First and foremost it provides
functions to draw things like lines of variable width, shaded spheres and tubes
of different kinds, which can be used to produce images of a variety of objects.
The library also contains functions to draw some objects constructed from these
primitives.

2 Usage

Simply include this in the beginning of your MetaPost document:

1 input f i z i k o .mp

3 Global variables

A few global variables control different aspects of the behavior of the provided
macros. Not all possible values are meaningful and some will definitely result
in ugly pictures or errors.

3.1 minStrokeWidth

This variable controls minimal thickness of lines that are used for shading. Below
this value lines are not getting thinner, but become dashed instead, maintaining
roughly the same amount of ink per unit length as a thinner line would take.

1

Default value is one fifth of a point. There are several things that depend on
this value, so it’s convenient to change it using a macro:

1 defineMinStrokeWidth (1/2pt) ;

3.2 lightDirection

This variable controls direction from which light falls on shaded objects. It’s of
pair type and is set in radians. Default direction is top-left:

1 l i g h tD i r e c t i o n := (−1/8pi , 1/8 p i) ;

4 “Lower level” macros

Currently, algorithms are quite stupid and will produce decent results only in
certain simple circumstances.

4.1 offsetPath (path)(offset function)

This macro returns offset path (of type path) to a current path with a distance
from the original path controlled by some arbitrary function; typically, it is a
function of path length, set as either offsetPathTime or offsetPathLength.
Former is simply time on current path and changes from 0 to length(path), and
latter changes from 0 to 1 over the path arctime (as a function of arclength).

1 path p , q ;
2 p := (0 ,0){ dir (3 0) } . . (5cm, 0) . . { dir (30)} (10cm, 0) ;
3 q := o f f s e tPa th (p) (1cm∗ s i n (o f f se tPathLength ∗pi)) ;
4 draw p ;
5 draw q dashed evenly ;

4.2 brush (path)(offset function)

This macro returns a picture of a line of variable width along given path,
which is controlled by some arbitrary function, analogous to offsetPath. If
line is getting thinner than minStrokeWith, it is drawn dashed.

1 path p ;
2 p := (0 ,0){ dir (3 0) } . . (5cm, 0) . . { dir (30)} (10cm, 0) ;
3 draw brush (p) (2 minStrokeWidth∗ s i n (o f f se tPathLength ∗pi)) ;

2

4.3 sphere.c (diameter)

This macro returns a picture of a sphere with specified diameter shaded with
concentric strokes. Strokes are arranged to fit those of tube.l.

1 for i := 1 step 1 until 6 :
2 draw sphere . c (i ∗1/4cm) shifted (1/2cm∗(i ∗(i +1))/2 , 0) ;
3 endfor ;

4.4 sphere.l (diameter, angle)

This macro returns a picture of a shaded sphere with specified diameter. Un-
like sphere.c macro, this one draws latitudinal strokes around axis rotated at
specified angle.

1 for i := 1 step 1 until 6 :
2 draw sphere . l (i ∗1/4cm, −90 + i ∗30)
3 shifted (1/2cm∗(i ∗(i +1))/2 , 0) ;
4 endfor ;

4.5 tube.l (path)(offset function)

This macro returns a picture of a shaded “tube” of a variable width along
a given path, which is controlled by some arbitrary function, analogous to
offsetPath. “Tube” drawn by this macro is shaded be longitudal strokes.
Once tube is generated, you can call tubeOutline path global variable, if you
need one.

1 path p ;
2 p := (0 ,0){ dir (3 0) } . . (5cm, 0) . . { dir (30)} (10cm, 0) ;
3 draw tube . l (p)(1/2cm∗ s i n (o f f se tPathLength ∗pi)) ;

4.6 tube.t (path)(offset function)

This macro returns a picture of a shaded “tube” of variable width along given
path, which is controlled by some arbitrary function, analogous to offsetPath.
“Tube” drawn by this macro is shaded be transverse strokes. Once tube is
generated, you can call tubeOutline path global variable, if you need one.

3

1 path p ;
2 p := (0 ,0){ dir (3 0) } . . (5cm, 0) . . { dir (30)} (10cm, 0) ;
3 draw tube . t (p)(1/2cm∗ s i n (o f f se tPathLength ∗pi)) ;

4.7 tube.e (path)(offset function)

This macro returns the outline of a tube as a path.

5 “Higher level” macros

Using macros described in the previous section it is possible to construct more
complex images. Macros for drawing some often used images are present in this
package.

5.1 eye (angle)

This macro returns a picture of an eye pointed at the direction angle (in
degrees). Eye size is controlled by a global variable eyescale, which has default
value of eyescale := 1/2cm;.

1 save ey e s c a l e ;
2 for i := 1 step 1 until 6 :
3 ey e s c a l e := 1/6cm∗ i ;
4 draw eye (i ∗60) shifted (1/2cm∗(i ∗(i +1))/2 , 0) ;
5 endfor ;

5.2 pulley (diameter, angle)

This macro returns a picture of a pulley with specified diameter and its sup-
port pointed at the direction angle (in degrees). Note that pulley’s support
protrudes from its center by pulleySupportSize*diameter and by default
pulleySupportSize= 3/2. Once pulley is generated, you can call pulleyOutline
path global variable, if you need one.

1 draw (−1/8cm, 0)−−(12cm, 0) ;
2 for i := 1 step 1 until 6 :
3 r := 1/7cm∗ i ;
4 draw image (
5 draw pu l l ey (2 r , 0) shifted (0 , −4/3r) ;
6 draw (r , −4/3r) −− (r , −2cm) ;
7 drawarrow (−r , −4/3r) −− (−r , −2cm) ;
8) shifted (1/2cm∗(i ∗(i +1))/2 , 0) ;
9 endfor ;

4

5.3 pulleyWheel (diameter)

This macro returns a picture of a pulley wheel with specified diameter.

1 for i := 1 step 1 until 6 :
2 r := 1/7cm∗ i ;
3 draw image (
4 draw pulleyWheel (2 r) ;
5 draw (r , 0) −− (r , 1cm) ;
6 drawarrow (−r , 0) −− (−r , 1cm) ;
7) shifted (1/2cm∗(i ∗(i +1))/2 , 0) ;
8 endfor ;

5.4 wheel (diameter, angle)

This macro returns a picture of a wheel with specified diameter and its support
pointed at the direction angle (in degrees).

1 draw (−1/8cm, 0)−−(12cm, 0) ;
2 for i := 1 step 1 until 6 :
3 r := 1/7cm∗ i ;
4 draw wheel (2 r , 0) shifted (0 , −r) shifted (1/2cm∗(i ∗(i +1))/2 , 0) ;
5 endfor ;

5.5 weight.s (height)

This macro returns a picture of a weight of a specific height that is standing
on the point (0, 0).

1 for i := 1 step 1 until 6 :
2 draw weight . s (1/4cm + i ∗1/4cm) shifted (1/2cm∗(i ∗(i +1))/2 , 0) ;
3 endfor ;
4 draw (−1/8cm, 0)−−(12cm, 0) ;

5

5.6 weight.h (height)

This macro returns a picture of a weight of a specific height that is is hanging
from the point (0, 0).

1 for i := 1 step 1 until 6 :
2 draw weight . h(1/4cm + i ∗1/4cm) shifted (1/2cm∗(i ∗(i +1))/2 , 0) ;
3 endfor ;
4 draw (12cm, 0)−−(−1/8cm, 0) ;

5.7 spring (point a, point b, number of steps)

This macro returns a picture of a spring stretched between points a and b

(of type pair), with specified number of steps. Spring width is controlled by
global variable springwidth with the default value springwidth := 1/8cm;.

1 pair a , b ;
2 a := (0 , 0) ;
3 for i := 1 step 1 until 6 :
4 spr ingwidth := 1/16cm + i ∗1/48cm;
5 b := (i ∗1/3cm, − i ∗1/5cm) ;
6 draw sp r ing (a , b , 10) shifted (2/5cm∗(i ∗(i +1))/2 , 0) ;
7 endfor ;

5.8 solidSurface (path)

This macro returns a picture of a solid surface on the right side of a given
path.

1 path p ;
2 p := (0 ,0){ dir (3 0) } . . (5cm, 0) . . { dir (30)} (10cm, 0) ;
3 draw s o l i d Su r f a c e (p) ;

5.9 solid (path, angle, type)

Fills given path with strokes of specific type at a given angle. type can be 0
(“solid” strokes) and 1 (“glass” strokes).

6

5.10 woodBlock (width, height)

Returns a picture of a rectangular block of wood with its bottom-left corner
in the origin.

1 draw woodBlock (10cm, 1/2cm) ;

5.11 woodenThing (path, angle)

Returns a picture of a wood texture at a given angle fitted into a given path.

1 path p , q ;
2 p := dir (−60) scaled 1/2 −− dir (90) scaled 2/3 −− dir (−120) scaled 3/5 −− cycle ;
3 for i := 1 step 1 until 6 :
4 q := (p scaled 3/2cm) rotated (i ∗60) ;
5 draw woodenThing (q , i ∗60) shifted (2cm∗ i , 0) ;
6 endfor ;

5.12 globe (radius, longitude, latitude)

This macro returns a picture of the globe of specified radius centered at
specific longitude and latitude;

1 for i := 1 step 1 until 6 :
2 draw g lobe (i ∗1/4cm, i ∗60 , −90 + i ∗30)
3 shifted (1/2cm∗(i ∗(i +1))/2 , 0) ;
4 endfor ;

5.13 Knots

There are two macros to handle knot drawing: addStrandToKnot and knotFromStrands.
Currently the algorithm is not especially stable.

7

5.13.1 addStrandToKnot (knotName) (path, ropeWidth, ropeType,
intersectionOrder)

This macro adds a strand to knot named knotName and returns nothing. Strand
follows the given path and has a given ropeWidth. ropeType can be "l", "t" (as
in tube.l and tube.t) or "e" (for an unshaded strand). intersectionOrder

is a string of comma separated numbers which represent a “layer” to which
intersections along the strand go.

5.13.2 knotFromStrands (knotName)

This macro returns a picture of a knot with a given knotName.

1 path p [] ;
2 p1 := (dir (90)∗4/3cm) {dir (0)} . . tension 3/2
3 . . (dir (90 + 120)∗4/3cm){ dir (90 + 30)} . . tension 3/2
4 . . (dir (90 − 120)∗4/3cm){ dir (−90 − 30)} . . tension 3/2
5 . . cycle ;
6 p2 := (f u l l c i r c l e scaled 3cm) shifted (0 , −3/2cm) ;
7 p3 := (f u l l c i r c l e scaled 4cm) ;
8 addStrandToKnot (theknot) (p1 shifted (4cm, −4cm) , 1/5cm, ” l ” ,
9 ”−1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,−1”) ;

10 addStrandToKnot (theknot) (p2 shifted (4cm, −4cm) , 1/6cm, ” l ” ,
11 ””) ;
12 addStrandToKnot (theknot) (p3 shifted (4cm, −4cm) , 1/7cm, ” l ” ,
13 ”−1,1”) ;
14 draw knotFromStrands (theknot) ;

6 Other macros

Some macros that are not directly related to drawing are listed below

6.1 refractionPath (initial ray, shape, refraction coeffi-
cient)

This macro returns a path that represent refraction of some ray (any variable of
type path, point next to last in a given path is considered a source of a “ray”, and

8

last point determines its direction) through some shape with given refraction

coefficient. When appropriate, the “ray” is fully internally reflected.
Setting refraction coefficient to 0 results in reflection instead of refrac-

tion in all cases.

1 path r , p ;
2 p := f u l l c i r c l e scaled 2 .1cm;
3 draw p ;
4 for i := 1cm s tep −1/4cm until −1cm:
5 r := (−4cm, i) −− (−1cm, i) ;
6 draw r e f r a c t i onPath (r , p , 1 . 5) ;
7 endfor ;

6.2 lens ((left radius, right radius), thickness, diameter,
units)

This macro returns a path that represent a section of a lens with given radii of
curvature (positive value for convex, negative — for concave), thickness (i. e.
distance benween sides’ centers) and diameter (i. e. height) in given arbitrary
units.

1 draw l e n s ((5 , 10) , 1/2 , 2 , cm) ;
2 draw l e n s ((−10 , −5) , 1/4 , 2 , cm) shifted (2cm, 0) ;
3 draw l e n s ((inf inity , 7) , 1/4 , 2 , cm) shifted (4cm, 0) ;

7 Auxilary macros

Some macros that not related to physical problems at all are listed below.

7.1 picture maskedWith path

This macro masks a part of a picture with closed path. In fact this is in-
version of metapost’s built-in clip but, in contrast to the latter, it does not
modify original image. Note that it requires that counter-clockwise path to
work properly.

9

7.2 path firstIntersectionTimes path

This macro is similar to metapost’s intersectiontimes but it returns inter-
section times with smallest time on first path.

7.3 pathSubdivide path, n

This macro returns original path with n-times more points.

7.4 drawmidarrow (path)

Draws path with arrows in the middles of segments with length no less than
midArrowLimit (another global variable, 1cm by default).

7.5 markAngle (point a, point o, point b)(text)

This macro marks an angle aob (counter-clockwise) with some text

1 pair a , o , b ;
2 for i := 30 step 60 until 390 :
3 o := (10cm∗(i /360) , 0) ;
4 a := dir (i /2)∗4/3cm shifted o ;
5 b := dir (i)∗4/3cm shifted o ;
6 draw (a−−o−−b) ;
7 markAngle (a , o , b) (btex $\ alpha $ etex) ;
8 endfor ;

α α α
α

α
α α

8 Some examples

8.1 Gregory-Maksutov type telescope

Lines 3–11 define parameters of lenses and mirrors1. Lines 12–16 generate lenses.
On line 20 shape of prism is defined. Line 22 cuts part of the rear mirror. Line
26 describes mirror part of the front lens. On lines 31–33 all the glass parts
are drawn. On lines 34–36 all the mirror ones. On lines 39–44 rays are traced
through all system in order specified in loop on line 41. Lines 49–56 are about
the telescope frame.

1 path p [] , q [] , ax i s [] , f [] ; pair o ;
2 u := 6mm;
3 r 1 := −36.979; r 2 := −r 1 ; t 1 := 0 . 7 ; n1 := 1 . 5 1 7 ; d1 := 5 ;
4 l 1 := 8 . 1 8 2 ;
5 r 3 := −11.657; r 4 := r 3 ; t 2 := 0 . 2 ; n2 := n 1 ; d2 := 3/2 ;

1Taken from here http://www.google.ru/patents/US2701983

10

6 l 2 := 0 . 4 ;
7 r 5 := −30.433; r 6 := 9 . 5 9 8 ; t 3 := 0 . 3 9 ; n3 := 1 . 6 2 1 ; d3 := d 2 ;
8 l 3 := 0 . 8 2 8 ;
9 r 7 := −35.512; r 8 := in f in i ty ; t 4 := 0 . 7 ; n4 := 0 ; d4 := d 1 ;

10 l 4 := 5 . 2 7 2 ;
11 l l 0 := 0 ;
12 for i := 1 upto 4 :
13 l l [i] := l l [i −1] + t [i] + l [i] ;
14 p [i] := l en s ((r [i ∗2 − 1] , r [i ∗2]) , t [i] , d [i] , u)
15 shifted (l l [i −1]∗u , 0) ;
16 endfor ;
17 ax i s 1 := (0 , 0) −− (l l 4∗u , 0) ;
18 ax i s 2 := reverse (ax i s 1) ;
19 l l 5 := l l 4 − 1/2 l 4 ;
20 p5 := ((−1 ,−1) −− (1 , 1) −− (−1 ,1) −− cycle)
21 scaled (1/2d2∗u) shifted (l l 5∗u , 0) ;
22 p6 := (subpath
23 (ypart ((ax i s 1 shifted (0 , 1/2d2∗u)) f i r s t I n t e r s e c t i o nT ime s p4) ,
24 ypart ((ax i s 2 shifted (0 , 1/2d2∗u)) f i r s t I n t e r s e c t i o nT ime s p 4))
25 of p4) −− cycle ;
26 p7 := (subpath
27 (ypart ((ax i s 2 shifted (0 , 3/4d2∗u)) f i r s t I n t e r s e c t i o nT ime s p1) ,
28 ypart ((ax i s 2 shifted (0 , −3/4d2∗u)) f i r s t I n t e r s e c t i o nT ime s p 1))
29 of p 1) ;
30 p7 := p7 −− (reverse (p7) shifted ((−1/3 t 1)∗u , 0)) −− cycle ;
31 for i := 1 , 2 , 3 , 5 :
32 draw p [i] withpen th ickpen ; draw s o l i d (p [i] , 45 , 1) ;
33 endfor ;
34 draw s o l i d (p7 , −45, 0) ;
35 draw p6 withpen th ickpen ; draw s o l i d (p6 , −45, 0) ;
36 draw p6 yscaled −1 withpen th ickpen ;
37 draw s o l i d (p6 yscaled −1, −45, 0) ;
38 n7 := 0 ; n5 := n 1 ;
39 for i := 0 , 1 :
40 q [i] := (−3/2u , −2u + i ∗4u) −− (16u , −2u + i ∗4u) ;
41 for j = 1 , 4 , 7 , 2 , 3 , 5 :
42 q [i] := r e f r a c t i onPath (q [i] , p [j] , n [j]) ;
43 endfor ;
44 endfor ;
45 o := whatever [point length (q0) of q0 , point length (q0)−1 of q 0]
46 = whatever [point length (q1) of q1 , point length (q1)−1 of q 1] ;
47 for i := 0 , 1 : drawmidarrow (q [i] −− o) withpen thinpen ; endfor ;
48 draw eye (−91) shifted o shifted (0 , u) ;
49 f 1 := (−1/4u , 1/2d1∗u) −− ((l l 3 + t 4)∗u , 1/2d1∗u)
50 −− ((l l 3 + t 4)∗u , 1/2d2∗u) ;
51 f 2 := (l l 1∗u − 1/8u , 1/2d2∗u) −− (l l 5∗u − 1/2d2∗u , 1/2d2∗u)
52 −− (l l 5∗u − 1/2d2∗u , ypart (o)) ;
53 f 3 := (l l 1∗u − 1/8u , −1/2d2∗u) −− (l l 5∗u + 1/2d2∗u , −1/2d2∗u)
54 −− (l l 5∗u + 1/2d2∗u , ypart (o)) ;
55 draw f 1 withpen fa tpen ; draw f 1 yscaled −1 withpen fa tpen ;
56 draw f 2 withpen fa tpen ; draw f 3 withpen fa tpen ;

11

8.2 L’Hôpital’s Pulley Problem

Line 3 describe initial setup. Line 4 is problem’s solution. Lines 8–11 set all the
points where they belong. Lines 12–16 are needed to decide where to put the
pulley.

1 pair p [] , o [] ;
2 numeric a , d [] , l [] , x [] , y [] ;
3 l 0 := 6 ; l 1 := 4 ; l 2 := 4 ;
4 x1 := (l 1∗∗2 + abs (l 1)∗ ((sqrt (8)∗ l 0)++ l 1))/4 l 0 ;
5 y1 := l1+−+x 1 ;
6 y2 := l 2 − ((l 0−x1)++y 1) ;
7 d1 := 2/3cm; d2 := 4/3cm; d3 := 5/6d 1 ;
8 p1 := (0 , 0) ;
9 p2 := (l 0∗cm, 0) ;

10 p3 := (x1∗cm, −y1∗cm) ;
11 p4 := p3 shifted (0 , −y2∗cm) ;
12 o1 := (unitvector (p4−p3) rotated 90 scaled 1/2d 3) ;
13 o2 := (unitvector (p3−p2) rotated 90 scaled 1/2d 3) ;
14 p5 := whatever [p3 shifted o 1 , p4 shifted o 1]
15 = whatever [p3 shifted o 2 , p2 shifted o 2] ;
16 a := angle (p1−p 3) ;
17 draw s o l i d Su r f a c e (11/10 [p1 ,p 2] −− 11/10[p2 , p 1]) ;
18 draw pu l l ey (d1 , a − 90) shifted p 5 ;
19 draw image (
20 draw p1 −− p3 −− p2 withpen th ickpen ;
21 draw p3 −− p4 withpen th ickpen ;
22) maskedWith (pu l l eyOut l ine shifted p 5) ;
23 draw sphere . c (d2) shifted p4 shifted (0 , −1/2d 2) ;
24 dotlabel . l l f t (btex A etex , p 1) ;
25 dotlabel . l r t (btex B etex , p 2) ;
26 dotlabel . ul f t (btex C etex , p 4) ;
27 label . l l f t (btex $ l $ etex , 1/2 [p1 , p 3]) ;
28 markAngle (p3 , p1 , p 2) (btex $\ alpha $ etex) ;

A B

C

l

α

8.3 Hooke’s law

1 numeric l [] , d , h ;
2 pair p [] , q [] ;
3 l 0 := 3/2cm; l 1 := 1cm;
4 d := 1cm; h := 7/8cm;
5 p1 := (0 , 0) ; p2 := (0 , − l 0) ;
6 p3 := (d , 0) ; p4 := (d , − l 0− l 1) ;
7 p5 := (2d , 0) ; p6 := (2d , − l 0−2 l 1) ; p7 := (2d , − l 0−2 l 1−h) ;
8 draw s o l i d Su r f a c e ((2 d + 1/2cm, 0)−−(−1/2cm, 0)) ;
9 draw sp r ing (p1 , p2 , 2 0) ;

10 draw sp r ing (p3 , p4 , 2 0) ;
11 draw weight . h(h) shifted p 4 ;
12 draw sp r ing (p5 , p6 , 2 0) ;

12

13 draw weight . h(h) shifted p 6 ;
14 draw weight . h(h) shifted p 7 ;
15 q1 := (0 , ypart (p 2)) ;
16 q2 := (0 , ypart (p 4)) ;
17 q3 := (0 , ypart (p 6)) ;
18 draw p2 −− q1 withpen thinpen ;
19 draw p4 −− q2 withpen thinpen ;
20 draw p6 −− q3 withpen thinpen ;
21 drawdblarrow q1−−q2 withpen thinpen ;
22 drawdblarrow q2−−q3 withpen thinpen ;
23 label . l f t (btex x etex , 1/2 [q1 , q 2]) ;
24 label . l f t (btex x etex , 1/2 [q2 , q 3]) ;

x

x

8.4 Weight on a cart

1 numeric l , w, r , h ;
2 l := 4cm;
3 w := 1/4cm;
4 r := 2/3cm;
5 h := 1cm;
6 draw s o l i d Su r f a c e ((−1/5 l , 0) −− (6/5 l , 0)) ;
7 draw woodBlock (l , w) shifted (0 , r) ;
8 draw wheel (r , 0) shifted (r , 1/2 r) ;
9 draw wheel (r , 0) shifted (l−r , 1/2 r) ;

10 draw weight . s (h) shifted (1/2 l , r + w) ;

8.5 Some knots

1 path p [] ;
2 p1 := (dir (90)∗4/3cm) {dir (0)} . . tension 3/2
3 . . (dir (90 + 120)∗4/3cm){ dir (90 + 30)} . . tension 3/2
4 . . (dir (90 − 120)∗4/3cm){ dir (−90 − 30)} . . tension 3/2
5 . . cycle ;
6 p1 := p1 scaled 6/5 ;
7 addStrandToKnot (primeOne) (p1 , 1/4cm, ” l ” , ” 1 , −1, 1”) ;
8 draw knotFromStrands (primeOne) ;
9 p2 := (0 , 2cm) . . (1/2cm, 3/2cm) . . (−1/2cm, 0)

10 . . (1/2cm, −2/3cm) . . (4/3cm, 0) . . (0 , 17/12cm)

13

11 . . (−4/3cm, 0) . . (−1/2cm, −2/3cm) . . (1/2cm, 0)
12 . . (−1/2cm, 3/2cm) . . cycle ;
13 p2 := p2 scaled 6/5 ;
14 addStrandToKnot (primeTwo) (p2 , 1/4cm, ” l ” , ” 1 , −1, 1 , −1, 1”) ;
15 draw knotFromStrands (primeTwo) shifted (4cm, 0) ;
16 p3 := (dir (0)∗3/2cm) . . (dir (1∗72)∗2/3cm)
17 . . (dir (2∗72)∗3/2cm) . . (dir (3∗72)∗2/3cm)
18 . . (dir (4∗72)∗3/2cm) . . (dir (0)∗2/3cm)
19 . . (dir (1∗72)∗3/2cm) . . (dir (2∗72)∗2/3cm)
20 . . (dir (3∗72)∗3/2cm) . . (dir (4∗72)∗2/3cm)
21 . . cycle ;
22 p3 := (p3 rotated (72/4)) scaled 6/5 ;
23 addStrandToKnot (primeThree) (p3 , 1/4cm, ” l ” , ”−1, 1 , −1, 1 , −1”) ;
24 draw knotFromStrands (primeThree) shifted (8cm, 0) ;

14

