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Abstract
The MetaPost package bpolynomial.mp helps drawing polynomial func-

tions of up to degree three. It provides macros to calculate Bézier curves
exactly matching a given constant, linear, quadratic or cubic polynomial.
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1 Introduction
MetaPost has a variable type path that can be used for drawing smooth and
visualy pleasing curves. Internally, paths are Bézier curves and MetaPost is able
to calculate the points along such a curve.1

When drawing graphs, the problem users are confronted with is how to define
a suitable path representing a given function f(x)? The splines package by
Dan Luecking provides macros to draw smooth piece-wise Bézier curves through
arbitrary sample points. [2] However, since Bézier curves are polynomials of
degree three, we can do better with just one Bézier curve segment for such
polynomials. This package eases the task of finding a Bézier curve matching a
given polynomial

f(x) = ax3 + bx2 + cx+ d (1)
∗This document describes bpolynomial.mp v0.3, last revised 11/26/2007.
†stephanhennig@arcor.de
1Since PostScript has a concept of Bézier curves, too, for MetaPost drawing a path is

simply an act of copying the parameters of the corresponding Bézier curve into PostScript
output. But nonetheless MetaPost can calculate points on a Bézier curve.
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2 Usage
2.1 Macro newBPolynomial

The bpolynomial.mp package provides just one macro newBPolynomial. This
macro takes one suffix parameter and four numeric parameters that are the
coefficients of the given polynomial. A polynomial definition for a function

f(x) = 2x3 + 0x2 − 3x− 1 (2)

exemplary looks like this

newBPolynomial.f(2, 0, -3, -1);

Here, suffix parameter f serves as an identifier where some names of macros and
variables, that have to be called later, are derived from and the parameters 2, 0,
−3, −1 match the coefficients of our function f . To be more precise, command

newBPolynomial.<suffix>()

defines two new macros

<suffix>.getPath()

and

<suffix>.eval()

that do the real work.

2.2 Macro <suffix>.getPath

Macro <suffix>.getPath(xmin, xmax) returns a path exactly matching the
polynomial defined by newBPolynomial.<suffix> on the intervall [xmin, xmax].
Let’s have a look at an example. Drawing our polynomial f(x) on the intervall
(−2, 2) can be done with the following code (figure 1).

newBPolynomial.f(2, 0, -3, -1);
draw f.getPath(-2, 2) xscaled 1cm yscaled 0.1cm;

Once a polynomial 〈suffix〉 has been defined <suffix>.getPath can be called
as often as required with varying arguments and returns a path corresponding
to the requested section of polynomial 〈suffix〉.

Note, since the bpolynomial.mp package never uses 〈suffix〉 as a complete
identifier, you can use that as the name of a path variable to store the path re-
turned by <suffix>.getPath for later drawing. Any other path (array) variable
serves the same purpose, though.
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Figure 1: A cubic polynomial.
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Figure 2: With stars.

newBPolynomial.f(2, 0, -3, -1);
path f;
f := f.getPath(-2, 2);
draw f xscaled 1cm yscaled 0.1cm;

2.3 Macro <suffix>.eval

The other macro defined by newBPolynomial.<suffix>, macro <suffix>.eval,
can be used to evaluate polynomial 〈suffix〉 at a given x-coordinate. This macro
takes one parameter—the x-coordinate. A “starred” version of our polynomial
can be plotted with the following code (figure 2).

newBPolynomial.f(2, 0, -3, -1);
for x=-2 step .25 until 2:

label(btex $\star$ etex, (x, f.eval(x)) xscaled 1cm yscaled 0.1cm);
endfor

2.4 Accessing polynomial coefficients
Additionally, macro newBPolynomial.<suffix> saves the coefficients passed as
arguments in variables <suffix>.a, <suffix>.b, <suffix>.c and <suffix>.d
for later reference.

3 Examples
In the first example a simple corrdinate system is drawn manually. Then a
quadratic polynomial f is drawn in three strokes. Two dahsed strokes correspond
to the positive values of f, a dotted stroke corresponds to negative values.
Finally, a cubic polynomials g is plotted and a table of points is written to the
console and log file (figure 3).

numeric u;
u := 0.5cm;

%%% Draw a coordinate system.
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Figure 3: Two polynomials in a coordinate system.

xmin := -5; xmax := 6;
ymin := -5; ymax := 6;
drawarrow ((xmin,0)--(xmax,0)) scaled u;
drawarrow ((0,ymin)--(0,ymax)) scaled u;
drawoptions(withpen pencircle scaled 1bp);
%%% Define polynomial f of degree 2.

path f[];
newBPolynomial.f(0, 0.5, -2, 0);
f1 := f.getPath(-2, 0);
f2 := f.getPath(0, 4);
f3 := f.getPath(4, 5.5);
draw f1 scaled u dashed evenly scaled 2;
draw f3 scaled u dashed evenly scaled 2;
draw f2 scaled u dashed withdots

withpen pencircle scaled 1.5bp withcolor .5white;
%%% Define polynomial g of degree 3.

path g;
newBPolynomial.g(0.3, 0, -3, -1);
g := g.getPath(-3.5, 4);
show g;
draw g scaled u;
%%% Write table with some points of g to log file.
show "Polynomial: " & decimal g.a & "x^3+" & decimal g.b

& "x^2+" & decimal g.c & "x+" & decimal g.d;
for x=-5 upto 5:

show (x, g.eval(x));
endfor

Note command show g that writes path g to the log file. Inspecting that
we can easily verify, that g consists of just one path segment:
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Figure 4: Packages bpolynomial.mp and graph interacting.

(-3.5,-3.36273)..controls (-1,16.70013) and (1.5,-22.30025)..(4,6.2002)

The next example demonstrates how bpolynomial.mp and John Hobby’s
graph package[1] can be used together to draw polynomials in a coordinate
system. Instead of draw paths have just to be drawn with a gdraw command.
The latter macro additionally clips paths to the boundaries of the coordinate
system (figure 4).

path f,g;
xmin := -7; xmax := 7;
ymin := -7; ymax := 7;
newBPolynomial.f(0, 0.5, -2, 0);
f := f.getPath(xmin, xmax);
newBPolynomial.g(0.3, 0, -3, -1);
g := g.getPath(xmin, xmax);
draw begingraph(10cm, 6cm);

setrange(xmin,ymin, xmax,ymax);
autogrid(grid.bot, grid.lft)

dashed withdots withpen pencircle scaled .7bp withcolor .5white;
drawoptions(withpen pencircle scaled 1bp);
gdraw f dashed evenly scaled 2;
gdraw g;
drawoptions();

endgraph;

The code of all examples can also be found in file examples.mp.
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4 Mathematics
A Bézier curve P (t) with end points A = (xA, yA) and D = (xD, yD) and control
points B = (xB , yB) and C = (xC , yC) is defined as

P (t) =
(
x
y

)
(t) = A+3(B−A)t+3(C−2B+A)t2+(D−3C+3B−A)t3, 0 ≤ t ≤ 1.

(3)
An arbitrary function y = f(x) can be written in parameter form as

F (t) =
(
x
y

)
(t) =

(
x(t)
f
(
x(t)
)) , t ∈ R (4)

with parameter t.
For a function

f(x) = ax3 + bx2 + cx+ d, x ∈ [x0, x1] (5)

we have
x(t) = x0 + (x1 − x0)t, 0 ≤ t ≤ 1 (6)

and hence

F (t) =
(

x0 + (x1 − x0)t
ax(t)3 + bx(t)2 + cx(t) + d

)
, 0 ≤ t ≤ 1. (7)

Writing F(t) down explicitly is left as an exercise for the interested reader.
Finally, setting

P (t) = F (t) (8)

and sorting the coefficients of the tk one arrives at the following original equation
system:

xA = x0 (9)
3(xB − xA) = x1 − x0 (10)

3(xC − 2xB + xA) = 0 (11)
xD − 3xC + 3xB − xA = 0 (12)

yA = ax3
0 + bx2

0 + cx0 + d (13)
3(yB − yA) = 3ax2

0(x1 − x0) + 2bx0(x1 − x0) + c(x1 − x0) (14)
3(yC − 2yB + yA) = 3ax0(x1 − x0)2 + b(x1 − x0)2 (15)

yD − 3yC + 3yB − yA = a(x1 − x0)3 (16)

Note, there are only constants on the right-hand side of all equations. That is,
this equation system is linear in the eight variables xA, xB , xC , xD, yA, yB , yC ,
yD.

Since MetaPost can solve linear equation systems, hacking equations 9 to 16
into MetaPost code and requesting a path segment
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(xA,yA)..controls (xB,yB) and (xC,yC)..(xD,yD)

returns the polynomial shaped curve we are looking for.
Internally, the bpolynomial.mp package does not solve the original equation

system, but a modified variant, that is numerically slightly more robust.
Equations 9 to 12 can be written down explicitly as

xA = x0 (17)

xB = x0 + 1
3

(x1 − x0) (18)

xC = x1 −
1
3

(x1 − x0) (19)

xD = x1 (20)

Additionally, we know that D = (xD, yD) is a point on the polynomial.
Therefore, equation 16 of the original system can be replaced by

yD = ax3
1 + bx2

1 + cx1 + d (21)

Equations 13 to 15 of the original equation system and the new equations 17
to 21 constitute the modified equation system, that is solved in bpolynomial.mp.

Happy TEXing!
Stephan Hennig
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