The bpolynomial.mp package*

Stephan Hennig ${ }^{\dagger}$

November 26, 2007

Abstract

The MetaPost package bpolynomial.mp helps drawing polynomial functions of up to degree three. It provides macros to calculate Bézier curves exactly matching a given constant, linear, quadratic or cubic polynomial.

Contents

1 Introduction

2 Usage
2.1 Macro newBPolynomial
2.2 Macro<suffix>.getPath 2
2.3 Macro <suffix>.eval . 3
2.4 Accessing polynomial coefficients.3

1 Introduction

MetaPost has a variable type path that can be used for drawing smooth and visualy pleasing curves. Internally, paths are Bézier curves and MetaPost is able to calculate the points along such a curve. ${ }^{1}$

When drawing graphs, the problem users are confronted with is how to define a suitable path representing a given function $f(x)$? The splines package by Dan Luecking provides macros to draw smooth piece-wise Bézier curves through arbitrary sample points. [2] However, since Bézier curves are polynomials of degree three, we can do better with just one Bézier curve segment for such polynomials. This package eases the task of finding a Bézier curve matching a given polynomial

$$
\begin{equation*}
f(x)=a x^{3}+b x^{2}+c x+d \tag{1}
\end{equation*}
$$

[^0]
2 Usage

2．1 Macro newBPolynomial

The bpolynomial．mp package provides just one macro newBPolynomial．This macro takes one suffix parameter and four numeric parameters that are the coefficients of the given polynomial．A polynomial definition for a function

$$
\begin{equation*}
f(x)=2 x^{3}+0 x^{2}-3 x-1 \tag{2}
\end{equation*}
$$

exemplary looks like this

```
newBPolynomial.f(2, 0, -3, -1);
```

Here，suffix parameter f serves as an identifier where some names of macros and variables，that have to be called later，are derived from and the parameters 2,0 ， $-3,-1$ match the coefficients of our function f ．To be more precise，command
newBPolynomial.<suffix>()
defines two new macros

```
<suffix>.getPath()
```

and
<suffix>.eval()
that do the real work．

2．2 Macro＜suffix＞．getPath

Macro＜suffix＞．getPath（xmin，xmax）returns a path exactly matching the polynomial defined by newBPolynomial．＜suffix＞on the intervall［xmin，xmax］． Let＇s have a look at an example．Drawing our polynomial $f(x)$ on the intervall $(-2,2)$ can be done with the following code（figure 1 ）．

```
newBPolynomial.f(2, 0, -3, -1);
draw f.getPath(-2, 2) xscaled 1cm yscaled 0.1cm;
```

Once a polynomial 〈suffix〉 has been defined＜suffix＞．getPath can be called as often as required with varying arguments and returns a path corresponding to the requested section of polynomial 〈suffix〉．

Note，since the bpolynomial．mp package never uses 〈suffix〉 as a complete identifier，you can use that as the name of a path variable to store the path re－ turned by＜suffix＞．getPath for later drawing．Any other path（array）variable serves the same purpose，though．

Figure 1: A cubic polynomial.

Figure 2: With stars.

```
newBPolynomial.f(2, 0, -3, -1);
path f;
f := f.getPath(-2, 2);
draw f xscaled 1cm yscaled 0.1cm;
```


2.3 Macro <suffix>.eval

The other macro defined by newBPolynomial.<suffix>, macro <suffix>.eval, can be used to evaluate polynomial 〈suffix〉 at a given x-coordinate. This macro takes one parameter- the x-coordinate. A "starred" version of our polynomial can be plotted with the following code (figure 2).

```
newBPolynomial.f(2, 0, -3, -1);
for x=-2 step . }25\mathrm{ until 2:
    label(btex $\star$ etex, (x, f.eval(x)) xscaled 1cm yscaled 0.1cm);
endfor
```


2.4 Accessing polynomial coefficients

Additionally, macro newBPolynomial.<suffix> saves the coefficients passed as arguments in variables <suffix>.a, <suffix>.b, <suffix>.c and <suffix>.d for later reference.

3 Examples

In the first example a simple corrdinate system is drawn manually. Then a quadratic polynomial f is drawn in three strokes. Two dahsed strokes correspond to the positive values of f, a dotted stroke corresponds to negative values. Finally, a cubic polynomials g is plotted and a table of points is written to the console and \log file (figure 3).

```
numeric u;
u := 0.5cm;
    %%% Draw a coordinate system.
```


Figure 3: Two polynomials in a coordinate system.

```
    xmin := -5; xmax := 6;
    ymin := -5; ymax := 6;
    drawarrow ((xmin,0)--(xmax,0)) scaled u;
    drawarrow ((0,ymin)--(0,ymax)) scaled u;
    drawoptions(withpen pencircle scaled 1bp);
    %%% Define polynomial f of degree 2.
path f[];
    newBPolynomial.f(0, 0.5, -2, 0);
    f1 := f.getPath(-2, 0);
    f2 := f.getPath(0, 4);
    f3 := f.getPath(4, 5.5);
    draw f1 scaled u dashed evenly scaled 2;
    draw f3 scaled u dashed evenly scaled 2;
    draw f2 scaled u dashed withdots
        withpen pencircle scaled 1.5bp withcolor .5white;
    %%% Define polynomial g of degree 3.
path g;
    newBPolynomial.g(0.3, 0, -3, -1);
    g := g.getPath(-3.5, 4);
    show g;
    draw g scaled u;
    %%% Write table with some points of g to log file.
    show "Polynomial: " & decimal g.a & "x^3+" & decimal g.b
        & "x^2+" & decimal g.c & "x+" & decimal g.d;
    for x=-5 upto 5:
        show (x, g.eval(x));
    endfor
```

Note command show g that writes path g to the log file. Inspecting that we can easily verify, that g consists of just one path segment:

Figure 4: Packages bpolynomial.mp and graph interacting.
$(-3.5,-3.36273) .$. controls $(-1,16.70013)$ and $(1.5,-22.30025) . .(4,6.2002)$
The next example demonstrates how bpolynomial.mp and John Hobby's graph package[1] can be used together to draw polynomials in a coordinate system. Instead of draw paths have just to be drawn with a gdraw command. The latter macro additionally clips paths to the boundaries of the coordinate system (figure 4).

```
path f,g;
    xmin := -7; xmax := 7;
    ymin := -7; ymax := 7;
    newBPolynomial.f(0, 0.5, -2, 0);
    f := f.getPath(xmin, xmax);
    newBPolynomial.g(0.3, 0, -3, -1);
    g := g.getPath(xmin, xmax);
    draw begingraph(10cm, 6cm);
        setrange(xmin,ymin, xmax,ymax);
        autogrid(grid.bot, grid.lft)
            dashed withdots withpen pencircle scaled .7bp withcolor .5white;
        drawoptions(withpen pencircle scaled 1bp);
        gdraw f dashed evenly scaled 2;
        gdraw g;
        drawoptions();
    endgraph;
```

The code of all examples can also be found in file examples.mp.

4 Mathematics

A Bézier curve $P(t)$ with end points $A=\left(x_{A}, y_{A}\right)$ and $D=\left(x_{D}, y_{D}\right)$ and control points $B=\left(x_{B}, y_{B}\right)$ and $C=\left(x_{C}, y_{C}\right)$ is defined as
$P(t)=\binom{x}{y}(t)=A+3(B-A) t+3(C-2 B+A) t^{2}+(D-3 C+3 B-A) t^{3}, \quad 0 \leq t \leq 1$.
An arbitrary function $y=f(x)$ can be written in parameter form as

$$
\begin{equation*}
F(t)=\binom{x}{y}(t)=\binom{x(t)}{f(x(t))}, \quad t \in \mathbb{R} \tag{4}
\end{equation*}
$$

with parameter t.
For a function

$$
\begin{equation*}
f(x)=a x^{3}+b x^{2}+c x+d, \quad x \in\left[x_{0}, x_{1}\right] \tag{5}
\end{equation*}
$$

we have

$$
\begin{equation*}
x(t)=x_{0}+\left(x_{1}-x_{0}\right) t, \quad 0 \leq t \leq 1 \tag{6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
F(t)=\binom{x_{0}+\left(x_{1}-x_{0}\right) t}{a x(t)^{3}+b x(t)^{2}+c x(t)+d}, \quad 0 \leq t \leq 1 \tag{7}
\end{equation*}
$$

Writing $F(\mathrm{t})$ down explicitly is left as an exercise for the interested reader.
Finally, setting

$$
\begin{equation*}
P(t)=F(t) \tag{8}
\end{equation*}
$$

and sorting the coefficients of the t^{k} one arrives at the following original equation system:

$$
\begin{align*}
x_{A} & =x_{0} \tag{9}\\
3\left(x_{B}-x_{A}\right) & =x_{1}-x_{0} \tag{10}\\
3\left(x_{C}-2 x_{B}+x_{A}\right) & =0 \tag{11}\\
x_{D}-3 x_{C}+3 x_{B}-x_{A} & =0 \tag{12}\\
y_{A} & =a x_{0}^{3}+b x_{0}^{2}+c x_{0}+d \tag{13}\\
3\left(y_{B}-y_{A}\right) & =3 a x_{0}^{2}\left(x_{1}-x_{0}\right)+2 b x_{0}\left(x_{1}-x_{0}\right)+c\left(x_{1}-x_{0}\right) \tag{14}\\
3\left(y_{C}-2 y_{B}+y_{A}\right) & =3 a x_{0}\left(x_{1}-x_{0}\right)^{2}+b\left(x_{1}-x_{0}\right)^{2} \tag{15}\\
y_{D}-3 y_{C}+3 y_{B}-y_{A} & =a\left(x_{1}-x_{0}\right)^{3} \tag{16}
\end{align*}
$$

Note, there are only constants on the right-hand side of all equations. That is, this equation system is linear in the eight variables $x_{A}, x_{B}, x_{C}, x_{D}, y_{A}, y_{B}, y_{C}$, y_{D}.

Since MetaPost can solve linear equation systems, hacking equations 9 to 16 into MetaPost code and requesting a path segment

$$
\left(x_{A}, y_{A}\right) \ldots \text { controls }\left(x_{B}, y_{B}\right) \text { and }\left(x_{C}, y_{C}\right) \ldots\left(x_{D}, y_{D}\right)
$$

returns the polynomial shaped curve we are looking for.
Internally, the bpolynomial.mp package does not solve the original equation system, but a modified variant, that is numerically slightly more robust.

Equations 9 to 12 can be written down explicitly as

$$
\begin{align*}
& x_{A}=x_{0} \tag{17}\\
& x_{B}=x_{0}+\frac{1}{3}\left(x_{1}-x_{0}\right) \tag{18}\\
& x_{C}=x_{1}-\frac{1}{3}\left(x_{1}-x_{0}\right) \tag{19}\\
& x_{D}=x_{1} \tag{20}
\end{align*}
$$

Additionally, we know that $D=\left(x_{D}, y_{D}\right)$ is a point on the polynomial. Therefore, equation 16 of the original system can be replaced by

$$
\begin{equation*}
y_{D}=a x_{1}^{3}+b x_{1}^{2}+c x_{1}+d \tag{21}
\end{equation*}
$$

Equations 13 to 15 of the original equation system and the new equations 17 to 21 constitute the modified equation system, that is solved in bpolynomial.mp.

Happy $T_{E} X i n g!$

Stephan Hennig

References

[1] Hobby, John D., Drawing graphs with MetaPost, http://www.tug.org/docs/metapost/mpgraph.pdf
[2] Luecking, Dan, Macros to compute splines, 2005, CTAN:graphics/metapost/contrib/macros/splines/splines.pdf

[^0]: *This document describes bpolynomial.mp v0.3, last revised 11/26/2007.
 ${ }^{\dagger}$ stephanhennig@arcor.de
 ${ }^{1}$ Since PostScript has a concept of Bézier curves, too, for MetaPost drawing a path is simply an act of copying the parameters of the corresponding Bézier curve into PostScript output. But nonetheless MetaPost can calculate points on a Bézier curve.

