
The bpolynomial package∗

Stephan Hennig†

November 28, 2007

Abstract
The MetaPost package bpolynomial helps drawing polynomial func-

tions of up to degree three. It provides macros to calculate Bézier curves
exactly matching a given constant, linear, quadratic or cubic polynomial.
Additionally, paths of derivatives and tangents can be calculated.

Contents
1 Introduction 1

2 Usage 2
2.1 newBPolynomial 2
2.2 <suffix>.getPath . . . 2
2.3 <suffix>.eval 3

2.4 <suffix>.getTangent . 4
2.5 Dealing with derivatives 4
2.6 Accessing polynomial

coefficients 5

3 Examples 5

4 Mathematics 9

1 Introduction
MetaPost has a variable type path that can be used for drawing smooth and
visualy pleasing curves. Internally, paths are Bézier curves and MetaPost is able
to calculate the points along such a curve.1

When drawing graphs, the problem users are confronted with is how to define
a suitable path representing a given function f(x)? The splines package by Dan
Luecking provides macros to draw smooth piece-wise Bézier curves through
arbitrary sample points. [4] However, since Bézier curves are polynomials of
degree three, we can do better with just one Bézier curve segment for such
polynomials. This package eases the task of finding a Bézier curve matching a
given polynomial

f(x) = ax3 + bx2 + cx+ d (1)
∗This document describes bpolynomial v0.4, last revised 11/28/2007.
†stephanhennig@arcor.de
1Since PostScript has a concept of Bézier curves, too, for MetaPost drawing a path is

simply an act of copying the parameters of the corresponding Bézier curve into PostScript
output. But nonetheless MetaPost can calculate points on a Bézier curve.

1

2 Usage
2.1 newBPolynomial

The bpolynomial package provides just one macro newBPolynomial. This macro
takes one suffix argumant and four numeric arguments that are the coefficients
of the given polynomial. A polynomial definition for a function

f(x) = 2x3 + 0x2 − 3x− 1 (2)

exemplary looks like this

newBPolynomial.f(2, 0, -3, -1);

Here, numbers 2, 0, −3, −1 match the coefficients of our function f . The suffix
argument f serves as an identifier where some names of macros and variables,
that have to be called later, are derived from. To be more precise, command

newBPolynomial.<suffix>

defines three new macros

<suffix>.getPath
<suffix>.eval
<suffix>.getTangent

that do the real work. These macros are described in the following sections.

2.2 <suffix>.getPath

Macro <suffix>.getPath(xmin, xmax) returns a path exactly matching the
polynomial defined by newBPolynomial.<suffix> on an intervall [xmin, xmax].
Let’s have a look at an example. Drawing our polynomial f(x) on the intervall
(−2, 2) can be done with the following code (figure 1).

newBPolynomial.f(2, 0, -3, -1);
draw f.getPath(-2, 2) transformed T;

Note, since the base unit of MetaPost is a big point (1 bp) in most cases
polynomials have to be scaled to a proper size before plotting. It is not recom-
mended, however, to apply scaling to the polynomial coefficients, since current
MetaPost versions2 can’t handle large numbers very well. Instead, scaling should
be applied to the path during the draw operation. In this manual, scaling is
applied by an affine transform

T = identity xscaled 10mm yscaled 1mm;

2At the time of writing the latest release is MetaPost v1.002.

2

Figure 1: A cubic polynomial.

(1.5, 1.25)

Figure 2: With a labelled point.

Once a polynomial 〈suffix〉 has been defined <suffix>.getPath can be called
as often as required with varying arguments and returns a path corresponding
to the requested section of polynomial 〈suffix〉.

Hint: Since the bpolynomial package never uses 〈suffix〉 as a complete identi-
fier, you can use that as the name of a path variable to store the path returned
by <suffix>.getPath for later drawing. Any other path (array) variable serves
the same purpose, though.

newBPolynomial.f(2, 0, -3, -1);
path f;
f := f.getPath(-2, 2);
draw f transformed T;

2.3 <suffix>.eval

Macro <suffix>.eval can be used to evaluate polynomial 〈suffix〉 at a given
x-coordinate. The macro takes one argument—the x-coordinate. Labelling an
arbitrary point on a polynomial can be done as follows (figure 2).

newBPolynomial.f(2, 0, -3, -1);
draw f.getPath(-2, 2) transformed T;
x := 1.5;
show (x, f.eval(x));
dotlabeldiam := 2bp;
dotlabel.ulft(btex $(1.5, 1.25)$ etex, (x, f.eval(x)) transformed T);

Note, the label has been provided explicitly in this example (after reading the
coordinates off the log file). It is also possible to attach the correct coordinates
automatically with the help of the MetaPost package LaTeXMP and the LATEX
package numprint. While the former helps passing dynamically generated text
from MetaPost to LATEX, the latter can be used to format and round numbers. [1,
5].

3

2.4 <suffix>.getTangent

Macro <suffix>.getTangent returns a path tangent to polynomial 〈suffix〉.
This macro takes three numeric arguments, the coordinate x where the tangent
should touch polynomial 〈suffix〉, and two values ε−, ε+ that specify the range
the tangent is drawn in. These arguments are not the range boundaries, but
the neighbourhood around x. The range is [x + ε−, x + ε+]. This syntax has
been choosen to make is easier to move a tangent along a polynomial, keeping
the neighbourhood fixed.

As an example, the following code draws a tangent that touches f at x = −1
with a neighbourhood ε = ±1 (figure 3).

newBPolynomial.f(2, 0, -3, -1);
draw f.getPath(-2, 2) transformed T;
draw f.getTangent(-1, -1, 1) transformed T;

2.5 Dealing with derivatives
Additionally to drawing polynomials, the bpolynomial package supports drawing
derivatives of polynomials and tangents thereof. In section 2.1 it was said macro
newBPolynomial defines three new macros. But this is not the full story. In
fact, the command

newBPolynomial.<suffix>

defines twelve macros, three of them we already know, <suffix>.getPath,
<suffix>.eval, <suffix>.getTangent. The remaining nine macros are sim-
ilar, but correspond to the first, second and third derivative of a polynomial
〈suffix〉, resp. To access these macros just add the required number of prime
characters to the suffix name (three at maximum). For instance, to get the path
corresponding to the first derivative of polynomial 〈suffix〉 call

<suffix>’.getPath

and to get a tangent on the first derivative call

<suffix>’.getTangent.

In total these are the macros defined by newBPolynomial.<suffix>:

<suffix>.getPath
<suffix>.eval
<suffix>.getTangent
<suffix>’.getPath
<suffix>’.eval
<suffix>’.getTangent

<suffix>’’.getPath
<suffix>’’.eval
<suffix>’’.getTangent
<suffix>’’’.getPath
<suffix>’’’.eval
<suffix>’’’.getTangent

As an example, the following code draws a tangent on the first derivative of
a polynomial f (figure 4).

4

Figure 3: Cubic polynomial with a
tangent.

Figure 4: First derivative with a
tangent.

newBPolynomial.f(2, 0, -3, -1);
draw f’.getPath(-2, 2) transformed T;
draw f’.getTangent(1, -1, 1) transformed T;

2.6 Accessing polynomial coefficients
The coefficients passed to newBPolynomial.<suffix> are saved in variables
<suffix>.a, <suffix>.b, <suffix>.c and <suffix>.d and can be accessed
by the user.

3 Examples
This section contains some more elaborate examples. The code of all examples
can also be found in file examples.mp.

In the first example a simple coordinate system is drawn manually. Then a
quadratic polynomial f is drawn in three strokes. Two dashed strokes correspond
to the positive values of f, a dotted stroke corresponds to negative values.
Finally, a cubic polynomial g is plotted and a table of points is written to the
console and log file (figure 5).

numeric u;
u := 0.5cm;

%%% Draw a coordinate system.
xmin := -5; xmax := 6;
ymin := -5; ymax := 6;
drawarrow ((xmin,0)--(xmax,0)) scaled u;
drawarrow ((0,ymin)--(0,ymax)) scaled u;
drawoptions(withpen pencircle scaled 1bp);
%%% Define polynomial f of degree 2.

path f[];
newBPolynomial.f(0, 0.5, -2, 0);
f1 := f.getPath(-2, 0);

5

Figure 5: Two polynomials in a coordinate system.

f2 := f.getPath(0, 4);
f3 := f.getPath(4, 5.5);
draw f1 scaled u dashed evenly scaled 2;
draw f3 scaled u dashed evenly scaled 2;
draw f2 scaled u dashed withdots

withpen pencircle scaled 1.5bp withcolor .5white;
%%% Define polynomial g of degree 3.

path g;
newBPolynomial.g(0.3, 0, -3, -1);
g := g.getPath(-3.5, 4);
show g;
draw g scaled u;
%%% Write table with some points of g to log file.
show "Polynomial: " & decimal g.a & "x^3+" & decimal g.b

& "x^2+" & decimal g.c & "x+" & decimal g.d;
for x=-5 upto 5:

show (x, g.eval(x));
endfor

Note command show g that writes path g to the log file. Inspecting that
we can easily verify g consists of just one path segment:

(-3.5,-3.36273)..controls (-1,16.70013) and (1.5,-22.30025)..(4,6.2002)

The next example demonstrates how bpolynomial and John Hobby’s graph
package[2] can be used together to draw polynomials in a coordinate system.
Instead of draw paths have just to be drawn with a gdraw command. The
latter macro additionally clips paths to the boundaries of the coordinate system
(figure 6).

path f,g;

6

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Figure 6: Packages bpolynomial and graph interacting.

xmin := -7; xmax := 7;
ymin := -7; ymax := 7;
newBPolynomial.f(0, 0.5, -2, 0);
f := f.getPath(xmin, xmax);
newBPolynomial.g(0.3, 0, -3, -1);
g := g.getPath(xmin, xmax);
draw begingraph(10cm, 6cm);

setrange(xmin,ymin, xmax,ymax);
autogrid(grid.bot, grid.lft) dashed evenly withcolor .9white;
drawoptions(withpen pencircle scaled 1bp);
gdraw f dashed evenly scaled 2;
gdraw g;
drawoptions();

endgraph;

In the last example a cubic polynomial f is drawn together with its deriva-
tives f ′, f ′′ and f ′′′. Additionally, for all four functions the tangents are drawn
at x = 2. Admittedly, the plot is a little bit crowded. But it should only serve
as an example (figure 7).

xmin := -6; xmax := 6;
ymin := -6; ymax := 6;
newBPolynomial.f(0.3, -0.5, -0.5, -1);
draw begingraph(10cm, 6cm);

setrange(xmin,ymin, xmax,ymax);
autogrid(grid.bot, grid.lft) dashed evenly withcolor .9white;
drawoptions(withpen pencircle scaled 1bp);
%%% Draw f and its derivatives f’, f’’, f’’’.

7

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 7: A cubic polynomial with derivatives and tangents.

gdraw f.getPath(xmin, xmax);
gdraw f’.getPath(xmin, xmax) dashed evenly scaled 2;
gdraw f’’.getPath(xmin, xmax) dashed withdots

withpen pencircle scaled 2bp;
gdraw f’’’.getPath(-5, 5) withcolor .6white;
%%% Draw tangents and mark points.
x := 2;
drawoptions(withcolor red+.6(green+blue));
gdraw f.getTangent(x, -2, 2);
gdraw f’.getTangent(x, -1, 1);
gdraw f’’.getTangent(x, -2, 2);
gdraw f’’’.getTangent(x, -2, 2);
drawoptions(withcolor blue+.6(red+green));
dotlabeldiam := 2.5bp;
gdotlabel("", (x, f.eval(x)));
gdotlabel("", (x, f’.eval(x)));
gdotlabel("", (x, f’’.eval(x)));
gdotlabel("", (x, f’’’.eval(x)));
drawoptions();

endgraph;

8

4 Mathematics
A Bézier curve P (t) with end points A = (xA, yA) and D = (xD, yD) and control
points B = (xB , yB) and C = (xC , yC) is defined as [3]

P (t) =
(
x
y

)
(t) = (1− t)3A+ 3(1− t)2tB+ 3(1− t)t2C+ t3D, 0 ≤ t ≤ 1. (3)

This equation can be rewritten as

P (t) = A+3(B−A)t+3(C−2B+A)t2 +(D−3C+3B−A)t3, 0 ≤ t ≤ 1. (4)

An arbitrary function y = f(x) can be written in parameter form as

F (t) =
(
x
y

)
(t) =

(
x(t)

f
(
x(t)
)) , t ∈ R (5)

with parameter t.
For a polynomial function

f(x) = ax3 + bx2 + cx+ d, x ∈ [x0, x1] (6)

we have
x(t) = x0 + (x1 − x0)t, 0 ≤ t ≤ 1 (7)

and hence

F (t) =
(

x0 + (x1 − x0)t
ax(t)3 + bx(t)2 + cx(t) + d

)
, 0 ≤ t ≤ 1. (8)

Writing F(t) down explicitly is left as an exercise for the interested reader.
Finally, setting

P (t) = F (t) (9)
and sorting the coefficients of the tk one arrives at the following original equation
system:

xA = x0 (10)
3(xB − xA) = x1 − x0 (11)

3(xC − 2xB + xA) = 0 (12)
xD − 3xC + 3xB − xA = 0 (13)

yA = ax3
0 + bx2

0 + cx0 + d (14)
3(yB − yA) = 3ax2

0(x1 − x0) + 2bx0(x1 − x0) + c(x1 − x0) (15)
3(yC − 2yB + yA) = 3ax0(x1 − x0)2 + b(x1 − x0)2 (16)

yD − 3yC + 3yB − yA = a(x1 − x0)3 (17)

Note, there are only constants on the right-hand side of all equations. That is,
this equation system is linear in the eight variables xA, xB , xC , xD, yA, yB , yC ,
yD.

Since MetaPost can solve linear equation systems, hacking equations 10 to 17
into MetaPost code and requesting a path segment

9

(xA,yA)..controls (xB,yB) and (xC,yC)..(xD,yD)

returns the polynomial shaped curve we are looking for.
Internally, the bpolynomial package does not solve the original equation sys-

tem, but a modified variant, that is numerically slightly more robust.
Equations 10 to 13 can be written down explicitly as

xA = x0 (18)

xB = x0 + 1
3

(x1 − x0) (19)

xC = x1 −
1
3

(x1 − x0) (20)

xD = x1 (21)

Additionally, we know that D = (xD, yD) is a point on the polynomial.
Therefore, equation 17 of the original system can be replaced by

yD = ax3
1 + bx2

1 + cx1 + d (22)

Equations 14 to 16 of the original equation system and the new equations 18
to 22 constitute the modified equation system, that is solved in bpolynomial.

Happy TEXing!
Stephan Hennig

References
[1] Harders, Harald, The numprint package, 2007,

CTAN:macros/latex/contrib/numprint/numprint.pdf

[2] Hobby, John D., Drawing graphs with MetaPost,
http://www.tug.org/docs/metapost/mpgraph.pdf

[3] Knuth, Donald E., The METAFONTbook, Addison-Wesley, Reading,
Massachusetts, 1986, (Computers & Typesetting, C)

[4] Luecking, Dan, Macros to compute splines, 2005,
CTAN:graphics/metapost/contrib/macros/splines/splines.pdf

[5] Morawski, Jens-Uwe, latexMP, 2005, CTAN:
graphics/metapost/contrib/macros/latexmp/doc/latexmp.pdf

10

