
mathsPIC(1) GeneralCommands Manual mathsPIC(1)

NAME
mathsPIC

AUTHORS
A. Syropoulos and R.W.D. Nickalls (April 26, 2010)

asyropoulos[at]<yahoo><com>
dick[at]<nickalls><org>

DESCRIPTION
mathsPIC is a Perl filter program for PiCTeX. mathsPIC has its own macro and macro library
capability, and allows use of mathsPIC, PiCTeX, TeX and LaTeX commands. A significant fea-
ture of mathsPIC is that it allows access to the command-line, and so allows the user to extend
mathsPIC commands by calling Perl and other programs written to perform particular drawing
actions. See the package manual for full details and examples. The latest version can be down-
loaded from

CTAN: tex-archive/graphics/pictex/mathspic/perl

Commands which can be used in the mathsPIC script file fall into four main groups (a) mathsPIC
macro commands (prefixed with %def), (b) regular mathsPIC commands (do not have a back-
slash), (c) regular PiCTeX commands (all have a backslash), and (d) regular TeX and LaTeX
commands (all have a backslash).

The following mathematics functions can used (note that decimal fractions having an absolute
value less than 1 must have a leading zero). Note also that all the trignometric functions require
their argument in radians.

Trigonometric: sin(), cos(), tan(), asin(), acos(), atan()

Remainder: rem(); eg var r=12rem(5)

Integer: int(); eg var r=int(3.87) --> 3

Sign (returns -1, 0, +1): sgn(); eg var s=sgn(-3.27)--> -1

Square root: sqrt(); eg var s = sqrt(14)

Exponentiation: **; eg var j = r**2

Pi constant (3.14159...):_Pi_ and _pi_

e constant (2.71828...):_E_ and _e_

Linethickness: _linethickness_ ;eg var t = _linethickness_

COMMAND-LINE USE
perl mathspic.pl [-b] [-c] [-h] [-o<outfile>] <infile>

-b enables beep if mathsPIC detects an error

mathsPIC perl version April26, 2010 1

mathsPIC(1) GeneralCommands Manual mathsPIC(1)

-c disables the writing of comments to output file

-h displays the help file

-o defines the output file name

MACRO COMMANDS
macro definition commands are prefixed with %def and can take either 0, 1, or more parameters.
Macros will generally be used as part of avar command as shown below. Macros are deleted
using the%undef command.

-----syntax:
%def MACRONAME(parameters)<macrodefinition>
%undef MACRONAME(parameters)

-----notes:
Notes: (a) the () must be used in the definition even if no parameters are used, (b) the name can
be any combination of upper and lower case characters and numbers, (c) when the macro is used
in a command it is prefixed by a & symbol, (d) it is a good idea to always place a % symbol at the
end of the definition, (e) comments (prefixed by a % symbol) can be placed after the macro defi-
nition just as in TeX or LaTeX.

-----examples:
%def d2r()_pi_/180% % degrees2radians
%def AreaOfRectangle(x,y)x*y% % width x, length y
%undef d2r() % delete the macro

-----use:
var j2= 6*(&d2r(45) + 23)
var a3 = 3*&AreaOfRectangle(5,7)

GENERAL COMMANDS
NUMERICAL EXPRESSIONS
When dealing with commands we will refer frequently to the term ‘numerical expression’ by
which is meant either (a) a number (integer or decimal), (b) a numeric variable or constant
(defined using the var or const command), (c) any mathsPIC function, macro, or mathematical
expression which evaluates to a number, or (d) a pair of point names (e.g. AB) representing the
Pythagorean distance between the two points. A leading zero must be used with decimal frac-
tions less than one.

In general, if a command’s argument accepts a number then it will also accept a ‘numerical
expression’ (<expr>) as defined above. Sometimes a following <unit> is associated with the num-
ber or numerical expression, in which case the number or numerical expression can be delimited
by a round bracket (or separated from the unit by a <space>), as shown in the following exam-
ples.

-----examples:
ArrowShape(3mm, 20,40)
var h=4

mathsPIC perl version April26, 2010 2

mathsPIC(1) GeneralCommands Manual mathsPIC(1)

ArrowShape(h mm, 20, 40)
ArrowShape((2*h)mm,20,40)

BACKSLASH \
A leading backslash without a following space indicates that it is part of a PiCTeX, TeX or
LaTeX command, inwhich case mathsPIC simply copies the whole line verbatim into the output
file. A leading backslash followed by one or more spaces makes mathsPIC copy the whole line
verbatim into the output file but without the backslash.

USING THE COLOR PACKAGE
The standard COLOR package can be used with mathsPIC, but note that it is important to load
the COLOR package after the mathsPIC package.

It is best to place a comment symbol % at the end of LaTeX and TeX commands to limit white
space at the end.

In the event of any colour-spill from a diagram into any following text (this used to be a problem
in early TeX implementations) consider using the \normalcolor command as a delimiter within
the \beginpicture...\endpicture environment.

==============================

ARROWSHAPE
This command defines the shape of an arrowhead, and allows different arrowheads to be cus-
tomised.

The default arrow shape is equivalent to the Arrowshape(2mm,30,40) command. This default
arrowhead shape can be reset using the Arrowshape(default) command, as shown in the following
example.

-----syntax:
arrowshape(<length>[units], <angledeg>, <angledeg>)

-----examples:
Arrowshape(4mm,30,60)
drawArrow(AB)
Arrowshape(default)

==============================

beginLOOP...endLOOP
This is an environment which cycles a block of code a specified number of times.

-----syntax:
beginLoop <expr>
...
endLoop

mathsPIC perl version April26, 2010 3

mathsPIC(1) GeneralCommands Manual mathsPIC(1)

-----notes:
The block of code which lies within the environment is input <expr> times.

-----example:
beginLoop 5
...
endLoop

==============================

beginSKIP...endSKIP
This is an ‘environment’ within which commands are not actioned. It is useful in development
for testing isolated commands and excluding other commands.

==============================

CONST
The const command is used to definescalar constants.Note that a constant-name must begin
with a single letter (either upper or lower case), and may have up to a maximum of three follow-
ing digits. Note that constants, variables and points have the same name structure, and a constant
could have the same name as a point (and so we suggest points have uppercase letters and vari-
ables and constantshave lowercase letters). The scalar argument can beany numeric expression.
New values cannot be re-allocated to existing constant-names. If this occurs mathsPIC will issue
an error message.

-----syntax:
const name = <expr>

-----examples:
const r = 20, r4 = r3*tan(0.3)

==============================

DashArray
The dasharray command takes an arbitrary number of paired arguments that are used to specify a
dash pattern.

-----syntax
dasharray(d1 , g1 , d2 , g2 , ...)

-----notes
The ds denotes the length of a dash and the gs denotes the length of the gap between two consec-
utive dashes. There must be an even number of arguments. If a variable or expression is used then
it should be separated from the unit either by a <space> or with round brackets () as shown
below.

-----example

mathsPIC perl version April26, 2010 4

mathsPIC(1) GeneralCommands Manual mathsPIC(1)

dasharray(6pt, 2pt, 1pt, 2pt)
var d=2
dasharray(6pt, 2pt, 1pt, d pt)
dasharray(6pt, 2pt, 1pt, (d)pt)
dasharray(6pt, 2pt, 1pt, (3*d)pt)

==============================

DrawAngleArc
This command draws an arc in the specified angle, a distance <radius> from the angle. The angle
is either <internal> (less than 180 deg) or <external> (greater than 180 deg). The direction of the
arc is either <clockwise> or <anticlockwise>, and this direction must correspond with the letter
sequence specified for the angle. Strange and unexpected results will be produced if the four
parameters are not internally consistent. The option order angle/radius/internal or external/clock-
wise or anticlockwise is important. The <radius> parameter can be any numerical expression.

-----syntax:
DrawAngleArc{angle(), radius(), external, clockwise}

-----example:
DrawAngleArc{angle(ABC), radius(3), external, clockwise}
var r=3
DrawAngleArc{angle(ABC), radius(r), external, clockwise}

==============================

DrawAngleArrow
This command draws a curved arrow in the specified angle, a distance <radius> from the angle.
The angle is either <internal> (less than 180 deg) or <external> (greater than 180 deg). The direc-
tion of the arrow is either <clockwise> or <anticlockwise>, and this direction must correspond
with the letter sequence specified for the angle. Strange and unexpected results will be produced
if the four parameters are not internally consistent. The option order angle/radius/internal/clock-
wise is important. The <radius> parameter can be any numerical expression.

-----syntax:
DrawAngleArrow{angle(), radius(), external, clockwise}

-----example:
DrawAngleArrow{angle(ABC), radius(3), external, clockwise}
var r=3
DrawAngleArrow{angle(ABC), radius(r), external, clockwise}

==============================

DrawArrow
This command draws an arrow(s) joining two points. The direction of the arrow is in the point
order specified.

mathsPIC perl version April26, 2010 5

mathsPIC(1) GeneralCommands Manual mathsPIC(1)

-----syntax:
drawArrow(<line> [,<line>] ...)

-----notes:
The length option can only refer to one arrow

-----example:
drawArrow(AB)
drawArrow(FG, HJ)

==============================

DrawCircle
This command draws a circle defined by its radius and the point-name of its centre. The
<radius> can be any numerical expression. If the units of the X and Y axes are different, circles
may be drawn strangely, and mathsPIC therefore generates a warning message to this effect.

-----syntax:
DrawCircle(<center>, <radius>)

-----examples:
drawCircle(C2,5)
drawCircle(C2,r2)
drawCircle(C2,r2/tan(1.3))
drawCircle(C2,AB)

==============================

DrawCircumcircle
This command draws the circumcircle of a triangle.

-----syntax:
DrawCircumcircle(<triangle>)

-----example:
drawCircumcircle(ABC)

==============================

DrawCurve
This command draws a smooth quadratic curve through three points in the point order specified.
Note that curves drawn using this command do not break to avoid line-free zones associated with
the points.

-----syntax:
DrawCurve(<point><point><point>)

-----example:

mathsPIC perl version April26, 2010 6

mathsPIC(1) GeneralCommands Manual mathsPIC(1)

drawCurve(ABC)

==============================

DrawExcircle
This command draws the excircle touching one side of a triangle.

-----syntax:
DrawExcircle(<triangle>, <side>)

-----example:
drawExcircle(ABC, BC)

==============================

DrawIncircle
This command draws the incircle of a triangle.

-----syntax:
DrawIncircle(<triangle>)

-----example:
drawIncircle(ABC)

==============================

DrawLine
This command draws a line joining two or more points. Use the Linethickness command to vary
thickness. This command uses the PiCTeX \putrule command for horizontal and vertical lines,
and the \plot command for all other orientations.

-----syntax:
DrawLine(<points> [, <points>])

-----notes:
<points> is any sequence of two or more point names.
<expr> is any numerical expression.
Lines are drawn in the order specified.
Lines are separated by a comma.

-----examples:
drawline(AB)
drawline(BCDE)
drawline(FG, HJK, PQRST)

==============================

DrawPerpendicular

mathsPIC perl version April26, 2010 7

mathsPIC(1) GeneralCommands Manual mathsPIC(1)

This command draws the perpendicular from a point to a line.

-----syntax:
DrawPerpendicular(<point>, <line)

-----example:
drawPerpendicular(P,AB)

==============================

DrawPoint
This command draws the point-symbol at thepoint-location. Commas must not be used to sepa-
rate point names. The default point-symbol is bullet unless an optional point-symbol (or string of
characters) is specified in the associated point command.

-----syntax:
DrawPoint(<point> [<point> ..])

-----examples:
drawpoint(T4)
drawpoint(ABCDEF)
drawpoint(P1 P2 P3 P4)

==============================

DrawRightangle
This command draws the standard right-angle symbol in the internal angle specified at the size
specified by <expr>.

-----syntax:
DrawRightangle(<angle>, <expr>)

-----notes:
The <expr> can be any numerical expression.

-----example:
drawRightangle(ABC,3)
drawRightangle(ABC,PQ)
var d=5
drawRightangle(ABC,d)

==============================

DrawSquare
This command draws a square defined by its side and the point-name of its centre. The <side-
length> can be any numerical expression.

-----syntax:

mathsPIC perl version April26, 2010 8

mathsPIC(1) GeneralCommands Manual mathsPIC(1)

DrawSquare(<centerpoint>, <sidelength>)

-----examples:
drawSquare(P,5)
var s2=3, j=2
drawSquare(P,s2)
drawSquare(P, s2*4/(3*j))
drawSquare(P,AB)

==============================

DrawThickArrow
This command draws a thick arrow(s) joining two points. The direction of the arrow is in the
point order specified. The shape of the arrowhead is controlled by the ArrowShape command.

-----syntax:
drawThickArrow(<line> [,<line>,...])

-----examples:
drawThickarrow(BC)
drawThickarrow(PQ, RS)

==============================

DrawThickLine
This command draws a thick line(s) joining two points. The direction of the line is in the point
order specified. Use the Linethickness command to vary thickness of a line.

-----syntax:
drawThickLine(<line> [,<line>,...])

-----examples:
drawThickline(BC)
drawThickline(PQ, RS)

==============================

InputFile
This command inputs a plain text file containing mathsPIC commands. Optionally, the file can
be input several times, in which case this command functions like a DO--LOOP. The <loopnum-
ber> can be any numerical expression. If the <loopnumber> is not an integer then mathsPIC will
round the value down to the nearest integer. See also the beginLOOP ... endLOOP commands.

-----syntax:
inputFile[*](<filename>)[<loopnumber>]

-----notes:
The inputfile* command is used to input a file in verbatim, i.e. a file with no mathsPIC

mathsPIC perl version April26, 2010 9

mathsPIC(1) GeneralCommands Manual mathsPIC(1)

commands, for example, a file containing only PiCTeX commands or data-points for plotting etc.
Note that the inputfile* command has no <loopnumber> option. Note also that PiCTeX requires a
ODD number of points.

-----examples:
inputFile(myfile.dat)[4]
inputFile*(mycurvedata.dat)

==============================

LineThickness
This command sets a particular linethickness. The command linethickness(default) restores the
working linethickness to the default value of 0.4pt.The current value of the linethickness (in cur-
rent units) can be accessed using the var command (this can be useful when drawing figures using
thick lines) .

-----syntax:
LineThickness(<expr><units>)
LineThickness(default)
var t = _linethickness_

-----notes:
This command also sets the font to cmr and plotsymbol to \CM . and also sets the rule thickness
for drawing horizontal and vertical lines. It is important to include a leading zero with decimal
fractions less than one.

-----examples:
linethickness(2pt)
var t=3
linethickness((t)pt)
lineThickness((2*t)pt)
linethickness(default)
var t = _linethickness_

-----caution:
Note that there is a similar PiCTeX command withthe same name (but with a different syntax).

==============================

PAPER
Defines the plotting area in terms of the options units(), xrange(), yrange(), axes(), and ticks().
The units() argument must contain a numeric value and a valid TeX length unit mm, cm, pt,
pc(pica), in(inch), bp(big point), dd(didot), cc(cicero), sp(scaled point). The X and Y axes can
have different units (see second example below). The axes() arguments XYTBLR refer to the X
and Y axes, and the Top, Bottom, Left and Right axes. A * following one of the axes disables
ticks on that axis. The X and Y axes pass through the zeros.

-----examples:

mathsPIC perl version April26, 2010 10

mathsPIC(1) GeneralCommands Manual mathsPIC(1)

paper{units(1cm),xrange(0,10),yrange(0,10)}
paper{units(2cm,1cm),xrange(0,10),yrange(0,10),axes(LB)}
paper{units(1mm),xrange(0,100),yrange(0,100),axes(XY)}
paper{units(1cm),xrange(-5,5),yrange(-5,5),axes(LRTBXY),ticks(1,1)}
paper{units(1cm),xrange(-5,5),yrange(-5,5),axes(LRT*B*)}

==============================

POINT
Defines a new point by allocating coordinates to a new point name. The * option re-allocates
coordinates to an existing point name.

-----syntax:
POINT[*](<name>){<point>}[symbol=<chars>, radius=<expr>]
POINT[*](<name>){<location>}[symbol=<chars>, radius=<expr>]

-----notes:
<name> one leading letter plus maximum of three trailing digits
<chars> any TeX string allowed in an \hbox{}
<expr> any numerical expression
The polar(r,theta) optiondefaults to radians for the angle theta. To work in degrees then must
append <deg> eg: polar(r,theta deg). Can use <direction()> and <directiondeg()> to replace
theta. Note that the termvector(AB) means use same (r, theta) as AB.

-----examples:
point(A){5,5}
point(B2){22,46}[symbol=\odot]
point(B2){22,46}[symbol=circle(2),radius=5]
var r=3
point(B2){22,46}[symbol=square(3),radius=r]
point(B123){22,46}[radius=5]
point(D2){B2, shift(5,5)}
var s = 3
point(D2){B2, shift(2*s,4*s)}
point(D3){D2, polar(6,32 deg)}
point(D4){D2, polar(6,1.2 rad)}
point(D4){D2, polar(6, direction(AB))} %% radians by default
point(D4){D2, polar(6, directiondeg(AB) deg)}
point(G2){Q, rotate(P, 23 deg)}
point(G2){Q, vector(AB)}
point(D2){intersection(AB,CD)}
point(F){PointOnLine(AB,5.3)}
point(G){perpendicular(P,AB)}
point(H){circumcircleCenter(ABC)}
point(J){incircleCenter(ABC)}
point(K){excircleCenter(ABC,BC)}
point*(A){6,3}
point*(P){Q}

mathsPIC perl version April26, 2010 11

mathsPIC(1) GeneralCommands Manual mathsPIC(1)

point*(B){B, shift(5,0)}
point*(P){xcoord(J),ycoord(K)}

==============================

PointSymbol
This command allows the default point-symbol \bullet (with zero line-free radius) to be changed.
The PointSymbol command is particularly useful where a set of points uses the same point-sym-
bol, for example, when drawing graphs. The point-symbol can be reset to the default \bullet
using the command PointSymbol(default).

-----syntax:
PointSymbol(<symbol>, <line-free-radius>)
PointSymbol(default)

-----notes:
The PointSymbol command only influences subsequent point commands.
The optional square bracket of the point command overrides the PointSymbol command.

-----examples:
PointSymbol(\odot, 0.7)
PointSymbol(default)

==============================

SYSTEM
This command allows the user to access the command line and execute standard Linux com-
mands. A important use for this command is to run a Perl program.

-----syntax:
System("<command>")

-----notes:
The <command> string must be in inverted commas.

-----example:
system("dir > mydir-listing.txt")
system("perl myperlprogram.pl")

==============================

SHOW....
This command makes mathsPIC return the value of a calculation or specified parameter; for
example, the value of a particular angle, or the length of a line. The result is shown in the output-
file as a commented line. This allows mathsPIC commands to be adjusted in the light ofcalcula-
tions. There are currently five such commands as follows.

-----syntax:

mathsPIC perl version April26, 2010 12

mathsPIC(1) GeneralCommands Manual mathsPIC(1)

showLength(AB)
showAngle(ABC) %returns angle in radians
showAngledeg(ABC) %returns angle in degrees
showArea(ABC)
showPoints
showVariables

==============================

TEXT
This command places a text-string at a specific location. By default the text is centered vertically
and horizontally at the specified point. Optionally, text can be placed relative to a point using
appropriate combinations of the PiCTeX ‘position’ options l t r B b to align the (l)eft edge,
(r)ight edge, (t)op edge, (B)aseline, (b)ottom edge respectively of the text box with the point-
location.

Remember that the default units for the angle argument of the polar() expression is radians;
hence you MUST append ‘deg’ if you want to work in degrees

-----syntax:
text(<string>){<location>}[<position options>]
text(<string>){<pointname>, shift(<x>,<y>)}[]
text(<string>){<pointname>, polar(<r>,<angle>[rad])}[]

-----examples:
text(A){5,6}
text(A_1){A1, shift(2, 2)}
text(Z2){Z2, shift(5, -5)}[tr]
text(Z3){Z2, polar(5, 20 deg)}[Br]
text(Z4){Z2, polar(5, 1.34 rad)}
text(\framebox{Z5}){Z5}

==============================

VAR
The var command is used to define scalar variables. It can be any numerical expression. A vari-
able-name must begin with a single letter (either upper or lower case), and may have up to a max-
imum of four following digits. If a more detailed variable name is required, then a simple alterna-
tive is to use a mathsPIC macro---as any string can be allocated via macros (see the beginning of
this chapter for details on macros).

Note that variables, constants and points have the same name structure, and a variable can have
the same name as a point (and so we suggest points have uppercase letters and variables and con-
stants have lowercase letters). New values can be re-allocated to existing variable-names; how-
ev er, when this occurs then mathsPIC does not issue a warning message to hightlight this fact.

If it is important to be warned if a potential variable is accidentally reallocated then one should
consider using the const command instead (since mathsPIC does generate an error message if a

mathsPIC perl version April26, 2010 13

mathsPIC(1) GeneralCommands Manual mathsPIC(1)

constant is reallocated).

-----syntax:
var <name> = <expr>

-----notes:
In addition to the mathematical functions mathsPIC functions which can be used with the var
command are:

angle(<three-points>) %returns angle in radians
angledeg(<three-points>) %returns angle in degrees
area(<three-points>)
xcoord(<point>)
ycoord(<point>)
direction(<two-points>) %returns angular direction in radians
directiondeg(<two-points>) %returns angular direction in degrees

-----examples:
var r = 20, r4 = r3*tan(0.3), j = (r*2e3)**2, r5 = AB
var e = _e_, p1 = _Pi_
var t = _linethickness_ %returns linethickness in current units
var g137 = angle(ABC) %(default: returns in radians)
var g = angledeg(ABC) %angle in degrees
var h = area(ABC)
var x2 = xcoord(A), y2 = ycoord(A)
var m5 = 12 rem 3 % remainder after dividing by 3
var r1 = direction(PQ) %in radians
var d1 = directiondeg(PQ)

==============================

SEE ALSO
The mathsPIC package manual and examples

BUGS
Please report bugs to Dick Nickalls (dick [AT] nickalls [dot] org) or to Apostolos Syropoulos

mathsPIC perl version April26, 2010 14

