
LATEXMK(1) General Commands Manual LATEXMK(1)

NAME
latexmk − generate LaTeX document

SYNOPSIS
latexmk [options] [file ...]

DESCRIPTION
Latexmk completely automates the process of compiling a LaTeX document. Essentially, it is
like a specialized relative of the general make utility, but one which determines dependencies
automatically and has some other very useful features. In its basic mode of operation latexmk is
given the name of the primary source file for a document, and it issues the appropriate sequence
of commands to generate a .dvi, .ps, .pdf and/or hardcopy version of the document.

By default latexmk will run the commands necessary to generate a .dvi file, which copies the
behavior of earlier versions when only latex was available.

Latexmk can also be set to run continuously with a suitable previewer. In that case the latex

program (or one of its relatives), etc, are rerun whenever one of the source files is modified, and
the previewer automatically updates the on-screen view of the compiled document.

Latexmk determines which are the source files by examining the log file. (Optionally, it also
examines the list of input and output files generated by the -recorder option of modern versions
of latex (and pdflatex, xelatex, lualatex). See the documentation for the -recorder option of
latexmk below.) When latexmk is run, it examines properties of the source files, and if any hav e
been changed since the last document generation, latexmk will run the various LaTeX processing
programs as necessary. In particular, it will repeat the run of latex (or a related program)) often
enough to resolve all cross references; depending on the macro packages used. With some macro
packages and document classes, four, or even more, runs may be needed. If necessary, latexmk

will also run bibtex, biber, and/or makeindex. In addition, latexmk can be configured to generate
other necessary files. For example, from an updated figure file it can automatically generate a file
in encapsulated postscript or another suitable format for reading by LaTeX.

Latexmk has two different previewing options. With the simple -pv option, a dvi, postscript or
pdf previewer is automatically run after generating the dvi, postscript or pdf version of the
document. The type of file to view is selected according to configuration settings and command
line options.

The second previewing option is the powerful -pvc option (mnemonic: "preview continuously").
In this case, latexmk runs continuously, regularly monitoring all the source files to see if any hav e
changed. Every time a change is detected, latexmk runs all the programs necessary to generate a
new version of the document. A good previewer will then automatically update its display. Thus
the user can simply edit a file and, when the changes are written to disk, latexmk completely
automates the cycle of updating the .dvi (and/or the .ps and .pdf) file, and refreshing the
previewer’s display. It’s not quite WYSIWYG, but usefully close.

For other previewers, the user may have to manually make the previewer update its display,
which can be (e.g., with some versions of xdvi and gsview) as simple as forcing a redraw of its
display.

Latexmk has the ability to print a banner in gray diagonally across each page when making the
postscript file. It can also, if needed, call an external program to do other postprocessing on
generated dvi and postscript files. (See the options -dF and -pF, and the documentation for the
$dvi_filter and $ps_filter configuration variables.) These capabilities are leftover from older
versions of latexmk, but are currently non-functional. More flexibility can be obtained in

29 September 2020 1

LATEXMK(1) General Commands Manual LATEXMK(1)

current versions, since the command strings for running *latex can now be configured to run
multiple commands. This also extends the possibility of postprocessing generated files.

Latexmk is highly configurable, both from the command line and in configuration files, so that it
can accommodate a wide variety of user needs and system configurations. Default values are set
according to the operating system, so latexmk often works without special configuration on MS-
Windows, cygwin, Linux, OS-X, and other UNIX systems. See the section
"Configuration/Initialization (rc) Files", and then the later sections "How to Set Variables in
Initialization Files", "Format of Command Specifications", "List of Configuration Variables
Usable in Initialization Files", "Custom Dependencies", and "Advanced Configuration"

A very annoying complication handled very reliably by latexmk, is that LaTeX is a multiple pass
system. On each run, LaTeX reads in information generated on a previous run, for things like
cross referencing and indexing. In the simplest cases, a second run of LaTeX suffices, and often
the log file contains a message about the need for another pass. However, there is a wide variety
of add-on macro packages to LaTeX, with a variety of behaviors. The result is to break simple-
minded determinations of how many runs are needed and of which programs. Latexmk has a
highly general and efficient solution to these issues. The solution involves retaining between runs
information on the source files, and a symptom is that latexmk generates an extra file (with
extension .fdb_latexmk, by default) that contains the source file information.

LATEXMK OPTIONS AND ARGUMENTS ON COMMAND LINE
In general the command line to invoke latexmk has the form

latexmk [options] [file]

All options can be introduced by single or double "-" characters, e.g., "latexmk -help" or
"latexmk --help".

Note 1: In the documentation, ’*latex’ means any of the supported engines, i.e., currently latex,
lualatex, pdflatex, xelatex. Mention of a specific one of these normally refers that specific
engines. Earlier versions of this documentation weren’t so consistent.

Note 2: In addition to the options in the list below, latexmk recognizes almost all the options
recognized by the *latex in their current TeXLive and MiKTeX implementations. Some of the
options for these programs also trigger special action or behavior by latexmk, in which case they
have specific explanations in this document. Otherwise, they are just passed through to a called
*latex program. Run latexmk with the -showextraoptions to get a list of the options that latexmk

accepts and that are simply passed through to *latex. See also the explanation of the
-showextraoptions option for more information.

Note 3: In this documentation, the term *latex is often referred to, which refers to all the
supported latex-like programs, whether the original latex, or the later pdflatex, xelatex, and
lualatex. Users should know that from latexmk’s point of view, all of these programs behave very
much alike, with the sole exception that by default latex produces a dvi file and all the others
produce a pdf file. Latexmk can be easily configured to use whichever of these programs is
needed. See the documentation for the following options: -pdflua, -pdfxe, -lualatex, and
-xelatex, and also see the documentation for the $latex, $pdflatex, $lualatex, and $xelatex

configuration variables. At present latexmk does not do automatic detection of which program is

29 September 2020 2

LATEXMK(1) General Commands Manual LATEXMK(1)

to be used.

Definitions of options and arguments

file One or more files can be specified. If no files are specified, latexmk will, by default, run
on all files in the current working directory with a ".tex" extension. This behavior can
be changed: see the description concerning the @default_files variable in the section
"List of configuration variables usable in initialization files".

If a file is specified without an extension, then the ".tex" extension is automatically
added, just as LaTeX does. Thus, if you specify:

latexmk foo

then latexmk will operate on the file "foo.tex".

There are certain restrictions on what characters can be in a filename; certain characters
are either prohibited or problematic for the latex etc programs. These characters are:
"$", "%", "\", "˜", the double quote character, and the control characters null, tab, form
feed, carriage return, line feed, and delete. In addition "&" is prohibited when it is the
first character of a filename.

Latexmk gives a fatal error when it detects any of the above characters in the TeX
filename(s) specified on the command line. However before testing for illegal
characters, latexmk removes matching pairs of double quotes from a filename. This
matches the behavior of latex etc, and deals with problems that occasionally result from
filenames that have been incorrectly quoted on the command line. In addition, under
Microsoft Windows, the forward slash character "\" is a directory separator, so latexmk

replaces it by a backward slash "/", which is also a legal directory separator in Windows,
and is accepted by latex etc.

-auxdir=FOO or -aux-directory=FOO

Sets the directory for auxiliary output files of *latex (.aux, .log etc). This achieves its
effect by the -aux-directory option of *latex, which currently is only implemented on
the MiKTeX version of *latex.

See also the -outdir/-output-directory options, and the $aux_dir, $out_dir, and
$search_path_separator configuration variables of latexmk. In particular, see the
documentation of $out_dir for some complications on what directory names are
suitable.

If you also use the -cd option, and the specified auxiliary output directory is a relative
path, then the path is interpreted relative to the document directory.

-bibtex When the source file uses bbl files for bibliography, run bibtex or biber as needed to
regenerate the bbl files.

29 September 2020 3

LATEXMK(1) General Commands Manual LATEXMK(1)

This property can also be configured by setting the $bibtex_use variable to 2 in a
configuration file.

-bibtex-

Never run bibtex or biber. Also, always treat .bbl files as precious, i.e., do not delete
them in a cleanup operation.

A common use for this option is when a document comes from an external source,
complete with its bbl file(s), and the user does not have the corresponding bib files
available. In this situation use of the -bibtex- option will prevent latexmk from trying to
run bibtex or biber, which would result in overwriting of the bbl files.

This property can also be configured by setting the $bibtex_use variable to 0 in a
configuration file.

-bibtex-cond

When the source file uses bbl file(s) for the bibliography, run bibtex or biber as needed
to regenerate the bbl files, but only if the relevant bib file(s) exist. Thus when the bib
files are not available, bibtex or biber is not run, thereby avoiding overwriting of the bbl
file(s). Also, always treat .bbl files as precious, i.e., do not delete them in a cleanup
operation.

This is the default setting. It can also be configured by setting the $bibtex_use variable
to 1 in a configuration file.

The reason for using this setting is that sometimes a .bbl file is available containing the
bibliography for a document, but the .bib file is not available. An example would be for
a scientific journal where authors submit .tex and .bbl files, but not the original .bib file.
In that case, running bibtex or biber would not work, and the .bbl file should be treated
as a user source file, and not as a file that can be regenerated on demand.

(Note that it is possible for latexmk to decide that the bib file does not exist, even though
the bib file does exist and bibtex or biber finds it. The problem is that the bib file may
not be in the current directory but in some search path; the places latexmk and bibtex or
biber cause to be searched need not be identical. On modern installations of TeX and
related programs this problem should not arise, since latexmk uses the kpsewhich

program to do the search, and kpsewhich should use the same search path as bibtex and
biber. If this problem arises, use the -bibtex option when invoking latexmk.)

Note that this value does not work properly if the document uses biber instead of bibtex.
(There’s a long story why not.)

-bibtex-cond1

The same as -bibtex-cond1 except that .bbl files are only treated as precious if one or
more bibfiles fails to exist.

Thus if all the bib files exist, bibtex or biber is run to generate .bbl files as needed, and

29 September 2020 4

LATEXMK(1) General Commands Manual LATEXMK(1)

then it is appropriate to delete the bbl files in a cleanup operation since they can be re-
generated.

This property can also be configured by setting the $bibtex_use variable to 1.5 in a
configuration file.

-bibtexfudge, -bibtexfudge-

Turn on/off the change-directory fudge needed for old versions (pre-2019) of bibtex.
See documentation of $bibtex_fudge for details.

-bm <message>

A banner message to print diagonally across each page when converting the dvi file to
postscript. The message must be a single argument on the command line so be careful
with quoting spaces and such.

Note that if the -bm option is specified, the -ps option is assumed.

-bi <intensity>

How dark to print the banner message. A decimal number between 0 and 1. 0 is black
and 1 is white. The default is 0.95, which is OK unless your toner cartridge is getting
low.

-bs <scale>

A decimal number that specifies how large the banner message will be printed.
Experimentation is necessary to get the right scale for your message, as a rule of thumb
the scale should be about equal to 1100 divided by the number of characters in the
message. The default is 220.0 which is just right for 5 character messages.

-commands

List the commands used by latexmk for processing files, and then exit.

-c Clean up (remove) all regeneratable files generated by latex and bibtex or biber except
dvi, postscript and pdf. These files are a combination of log files, aux files, latexmk’s
database file of source file information, and those with extensions specified in the
@generated_exts configuration variable. In addition, files specified by the $clean_ext

and @generated_exts configuration variables are removed.

This cleanup is instead of a regular make. See the -gg option if you want to do a
cleanup then a make.

Tr eatment of .bbl files: If $bibtex_use is set to 0 or 1, bbl files are always treated as non-
regeneratable. If $bibtex_use is set to 1.5, bbl files are counted as non-regeneratable
conditionally: If the bib file exists, then bbl files are regeneratable, and are deleted in a
clean up. But if $bibtex_use is 1.5 and a bib file doesn’t exist, then the bbl files are
treated as non-regeneratable and hence are not deleted.

29 September 2020 5

LATEXMK(1) General Commands Manual LATEXMK(1)

In contrast, if $bibtex_use is set to 2, bbl files are always treated as regeneratable, and
are deleted in a cleanup.

Tr eatment of files generated by custom dependencies: If
$cleanup_includes_cusdep_generated is nonzero, regeneratable files are considered as
including those generated by custom dependencies and are also deleted. Otherwise
these files are not deleted.

-C Clean up (remove) all regeneratable files generated by latex and bibtex or biber. This is
the same as the -c option with the addition of dvi, postscript and pdf files, and those
specified in the $clean_full_ext configuration variable.

This cleanup is instead of a regular make. See the -gg option if you want to do a
cleanup than a make.

See the -c option for the specification of whether or not .bbl files are treated as non-
regeneratable or regeneratable.

If $cleanup_includes_cusdep_generated is nonzero, regeneratable files are considered as
including those generated by custom dependencies and are also deleted. Otherwise
these files are not deleted.

-CA (Obsolete). Now equivalent to the -C option. See that option for details.

-cd Change to the directory containing the main source file before processing it. Then all
the generated files (.aux, .log, .dvi, .pdf, etc) will be relative to the source file.

This option is particularly useful when latexmk is invoked from a GUI configured to
invoke latexmk with a full pathname for the source file.

This option works by setting the $do_cd configuration variable to one; you can set that
variable if you want to configure latexmk to have the effect of the -cd option without
specifying it on the command line. See the documentation for that variable.

-cd- Do NOT change to the directory containing the main source file before processing it.
Then all the generated files (.aux, .log, .dvi, .pdf, etc) will be relative to the current
directory rather than the source file.

This is the default behavior and corresponds to the behavior of the *latex programs.
However, it is not desirable behavior when latexmk is invoked by a GUI configured to
invoke latexmk with a full pathname for the source file. See the -cd option.

This option works by setting the $do_cd configuration variable to zero. See the
documentation for that variable for more information.

29 September 2020 6

LATEXMK(1) General Commands Manual LATEXMK(1)

-CF Remove the file containing the database of source file information, before doing the
other actions requested.

-d Set draft mode. This prints the banner message "DRAFT" across your page when
converting the dvi file to postscript. Size and intensity can be modified with the -bs and
-bi options. The -bm option will override this option as this is really just a short way of
specifying:

latexmk -bm DRAFT

Note that if the -d option is specified, the -ps option is assumed.

-deps Show a list of dependent files after processing. This is in the form of a dependency list
of the form used by the make program, and it is therefore suitable for use in a Makefile.
It gives an overall view of the files without listing intermediate files, as well as latexmk

can determine them.

By default the list of dependent files is sent to stdout (i.e., normally to the screen unless
you’ve redirected latexmk’s output). But you can set the filename where the list is sent
by the -deps-out= option.

See the section "USING latexmk WITH make" for an example of how to use a
dependency list with make.

Users familiar with GNU automake and gcc will find that the -deps option is very
similar in its purpose and results to the -M option to gcc. (In fact, latexmk also has
options -M, -MF, and -MP options that behave like those of gcc.)

-dependents

Equivalent to -deps.

-deps- Do not show a list of dependent files after processing. (This is the default.)

-dependents-

Equivalent to -deps-.

-deps-out=FILENAME

Set the filename to which the list of dependent files is written. If the FILENAME
argument is omitted or set to "-", then the output is sent to stdout.

Use of this option also turns on the output of the list of dependent files after processing.

-dF Dvi file filtering. The argument to this option is a filter which will generate a filtered dvi
file with the extension ".dviF". All extra processing (e.g. conversion to postscript,
preview, printing) will then be performed on this filtered dvi file.

29 September 2020 7

LATEXMK(1) General Commands Manual LATEXMK(1)

Example usage: To use dviselect to select only the even pages of the dvi file:

latexmk -dF "dviselect even" foo.tex

-diagnostics

Print detailed diagnostics during a run. This may help for debugging problems or to
understand latexmk’s behavior in difficult situations.

-dvi Generate dvi version of document.

-dvi- Turn off generation of dvi version of document. (This may get overridden, if some other
file is made (e.g., a .ps file) that is generated from the dvi file, or if no generated file at
all is requested.)

-e <code>

Execute the specified initialization code before processing. The code is Perl code of the
same form as is used in latexmk’s initialization files. For more details, see the
information on the -r option, and the section about "Configuration/initialization (RC)
files". The code is typically a sequence of assignment statements separated by
semicolons.

The code is executed when the -e option is encountered during latexmk’s parsing of its
command line. See the -r option for a way of executing initialization code from a file.
An error results in latexmk stopping. Multiple instances of the -r and -e options can be
used, and they are executed in the order they appear on the command line.

Some care is needed to deal with proper quoting of special characters in the code on the
command line. For example, suppose you want to set the latex command to use its
-shell-escape option, then under UNIX/Linux you could use the line

latexmk -e ’$latex=q/latex %O -shell-escape %S/’ file.tex

Note that the single quotes block normal UNIX/Linux command shells from treating the
characters inside the quotes as special. (In this example, the q/.../ construct is a Perl

idiom equivalent to using single quotes. This avoids the complications of getting a
quote character inside an already quoted string in a way that is independent of both the
shell and the operating-system.)

The above command line will NOT work under MS-Windows with cmd.exe or
command.com or 4nt.exe. For MS-Windows with these command shells you could use

latexmk -e "$latex=q/latex %O -shell-escape %S/" file.tex

or

latexmk -e "$latex=’latex %O -shell-escape %S’" file.tex

29 September 2020 8

LATEXMK(1) General Commands Manual LATEXMK(1)

The last two examples will NOT work with UNIX/Linux command shells.

(Note: the above examples show are to show how to use the -e to specify initialization
code to be executed. But the particular effect can be achieved also by the use of the
-latex option with less problems in dealing with quoting.)

-f Force latexmk to continue document processing despite errors. Normally, when latexmk

detects that LaTeX or another program has found an error which will not be resolved by
further processing, no further processing is carried out.

Note: "Further processing" means the running of other programs or the rerunning of
latex (etc) that would be done if no errors had occurred. If instead, or additionally, you
want the latex (etc) program not to pause for user input after an error, you should
arrange this by an option that is passed to the program, e.g., by latexmk’s option
-interaction=nonstopmode.

-f- Turn off the forced processing-past-errors such as is set by the -f option. This could be
used to override a setting in a configuration file.

-g Force latexmk to process document fully, even under situations where latexmk would
normally decide that no changes in the source files have occurred since the previous run.
This option is useful, for example, if you change some options and wish to reprocess the
files.

-g- Turn off -g.

-gg "Super go mode" or "clean make": clean out generated files as if -C had been given, and
then do a regular make.

-h, -help

Print help information.

-jobname=STRING

Set the basename of output files(s) to STRING, instead of the default, which is the
basename of the specified TeX file. (At present, STRING should not contain spaces.)

This is like the same option for current implementations of the *latex, and the passing of
this option to these programs is part of latexmk’s implementation of -jobname.

There is one enhancement, that the STRING may contain the placeholder ’%A’. This
will be substituted by the basename of the TeX file. The primary purpose is when
multiple files are specified on the command line to latexmk, and you wish to use a
jobname with a different file-dependent value for each file. For example, suppose you
had .tex files test1.tex and test2.tex, and you wished to compare the results of
compilation by *latex and those with xelatex. Then under a unix-type operating system

29 September 2020 9

LATEXMK(1) General Commands Manual LATEXMK(1)

you could use the command line

latexmk -pdf -jobname=%A-pdflatex *.tex
latexmk -pdfxe -jobname=%A-xelatex *.tex

Then the .aux, .log, and .pdf files from the use of pdflatex would have basenames
test1-pdflatex and test2-pdflatex, while from xelatex, the basenames would be
test1-xelatex and test2-xelatex.

Under MS-Windows with cmd.exe, you would need to double the percent sign, so that
the percent character is passed to latexmk rather than being used to substitute an
environment variable:

latexmk -pdf -jobname=%%A-pdflatex *.tex
latexmk -pdfxe -jobname=%%A-xelatex *.tex

-l Run in landscape mode, using the landscape mode for the previewers and the dvi to
postscript converters. This option is not normally needed nowadays, since current
previewers normally determine this information automatically.

-l- Turn off -l.

-latex This sets the generation of dvi files by latex, and turns off the generation of pdf and ps
files.

Note: to set the command used when latex is specified, see the -latex="COMMAND"

option.

-latex="COMMAND"

This sets the string specifying the command to run latex, and is typically used to add
desired options. Since the string normally contains spaces, it should be quoted, e.g.,

latexmk -latex="latex --shell-escape %O %S" foo.tex

The specification of the contents of the string are the same as for the $latex

configuration variable. Depending on your operating system and the command-line
shell you are using, you may need to change the single quotes to double quotes (or
something else).

Note: This option when provided with the COMMAND argument only sets the command

for invoking latex; it does not turn on the use of latex. That is done by other options or in

an initialization file.

To set the command for running pdflatex (rather than the command for latex) see the
-pdflatex option.

29 September 2020 10

LATEXMK(1) General Commands Manual LATEXMK(1)

-logfilewarninglist

-logfilewarnings After a run of *latex, giv e a list of warnings about undefined citations
and references (unless silent mode is on).

See also the $silence_logfile_warnings configuration variable.

-logfilewarninglist-

-logfilewarnings- After a run of *latex, do not give a list of warnings about undefined
citations and references. (Default)

See also the $silence_logfile_warnings configuration variable.

-lualatex

Use lualatex. That is, use lualatex to process the source file(s) to pdf. The generation of
dvi and postscript files is turned off.

This option is equivalent to using the following set of options

-pdflua -dvi- -ps-

(Note: Note that the method of implementation of this option, but not its intended effect,
differ from some earlier versions of latexmk.)

-lualatex="COMMAND"

This sets the string specifying the command to run lualatex. It behaves like the
-pdflatex option, but sets the variable $lualatex.

Note: This option when provided with the COMMAND argument only sets the command

for invoking lualatex; it does not turn on the use of lualatex. That is done by other

options or in an initialization file.

-M Show list of dependent files after processing. This is equivalent to the -deps option.

-MF file

If a list of dependents is made, the -MF specifies the file to write it to.

-MP If a list of dependents is made, include a phony target for each source file. If you use the
dependents list in a Makefile, the dummy rules work around errors the program make

gives if you remove header files without updating the Makefile to match.

-MSWinBackSlash

This option only has an effect when latexmk is running under MS-Windows. This is that
when latexmk runs a command under MS-Windows, the Windows standard directory
separator "\" is used to separate directory components in a file name. Internally, latexmk

uses "/" for the directory separator character, which is the character used by Unix-like

29 September 2020 11

LATEXMK(1) General Commands Manual LATEXMK(1)

systems.

This is the default behavior. Howev er the default may have been overridden by a
configuration file (latexmkrc file) which sets $MSWin_back_slash=0.

-MSWinBackSlash-

This option only has an effect when latexmk is running under MS-Windows. This is that
when latexmk runs a command under MS-Windows, the substitution of "\" for the
separator character between directory components of a file name is not done. Instead the
forward slash "/" is used, the same as on Unix-like systems. This is acceptable in most
situations under MS-Windows, provided that filenames are properly quoted, as latexmk

does by default.

See the documentation for the configuration variable $MSWin_back_slash for more
details.

-new-viewer

When in continuous-preview mode, always start a new viewer to view the generated file.
By default, latexmk will, in continuous-preview mode, test for a previously running
previewer for the same file and not start a new one if a previous previewer is running.
However, its test sometimes fails (notably if there is an already-running previewer that is
viewing a file of the same name as the current file, but in a different directory). This
option turns off the default behavior.

-new-viewer-

The inverse of the -new-viewer option. It puts latexmk in its normal behavior that in
preview-continuous mode it checks for an already-running previewer.

-nobibtex

Never run bibtex or biber. Equivalent to the -bibtex- option.

-nobibtexfudge

Turn off the change-directory fudge needed for old versions (pre-2019) of bibtex. See
documentation of $bibtex_fudge for details.

-norc Turn off the automatic reading of initialization (rc) files.

N.B. Normally the initialization files are read and obeyed, and then command line
options are obeyed in the order they are encountered. But -norc is an exception to this
rule: it is acted on first, no matter where it occurs on the command line.

-outdir=FOO or -output-directory=FOO

Sets the directory for the output files of *latex. This achieves its effect by the -output-

directory option of *latex, which currently (Dec. 2011 and later) is implemented on the

29 September 2020 12

LATEXMK(1) General Commands Manual LATEXMK(1)

common versions of *latex, i.e., MiKTeX and TeXLive. It may not be present in other
versions.

See also the -auxdir/-aux-directory options, and the $aux_dir, $out_dir, and
$search_path_separator configuration variables of latexmk. In particular, see the
documentation of $out_dir for some complications on what directory names are
suitable.

If you also use the -cd option, and the specified output directory is a relative path, then
the path is interpreted relative to the document directory.

-p Print out the document. By default the file to be printed is the first in the list postscript,
pdf, dvi that is being made. But you can use the -print=... option to change the type of
file to be printed, and you can configure this in a start up file (by setting the $print_type

variable).

However, printing is enabled by default only under UNIX/Linux systems, where the
default is to use the lpr command and only on postscript files. In general, the correct
behavior for printing very much depends on your system’s software. In particular, under
MS-Windows you must have suitable program(s) available, and you must have
configured the print commands used by latexmk. This can be non-trivial. See the
documentation on the $lpr, $lpr_dvi, and $lpr_pdf configuration variables to see how to
set the commands for printing.

This option is incompatible with the -pv and -pvc options, so it turns them off.

-pdf Generate pdf version of document using pdflatex. (If you wish to use lualatex or
xelatex, you can use whichever of the options -pdflua, -pdfxe, -lualatex or -xelatex

applies.) To configure latexmk to have such behavior by default, see the section on
"Configuration/initialization (rc) files".

-pdfdvi

Generate pdf version of document from the dvi file, by default using dvipdf.

-pdflua Generate pdf version of document using lualatex.

-pdfps Generate pdf version of document from the .ps file, by default using ps2pdf.

-pdfxe Generate pdf version of document using xelatex. Note that to optimize processing time,
latexmk uses xelatex to generate an .xdv file rather than a pdf file directly. Only after
possibly multiple runs to generate a fully up-to-date .xdv file does latexmk then call
xdvipdfmx to generate the final .pdf file.

(Note: The reason why latexmk arranges for xelatex to make an .xdv file instead of the
xelatex’s default of a .pdf file is as follows: When the document includes large graphics
files, especially .png files, the production of a .pdf file can be quite time consuming,

29 September 2020 13

LATEXMK(1) General Commands Manual LATEXMK(1)

ev en when the creation of the .xdv file by xelatex is fast. So the use of the intermediate
.xdv file can result in substantial gains in procesing time, since the .pdf file is produced
once rather than on every run of xelatex.)

-pdf- Turn off generation of pdf version of document. (This can be used to override a setting
in a configuration file. It may get overridden if some other option requires the
generation of a pdf file.)

If after all options have been processed, pdf generation is still turned off, then generation
of a dvi file will be turned on, and then the program used to compiled a document will
be latex (or, more precisely, whatever program is configured to be used in the $latex

configuration variable).

-pdflatex

This sets the generation of pdf files by pdflatex, and turns off the generation of dvi and
ps files.

Note: to set the command used when pdflatex is specified, see the

-pdflatex="COMMAND" option.

-pdflatex="COMMAND"

This sets the string specifying the command to run pdflatex, and is typically used to add
desired options. Since the string normally contains spaces, it should be quoted, e.g.,

latexmk -pdf -pdflatex="pdflatex --shell-escape %O %S" foo.tex

The specification of the contents of the string are the same as for the $pdflatex

configuration variable. (The option -pdflatex in fact sets the variable $pdflatex.)
Depending on your operating system and the command-line shell you are using, you
may need to change the single quotes to double quotes (or something else).

Note: This option when provided with the COMMAND argument only sets the command

for invoking pdflatex; it does not turn on the use of pdflatex. That is done by other

options or in an initialization file.

To set the command for running latex (rather than the command for pdflatex) see the
-latex option.

-pdflualatex="COMMAND"

Equivalent to -lualatex="COMMAND".

-pdfxelatex="COMMAND"

Equivalent to -xelatex="COMMAND".

29 September 2020 14

LATEXMK(1) General Commands Manual LATEXMK(1)

-pretex=CODE

Given that CODE is some TeX code, this options sets that code to be executed before
inputting source file. This only works if the command for invoking the relevant *latex is
suitably configured. See the documentation of the variable $pre_tex_code, and the
substitution strings %P and %U for more details. This option works by setting the
variable $pre_tex_code.

See also the -usepretex option.

An example:

latexmk -pretex=’\AtBeginDocument{Message\par}’ -usepretex foo.tex

But this is better written

latexmk -usepretex=’\AtBeginDocument{Message\par}’ foo.tex

If you already have a suitable command configured, you only need

latexmk -pretex=’\AtBeginDocument{Message\par}’ foo.tex

-print=dvi, -print=ps, -print=pdf, -print=auto,

Define which kind of file is printed. This option also ensures that the requisite file is
made, and turns on printing.

The (default) case -print=auto determines the kind of print file automatically from the
set of files that is being made. The first in the list postscript, pdf, dvi that is among the
files to be made is the one used for print out.

-ps Generate postscript version of document.

-ps- Turn off generation of postscript version of document. This can be used to override a
setting in a configuration file. (It may get overridden by some other option that requires
a postscript file, for example a request for printing.)

-pF Postscript file filtering. The argument to this option is a filter which will generate a
filtered postscript file with the extension ".psF". All extra processing (e.g. preview,
printing) will then be performed on this filtered postscript file.

Example of usage: Use psnup to print two pages on the one page:

latexmk -ps -pF ’psnup -2’ foo.tex

or

latexmk -ps -pF "psnup -2" foo.tex

29 September 2020 15

LATEXMK(1) General Commands Manual LATEXMK(1)

Whether to use single or double quotes round the "psnup -2" will depend on your
command interpreter, as used by the particular version of perl and the operating system
on your computer.

-pv Run file previewer. If the -view option is used, this will select the kind of file to be
previewed (.dvi, .ps or .pdf). Otherwise the viewer views the "highest" kind of file
selected, by the -dvi, -ps, -pdf, -pdfps options, in the order .dvi, .ps, .pdf (low to high).
If no file type has been selected, the dvi previewer will be used. This option is
incompatible with the -p and -pvc options, so it turns them off.

-pv- Turn off -pv.

-pvc Run a file previewer and continually update the .dvi, .ps, and/or .pdf files whenever
changes are made to source files (see the Description above). Which of these files is
generated and which is viewed is governed by the other options, and is the same as for
the -pv option. The preview-continuous option -pvc can only work with one file. So in
this case you will normally only specify one filename on the command line. It is also
incompatible with the -p and -pv options, so it turns these options off.

The -pvc option also turns off force mode (-f), as is normally best for continuous
preview mode. If you really want force mode, use the options in the order -pvc -f.

With a good previewer the display will be automatically updated. (Under some but not

all versions of UNIX/Linux "gv -watch" does this for postscript files; this can be set by a
configuration variable. This would also work for pdf files except for an apparent bug in
gv that causes an error when the newly updated pdf file is read.) Many other previewers
will need a manual update.

Important note: the acroread program on MS-Windows locks the pdf file, and prevents
new versions being written, so it is a bad idea to use acroread to view pdf files in
preview-continuous mode. It is better to use a different viewer: SumatraPDF and
gsview are good possibilities.

There are some other methods for arranging an update, notably useful for many versions
of xdvi and xpdf. These are best set in latexmk’s configuration; see below.

Note that if latexmk dies or is stopped by the user, the "forked" previewer will continue
to run. Successive inv ocations with the -pvc option will not fork new previewers, but
latexmk will normally use the existing previewer. (At least this will happen when
latexmk is running under an operating system where it knows how to determine whether
an existing previewer is running.)

-pvc- Turn off -pvc.

29 September 2020 16

LATEXMK(1) General Commands Manual LATEXMK(1)

-pvctimeout

Do timeout in pvc mode after period of inactivity, which is 30 min. by default.
Inactivity means a period when latexmk has detected no file changes and hence has not
taken any actions like compiling the document.

-pvctimeout-

Don’t do timeout in pvc mode after inactivity.

-pvctimeoutmins=<time>

Set period of inactivity in minutes for pvc timeout.

-quiet Same as -silent

-r <rcfile>

Read the specified initialization file ("RC file") before processing.

Be careful about the ordering: (1) Standard initialization files -- see the section below on
"Configuration/initialization (RC) files" -- are read first. (2) Then the options on the
command line are acted on in the order they are given. Therefore if an initialization file
is specified by the -r option, it is read during this second step. Thus an initialization file
specified with the -r option can override both the standard initialization files and
previously specified options. But all of these can be overridden by later options.

The contents of the RC file just comprise a piece of code in the Perl programming
language (typically a sequence of assignment statements); they are executed when the -r

option is encountered during latexmk’s parsing of its command line. See the -e option
for a way of giving initialization code directly on latexmk’s command line. An error
results in latexmk stopping. Multiple instances of the -r and -e options can be used, and
they are executed in the order they appear on the command line.

-recorder

Give the -recorder option with *latex. In (most) modern versions of these programs, this
results in a file of extension .fls containing a list of the files that these programs have
read and written. Latexmk will then use this file to improve its detection of source files
and generated files after a run of *latex. This is the default setting of latexmk, unless
overridden in an initialization file.

For further information, see the documentation for the $recorder configuration variable.

-recorder-

Do not supply the -recorder option with *latex.

-rules Show a list of latemk’s rules and dependencies after processing.

29 September 2020 17

LATEXMK(1) General Commands Manual LATEXMK(1)

-rules- Do not show a list of latexmk’s rules and dependencies after processing. (This is the
default.)

-showextraoptions

Show the list of extra *latex options that latexmk recognizes, but that it simply passes
through to the programs *latex when they are run. These options are (currently) a
combination of those allowed by the TeXLive and MiKTeX implementations. (If a
particular option is given to latexmk but is not handled by the particular implementation
of *latex that is being used, that program will probably give an error message.) These
options are very numerous, but are not listed in this documentation because they hav e no
effect on latexmk’s actions.

There are a few options (-includedirectory=dir, -initialize, -ini) that are not
recognized, either because they don’t fit with latexmk’s intended operations, or because
they need special processing by latexmk that isn’t implemented (at least, not yet).

There are also options that are accepted by latex etc, but instead trigger actions by
latexmk: -help, -version.

Finally, there are certain options for *latex (e.g., -recorder) that trigger special actions
or behavior by latexmk itself as well as being passed in some form to the called *latex

program, or that affect other programs as well. These options do have entries in this
documentation. These options are: -jobname=STRING, -aux-directory=dir, -output-

directory=DIR, -quiet, and -recorder.

-silent Run commands silently, i.e., with options that reduce the amount of diagnostics
generated. For example, with the default settings, the command "latex
-interaction=batchmode" is used for latex, and similarly for its friends.

See also the -logfilewarninglist and -logfilewarninglist- options.

Also reduce the number of informational messages that latexmk itself generates.

To change the options used to make the commands run silently, you need to configure
latexmk with changed values of its configuration variables, the relevant ones being
$bibtex_silent_switch, $biber_silent_switch, $dvipdf_silent_switch,
$dvips_silent_switch, $latex_silent_switch, $lualatex_silent_switch

$makeindex_silent_switch, $pdflatex_silent_switch, and $xelatex_silent_switch

-stdtexcmds

Sets the commands for latex, etc, so that they are the standard ones. This is useful to
override special configurations.

The result is that $latex = ’latex %O %S’, and similarly for $pdflatex, $lualatex, and
$xelatex. (The option -no-pdf needed for $xelatex is provided automatically, giv en that
%O appears in the definition.)

29 September 2020 18

LATEXMK(1) General Commands Manual LATEXMK(1)

-time Show CPU time used. See also the configuration variable $show_time.

-time- Do not show CPU time used. See also the configuration variable $show_time.

-use-make

When after a run of *latex, there are warnings about missing files (e.g., as requested by
the LaTeX \input, \include, and \includgraphics commands), latexmk tries to make them
by a custom dependency. If no relevant custom dependency with an appropriate source
file is found, and if the -use-make option is set, then as a last resort latexmk will try to
use the make program to try to make the missing files.

Note that the filename may be specified without an extension, e.g., by
\includegraphics{drawing} in a LaTeX file. In that case, latexmk will try making
drawing.ext with ext set in turn to the possible extensions that are relevant for latex (or
as appropriate pdflatex, lualatex, xelatex).

See also the documentation for the $use_make_for_missing_files configuration variable.

-use-make-

Do not use the make program to try to make missing files. (Default.)

-usepretex

Sets the command lines for latex, etc, so that they use the code that is defined by the
variable $pre_tex_code or that is set by the option -pretex=CODE to execute the
specified TeX code before the source file is read. This option overrides any previous
definition of the command lines.

The result is that $latex = ’latex %O %P’, and similarly for $pdflatex, $lualatex, and
$xelatex. (The option -no-pdf needed for $xelatex is provided automatically, giv en that
%O appears in the definition.)

-usepretex=CODE

Equivalent to -pretex=CODE -usepretex. Example

latexmk -usepretex=’\AtBeginDocument{Message\par}’ foo.tex

-v, -version

Print version number of latexmk.

-verbose

Opposite of -silent. This is the default setting.

-view=default, -view=dvi, -view=ps, -view=pdf, -view=none

Set the kind of file used when previewing is requested (e.g., by the -pv or -pvc

switches). The default is to view the "highest" kind of requested file (in the low-to-high

29 September 2020 19

LATEXMK(1) General Commands Manual LATEXMK(1)

order .dvi, .ps, .pdf).

Note the possibility -view=none where no viewer is opened at all. One example of is
use is in conjunction with the -pvc option, when you want latexmk to do a compilation
automatically whenever source file(s) change, but do not want a previewer to be opened.

-Werror

This causes latexmk to return a non-zero status code if any of the files processed gives a
warning about problems with citations or references (i.e., undefined citations or
references or about multiply defined references). This is after latexmk has completed all
the runs it needs to try and resolve references and citations. Thus -Werror causes
latexmk to treat such warnings as errors, but only when they occur on the last run of
*latex and only after processing is complete. Also can be set by the configuration
variable $warnings_as_errors.

-xelatex

Use xelatex. That is, use xelatex to process the source file(s) to pdf. The generation of
dvi and postscript files is turned off.

This option is equivalent to using the following set of options

-pdfxe -dvi- -ps-

[Note: Note that the method of implementation of this option, but not its intended
primary effect, differ from some earlier versions of latexmk. Latexmk first uses xelatex to
make an .xdv file, and does all the extra runs needed (including those of bibtex, etc).
Only after that does it make the pdf file from the .xdv file, using xdvipdfmx. See the
documentation for the -pdfxe for why this is done.]

-xelatex="COMMAND"

This sets the string specifying the command to run xelatex. It sets the variable $xelatex.

Warning: It is important to ensure that the -no-pdf is used when xelatex is invoked, since
latexmk expects xelatex to produce an .xdv file, not a .pdf file. If you provide %O in the
command specification, this will be done automatically. See the documentation for the
-pdfxe option for why latexmk makes a .xdv file rather than a .pdf file when xelatex is
used.

An example of the use of the -pdfxelatex option:

latexmk -pdfxe -pdfxelatex="xelatex --shell-escape %O %S" foo.tex

Note: This option when provided with the COMMAND argument only sets the command

for invoking lualatex; it does not turn on the use of lualatex. That is done by other

options or in an initialization file.

Compatibility between options

29 September 2020 20

LATEXMK(1) General Commands Manual LATEXMK(1)

The preview-continuous option -pvc can only work with one file. So in this case you will
normally only specify one filename on the command line.

Options -p, -pv and -pvc are mutually exclusive. So each of these options turns the others off.

EXAMPLES
% latexmk thesis # run latex enough times to resolve

cross-references

% latexmk -pvc -ps thesis # run latex enough times to resolve

cross-references, make a postscript

file, start a previewer. Then

watch for changes in the source

file thesis.tex and any files it

uses. After any changes rerun latex

the appropriate number of times and

remake the postscript file. If latex

encounters an error, latexmk will
keep running, watching for
source file changes.

% latexmk -c # remove .aux, .log, .bbl, .blg, .dvi,

.pdf, .ps & .bbl files

DEALING WITH ERRORS, PROBLEMS, ETC
Some possibilities:

a. If you get a strange error, do look carefully at the output that is on the screen and in log files.
While there is much that is notoriously verbose in the output of latex (and that is added to by
latexmk), the verbosity is there for a reason: to enable the user to diagnose problems. Latexmk

does repeat some messages at the end of a run that it thinks would otherwise be easy to miss in
the middle of other output.

b. Generally, remember that latexmk does its work by running other programs. Your first priority
in dealing with errors should be to examine what went wrong with the individual programs.
Then you need to correct the causes of errors in the runs of these programs. (Often these come
from errors in the source document, but they could also be about missing LaTeX packages, etc.)

c. If latexmk doesn’t run the programs the way you would like, then you need to look in this
documentation at the list of command line options and then at the sections on
configuration/initialization files. A lot of latexmk’s behavior is configurable to deal with
particular situations. (But there is a lot of reading!)

The remainder of these notes consists of ideas for dealing with more difficult situations.

d. Further tricks can involve replacing the standard commands that latexmk runs by other
commands or scripts.

29 September 2020 21

LATEXMK(1) General Commands Manual LATEXMK(1)

e. For possible examples of code for use in an RC file, see the directory example_rcfiles in the
distribution of latexmk (e.g., at http://mirror.ctan.org/support/latexmk/example_rcfiles). Even if
these examples don’t do what you want, they may provide suitable inspiration.

f. There’s a useful trick that can be used when you use lualatex instead of pdflatex (and in some
related situations). The problem is that latexmk won’t notice a dependency on a file, bar.baz say,
that is input by the lua code in your document instead of by the LaTeX part. (Thus if you change
bar.baz and rerun latexmk, then latexmk will think no files have changed and not rerun lualatex,
whereas if you had ’\input{bar.baz}’ in the LaTeX part of the document, latexmk would notice
the change.) One solution is just to put the following somewhere in the LaTeX part of the
document:

\typeout{(bar.baz)}

This puts a line in the log file that latexmk will treat as implying that the file bar.baz was read.
(At present I don’t know a way of doing this automatically.) Of course, if the file has a different
name, change bar.baz to the name of your file.

g. See also the section "Advanced Configuration: Some extra resources".

h. Look on tex.stackexchange, i.e., at http://tex.stackexchange.com/questions/tagged/latexmk
Someone may have already solved your problem.

i. Ask a question at tex.stackexchange.com.

j. Or ask me (the author of latexmk). My e-mail is at the end of this documentation.

ALLOWING FOR CHANGE OF OUTPUT FILE TYPE
When one of the latex engines is run, the usual situation is that latex produces a .dvi file, while
pdflatex and lualatex produce a .pdf file. For xelatex the default is to produce a .pdf file, but to
optimize processing time latexmk runs xelatex its -no-pdf option so that it produces an .xdv file.
Further processing by latexmk takes this as a starting point.

However, the actual output file may differ from the normal expectation; and then latexmk can
adjust its processing to accommodate this situation. The difference in output file type can happen
for two reasons: One is that for latex, pdflatex and lualatex the document itself can override the
defaults. The other is that there may be a configuration, or misconfiguration, such that the
program that latexmk invokes to compile the document is not the expected one, or is given
options incompatible with what latexmk initially expects. (E.g., the -output-format=... option
could be used with lualatex, or xelatex gets invoked without the -no-pdf option.)

Under latex and pdflatex, control of the output format by the document is done by setting the
\pdfoutput macro. Under lualatex, the \outputmode macro is used instead.

One example of an important use-case for document control of the output format is a document
that uses the psfrag package to insert graphical elements in the output file. The psfrag package
achieves its effects by inserting postscript code in the output of the compilation of the document.

29 September 2020 22

LATEXMK(1) General Commands Manual LATEXMK(1)

This entails the use of compilation to a .dvi file, followed by the use of conversion to a postscript
file (either directly, as by dvips or implicitly, as an intermediate step by dvipdf). Then it is useful
to force output to be of the .dvi format by inserting \pdfoutput=0 in the preamble of the
document.

Another example is where the document uses graphics file of the .pdf, .jpg, and png types. With
the default setting for the graphicx package, these can be processed in compilation to .pdf but not
with compilation to .dvi. In this case, it is useful to insert \pdfoutput=1 in the preamble of the
document to force compilation to .pdf output format.

In all of these cases, it is needed that latexmk has to adjust its processing to deal with a mismatch
between the actual output format (out of .pdf, .dvi, .xdv) and the initially expected output, if
possible. Latexmk does this provided the following conditions are met.

The first is that latexmk’s $allow_switch configuration variable is set to a non-zero value as it is
by default. If this variable is zero, a mismatch of filetypes in the compilation results in an erro.

The second condition for latexmk to be able to handle a change of output type is that no explicit
requests for .dvi or .ps output files are made. Explicit requests are by the -dvi and -ps,
-print=dvi, -print=ps, -view=dvi, and -view=ps options, and by corresponding settings of the
$dvi_mode, $postscript_mode, $print_type, and $view configuration variables. The print-type
and view-type restrictions only apply when printing and viewing are explicitly requested,
respectively. For this purpose, the use of the -pdfdvi and -pdfps options (and the corresponding
setting of the $pdf_mode variable) does not count as an explicit request for the .dvi and .ps files;
they are merely regarded as a request for making a .pdf file together with an initial proposal for
the processing route to make it.

Note that when accommodating a change in output file type, there is involved a substantial
change in the network of rules that latexmk uses in its actions. The second condition applied to
accommodate a change is to avoid situations where the change in the rule network is too radical
to be readily handled automatically.

CONFIGURATION/INITIALIZATION (RC) FILES
In this section is explained which configuration files are read by latexmk. Subsequent sections
"How to Set Variables in Initialization Files", "Format of Command Specifications", "List of
Configuration Variables Usable in Initialization Files", "Custom Dependencies", and "Advanced
Configuration" give details on what can be configured and how.

Latexmk can be customized using initialization files, which are read at startup in the following
order:

1) The system RC file, if it exists.
On a UNIX system, latexmk searches for following places for its system RC file, in the

following order, and reads the first it finds:
"/opt/local/share/latexmk/LatexMk",
"/usr/local/share/latexmk/LatexMk",
"/usr/local/lib/latexmk/LatexMk".

29 September 2020 23

LATEXMK(1) General Commands Manual LATEXMK(1)

On a MS-Windows system it looks for "C:\latexmk\LatexMk".
On a cygwin system (i.e., a MS-Windows system in which Perl is that of cygwin), latexmk

reads the first it finds of
"/cygdrive/c/latexmk/LatexMk",
"/opt/local/share/latexmk/LatexMk",
"/usr/local/share/latexmk/LatexMk",
"/usr/local/lib/latexmk/LatexMk".

In addition, it then tries the same set of locations, but with the file name replaced "LatexMk"
replaced by "latexmkrc".

If the environment variable LATEXMKRCSYS is set, its value is used as the name of the system
RC file, instead of any of the above.

2) The user’s RC file, if it exists. This can be in one of two places. The traditional one is
".latexmkrc" in the user’s home directory. The other possibility is "latexmk/latexmkrc" in the
user’s XDG configuration home directory. The actual file read is the first of
"$XDG_CONFIG_HOME/latexmk/latexmkrc" or "$HOME/.latexmkrc" which exists. (See
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html for details on the
XDG Base Directory Specification.)

Here $HOME is the user’s home directory. [Latexmk determines the user’s home directory as
follows: It is the value of the environment variable HOME, if this variable exists, which
normally is the case on UNIX-like systems (including Linux and OS-X). Otherwise the
environment variable USERPROFILE is used, if it exists, which normally is the case on MS-
Windows systems. Otherwise a blank string is used instead of $HOME, in which case latexmk

does not look for an RC file in it.]

$XDG_CONFIG_HOME is the value of the environment variable XDG_CONFIG_HOME if it
exists. If this environment variable does not exist, but $HOME is non-blank, then
$XDG_CONFIG_HOME is set to the default value of $HOME/.config. Otherwise
$XDG_CONFIG_HOME is blank, and latexmk does not look for an RC file under it.

3) The RC file in the current working directory. This file can be named either "latexmkrc" or
".latexmkrc", and the first of these to be found is used, if any.

4) Any RC file(s) specified on the command line with the -r option.

Each RC file is a sequence of Perl commands. Naturally, a user can use this in creative ways.
But for most purposes, one simply uses a sequence of assignment statements that override some
of the built-in settings of Latexmk. Straightforward cases can be handled without knowledge of
the Perl language by using the examples in this document as templates. Comment lines are
introduced by the "#" character.

Note that command line options are obeyed in the order in which they are written; thus any RC
file specified on the command line with the -r option can override previous options but can be
itself overridden by later options on the command line. There is also the -e option, which allows
initialization code to be specified in latexmk’s command line.

For possible examples of code for in an RC file, see the directory example_rcfiles in the

29 September 2020 24

LATEXMK(1) General Commands Manual LATEXMK(1)

distribution of latexmk (e.g., at http://mirror.ctan.org/support/latexmk/example_rcfiles).

HOW TO SET VARIABLES IN INITIALIZATION FILES
The important variables that can be configured are described in the section "List of configuration
variables usable in initialization files". (See the earlier section "Configuration/Initialization (rc)
Files" for the files where the configurations are done.) Syntax for setting these variables is of the
following forms:

$bibtex = ’bibtex %O %S’;

for the setting of a string variable,

$preview_mode = 1;

for the setting of a numeric variable, and

@default_files = (’paper’, ’paper1’);

for the setting of an array of strings. It is possible to append an item to an array variable as
follows:

push @default_files, ’paper2’;

Note that simple "scalar" variables have names that begin with a $ character and array variables
have names that begin with a @ character. Each statement ends with a semicolon.

Strings should be enclosed in single quotes. (You could use double quotes, as in many
programming languages. But then the Perl programming language brings into play some special
rules for interpolating variables into strings. People not fluent in Perl will want to avoid these
complications.)

You can do much more complicated things, but for this you will need to consult a manual for the
Perl programming language.

FORMAT OF COMMAND SPECIFICATIONS
Some of the variables set the commands that latexmk uses for carrying out its work, for example
to generate a .dvi file from a .tex file or to view a postscript file. This section describes some
important features of how the commands are specified. (Note that some of the possibilities listed
here do not apply to the $kpsewhich variable; see its documentation.)

Placeholders: Supposed you wanted latexmk to use the command elatex in place of the regular
latex command, and suppose moreover that you wanted to give it the option "--shell-escape".
You could do this by the following setting:

$latex = ’elatex --shell-escape %O %S’;

The two items starting with the % character are placeholders. These are substituted by
appropriate values before the command is run. Thus %S will be replaced by the source file that
elatex will be applied to, and %O will be replaced by any options that latexmk has decided to use
for this command. (E.g., if you used the -silent option in the invocation of latexmk, it results in

29 September 2020 25

LATEXMK(1) General Commands Manual LATEXMK(1)

the replacement of %O by "-interaction=batchmode".)

The available placeholders are:

%A basename of the main tex file. Unlike %R, this is unaffected by the setting of a jobname
by the -jobname option or the $jobname configuration value.

%B base of filename for current command. E.g., if a postscript file document.ps is being
made from the dvi file document.dvi, then the basename is document.

%D destination file (e.g., the name of the postscript file when converting a dvi file to
postscript).

%O options

%P If the variable $pre_tex_code is non-empty, then %P is substituted by the contents of
$pre_tex_code followed by \input{SOURCE}, where SOURCE stands for the name of
the source file. Appropriate quoting is done. This enables TeX code to be passed to one
of the *latex engines to be executed before the source file is read.

If the variable $pre_tex_code is the empty string, then %P is equivalent to %S.

%R root filename. This is the base name for the main tex file.

By default this is the basename of the main tex file. However the value can be changed
by the use of the -jobname option or the $jobname configuration variable.

%S source file (e.g., the name of the dvi file when converting a .dvi file to ps).

%T The name of the primary tex file.

%U If the variable $pre_tex_code is non-empty, then its value is substituted for %U
(appropriately quoted). Otherwise it is replaced by a null string.

%Y Name of directory for auxiliary output files (see the configuration variable $aux_dir). A
directory separation character (’/’) is appended if $aux_dir is non-empty and does not
end in a suitable character, with suitable characters being those appropriate to UNIX and
MS-Windows, i.e., ’:’, ’/’ and ’\’. Note that if after initialization, $out_dir is set, but
$aux_dir is not set (i.e., it is blank), then latexmk sets $aux_dir to the same value
$out_dir.

%Z Name of directory for output files (see the configuration variable $out_dir). A directory
separation character (’/’) is appended if $out_dir is non-empty and does not end in a
suitable character, with suitable characters being those appropriate to UNIX and MS-
Windows, i.e., ’:’, ’/’ and ’\’.

If for some reason you need a literal % character in your string not subject to the above rules, use
"%%".

Appropriate quoting will be applied to the filename substitutions, so you mustn’t supply them
yourself even if the names of your files have spaces in them. (But if your TeX filenames have
spaces in them, beware that some older versions of the TeX program cannot correctly handle
filenames containing spaces.) In case latexmk’s quoting does not work correctly on your system,
you can turn it off -- see the documentation for the variable $quote_filenames.

See the default values in the section "List of configuration variables usable in initialization files"
for what is normally the most appropriate usage.

29 September 2020 26

LATEXMK(1) General Commands Manual LATEXMK(1)

If you omit to supply any placeholders whatever in the specification of a command, latexmk will
supply what its author thinks are appropriate defaults. This gives compatibility with
configuration files for previous versions of latexmk, which didn’t use placeholders.

"Detaching" a command: Normally when latexmk runs a command, it waits for the command
to run to completion. This is appropriate for commands like latex, of course. But for previewers,
the command should normally run detached, so that latexmk gets the previewer running and then
returns to its next task (or exits if there is nothing else to do). To achieve this effect of detaching
a command, you need to precede the command name with "start ", as in

$dvi_previewer = ’start xdvi %O %S’;

This will be translated to whatever is appropriate for your operating system.

Notes: (1) In some circumstances, latexmk will always run a command detached. This is the case
for a previewer in preview continuous mode, since otherwise previewing continuously makes no
sense. (2) This precludes the possibility of running a command named start. (3) If the word start
occurs more than once at the beginning of the command string, that is equivalent to having just
one. (4) Under cygwin, some complications happen, since cygwin amounts to a complicated
merging of UNIX and MS-Windows. See the source code for how I’v e handled the problem.

Command names containing spaces: Under MS-Windows it is common that the name of a
command includes spaces, since software is often installed in a subdirectory of "C:\Program
Files". Such command names should be enclosed in double quotes, as in

$lpr_pdf = ’"c:/Program Files/Ghostgum/gsview/gsview32.exe" /p %S’;
$pdf_previewer = ’start "c:/Program Files/SumatraPDF/SumatraPDF.exe" %O %S’;
$pdf_previewer = ’start "c:/Program Files/SumatraPDF (x86)/SumatraPDF.exe" %O %S’;

(Note about the above example: Under MS-Windows forward slashes are equivalent to
backslashes in a filename under almost all circumstances, provided that the filename is inside
double quotes. It is easier to use forward slashes in examples like the one above, since then one
does not have to worry about the rules for dealing with forward slashes in strings in the Perl
language.)

Command names under Cygwin: If latexmk is executed by Cygwin’s Perl, be particularly

certain that pathnames in commands have forward slashes not the usual backslashes for the
separator of pathname components. See the above examples. Backslashes often get
misinterpreted by the Unix shell used by Cygwin’s Perl to execute external commands. Forward
slashes don’t suffer from this problem, and (when quoted, as above) are equally acceptable to
MS-Windows.

Using MS-Windows file associations: A useful trick under modern versions of MS-Windows
(e.g., WinXP) is to use just the command ’start’ by itself:

$dvi_previewer = ’start %S’;

Under MS-Windows, this will cause to be run whatever program the system has associated with
dvi files. (The same applies for a postscript viewer and a pdf viewer.) But note that this trick is
not always suitable for the pdf previwer, if your system has acroread for the default pdf viewer.
As explained elsewhere, acroread under MS-Windows does not work well with latex and latexmk,

29 September 2020 27

LATEXMK(1) General Commands Manual LATEXMK(1)

because acroread locks the pdf file.

Not using a certain command: If a command is not to be run, the command name NONE is
used, as in

$lpr = ’NONE lpr’;

This typically is used when an appropriate command does not exist on your system. The string
after the "NONE" is effectively a comment.

Options to commands: Setting the name of a command can be used not only for changing the
name of the command called, but also to add options to command. Suppose you want latexmk to
use latex with source specials enabled. Then you might use the following line in an initialization
file:

$latex = ’latex --src-specials %O %S’;

Running a subroutine instead of an external command: Use a specification starting with
"internal", as in

$latex = ’internal mylatex %O %S’;
sub mylatex {

my @args = @_;
Possible preprocessing here
return system ’latex’, @args;

}

For some of the more exotic possibilities that then become available, see the section
"ADVANCED CONFIGURATION: Some extra resources and advanced tricks". Also see some
of the examples in the directory example_rcfiles in the latexmk distribution.

Advanced tricks: Normally one specifies a single command for the commands invoked by
latexmk. Naturally, if there is some complicated additional processing you need to do in your
special situation, you can write a script (or batch file) to do the processing, and then configure
latexmk to use your script in place of the standard program.

You can also use a Perl subroutine instead of a script -- see above. This is generally the most
flexible and portable solution.

It is also possible to configure latexmk to run multiple commands. For example, if when running
pdflatex to generate a pdf file from a tex file you need to run another program after pdflatex to
perform some extra processing, you could do something like:

$pdflatex = ’pdflatex --shell-escape %O %S; pst2pdf_for_latexmk %B’;

This definition assumes you are using a UNIX-like system (which includes Linux and OS-X), so
that the two commands to be run are separated by the semicolon in the middle of the string.

If you are using MS-Windows, you would replace the above line by

$pdflatex = ’cmd /c pdflatex --shell-escape %O %S’
. ’&& pst2pdf_for_latexmk %B’;

29 September 2020 28

LATEXMK(1) General Commands Manual LATEXMK(1)

Here, the UNIX command separator ; is replaced by &&. In addition, there is a problem that
some versions of Perl on MS-Windows do not obey the command separator; this problem is
overcome by explicitly invoking the MS-Windows command-line processor cmd.exe.

LIST OF CONFIGURATION VARIABLES USABLE IN INITIALIZATION FILES
In this section are specified the variables whose values can be adjusted to configure latexmk. (See
the earlier section "Configuration/Initialization (rc) Files" for the files where the configurations
are done.)

Default values are indicated in brackets. Note that for variables that are boolean in character,
concerning whether latexmk does or does not behave in a certain way, a non-zero value, normally
1, indicates true, i.e., the behavior occurs, while a zero value indicates a false value, i.e., the
behavior does not occur.

$allow_switch [1]

This controls what happens when the output extension of latex, pdflatex, lualatex or
xelatex differs from what is expected. (The possible extensions are .dvi, .pdf, .xdv.)
This can happen with the use of the \pdfoutput macro in a document compiled under
latex or pdflatex, or with the use of the \outputmode macro under lualatex. It can also
happen with certain kinds of incorrect configuration.

In such a case, latexmk can appropriately adjust its network of rules. The adjustment is
made if $allow_switch is on, and if no request for a dvi or ps file has been made.

See the section ALLOWING FOR CHANGE OF OUTPUT EXTENSION.

$always_view_file_via_temporary [0]

Whether .ps and .pdf files are initially to be made in a temporary directory and then
moved to the final location. (This applies to dvips, dvipdf, and ps2pdf operations, and
the filtering operators on .dvi and .ps files. It does not apply to pdflatex, unfortunately,
since pdflatex provides no way of specifying a chosen name for the output file.)

This use of a temporary file solves a problem that the making of these files can occupy a
substantial time. If a viewer (notably gv) sees that the file has changed, it may read the
new file before the program writing the file has not yet finished its work, which can
cause havoc.

See the $pvc_view_file_via_temporary variable for a setting that applies only if preview-
continuous mode (-pvc option) is used. See $tmpdir for the setting of the directory
where the temporary file is created.

$analyze_input_log_always [1]

After a run of latex (etc), always analyze .log for input files in the <...> and (...)
constructions. Otherwise, only do the analysis when fls file doesn’t exist or is out of
date.

29 September 2020 29

LATEXMK(1) General Commands Manual LATEXMK(1)

Under normal circumstances, the data in the fls file is reliable, and the test of the log file
gets lots of false positives; usually $analyze_input_log_always is best set to zero. But
the test of the log file is needed at least in the following situation: When a user needs to
persuade latexmk that a certain file is a source file, and latexmk doesn’t otherwise find it.
Then the user can write code that causes a line with (...) to be written to log file. One
important case is for lualatex, which doesn’t always generate lines in the .fls file for
input lua files. (The situation with lualatex is HIGHLY version dependent, e.g., there
was a big change between TeXLive 2016 and TeXLive 2017.)

To keep backward compatibility with older versions of latexmk, the default is to set
$analyze_input_log_always to 1.

$auto_rc_use [1]

Whether to automatically read the standard initialization (rc) files, which are the system
RC file, the user’s RC file, and the RC file in the current directory. The command line
option -norc can be used to turn this setting off. Each RC file could also turn this
setting off, i.e., it could set $auto_rc_use to zero to prevent automatic reading of the
later RC files.

This variable does not affect the reading of RC files specified on the command line by
the -r option.

$aux_dir [""]

The directory in which auxiliary files (aux, log, etc) are to be written by a run of *latex.
If this variable is not set, but $out_dir is set, then $aux_dir is set to $out_dir, which is
the directory to which general output files are to be written.

Important note: The effect of $aux_dir, if different from $out_dir, is achieved by
giving *latex the -aux-directory. Currently (Dec. 2011 and later) this only works on the
MiKTeX version of *latex.

See also the documentation of $out_dir for some complications on what directory names
are suitable.

If you also use the -cd option, and $out_dir (or $aux_dir) contains a relative path, then
the path is interpreted relative to the document directory.

$banner [0]

If nonzero, the banner message is printed across each page when converting the dvi file
to postscript. Without modifying the variable $banner_message, this is equivalent to
specifying the -d option.

Note that if $banner is nonzero, the $postscript_mode is assumed and the postscript file
is always generated, even if it is newer than the dvi file.

$banner_intensity [0.95]

Equivalent to the -bi option, this is a decimal number between 0 and 1 that specifies how
dark to print the banner message. 0 is black, 1 is white. The default is just right if your
toner cartridge isn’t running too low.

29 September 2020 30

LATEXMK(1) General Commands Manual LATEXMK(1)

$banner_message ["DRAFT"]

The banner message to print across each page when converting the dvi file to postscript.
This is equivalent to the -bm option.

$banner_scale [220.0]

A decimal number that specifies how large the banner message will be printed.
Experimentation is necessary to get the right scale for your message, as a rule of thumb
the scale should be about equal to 1100 divided by the number of characters in the
message. The Default is just right for 5 character messages. This is equivalent to the
-bs option.

@BIBINPUTS

This is an array variable, now mostly obsolete, that specifies directories where latexmk

should look for .bib files. By default it is set from the BIBINPUTS environment
variable of the operating system. If that environment variable is not set, a single element
list consisting of the current directory is set. The format of the directory names depends
on your operating system, of course. Examples for setting this variable are:

@BIBINPUTS = (".", "C:\\bibfiles");
@BIBINPUTS = (".", "\\server\bibfiles");
@BIBINPUTS = (".", "C:/bibfiles");
@BIBINPUTS = (".", "//server/bibfiles");
@BIBINPUTS = (".", "/usr/local/texmf/bibtex/bib");

Note that under MS Windows, either a forward slash "/" or a backward slash "\" can be
used to separate pathname components, so the first two and the second two examples are
equivalent. Each backward slash should be doubled to avoid running afoul of Perl’s
rules for writing strings.

Important note: This variable is now mostly obsolete in the current version of latexmk,
since it has a better method of searching for files using the kpsewhich command.
However, if your system is an unusual one without the kpsewhich command, you may
need to set the variable @BIBINPUTS.

$biber ["biber %O %S"]

The biber processing program.

$biber_silent_switch ["--onlylog"]

Switch(es) for the biber processing program when silent mode is on.

$bibtex ["bibtex %O %S"]

The BibTeX processing program.

$bibtex_fudge [0]

When using bibtex, whether to take special action to allow older versions of bibtex to
work when $out_dir or $aux_dir is specified. With bibtex from about 2019, this special
action is longer be required; hence the default is not to do it.

$bibtex_silent_switch ["-terse"]

Switch(es) for the BibTeX processing program when silent mode is on.

29 September 2020 31

LATEXMK(1) General Commands Manual LATEXMK(1)

$bibtex_use [1]

Under what conditions to run bibtex or biber. When latexmk discovers from the log file
that one (or more) bibtex/biber-generated bibliographies are used, it can run bibtex or
biber whenever it appears necessary to regenerate the bbl file(s) from their source bib
database file(s). But sometimes, the bib file(s) are not available (e.g., for a document
obtained from an external archive), but the bbl files are provided. In that case use of
bibtex or biber will result in incorrect overwriting of the precious bbl files. The variable
$bibtex_use controls whether this happens, and also controls whether or not .bbl files are
deleted in a cleanup operation.

The possible values of $bibtex_use are:
0: never use BibTeX or biber; never delete .bbl files in a cleanup.
1: only use bibtex or biber if the bib files exist; never delete .bbl files in a cleanup.
1.5: only use bibtex or biber if the bib files exist; conditionally delete .bbl files in a

cleanup (i.e., delete them only when the bib files all exist).
2: run bibtex or biber whenever it appears necessary to update the bbl files, without

testing for the existence of the bib files; always delete .bbl files in a cleanup.

Note that the value 1.5 does not work properly if the document uses biber instead of
bibtex. (There’s a long story why not.)

$cleanup_includes_cusdep_generated [0]

If nonzero, specifies that cleanup also deletes files that are generated by custom
dependencies. (When doing a clean up, e.g., by use of the -C option, custom
dependencies are those listed in the .fdb_latexmk file from a previous run.)

$cleanup_includes_generated [0]

If nonzero, specifies that cleanup also deletes files that are detected in the fls file (or
failing that, in log file) as being generated. It will also include files made from these
first generation generated files.

This operation is somewhat dangerous, and can have unintended consequences, since the
files to be deleted are determined from a file created by *latex, which can contain
erroneous information. Therefore this variable is turned off by default, and then files to
be deleted are restricted to those explictly specified by patterns configured in the
variables clean_ext, clean_full_ext, and @generated_exts, together with those very
standard cases that are hardwired into latexmk (e.g., .log files).

$cleanup_mode [0]

If nonzero, specifies cleanup mode: 1 for full cleanup, 2 for cleanup except for .dvi, .ps
and .pdf files, 3 for cleanup except for dep and aux files. (There is also extra cleaning as
specified by the $clean_ext, $clean_full_ext and @generated_exts variables.)

This variable is equivalent to specifying one of the -c or -C options. But there should be
no need to set this variable from an RC file.

$clean_ext [""]

Extra extensions of files for latexmk to remove when any of the clean-up options (-c or
-C) is selected. The value of this variable is a string containing the extensions separated
by spaces.

29 September 2020 32

LATEXMK(1) General Commands Manual LATEXMK(1)

It is also possible to specify a more general pattern of file to be deleted, by using the
place holder %R, as in commands, and it is also possible to use wildcards. Thus setting

$clean_ext = "out %R-blx.bib %R-figures*.log pythontex-files-%R/*";

in an initialization file will imply that when a clean-up operation is specified, not only is
the standard set of files deleted, but also files of the form FOO.out, FOO-blx.bib, %R-
figures*.log, and pythontex-files-FOO/*, where FOO stands for the basename of the file
being processed (as in FOO.tex).

The files to be deleted are relative to the directory specified by $aux_dir. (Note that if
$out_dir but not $aux_dir is set, then in its initialization, latexmk sets $aux_dir equal to
$out_dir. A normal situation is therefore that $aux_dir equals $out_dir, which is the
only case supported by TeXLive, unlike MiKTeX.)

The filenames specfied for a clean-up operation can refer not only to regular files but
also to directories. Directories are only deleted if they are empty. An example of an
application is to pythontex, which creates files in a particular directory. You can arrange
to remove both the files and the directory by setting

$clean_ext = "pythontex-files-%R pythontex-files-%R";

See also the variable @generated_exts.

$clean_full_ext [""]

Extra extensions of files for latexmk to remove when the -C option is selected, i.e.,
extensions of files to remove when the .dvi, etc files are to be cleaned-up.

More general patterns are allowed, as for $clean_ext.

The files specified by $clean_full_ext to be deleted are relative to the directory specified
by $out_dir.

$compiling_cmd [""], $failure_cmd [""], $warning_cmd [""], $success_cmd [""]

These variables specify commands that are executed at certain points of compilations.
One motivation for their existance is to allow very useful convenient visual indications
of compilation status even when the window receiving the screen output of the
compilation is hidden. This is particularly useful in preview-continuous mode.

The commands are executed at the following points: $compiling_cmd at the start of
compilation, $success_cmd at the end of a completely successful compilation,
$failure_cmd at the end of an unsuccessful compilation, $warning_cmd at the of an
otherwise successful compilation that gives warnings about undefined citations or
references or about multiply defined references. If any of above variables is undefined or
blank (the default situation), then the corresponding command is not executed.

However, when $warning_cmd is not set, then in the case of a compilation with

29 September 2020 33

LATEXMK(1) General Commands Manual LATEXMK(1)

warnings about references or citations, but with no other error, one or other of
$success_cmd or $failure_cmd is used (if it is set) according to the setting of
$warnings_as_errors.

An example of a simple setting of these variables is as follows

$compiling_cmd = "xdotool search --name \"%D\" set_window --name \"%D
compiling\"";

$success_cmd = "xdotool search --name \"%D\" set_window --name \"%D OK\"";
$warning_cmd = "xdotool search --name \"%D\" ".

"set_window --name \"%D CITE/REF ISSUE\"";
$failure_cmd = "xdotool search --name \"%D\" set_window --name \"%D

FAILURE\"";

These assume that the program xdotool is installed, that the previewer is using an X-
Window system for display, and that the title of the window contains the name of the
displayed file, as it normally does. When the commands are executed, the placeholder
string %D is replaced by the name of the destination file, which is the previewed file.
The above commands result in an appropriate string being appended to the filename in
the window title: " compiling", " OK", or " FAILURE".

Other placeholders that can be used are %S, %T, and %R, with %S and %T normally
being identical. These can be useful for a command changing the title of the edit
window. The visual indication in a window title can useful, since the user does not have
to keep shifting attention to the (possibly hidden) compilation window to know the
status of the compilation.

More complicated situations can best be handled by defining a Perl subroutine to invoke
the necessary commands, and using the "internal" keyword in the definitions to get the
subroutine to be invoked. (See the section "Format of Command Specifications" for
how to do this.)

Naturally, the above settings that invoke the xdotool program are only applicable when
the X-Window system is used for the relevant window(s). For other cases, you will have
to find what software solutions are available.

@cus_dep_list [()]

Custom dependency list -- see section on "Custom Dependencies".

@default_excluded_files [()]

When latexmk is invoked with no files specified on the command line, then, by default, it
will process all files in the current directory with the extension .tex. (In general, it will
process the files specified in the @default_files variable.)

But sometimes you want to exclude particular files from this default list. In that case
you can specify the excluded files in the array @default_excluded_files. For example if
you wanted to process all .tex files with the exception of common.tex, which is a not a
standard alone LaTeX file but a file input by some or all of the others, you could do

29 September 2020 34

LATEXMK(1) General Commands Manual LATEXMK(1)

@default_files = ("*.tex");

@default_excluded_files = ("common.tex");

If you have a variable or large number of files to be processed, this method saves you
from having to list them in detail in @default_files and having to update the list every
time you change the set of files to be processed.

Notes: 1. This variable has no effect except when no files are specified on the latexmk

command line. 2. Wildcards are allowed in @default_excluded_files.

@default_files [("*.tex")]

Default list of files to be processed.

If no filenames are specified on the command line, latexmk processes all tex files
specified in the @default_files variable, which by default is set to all tex files ("*.tex") in
the current directory. This is a convenience: just run latexmk and it will process an
appropriate set of files. But sometimes you want only some of these files to be
processed. In this case you can list the files to be processed by setting @default_files in
an initialization file (e.g., the file "latexmkrc" in the current directory). Then if no files
are specified on the command line then the files you specify by setting @default_files

are processed.

Three examples:

@default_files = ("paper_current");

@default_files = ("paper1", "paper2.tex");

@default_files = ("*.tex", "*.dtx");

Note that more than file may be given, and that the default extension is ".tex". Wild
cards are allowed. The parentheses are because @default_files is an array variable, i.e.,
a sequence of filename specifications is possible.

If you want latexmk to process all .tex files with a few exceptions, see the
@default_excluded_files array variable.

$dependents_phony [0]

If a list of dependencies is output, this variable determines whether to include a phony
target for each source file. If you use the dependents list in a Makefile, the dummy rules
work around errors make giv es if you remove header files without updating the Makefile
to match.

$dependents_list [0]

Whether to display a list(s) of dependencies at the end of a run.

$deps_file ["-"]

Name of file to receive list(s) of dependencies at the end of a run, to be used if
$dependesnt_list is set. If the filename is "-", then the dependency list is set to stdout
(i.e., normally the screen).

29 September 2020 35

LATEXMK(1) General Commands Manual LATEXMK(1)

$do_cd [0]

Whether to change working directory to the directory specified for the main source file
before processing it. The default behavior is not to do this, which is the same as the
behavior of *latex programs. This variable is set by the -cd and -cd- options on
latexmk’s command line.

$dvi_filter [empty]

The dvi file filter to be run on the newly produced dvi file before other processing.
Equivalent to specifying the -dF option.

$dvi_mode [See below for default]

If nonzero, generate a dvi version of the document. Equivalent to the -dvi option.

The variable $dvi_mode defaults to 0, but if no explicit requests are made for other types
of file (postscript, pdf), then $dvi_mode will be set to 1. In addition, if a request for a
file for which a .dvi file is a prerequisite, then $dvi_mode will be set to 1.

$dvi_previewer ["start xdvi %O %S" under UNIX]

The command to invoke a dvi-previewer. [Under MS-Windows the default is "start";
then latexmk arranges to use the MS-Windows start program, which will cause to be run
whatever command the system has associated with .dvi files.]

Important note: Normally you will want to have a previewer run detached, so that
latexmk doesn’t wait for the previewer to terminate before continuing its work. So
normally you should prefix the command by "start ", which flags to latexmk that it
should do the detaching of the previewer itself (by whatever method is appropriate to the
operating system). But sometimes letting latexmk do the detaching is not appropriate
(for a variety of non-trivial reasons), so you should put the "start " bit in yourself,
whenever it is needed.

$dvi_previewer_landscape ["start xdvi %O %S"]

The command to invoke a dvi-previewer in landscape mode. [Under MS-Windows the
default is "start"; then latexmk arranges to use the MS-Windows start program, which
will cause to be run whatever command the system has associated with .dvi files.]

$dvipdf ["dvipdf %O %S %D"]

Command to convert .dvi to .pdf file. A common reconfiguration is to use the dvipdfm
command, which needs its arguments in a different order:

$dvipdf = "dvipdfm %O -o %D %S";

WARNING: The default dvipdf script generates pdf files with bitmapped fonts, which
do not look good when viewed by acroread. That script should be modified to give
dvips the options "-P pdf" to ensure that type 1 fonts are used in the pdf file.

$dvipdf_silent_switch ["-q"]

Switch(es) for dvipdf program when silent mode is on.

N.B. The standard dvipdf program runs silently, so adding the silent switch has no
effect, but is actually innocuous. But if an alternative program is used, e.g., dvipdfmx,
then the silent switch has an effect. The default setting is correct for dvipdfm and
dvipdfmx.

29 September 2020 36

LATEXMK(1) General Commands Manual LATEXMK(1)

$dvips ["dvips %O -o %D %S"]

The program to used as a filter to convert a .dvi file to a .ps file. If pdf is going to be
generated from pdf, then the value of the $dvips_pdf_switch variable -- see below -- will
be included in the options substituted for "%O".

$dvips_landscape ["dvips -tlandscape %O -o %D %S"]

The program to used as a filter to convert a .dvi file to a .ps file in landscape mode.

$dvips_pdf_switch ["-P pdf"]

Switch(es) for dvips program when pdf file is to be generated from .ps file.

$dvips_silent_switch ["-q"]

Switch(es) for dvips program when silent mode is on.

$dvi_update_command [""]

When the dvi previewer is set to be updated by running a command, this is the command
that is run. See the information for the variable $dvi_update_method for further
information, and see information on the variable $pdf_update_method for an example
for the analogous case of a pdf previewer.

$dvi_update_method [2 under UNIX, 1 under MS-Windows]

How the dvi viewer updates its display when the dvi file has changed. The values here
apply equally to the $pdf_update_method and to the $ps_update_method variables.

0 => update is automatic,
1=> manual update by user, which may only mean a mouse click on the viewer’s

window or may mean a more serious action.
2 => Send the signal, whose number is in the variable $dvi_update_signal. The

default value under UNIX is suitable for xdvi.
3 => Viewer cannot do an update, because it locks the file. (As with acroread under

MS-Windows.)
4 => run a command to do the update. The command is specified by the variable

$dvi_update_command.

See information on the variable $pdf_update_method for an example of updating by
command.

$dvi_update_signal [Under UNIX: SIGUSR1, which is a system-dependent value]

The number of the signal that is sent to the dvi viewer when it is updated by sending a
signal -- see the information on the variable $dvi_update_method. The default value is
the one appropriate for xdvi on a UNIX system.

$failure_cmd [undefined]

See the documentation for $compiling_cmd.

$fdb_ext ["fdb_latexmk"]

The extension of the file which latexmk generates to contain a database of information
on source files. You will not normally need to change this.

$filetime_causality_threshold [5]; $filetime_offset_report_threshold [30]. (Units of seconds.)

These variables control how latexmk deals with the following issue, which can affect the
use of files that are on a remote filesystem (network share) instead of being on a file
system local to the computer running latexmk. Almost users will not have to worry
about these settings, and can ignore the following explanation.

29 September 2020 37

LATEXMK(1) General Commands Manual LATEXMK(1)

In almost all situations, latexmk does not need to use the time stamps of the files it works
with. However, there are a couple of situations when it needs to know whether a certain
file was created in the current run of a program (e.g., *latex) or is a leftover file from a
previous run. It does this by comparing the modification time of the file with the system
time just before the program was started. If the modification time is earlier than when
the program was started, the file is a leftover file, which latexmk treats as if it were not
created. If the filetime is at least the program start time, then it can be assumed that the
file was created in the current run.

Unfortunately, this test can fail if the file is on a remote system, since its system time is
not necessarily synchronized with that of the local system; the timestamps on the remote
files are set by the remote system, not the local system. Generally, modern operating
systems regularly synchronize their time with a server, so the non-synchronization is
mostly small (a second or so, or a few seconds). But ev en a small difference can mess
up latexmk’s test.

Latexmk measures the time difference between the time on the two systems and
compensates for this. But the measurement (in a system-independent way) is only
accurate to a second or two. So latexmk allows for a threshold on the difference
between file and system time before it concludes that a file is a leftover file from a
previous run. The configuration variable $filetime_causality_theshhold, which in units of
seconds, specifies this threshold. Luckily high precision is not needed. The previous
run is normally the previous run in a human run-edit-run cycle, and is at least many
seconds back. A few seconds is therefore appropriate for the threshold,
$filetime_causality_theshhold; it should be non-negative always, and should be bigger
than 2 if a remote filesystem or network share is used.

If the difference in system times on the two systems is large, it normally indicates that at
least one of the systems is misconfigured. The variable
$filetime_offset_report_threshold specifies the smallest size of the difference (or offset)
in seconds between the times of the local and remote system beyond which the offset is
reported. This is reported at the point in the latexmk’s progress that it measures the
offset. The report is made if silent mode is used and diagnostic mode is not on.

$force_mode [0]

If nonzero, continue processing past minor latex errors including unrecognized cross
references. Equivalent to specifying the -f option.

@generated_exts [(aux , bbl , idx , ind , lof , lot , out , toc , $fdb_ext)]

This contains a list of extensions for files that are generated during a LaTeX run and that
are read in by LaTeX in later runs, either directly or indirectly.

This list specifies files known to be generated by *latex. It is used in two ways: (a) The
specified files are deleted in a cleanup operation (with the -c, -C, -CA, -g and -gg

options), and (b) It affects the determination of whether a rerun of *latex is needed after
a run that gives an error.

(Concerning item (b): Normally, a change of a source file during a run should provoke a

29 September 2020 38

LATEXMK(1) General Commands Manual LATEXMK(1)

rerun. This includes a file generated by LaTeX, e.g., an aux file, that is read in on
subsequent runs. But after a run that results in an error, a new run should not occur until
the user has made a change in the files. But the user may have corrected an error in a
source .tex file during the run. So latexmk needs to distinguish user-generated and
automatically generated files; it determines the automatically generated files as those
with extensions in the list in @generated_exts.)

A convenient way to add an extra extension to the list, without losing the already defined
ones is to use a push command in the line in an RC file. E.g.,

push @generated_exts, "end";

adds the extension "end" to the list of predefined generated extensions. (This extension
is used by the RevTeX package, for example.)

$go_mode [0]

If nonzero, process files regardless of timestamps, and is then equivalent to the -g

option.

%hash_calc_ignore_pattern

!!!This variable is for experts only!!!

The general rule latexmk uses for determining when an extra run of some program is
needed is that one of the source files has changed. But consider for example a latex
package that causes an encapsulated postscript file (an "eps" file) to be made that is to be
read in on the next run. The file contains a comment line giving its creation date and
time. On the next run the time changes, latex sees that the eps file has changed, and
therefore reruns latex. This causes an infinite loop, that is only terminated because
latexmk has a limit on the number of runs to guard against pathological situations.

But the changing line has no real effect, since it is a comment. You can instruct latex to
ignore the offending line as follows:

$hash_calc_ignore_pattern{’eps’} = ’ˆ%%CreationDate: ’;

This creates a rule for files with extension .eps about lines to ignore. The left-hand side
is a Perl idiom for setting an item in a hash. Note that the file extension is specified
without a period. The value, on the right-hand side, is a string containing a regular
expresssion. (See documentation on Perl for how they are to be specified in general.)
This particular regular expression specifies that lines beginning with "%%CreationDate:
" are to be ignored in deciding whether a file of the given extension .eps has changed.

There is only one regular expression available for each extension. If you need more one
pattern to specify lines to ignore, then you need to combine the patterns into a single
regular expression. The simplest method is separate the different simple patterns by a
vertical bar character (indicating "alternation" in the jargon of regular expressions). For
example,

$hash_calc_ignore_pattern{’eps’} = ’ˆ%%CreationDate: |ˆ%%Title: ’;

29 September 2020 39

LATEXMK(1) General Commands Manual LATEXMK(1)

causes lines starting with either "ˆ%%CreationDate: " or "ˆ%%Title: " to be ignored.

It may happen that a pattern to be ignored is specified in, for example, in a system or
user initialization file, and you wish to remove this in a file that is read later. To do this,
you use Perl’s delete function, e.g.,

delete $hash_calc_ignore_pattern{’eps’};

$jobname [""]

This specifies the jobname, i.e., the basename that is used for generated files (.aux, .log,
.dvi, .ps, .pdf, etc). If this variable is a null string, then the basename is the basename of
the main tex file. (At present, the string in $jobname should not contain spaces.)

The placeholder ’%A’ is permitted. This will be substituted by the basename of the TeX
file. The primary purpose is when a variety of tex files are to be processed, and you
want to use a different jobname for each but one that is distinct for each. Thus if you
wanted to compare compilations of a set of files on different operating systems, with
distinct filenames for all the cases, you could set

$jobname = "%A-$ˆO";

in an initialization file. (Here $ˆO is a variable provided by perl that contains perl’s
name for the operating system.)

Suppose you had .tex files test1.tex and test2.tex. Then when you run

latexmk -pdf *.tex

both files will be compiled. The .aux, .log, and .pdf files will have basenames
test1-MSWin32 ante test2-MSWin32 on a MS-Windows system, test1-darwin and
test2-darwin on an OS-X system, and a variety of similar cases on linux systems.

$kpsewhich ["kpsewhich %S"]

The program called to locate a source file when the name alone is not sufficient. Most
filenames used by latexmk have sufficient path information to be found directly. But
sometimes, notably when a .bib or a .bst file is found from the log file of a bibtex or
biber run, only the base name of the file is known, but not its path. The program
specified by $kpsewhich is used to find it.

(For advanced users: Because of the different way in which latexmk uses the command
specified in $kpsewhich, some of the possibilities listed in the FORMAT OF
COMMAND SPECIFICATIONS do not apply. The internal and start keywords are not
available. A simple command specification with possible options and then "%S" is all
that is guaranteed to work. Note that for other commands, "%S" is substituted by a
single source file. In contrast, for $kpsewhich, "%S" may be substituted by a long list of
space-separated filenames, each of which is quoted. The result on STDOUT of running

29 September 2020 40

LATEXMK(1) General Commands Manual LATEXMK(1)

the command is then piped to latexmk.)

See also the @BIBINPUTS variable for another way that latexmk also uses to try to
locate files; it applies only in the case of .bib files.

$kpsewhich_show [0]

Whether to show diagnostics about invocations of kpsewhich: the command line use to
invoke it and the results. These diagnostics are shown if $kpsewhich_show is non-zero
or if diagnostics mode is on. (But in the second case, lots of other diagnostics are also
shown.) Without these diagnostics there is nothing visible in latexmk’s screen output
about invocations of kpsewhich.

$landscape_mode [0]

If nonzero, run in landscape mode, using the landscape mode previewers and dvi to
postscript converters. Equivalent to the -l option. Normally not needed with current
previewers.

$latex ["latex %O %S"]

Specifies the command line for the LaTeX processing program. Note that as with other
programs, you can use this variable not just to change the name of the program used, but
also specify options to the program. E.g.,

$latex = "latex --src-specials %O %S";

To do a coordinated setting of all of $latex, $pdflatex, $lualatex, and $xelatex, see the
section "Advanced Configuration".

%latex_input_extensions

This variable specifies the extensions tried by latexmk when it finds that a LaTeX run
resulted in an error that a file has not been found, and the file is given without an
extension. This typically happens when LaTeX commands of the form \input{file} or
\includegraphics{figure}, when the relevant source file does not exist.

In this situation, latexmk searches for custom dependencies to make the missing file(s),
but restricts it to the extensions specified by the variable %latex_input_extensions. The
default extensions are ’tex’ and ’eps’.

(For Perl experts: %latex_input_extensions is a hash whose keys are the extensions. The
values are irrelevant.) Two subroutines are provided for manipulating this and the
related variable %pdflatex_input_extensions, add_input_ext and remove_input_ext.
They are used as in the following examples are possible lines in an initialization file:

remove_input_ext(’latex’, ’tex’);

removes the extension ’tex’ from latex_input_extensions

add_input_ext(’latex’, ’asdf’);

add the extension ’asdf to latex_input_extensions. (Naturally with such an extension,
you should have made an appropriate custom dependency for latexmk, and should also

29 September 2020 41

LATEXMK(1) General Commands Manual LATEXMK(1)

have done the appropriate programming in the LaTeX source file to enable the file to be
read. The standard extensions are handled by LaTeX and its graphics/graphicx
packages.)

$latex_silent_switch ["-interaction=batchmode"]

Switch(es) for the LaTeX processing program when silent mode is on.

If you use MikTeX, you may prefer the results if you configure the options to include -c-
style-errors, e.g., by the following line in an initialization file

$latex_silent_switch = "-interaction=batchmode -c-style-errors";

$lpr ["lpr %O %S" under UNIX/Linux, "NONE lpr" under MS-Windows]

The command to print postscript files.

Under MS-Windows (unlike UNIX/Linux), there is no standard program for printing
files. But there are ways you can do it. For example, if you have gsview installed, you
could use it with the option "/p":

$lpr = ’"c:/Program Files/Ghostgum/gsview/gsview32.exe" /p’;

If gsview is installed in a different directory, you will need to make the appropriate
change. Note the combination of single and double quotes around the name. The single
quotes specify that this is a string to be assigned to the configuration variable $lpr. The
double quotes are part of the string passed to the operating system to get the command
obeyed; this is necessary because one part of the command name ("Program Files")
contains a space which would otherwise be misinterpreted.

$lpr_dvi ["NONE lpr_dvi"]

The printing program to print dvi files.

$lpr_pdf ["NONE lpr_pdf"]

The printing program to print pdf files.

Under MS-Windows you could set this to use gsview, if it is installed, e.g.,

$lpr = ’"c:/Program Files/Ghostgum/gsview/gsview32.exe" /p’;

If gsview is installed in a different directory, you will need to make the appropriate
change. Note the double quotes around the name: this is necessary because one part of
the command name ("Program Files") contains a space which would otherwise be
misinterpreted.

$lualatex ["lualatex %O %S"]

Specifies the command line for the LaTeX processing program that is to be used when
the lualatex program is called for (e.g., by the option -lualatex.

To do a coordinated setting of all of $latex, $pdflatex, $lualatex, and $xelatex, see the
section "Advanced Configuration".

29 September 2020 42

LATEXMK(1) General Commands Manual LATEXMK(1)

%lualatex_input_extensions

This variable specifies the extensions tried by latexmk when it finds that a lualatex run
resulted in an error that a file has not been found, and the file is given without an
extension. This typically happens when LaTeX commands of the form \input{file} or
\includegraphics{figure}, when the relevant source file does not exist.

In this situation, latexmk searches for custom dependencies to make the missing file(s),
but restricts it to the extensions specified by the variable %pdflatex_input_extensions.
The default extensions are ’tex’, ’pdf’, ’jpg, and ’png’.

See details of the %latex_input_extensions for other information that equally applies to
%lualatex_input_extensions.

$lualatex_silent_switch ["-interaction=batchmode"]

Switch(es) for the lualatex program (specified in the variable $lualatex) when silent
mode is on.

See details of the $latex_silent_switch for other information that equally applies to
$lualatex_silent_switch.

$make ["make"]

The make processing program.

$makeindex ["makeindex %O -o %D %S"]

The index processing program.

$makeindex_silent_switch ["-q"]

Switch(es) for the index processing program when silent mode is on.

$max_repeat [5]

The maximum number of times latexmk will run *latex before deciding that there may
be an infinite loop and that it needs to bail out, rather than rerunning *latex again to
resolve cross-references, etc. The default value covers all normal cases.

(Note that the "etc" covers a lot of cases where one run of *latex generates files to be
read in on a later run.)

$MSWin_back_slash [1]

This configuration variable only has an effect when latexmk is running under MS-
Windows. With the default value of 1 for this variable, when a command is executed
under MS-Windows, latexmk substitutes "\" for the separator character between
components of a directory name. Internally, latexmk uses "/" for the directory separator
character, which is the character used by Unix-like systems.

For almost all programs and for almost all filenames under MS-Windows, both "\" and
"/" are acceptable as the directory separator character, provided at least that filenames
are properly quoted. But it is possible that programs exist that only accept "\" on the
command line, since that is the standard directory separator for MS-Windows. So for
safety latexmk makes the substitution from "/" to "\", by default.

However there are also programs on MS-Windows for which a back slash "\" is
interpreted differently than as a directory separator; for these the directory separator

29 September 2020 43

LATEXMK(1) General Commands Manual LATEXMK(1)

should be "/". Programs with this behavior include all the *latex programs in the
TeXLive implementation (but not the MiKTeX implementation). Hence if you use
TeXLive on MS-Windows, then $MSWin_back_slash should be set to zero.

$new_viewer_always [0]

This variable applies to latexmk only in continuous-preview mode. If
$new_viewer_always is 0, latexmk will check for a previously running previewer on the
same file, and if one is running will not start a new one. If $new_viewer_always is non-
zero, this check will be skipped, and latexmk will behave as if no viewer is running.

$out_dir [""]

If non-blank, this variable specifies the directory in which output files are to be written
by a run of *latex. See also the variable $aux_dir.

The effect of this variable (when non-blank) is achieved by using the -output-directory

option of *latex. This exists in the usual current (Dec. 2011 and later) implementations
of TeX, i.e., MiKTeX and TeXLive. But it may not be present in other versions.

If you also use the -cd option, and $out_dir (or $aux_dir) contains a relative path, then
the path is interpreted relative to the document directory.

Commonly, the directory specified for output files is a subdirectory of the current
working directory. Howev er, if you specify some other directory, e.g., "/tmp/foo" or
"../output", be aware that this could cause problems, e.g., with makeindex or bibtex.
This is because modern versions of these programs, by default, will refuse to work when
they find that they are asked to write to a file in a directory that appears not to be the
current working directory or one of its subdirectories. This is part of security measures
by the whole TeX system that try to prevent malicious or errant TeX documents from
incorrectly messing with a user’s files. If for $out_dir or $aux_dir you really do need to
specify an absolute pathname (e.g., "/tmp/foo") or a path (e.g., "../output") that includes
a higher-level directory, and you need to use makeindex or bibtex, then you need to
disable the security measures (and assume any risks). One way of doing this is to
temporarily set an operating system environment variable openout_any to "a" (as in
"all"), to override the default "paranoid" setting.

$pdf_mode [0]

If zero, do NOT generate a pdf version of the document. If equal to 1, generate a pdf
version of the document using pdflatex, using the command specified by the $pdflatex

variable. If equal to 2, generate a pdf version of the document from the ps file, by using
the command specified by the $ps2pdf variable. If equal to 3, generate a pdf version of
the document from the dvi file, by using the command specified by the $dvipdf variable.
If equal to 4, generate a pdf version of the document using lualatex, using the command
specified by the $lualatex variable. If equal to 5, generate a pdf version (and an xdv
version) of the document using xelatex, using the commands specified by the $xelatex

and xdvipdfmx variables.

In $pdf_mode=2, it is ensured that .dvi and .ps files are also made. In $pdf_mode=3, it is
ensured that a .dvi file is also made. But this may be overridden by the document.

29 September 2020 44

LATEXMK(1) General Commands Manual LATEXMK(1)

$pdflatex ["pdflatex %O %S"]

Specifies the command line for the LaTeX processing program in a version that makes a
pdf file instead of a dvi file.

An example use of this variable is to add certain options to the command line for the
program, e.g.,

$pdflatex = "pdflatex --shell-escape %O %S";

(In some earlier versions of latexmk, you needed to use an assignment to $pdflatex to
allow the use of lualatex or xelatex instead of pdflatex. There are now separate
configuration variables for the use of lualatex or xelatex. See $lualatex and $xelatex.)

To do a coordinated setting of all of $latex, $pdflatex, $lualatex, and $xelatex, see the
section "Advanced Configuration".

%pdflatex_input_extensions

This variable specifies the extensions tried by latexmk when it finds that a pdflatex run
resulted in an error that a file has not been found, and the file is given without an
extension. This typically happens when LaTeX commands of the form \input{file} or
\includegraphics{figure}, when the relevant source file does not exist.

In this situation, latexmk searches for custom dependencies to make the missing file(s),
but restricts it to the extensions specified by the variable %pdflatex_input_extensions.
The default extensions are ’tex’, ’pdf’, ’jpg, and ’png’.

See details of the %latex_input_extensions for other information that equally applies to
%pdflatex_input_extensions.

$pdflatex_silent_switch ["-interaction=batchmode"]

Switch(es) for the pdflatex program (specified in the variable $pdflatex) when silent
mode is on.

See details of the $latex_silent_switch for other information that equally applies to
$pdflatex_silent_switch.

$pdf_previewer ["start acroread %O %S"]

The command to invoke a pdf-previewer.

On MS-Windows, the default is changed to "cmd /c start """; under more recent versions
of Windows, this will cause to be run whatever command the system has associated with
.pdf files. But this may be undesirable if this association is to acroread -- see the notes
in the explanation of the -pvc option.]

On OS-X the default is changed to "open %S", which results in OS-X starting up (and
detaching) the viewer associated with the file. By default, for pdf files this association is
to OS-X’s preview, which is quite satisfactory.

WARNING: Problem under MS-Windows: if acroread is used as the pdf previewer, and
it is actually viewing a pdf file, the pdf file cannot be updated. Thus makes acroread a

29 September 2020 45

LATEXMK(1) General Commands Manual LATEXMK(1)

bad choice of previewer if you use latexmk’s previous-continuous mode (option -pvc)
under MS-windows. This problem does not occur if, for example, SumatraPDF or
gsview is used to view pdf files.

Important note: Normally you will want to have a previewer run detached, so that
latexmk doesn’t wait for the previewer to terminate before continuing its work. So
normally you should prefix the command by "start ", which flags to latexmk that it
should do the detaching of the previewer itself (by whatever method is appropriate to the
operating system). But sometimes letting latexmk do the detaching is not appropriate
(for a variety of non-trivial reasons), so you should put the "start " bit in yourself,
whenever it is needed.

$pdf_update_command [""]

When the pdf previewer is set to be updated by running a command, this is the
command that is run. See the information for the variable $pdf_update_method.

$pdf_update_method [1 under UNIX, 3 under MS-Windows]

How the pdf viewer updates its display when the pdf file has changed. See the
information on the variable $dvi_update_method for the codes. (Note that information
needs be changed slightly so that for the value 4, to run a command to do the update, the
command is specified by the variable $pdf_update_command, and for the value 2, to
specify update by signal, the signal is specified by $pdf_update_signal.)

Note that acroread under MS-Windows (but not UNIX) locks the pdf file, so the default
value is then 3.

Arranging to use a command to get a previewer explicitly updated requires three
variables to be set. For example:

$pdf_previewer = "start xpdf -remote %R %O %S";
$pdf_update_method = 4;
$pdf_update_command = "xpdf -remote %R -reload";

The first setting arranges for the xpdf program to be used in its "remote server mode",
with the server name specified as the rootname of the TeX file. The second setting
arranges for updating to be done in response to a command, and the third setting sets the
update command.

$pdf_update_signal [Under UNIX: SIGHUP, which is a system-dependent value]

The number of the signal that is sent to the pdf viewer when it is updated by sending a
signal -- see the information on the variable $pdf_update_method. The default value is
the one appropriate for gv on a UNIX system.

$pid_position[1 under UNIX, -1 under MS-Windows]

The variable $pid_position is used to specify which word in lines of the output from
$pscmd corresponds to the process ID. The first word in the line is numbered 0. The
default value of 1 (2nd word in line) is correct for Solaris 2.6, Linux, and OS-X with
their default settings of $pscmd.

Setting the variable to -1 is used to indicate that $pscmd is not to be used.

29 September 2020 46

LATEXMK(1) General Commands Manual LATEXMK(1)

$postscript_mode [0]

If nonzero, generate a postscript version of the document. Equivalent to the -ps option.

If some other request is made for which a postscript file is needed, then
$postscript_mode will be set to 1.

$pre_tex_code [’’]

Sets TeX code to be executed before inputting the source file. This works if the relevant
one of $latex, etc contains a suitable command line with a %P or %U substitution. For
example you could do

$latex = ’latex %O %P’;
$pre_tex_code = ’\AtBeginDocument{An initial message\par}’;

To set all of $latex, $pdflatex, $lualatex, and $xelatex you could use the subroutine
alt_tex_cmds:

&alt_tex_cmds;
$pre_tex_code = ’\AtBeginDocument{An initial message\par}’;

$preview_continuous_mode [0]

If nonzero, run a previewer to view the document, and continue running latexmk to keep
.dvi up-to-date. Equivalent to the -pvc option. Which previewer is run depends on the
other settings, see the command line options -view=, and the variable $view.

$preview_mode [0]

If nonzero, run a previewer to preview the document. Equivalent to the -pv option.
Which previewer is run depends on the other settings, see the command line options
-view=, and the variable $view.

$printout_mode [0]

If nonzero, print the document using the command specified in the $lpr variable.
Equivalent to the -p option. This is recommended not to be set from an RC file,
otherwise you could waste lots of paper.

$print_type = ["auto"]

Type of file to printout: possibilities are "auto", "dvi", "none", "pdf", or "ps". See the
option -print= for the meaning of the "auto" value.

$pscmd

Command used to get all the processes currently run by the user. The -pvc option uses
the command specified by the variable $pscmd to determine if there is an already
running previewer, and to find the process ID (needed if latexmk needs to signal the
previewer about file changes).

Each line of the output of this command is assumed to correspond to one process. See
the $pid_position variable for how the process number is determined.

The default for pscmd is "NONE" under MS-Windows and cygwin (i.e., the command is

29 September 2020 47

LATEXMK(1) General Commands Manual LATEXMK(1)

not used), "ps -ww -u $ENV{USER}" under OS-X, and "ps -f -u $ENV{USER}" under
other operating systems (including Linux). In these specifications "$ENV{USER}" is
substituted by the username.

$ps2pdf ["ps2pdf %O %S %D"]

Command to convert .ps to .pdf file.

$ps_filter [empty]

The postscript file filter to be run on the newly produced postscript file before other
processing. Equivalent to specifying the -pF option.

$ps_previewer ["start gv %O %S", but start %O %S under MS-Windows]

The command to invoke a ps-previewer. (The default under MS-Windows will cause to
be run whatever command the system has associated with .ps files.)

Note that gv could be used with the -watch option updates its display whenever the
postscript file changes, whereas ghostview does not. However, different versions of gv

have slightly different ways of writing this option. You can configure this variable
appropriately.

WARNING: Linux systems may have installed one (or more) versions of gv under
different names, e.g., ggv, kghostview, etc, but perhaps not one actually called gv.

Important note: Normally you will want to have a previewer run detached, so that
latexmk doesn’t wait for the previewer to terminate before continuing its work. So
normally you should prefix the command by "start ", which flags to latexmk that it
should do the detaching of the previewer itself (by whatever method is appropriate to the
operating system). But sometimes letting latexmk do the detaching is not appropriate
(for a variety of non-trivial reasons), so you should put the "start " bit in yourself,
whenever it is needed.

$ps_previewer_landscape ["start gv -swap %O %S", but start %O %S under MS-

Windows]

The command to invoke a ps-previewer in landscape mode.

$ps_update_command [""]

When the postscript previewer is set to be updated by running a command, this is the
command that is run. See the information for the variable $ps_update_method.

$ps_update_method [0 under UNIX, 1 under MS-Windows]

How the postscript viewer updates its display when the .ps file has changed. See the
information on the variable $dvi_update_method for the codes. (Note that information
needs be changed slightly so that for the value 4, to run a command to do the update, the
command is specified by the variable $ps_update_command, and for the value 2, to
specify update by signal, the signal is specified by $ps_update_signal.)

$ps_update_signal [Under UNIX: SIGHUP, which is a system-dependent value]

The number of the signal that is sent to the pdf viewer when it is updated by sending a
signal -- see $ps_update_method. The default value is the one appropriate for gv on a
UNIX system.

29 September 2020 48

LATEXMK(1) General Commands Manual LATEXMK(1)

$pvc_timeout [0]

If this variable is nonzero, there will be a timeout in pvc mode after a period of
inactivity. Inactivity means a period when latexmk has detected no file changes and
hence has not taken any actions like compiling the document. The period of inactivity is
in the variable $pvc_timeout_mins.

$pvc_timeout_mins [30]

The period of inactivity, in minutes, after which pvc mode times out. This is used if
$pvc_timeout is nonzero.

$pvc_view_file_via_temporary [1]

The same as $always_view_file_via_temporary, except that it only applies in preview-
continuous mode (-pvc option).

$quote_filenames [1]

This specifies whether substitutions for placeholders in command specifications (as in
$pdflatex) are surrounded by double quotes. If this variable is 1 (or any other value Perl
regards as true), then quoting is done. Otherwise quoting is omitted.

The quoting method used by latexmk is tested to work correctly under UNIX systems
(including Linux and Mac OS-X) and under MS-Windows. It allows the use of
filenames containing special characters, notably spaces. (But note that many versions of
*latex cannot correctly deal with TeX files whose names contain spaces. Latexmk’s
quoting only ensures that such filenames are correctly treated by the operating system in
passing arguments to programs.)

$recorder [1]

Whether to use the -recorder option to (latex Use of this option results in a file of
extension .fls containing a list of the files that these programs have read and written.
Latexmk will then use this file to improve its detection of source files and generated files
after a run of *latex.

It is generally recommended to use this option (or to configure the $recorder variable to
be on.) But it only works if *latex supports the -recorder option, which is true for most
current implementations

Note about the name of the .fls file: Most implementations of *latex produce an .fls file
with the same basename as the main document’s LaTeX, e.g., for Document.tex, the .fls
file is Document.fls. However, some implementations instead produce files named for
the program, i.e., latex.fls or pdflatex.fls. In this second case, latexmk copies the latex.fls
or pdflatex.fls to a file with the basename of the main LaTeX document, e.g.,
Document.fls.

$search_path_separator [See below for default]

The character separating paths in the environment variables TEXINPUTS, BIBINPUTS,
and BSTINPUTS. This variable is mainly used by latexmk when the -outdir, -output-

directory, -auxdir, and/or -aux-directory options are used. In that case latexmk needs
to communicate appropriately modified search paths to bibtex, dvipdf, dvips, and *latex.

[Comment to technically savvy readers: *latex doesn’t actually need the modified search

29 September 2020 49

LATEXMK(1) General Commands Manual LATEXMK(1)

path. But, surprisingly, dvipdf and dvips do, because sometimes graphics files get
generated in the output or aux directories.]

The default under MSWin and Cygwin is ’;’ and under UNIX-like operating systems
(including Linux and OS-X) is ’:’. Normally the defaults give correct behavior. But
there can be difficulties if your operating system is of one kind, but some of your
software is running under an emulator for the other kind of operating system; in that
case you’ll need to find out what is needed, and set $search_path_separator explicitly.
(The same goes, of course, for unusual operating systems that are not in the MSWin,
Linux, OS-X, Unix collection.)

$show_time [0]

Whether to show CPU time used.

$silence_logfile_warnings [0]

Whether after a run of *latex to summarize warnings in the log file about undefined
citations and references. Setting $silence_logfile_warnings=0 gives the summary of
warnings (provided silent mode isn’t also set), and this is useful to locate undefined
citations and references without searching through the much more verbose log file or the
screen output of *latex. But the summary can also be excessively annoying. The
default is not to give these warnings. The command line options
-silence_logfile_warning_list and -silence_logfile_warning_list- also set this variable.

Note that multiple occurrences for the same undefined object on the same page and
same line will be compressed to a single warning.

$silent [0]

Whether to run silently. Setting $silent to 1 has the same effect as the -quiet of -silent

options on the command line.

$sleep_time [2]

The time to sleep (in seconds) between checking for source file changes when running
with the -pvc option. This is subject to a minimum of one second delay, except that zero
delay is also allowed.

A value of exactly 0 gives no delay, and typically results in 100% CPU usage, which
may not be desirable.

$texfile_search [""]

This is an obsolete variable, replaced by the @default_files variable.

For backward compatibility, if you choose to set $texfile_search, it is a string of space-
separated filenames, and then latexmk replaces @default_files with the filenames in
$texfile_search to which is added "*.tex".

$success_cmd [undefined]

See the documentation for $compiling_cmd.

$tmpdir [See below for default]

Directory to store temporary files that latexmk may generate while running.

The default under MSWindows (including cygwin), is to set $tmpdir to the value of the

29 September 2020 50

LATEXMK(1) General Commands Manual LATEXMK(1)

first of whichever of the system environment variables TMPDIR or TEMP exists,
otherwise to the current directory. Under other operating systems (expected to be
UNIX/Linux, including OS-X), the default is the value of the system environment
variable TMPDIR if it exists, otherwise "/tmp".

$use_make_for_missing_files [0]

Whether to use make to try and make files that are missing after a run of *latex, and for
which a custom dependency has not been found. This is generally useful only when
latexmk is used as part of a bigger project which is built by using the make program.

Note that once a missing file has been made, no further calls to make will be made on a
subsequent run of latexmk to update the file. Handling this problem is the job of a
suitably defined Makefile. See the section "USING latexmk WITH make" for how to do
this. The intent of calling make from latexmk is merely to detect dependencies.

$view ["default"]

Which kind of file is to be previewed if a previewer is used. The possible values are
"default", "dvi", "ps", "pdf". The value of "default" means that the "highest" of the
kinds of file generated is to be used (among .dvi, .ps and .pdf).

$warnings_as_errors [0]

Normally latexmk copies the behavior of latex in treating undefined references and
citations and multiply defined references as conditions that give a warning but not an
error. The variable $warnings_as_errors controls whether this behavior is modified.

When the variable is non-zero, latexmk at the end of its run will return a non-zero status
code to the operating system if any of the files processed gives a warning about
problems with citations or references (i.e., undefined citations or references or multiply
defined references). This is after latexmk has completed all the runs it needs to try and
resolve references and citations. Thus $warnings_as_errors being nonzero causes
latexmk to treat such warnings as errors, but only when they occur on the last run of
*latex and only after processing is complete. A non-zero value $warnings_as_errors

can be set by the command-line option -Werror.

The default behavior is normally satisfactory in the usual edit-compile-edit cycle. But,
for example, latexmk can also be used as part of a build process for some bigger project,
e.g., for creating documentation in the build of a software application. Then it is often
sensible to treat citation and reference warnings as errors that require the overall build
process to be aborted. Of course, since multiple runs of *latex are generally needed to
resolve references and citations, what matters is not the warnings on the first run, but the
warnings on the last run; latexmk takes this into account appropriately.

In addition, when preview-continuous mode is used, a non-zero value for
$warnings_as_errors changes the use of the commands $failure_cmd, $warning_cmd,
and $success_cmd after a compliation. If there are citation or reference warnings, but no
other errors, the behavior is as follows. If $warning_cmd is set, it is used. If it is not set,
then then if $warnings_as_errors is non-zero and $failure_cmd is set, then
$failure_cmd. Otherwise $success_cmd is used, if it is set. (The foregoing explanation
is rather complicated, because latexmk has to deal with the case that one or more of the

29 September 2020 51

LATEXMK(1) General Commands Manual LATEXMK(1)

commands isn’t set.)

$xdvipdfmx ["xdvipdfmx -E -o %D %O %S"]

The program to make a pdf file from an xdv file (used in conjunction with xelatex when
$pdf_mode=5).

$xdvipdfmx_silent_switch ["-q"]

Switch(es) for the xdvipdfmx program when silent mode is on.

$xelatex ["xelatex %O %S"]

Specifies the command line for the LaTeX processing program of when the xelatex

program is called for. See the documentation of the -xelatex option for some special
properties of latexmk’s use of xelatex.

Note about xelatex: latexmk uses xelatex to make an .xdv rather than .pdf file, with the
.pdf file being created in a separate step. This is enforced by the use of the -no-pdf

option. If %O is part of the command for invoking xelatex, then latexmk will insert the
-no-pdf option automatically, otherwise you must provide the option yourself. See the
documentation for the -pdfxe option for why latexmk makes a .xdv file rather than a .pdf
file when xelatex is used.

To do a coordinated setting of all of $latex, $pdflatex, $lualatex, and $xelatex, see the
section "Advanced Configuration".

%xelatex_input_extensions

This variable specifies the extensions tried by latexmk when it finds that an xelatex run
resulted in an error that a file has not been found, and the file is given without an
extension. This typically happens when LaTeX commands of the form \input{file} or
\includegraphics{figure}, when the relevant source file does not exist.

In this situation, latexmk searches for custom dependencies to make the missing file(s),
but restricts it to the extensions specified by the variable %xelatex_input_extensions.
The default extensions are ’tex’, ’pdf’, ’jpg, and ’png’.

See details of the %latex_input_extensions for other information that equally applies to
%xelatex_input_extensions.

$xelatex_silent_switch ["-interaction=batchmode"]

Switch(es) for the xelatex program (specified in the variable $xelatex) when silent mode
is on.

See details of the $latex_silent_switch for other information that equally applies to
$xelatex_silent_switch.

29 September 2020 52

LATEXMK(1) General Commands Manual LATEXMK(1)

CUSTOM DEPENDENCIES
In any RC file a set of custom dependencies can be set up to convert a file with one extension to a
file with another. An example use of this would be to allow latexmk to convert a .fig file to .eps to
be included in the .tex file.

Defining a custom dependency:

The old method of configuring latexmk to use a custom dependency was to directly manipulate
the @cus_dep_list array that contains information defining the custom dependencies. (See the
section "Old Method of Defining Custom Dependencies" for details.) This method still works,
but is no longer preferred.

A better method is to use the subroutines that allow convenient manipulations of the custom
dependency list. These are

add_cus_dep(fromextension, toextension, must, subroutine)
remove_cus_dep(fromextension, toextension)
show_cus_dep()

The arguments are as follows:

from extension:

The extension of the file we are converting from (e.g. "fig"). It is specified without a
period.

to extension:

The extension of the file we are converting to (e.g. "eps"). It is specified without a
period.

must: If non-zero, the file from which we are converting must exist, if it doesn’t exist latexmk

will give an error message and exit unless the -f option is specified. If must is zero and
the file we are converting from doesn’t exist, then no action is taken. Generally, the
appropriate value of must is zero.

function:

The name of the subroutine that latexmk should call to perform the file conversion. The
first argument to the subroutine is the base name of the file to be converted without any
extension. The subroutines are declared in the syntax of Perl. The function should
return 0 if it was successful and a nonzero number if it failed.

Naturally add_cus_dep adds a custom dependency with the specified from and to extensions. If a
custom dependency has been previously defined (e.g., in an rcfile that was read earlier), then it is
replaced by the new one.

The subroutine remove_cus_dep removes the specified custom dependency. The subroutine
show_cus_dep causes a list of the currently defined custom dependencies to be sent to the screen
output.

29 September 2020 53

LATEXMK(1) General Commands Manual LATEXMK(1)

How custom dependencies are used:

An instance of a custom dependency rule is created whenever latexmk detects that a run of *latex

needs to read a file, like a graphics file, whose extension is the to-extension of a custom
dependency. Then latexmk examines whether a file exists with the same name, but with the
corresponding from-extension, as specified in the custom-dependency. If it does, then a
corresponding instance of the custom dependency is created, after which the rule is invoked
whenever the destination file (the one with the to-extension) is out-of-date with respect to the
corresponding source file.

To make the new destination file, the Perl subroutine specified in the rule is invoked, with an
argument that is the base name of the files in question. Simple cases just involve a subroutine
invoking an external program; this can be done by following the templates below, even by those
without knowledge of the Perl programming language. Of course, experts could do something
much more elaborate.

One item in the specification of each custom-dependency rule, labeled "must" above, specifies
how the rule should be applied when the source file fails to exist.

When latex reports that an input file (e.g., a graphics file) does not exist, latexmk tries to find a
source file and a custom dependency that can be used to make it. If it succeeds, then it creates an
instance of the custom dependency and invokes it to make the missing file, after which the next
pass of latex etc will be able to read the newly created file.

Note for advanced usage: The operating system’s environment variable TEXINPUTS can be used
to specify a search path for finding files by latex etc. Correspondingly, when a missing file is
reported, latexmk looks in the directories specified in TEXINPUTS as well as in the current
directory, to find a source file from which an instance of a custom dependency can be used to
make the missing file.

Function to implement custom dependency, traditional method:

The function that implements a custom dependency gets the information on the files to be
processed in two ways. The first is through its one argument; the argument contains the base
name of the source and destination files. The second way is described later.

A simple and typical example of code in an initialization rcfile using the first method is:

add_cus_dep(’fig’, ’eps’, 0, ’fig2eps’);
sub fig2eps {

system("fig2dev -Leps \"$_[0].fig\" \"$_[0].eps\"");
}

The first line adds a custom dependency that converts a file with extension "fig", as created by the
xfig program, to an encapsulated postscript file, with extension "eps". The remaining lines define
a subroutine that carries out the conversion. If a rule for converting "fig" to "eps" files already
exists (e.g., from a previously read-in initialization file), the latexmk will delete this rule before
making the new one.

Suppose latexmk is using this rule to convert a file "figure.fig" to "figure.eps". Then it will invoke

29 September 2020 54

LATEXMK(1) General Commands Manual LATEXMK(1)

the fig2eps subroutine defined in the above code with a single argument "figure", which is the
basename of each of the files (possibly with a path component). This argument is referred to by
Perl as $_[0]. In the example above, the subroutine uses the Perl command system to invoke the
program fig2dev. The double quotes around the string are a Perl idiom that signify that each
string of the form of a variable name, $_[0] in this case, is to be substituted by its value.

If the return value of the subroutine is non-zero, then latexmk will assume an error occurred
during the execution of the subroutine. In the above example, no explicit return value is given,
and instead the return value is the value returned by the last (and only) statement, i.e., the
invocation of system, which returns the value 0 on success.

If you use pdflatex, lualatex or xelatex instead of latex, then you will probably prefer to convert
your graphics files to pdf format, in which case you would replace the above code in an
initialization file by

add_cus_dep(’fig’, ’pdf, 0, ’fig2pdf’);
sub fig2pdf {

system("fig2dev -Lpdf \"$_[0].fig\" \"$_[0].pdf\"");
}

Note 1: In the command lines given in the system commands in the above examples, double
quotes have been inserted around the file names (implemented by ’\"’ in the Perl language). They
immunize the running of the program against special characters in filenames. Very often these
quotes are not necessary, i.e., they can be omitted. But it is normally safer to keep them in. Even
though the rules for quoting vary between operating systems, command shells and individual
pieces of software, the quotes in the above examples do not cause problems in the cases I have
tested.

Note 2: One case in which the quotes are important is when the files are in a subdirectory and
your operating system is Microsoft Windows. Then the separator character for directory
components can be either a forward slash ’/’ or Microsoft’s more usual backward slash ´\’.
Forward slashes are generated by latexmk, to maintain its sanity from software like MiKTeX that
mixes both directory separators; but their correct use normally requires quoted filenames. (See a
log file from a run of MiKTeX (at least in v. 2.9) for an example of the use of both directory
separators.)

Note 3: The subroutines implementing custom dependencies in the examples given just have a
single line invoking an external program. That’s the usual situation. But since the subroutines
are in the Perl language, you can implement much more complicated processing if you need it.

Removing custom dependencies, and when you might need to do this:

If you have some general custom dependencies defined in the system or user initialization file,
you may find that for a particular project they are undesirable. So you might want to delete the
unneeded ones. A situation where this would be desirable is where there are multiple custom
dependencies with the same from-extension or the same to-extension. In that case, latexmk might
choose a different one from the one you want for a specific project. As an example, to remove
any "fig" to "eps" rule you would use:

29 September 2020 55

LATEXMK(1) General Commands Manual LATEXMK(1)

remove_cus_dep(’fig’, ’eps’);

If you have complicated sets of custom dependencies, you may want to get a listing of the custom
dependencies. This is done by using the line

show_cus_dep();

in an initialization file.

Function implementing custom dependency, alternative methods:

So far the examples for functions to implement custom dependencies have used the argument of
the function to specify the base name of converted file. This method has been available since
very old versions of latexmk, and many examples can be found, e.g., on the web.

However in later versions of latexmk the internal structure of the implementation of its "rules" for
the steps of processing, including custom dependencies, became much more powerful. The
function implementing a custom dependency is executed within a special context where a number
of extra variables and subroutines are defined. Publicly documented ones, intended to be long-
term stable, are listed below, under the heading "Variables and subroutines for processing a rule".

Examples of their use is given in the following examples, concerning multiple index files and
glossaries.

The only index-file conversion built-in to latexmk is from an ".idx" file written on one run of
*latex to an ".ind" file to be read in on a subsequent run. But with the index.sty package, for
example, you can create extra indexes with extensions that you configure. Latexmk does not
know how to deduce the extensions from the information it has. But you can easily write a
custom dependency. For example if your latex file uses the command
"\newindex{special}{ndx}{nnd}{Special index}" you will need to get latexmk to convert files
with the extension .ndx to .nnd. The most elementary method is to define a custom dependency
as follows:

add_cus_dep(’ndx’, ’nnd’, 0, ’ndx2nnd’);
sub ndx2nnd {

return system("makeindex -o \"$_[0].nnd\" \"$_[0].ndx\"");
}
push @generated_exts, ’ndx’, ’nnd’;

Notice the added line compared with earlier examples. The extra line gets the extensions "ndx"
and "nnd" added to the list of extensions for generated files; then the extra index files will be
deleted by clean-up operations

But if you have yet more indexes with yet different extensions, e.g., "adx" and "and", then you
will need a separate function for each pair of extensions. This is quite annoying. You can use the
Run_subst function to simplify the definitions to use a single function:

add_cus_dep(’ndx’, ’nnd’, 0, ’dx2nd’);
add_cus_dep(’adx’, ’and’, 0, ’dx2nd’);

29 September 2020 56

LATEXMK(1) General Commands Manual LATEXMK(1)

sub dx2nd {
return Run_subst("makeindex -o %D %S");

}
push @generated_exts, ’ndx’, ’nnd’, ’adx’, ’and’;

You could also instead use

add_cus_dep(’ndx’, ’nnd’, 0, ’dx2nd’);
add_cus_dep(’adx’, ’and’, 0, ’dx2nd’);
sub dx2nd {

return Run_subst($makeindex);
}
push @generated_exts, ’ndx’, ’nnd’, ’adx’, ’and’;

This last example uses the command specification in $makeindex, and so any customization you
have made for the standard index also applies to your extra indexes.

Similar techniques can be applied for glossaries.

Those of you with experience with Makefiles, may get concerned that the .ndx file is written
during a run of *latex and is always later than the .nnd last read in. Thus the .nnd appears to be
perpetually out-of-date. This situation, of circular dependencies, is endemic to latex, and is one
of the issues that latexmk is programmed to overcome. It examines the contents of the files (by
use of a checksum), and only does a remake when the file contents have actually changed.

Of course if you choose to write random data to the .nnd (or the .aux file, etc) that changes on
each new run, then you will have a problem. For real experts: See the
%hash_calc_ignore_pattern if you have to deal with such problems.

Old Method of Defining Custom Dependencies:

In much older versions of latexmk, the only method of defining custom dependencies was to
directly manipulate the table of custom dependencies. This is contained in the @cus_dep_list

array. It is an array of strings, and each string in the array has four items in it, each separated by
a space, the from-extension, the to-extension, the "must" item, and the name of the subroutine for
the custom dependency. These were all defined above.

An example of the old method of defining custom dependencies is as follows. It is the code in an
RC file to ensure automatic conversion of .fig files to .eps files:

push @cus_dep_list, "fig eps 0 fig2eps";
sub fig2eps {

return system("fig2dev -Lps \"$_[0].fig\" \"$_[0].eps\"");
}

This method still works, and is almost equivalent to the code given earlier that used the
add_cus_dep subroutine. However, the old method doesn’t delete any previous custom-
dependency for the same conversion. So the new method is preferable.

29 September 2020 57

LATEXMK(1) General Commands Manual LATEXMK(1)

ADVANCED CONFIGURATION: Some extra resources and advanced tricks
For most purposes, simple configuration for latexmk along the lines of the examples given is
sufficient. But sometimes you need something harder. In this section, I indicate some extra
possibilities. Generally to use these, you need to be fluent in the Perl language, since this is what
is used in the rc files.

See also the section DEALING WITH ERRORS, PROBLEMS, ETC. See also the examples in
the directory example_rcfiles in the latexmk distributions. Even if none of the examples apply to
your case, they may give you useful ideas

Utility subroutines

ensure_path(var, values ...)

The first parameter is the name of one of the system’s environment variables for search
paths. The remaining parameters are values that should be in the variable. For each of
the value parameters, if it isn’t already in the variable, then it is prepended to the
variable; in that case the environment variable is created if it doesn’t already exist. For
separating values, the character appropriate the the operating system is used -- see the
configuration variable $search_path_separator.

Example:

ensure_path(’TEXINPUTS’, ’./custom_cls_sty_files//’);

(In this example, the trailing ’//’ is documented by TeX systems to mean that *latex

search for files in the specified directory and in all subdirectories.)

Technically ensure_path works by setting Perl’s variable $ENV{var}, where var is the
name of the target variable. The changed value is then passed as an environment
variable to any inv oked programs.

Variables and subroutines for processing a rule

A step in the processing is called a rule. One possibility to implement the processing of a rule is
by a Perl subroutine. This is always the case for custom dependencies. Also, for any other rule,
you can use a subroutine by prefixing the command specification by the word "internal" -- see the
section FORMAT OF COMMAND SPECIFICATIONS.

When you use a subroutine for processing a rule, all the possibilities of Perl programming are
available, of course. In addition, some of latexmk’s internal variables and subroutines are
available. The ones listed below are intended to be available to (advanced) users, and their
specifications will generally have stability under upgrades. Generally, the variables should be
treated as read-only: Changing their values can have bad consequences, since it is liable to mess
up the consistency of what latexmk is doing.

$rule This variable has the name of the rule, as known to latexmk. Note that the exact contents
of this variable for a given rule may be dependent on the version of latexmk

29 September 2020 58

LATEXMK(1) General Commands Manual LATEXMK(1)

$$Psource

This gives the name of the primary source file. Note the double dollar signs.

$$Pdest

This gives the name of the main output file if any. Note the double dollar signs.

rdb_ensure_file($rule, file)

This a subroutine that ensures that the given file is among the source files for the
specified rule. It is typically used when, during the processing of a rule, it is known that
a particular extra file is among the dependencies that latexmk should know, but its
default methods don’t find the dependency. Almost always the first argument is the name
of the rule currently being processed, so it is then appropriate to specify it by $rule.

For examples of its use, see some of the files in the directory example_rcfiles of
latexmk’s distribution. Currently the cases that use this subroutine are bib2gls-

latexmkrc, exceltex_latexmkrc and texinfo-latexmkrc. These illustrate typical cases
where latexmk’s normal processing fails to detect certain extra source files.

rdb_remove_files($rule, file, ...)

This subroutine removes one or more files from the dependency list for the given rule.

rdb_list_source($rule)

This subroutine returns the list of source files (i.e., the dependency list) for the given
rule.

rdb_set_source($rule, file, ...)

rdb_set_source($rule, @files)

This subroutine sets the dependency list for the given rule to be the specified files. Files
that are already in the list have unchanged information. Files that were not in the list are
added to it. Files in the previous dependency list that are not in the newly specified list
of files are removed from the dependency list.

Run_subst(command_spec)

This subroutine runs the command specified by command_spec. The specification is a
string in the format listed in the section "Format of Command Specifications". An
important action of the Run_subst is to make substitutions of placeholders, e.g., %S and
%D for source and destination files; these get substituted before the command is run. In
addition, the command after substitution is printed to the screen unless latexmk is
running in silent mode.

Coordinated Setting of Commands for *latex

To set all of $latex, $pdflatex, $lualatex, and $xelatex to a common pattern, you can use one of
the following subroutines, std_tex_cmds, alt_tex_cmds, and set_tex_cmds.

They work as follows

&std_tex_cmds;

This results in $latex = ’latex %O %S’, and similarly for $pdflatex, $lualatex, and $xelatex. Note
the ampersand in the invocation; this indicates to Perl that a subroutine is being called.

29 September 2020 59

LATEXMK(1) General Commands Manual LATEXMK(1)

&alt_tex_cmds;

This results in $latex = ’latex %O %P’, and similarly for $pdflatex, $lualatex, and $xelatex. Note
the ampersand in the invocation; this indicates to Perl that a subroutine is being called.

set_tex_cmds(CMD_SPEC);

Here CMD_SPEC is the command line without the program name. This results in $latex =

’CMD_SPEC’, and similarly for $pdflatex, $lualatex, and $xelatex. An example would be

set_tex_cmds(’--interaction=batchmode %O %S’);

Advanced configuration: Using latexmk with make

This section is targeted only at advanced users who use the make program for complex projects,
as for software development, with the dependencies specified by a Makefile.

Now the basic task of latexmk is to run the appropriate programs to make a viewable version of a
LaTeX document. However, the usual make program is not suited to this purpose for at least two
reasons. First is that the use of LaTeX involves circular dependencies (e.g., via .aux files), and
these cannot be handled by the standard make program. Second is that in a large document the
set of source files can change quite frequently, particularly with included graphics files; in this
situation keeping a Makefile manually updated is inappropriate and error-prone, especially when
the dependencies can be determined automatically. Latexmk solves both of these problems
robustly.

Thus for many standard LaTeX documents latexmk can be used by itself without the make

program. In a complex project it simply needs to be suitably configured. A standard
configuration would be to define custom dependencies to make graphics files from their source
files (e.g., as created by the xfig program). Custom dependencies are latexmk’s equivalent of
pattern rules in Makefiles.

Nevertheless there are projects for which a Makefile is appropriate, and it is useful to know how
to use latexmk from a Makefile. A typical example would be to generate documentation for a
software project. Potentially the interaction with the rest of the rules in the Makefile could be
quite complicated, for example if some of the source files for a LaTeX document are generated
by the project’s software.

In this section, I give a couple of examples of how latexmk can be usefully invoked from a
Makefile. The examples use specific features of current versions of GNU make, which is the
default on both linux and OS-X systems. They may need modifications for other versions of
make.

The simplest method is simply to delegate all the relevant tasks to latexmk, as is suitable for a
straightforward LaTeX document. For this a suitable Makefile is like

.PHONY : FORCE_MAKE
all : try.pdf
%.pdf : %.tex FORCE_MAKE

29 September 2020 60

LATEXMK(1) General Commands Manual LATEXMK(1)

latexmk -pdf -dvi- -ps- $<

(Note: the last line must be introduced by a tab for the Makefile to function correctly!) Naturally,
if making try.pdf from its associated LaTeX file try.tex were the only task to be performed, a
direct use of latexmk without a Makefile would normally be better. The benefit of using a
Makefile for a LaTeX document would be in a larger project, where lines such as the above
would be only be a small part of a larger Makefile.

The above example has a pattern rule for making a .pdf file from a .tex file, and it is defined to
use latexmk in the obvious way. There is a conventional default target named "all", with a
prerequisite of try.pdf. So when make is invoked, by default it makes try.pdf. The only
complication is that there may be many source files beyond try.tex, but these aren’t specified in
the Makefile, so changes in them will not by themselves cause latexmk to be invoked. Instead,
the pattern rule is equipped with a "phony" prerequisite FORCE_MAKE; this has the effect of
causing the rule to be always out-of-date, so that latexmk is always run. It is latexmk that decides
whether any action is needed, e.g., a rerun of pdflatex. Effectively the Makefile delegates all
decisions to latexmk, while make has no knowledge of the list of source files except for primary
LaTeX file for the document. If there are, for example, graphics files to be made, these must be
made by custom dependencies configured in latexmk.

But something better is needed in more complicated situations, for example, when the making of
graphics files needs to be specified by rules in the Makefile. To do this, one can use a Makefile
like the following:

TARGETS = document1.pdf document2.pdf
DEPS_DIR = .deps
LATEXMK = latexmk -recorder -use-make -deps \

-e ’warn qq(In Makefile, turn off custom dependencies\n);’ \
-e ’@cus_dep_list = ();’ \
-e ’show_cus_dep();’

all : $(TARGETS)
$(foreach file,$(TARGETS),$(eval -include $(DEPS_DIR)/$(file)P))
$(DEPS_DIR) :

mkdir $@
%.pdf : %.tex

if [! -e $(DEPS_DIR)]; then mkdir $(DEPS_DIR); fi
$(LATEXMK) -pdf -dvi- -ps- -deps-out=$(DEPS_DIR)/$@P $<

%.pdf : %.fig
fig2dev -Lpdf $< $@

(Again, the lines containing the commands for the rules should be started with tabs.) This
example was inspired by how GNU automake handles automatic dependency tracking of C
source files.

After each run of latexmk, dependency information is put in a file in the .deps subdirectory. The
Makefile causes these dependency files to be read by make, which now has the full dependency
information for each target .pdf file. To make things less trivial it is specificed that two files
document1.pdf and document2.pdf are the targets. The dependency files are

29 September 2020 61

LATEXMK(1) General Commands Manual LATEXMK(1)

.deps/document1.pdfP and .deps/document2.pdfP.

There is now no need for the phony prerequisite for the rule to make .pdf files from .tex files. But
I hav e added a rule to make .pdf files from .fig files produced by the xfig program; these are
commonly used for graphics insertions in LaTeX documents. Latexmk is arranged to output a
dependency file after each run. It is given the -recorder option, which improves its detection of
files generated during a run of pdflatex; such files should not be in the dependency list. The -e

options are used to turn off all custom dependencies, and to document this. Instead the -use-

make is used to delegate the making of missing files to make itself.

Suppose in the LaTeX file there is a command \includegraphics{graph}, and an xfig file
"graph.fig" exists. On a first run, pdflatex reports a missing file, named "graph". Latexmk

succeeds in making "graph.pdf" by calling "make graph.pdf", and after completion of its work, it
lists "fig.pdf" among the dependents of the file latexmk is making. Then let "fig.fig" be updated,
and then let make be run. Make first remakes "fig.pdf", and only then reruns latexmk.

Thus we now hav e a method by which all the subsidiary processing is delegated to make.

SEE ALSO
latex(1), bibtex(1), lualatex(1), pdflatex(1), xelatex(1).

BUGS
Sometimes a viewer (gv) tries to read an updated .ps or .pdf file after its creation is started but
before the file is complete. Work around: manually refresh (or reopen) display. Or use one of the
other previewers and update methods.

(The following isn’t really a bug, but concerns features of previewers.) Preview continuous mode
only works perfectly with certain previewers: Xdvi on UNIX/Linux works for dvi files. Gv on
UNIX/Linux works for both postscript and pdf. Ghostview on UNIX/Linux needs a manual
update (reopen); it views postscript and pdf. Gsview under MS-Windows works for both
postscript and pdf, but only reads the updated file when its screen is refreshed. Acroread under
UNIX/Linux views pdf, but the file needs to be closed and reopened to view an updated version.
Under MS-Windows, acroread locks its input file and so the pdf file cannot be updated.
(Remedy: configure latexmk to use sumatrapdf instead.)

THANKS TO
Authors of previous versions. Many users with their feedback, and especially David Coppit
(username david at node coppit.org) who made many useful suggestions that contributed to
version 3, and Herbert Schulz. (Please note that the e-mail addresses are not written in their
standard form to avoid being harvested too easily.)

AUTHOR
Current version, by John Collins (Version 4.70b). Report bugs etc to his e-mail (jcc8 at psu.edu).

Released version can be obtained from CTAN: <http://www.ctan.org/pkg/latexmk/>, and from
the author’s website <http://www.personal.psu.edu/jcc8/latexmk/>.
Modifications and enhancements by Evan McLean (Version 2.0)
Original script called "go" by David J. Musliner (RCS Version 3.2)

29 September 2020 62

LATEXMK(1) General Commands Manual LATEXMK(1)

29 September 2020 63

