
DVISVGM(1) dvisvgm Manual DVISVGM(1)

NAME
dvisvgm − converts DVI and EPS files to the XML−based SVG format

SYNOPSIS
dvisvgm [options] file [.dvi]

dvisvgm −−eps [options] file [.eps]

dvisvgm −−pdf [options] file [.pdf]

DESCRIPTION
The command−line utility dvisvgm converts DVI files, as generated by TeX/LaTeX, to the

XML−based scalable vector graphics format SVG. It supports the classic DVI version 2 as well

as version 3 (created by pTeX in vertical mode), and the XeTeX versions 5 to 7 which are also

known as XDV. Besides the basic DVI commands, dvisvgm also evaluates many so−called

specials which heavily extend the capabilities of the plain DVI format. For a more detailed

overview, see section Supported Specials below.

Since the current SVG standard 1.1 doesn’t specify multi−page graphics, dvisvgm creates

separate SVG files for each DVI page. Because of compatibility reasons, only the first page is

converted by default. In order to select a different page or arbitrary page sequences, use option −p

which is described below.

SVG is a vector−based graphics format and therefore dvisvgm tries to convert the glyph outlines

of all fonts referenced in a DVI page section to scalable path descriptions. The fastest way to

achieve this is to extract the path information from vector−based font files available in PFB, TTF,

or OTF format. If dvisvgm is able to find such a file, it extracts all necessary outline information

about the glyphs from it.

However, TeX’s main source for font descriptions is Metafont, which produces bitmap output

(GF files). That’s why not all obtainable TeX fonts are available in a scalable format. In these

cases, dvisvgm tries to vectorize Metafont’s output by tracing the glyph bitmaps. The results are

not as perfect as most (manually optimized) PFB or OTF counterparts, but are nonetheless really

nice in most cases.

When running dvisvgm without option −−no−fonts, it creates font elements (...) to

embed the font data into the SVG files. Unfortunately, only few SVG renderers support these

elements yet. Most web browsers and vector graphics applications don’t evaluate them properly

so that the text components of the resulting graphics might look strange. In order to create more

compatible SVG files, command−line option −−no−fonts can be given to replace the font

elements by plain graphics paths. Most web browsers (but only few external SVG renderers) also

suppport WOFF and WOFF2 fonts that can be used instead of the default SVG fonts. Option

−−font−format offers the functionality to change the format applied to the fonts being

embedded.

OPTIONS
dvisvgm provides a POSIX−compliant command−line interface with short and long option

names. They may be given before and/or after the name of the file to be converted. Also, the

order of specifying the options is not significant, i.e. you can add them in any order without

changing dvisvgm’s behavior. Certain options accept or require additional parameters which are

dvisvgm 2.9.1 2020−03−19 1

DVISVGM(1) dvisvgm Manual DVISVGM(1)

directly appended to or separated by whitespace from a short option (e.g. −v0 or −v 0). Long

options require an additional equals sign (=) between option name and argument but without any

surrounding whitespace (e.g. −−verbosity=0). Multiple short options that don’t expect a further

parameter can be combined after a single dash (e.g. −ejs rather than −e −j −s).

Long option names may also be shortened by omitting trailing characters. As long as the

shortened name is unambiguous, it’s recognized and applied. For example, option −−exact−bbox

can be shortened to −−exact, −−exa, or −−ex. In case of an ambiguous abbreviation, dvisvgm

prints an error message together with all matching option names.

−b, −−bbox=fmt

Sets the bounding box of the generated graphic to the specified format. The parameter fmt

takes either one of the format specifiers listed below, or a sequence of four comma− or

whitespace−separated length values x1, y1, x2 and y2. The latter define the absolute

coordinates of two diagonal corners of the bounding box. Each length value consists of a

floating point number and an optional length unit (pt, bp, cm, mm, in, pc, dd, cc, or sp). If

the unit is omitted, TeX points (pt) are assumed.

It’s also possible to give only one length value l. In this case, the minimal bounding box is

computed and enlarged by adding (−l,−l) to the upper left and (l,l) to the lower right corner.

Additionally, dvisvgm also supports the following format specifiers:

International DIN/ISO paper sizes

An, Bn, Cn, Dn, where n is a non−negative integer, e.g. A4 or a4 for DIN/ISO A4

format (210mm × 297mm).

North American paper sizes

invoice, executive, leg al, letter, ledger

Special bounding box sizes

dvi page size stored in the DVI file

min computes the minimal/tightest

bounding box

none no bounding box is assigned

papersize box sizes specified by papersize

specials present in the DVI file

preview bounding box data computed by

the preview package (if present in

the DVI file)

Page orientation

The default page orientation for DIN/ISO and American paper sizes is portrait, i.e.

width < height. Appending −landscape or simply −l to the format string switches to

landscape mode (width > height). For symmetry reasons you can also explicitly add

−portrait or −p to indicate the default portrait format. Note that these suffixes are part

of the size string and not separate options. Thus, they must directly follow the size

specifier without additional blanks. Furthermore, the orientation suffixes can’t be used

with dvi, min, and none.

Note

dvisvgm 2.9.1 2020−03−19 2

DVISVGM(1) dvisvgm Manual DVISVGM(1)

Option −b, −−bbox only affects the bounding box and does not transform the page

content. Hence, if you choose a landscape format, the page won’t be rotated.

−B, −−bitmap−format=fmt

This option sets the image format used to embed bitmaps extracted from PostScript or PDF

data. By default, dvisvgm embeds all bitmaps as JPEG images because it’s the most

compact of the two formats supported by SVG. To select the alternative lossless PNG

format, −−bitmap−format=png can be used. There are some more format variants dvisvgm

currently supports even though jpeg and png should be sufficient in most cases. The

following list gives an overview of the known format names which correspond to names of

Ghostscript output devices.

none disable processing of bitmap

images

jpeg color JPEG format

jpeggray grayscale JPEG format

png grayscale or 24−bit color PNG

format depending on current color

space

pnggray grayscale PNG format

pngmono black−and−white PNG format

pngmonod dithered black−and−white PNG

format

png16 4−bit color PNG format

png256 8−bit color PNG format

png16m 24−bit color PNG format

Since the collection of supported output devices can vary among local Ghostscript

installations, not all formats may be available in some environments. dvisvgm quits with a

PostScript error message if the selected output format requires a locally unsupported output

device.

The two JPEG format specifiers accept an optional parameter to set the IJG quality level

which must directly follow the format specifier separated by a colon, e.g.

−−bitmap−format=jpeg:50. The quality value is an integer between 0 and 100. Higher

values result in better image quality but lower compression rates and therefore larger files.

The default quality level is 75 which is applied if no quality parameter is given or if it’s set

to 0.

−C, −−cache[=dir]

To speed up the conversion process of bitmap fonts, dvisvgm saves intermediate conversion

information in cache files. By default, these files are stored in

$XDG_CACHE_HOME/dvisvgm/ or $HOME/.cache/dvisvgm if

XDG_CACHE_HOME is not set. If you prefer a different location, use option −−cache to

overwrite the default. Furthermore, it is also possible to disable the font caching mechanism

completely with option −−cache=none. If argument dir is omitted, dvisvgm prints the path

of the default cache directory together with further information about the stored fonts.

Additionally, outdated and corrupted cache files are removed.

−j, −−clipjoin

dvisvgm 2.9.1 2020−03−19 3

DVISVGM(1) dvisvgm Manual DVISVGM(1)

This option tells dvisvgm to compute all intersections of clipping paths itself rather than

delegating this task to the SVG renderer. The resulting SVG files are more portable because

some SVG viewers don’t support intersecting clipping paths which are defined by clipPath

elements containing a clip−path attribute.

−−color

Enables colorization of messages printed during the conversion process. The colors can be

customized via environment variable DVISVGM_COLORS. See the Environment section

below for further information.

−−colornames

By default, dvisvgm exclusively uses RGB values of the form #RRGGBB or #RGB to

represent colors in the SVG file. The latter is a short form for colors whose RGB

components each consist of two identical hex digits, e.g. #123 equals #112233. According

to the SVG standard, it’s also possible to use color names (like black and darkblue) for a

limited number of predefined colors

(https://www.w3.org/TR/SVG11/types.html#ColorKeywords). In order to apply these color

names rather than their RGB values, call dvisvgm with option −−colornames. All colors

without an SVG color name will still be represented by RGB values.

−−comments

Adds comments with further information about selected data to the SVG file. Currently, only

font elements and font CSS rules related to native fonts are annotated.

−E, −−eps

If this option is given, dvisvgm does not expect a DVI but an EPS input file, and tries to

convert it to SVG. In order to do so, a single psfile special command is created and

forwarded to the PostScript special handler. This option is only available if dvisvgm was

built with PostScript support enabled, and requires Ghostscript to be available. See option

−−libgs for further information.

−e, −−exact−bbox

This option tells dvisvgm to compute the precise bounding box of each character. By

default, the values stored in a font’s TFM file are used to determine a glyph’s extent. As

these values are intended to implement optimal character placements and are not designed to

represent the exact dimensions, they don’t necessarily correspond with the bounds of the

visual glyphs. Thus, width and/or height of some glyphs may be larger (or smaller) than the

respective TFM values. As a result, this can lead to clipped characters at the bounds of the

SVG graphics. With option −−exact−bbox given, dvisvgm analyzes the actual shape of each

character and derives a usually tight bounding box.

−f, −−font−format=format

Selects the file format used to embed the font data into the SVG files. Following formats are

supported: SVG (that’s the default), TTF (TrueType), WOFF, and WOFF2 (Web Open

Font Format version 1 and 2). By default, dvisvgm creates unhinted fonts that might look

bad on low−resolution devices. In order to improve the display quality, the generated

TrueType, WOFF, or WOFF2 fonts can be autohinted. The autohinter is enabled by

appending ,autohint or ,ah to the font format, e.g. −−font−format=woff,autohint or

−−fwoff,ah.

Option −−font−format is only available if dvisvgm was built with WOFF support enabled.

dvisvgm 2.9.1 2020−03−19 4

DVISVGM(1) dvisvgm Manual DVISVGM(1)

−m, −−fontmap=filenames

Loads and evaluates a single font map file or a sequence of font map files. These files are

required to resolve font file names and encodings. dvisvgm does not provide its own map

files but tries to read available ones coming with dvips or dvipdfm. If option −−fontmap is

omitted, dvisvgm looks for the default map files ps2pk.map, pdftex.map, dvipdfm.map, and

psfonts.map (in this order). Otherwise, the files given as option arguments are evaluated in

the given order. Multiple filenames must be separated by commas without leading and/or

trailing whitespace.

By default, redefined mappings do not replace previous ones. However, each filename can be

preceded by an optional mode specifier (+, −, or =) to change this behavior:

+mapfile

Only those entries in the given map file that don’t redefine a font mapping are applied,

i.e. fonts already mapped keep untouched. That’s also the default mode if no mode

specifier is given.

−mapfile

Ensures that none of the font mappings defined in the given map file are used, i.e.

previously defined mappings for the specified fonts are removed.

=mapfile

All mappings defined in the map file are applied. Previously defined settings for the

same fonts are replaced.

If the first filename in the filename sequence is preceded by a mode specifier, dvisvgm

loads the default font map (see above) and applies the other map files afterwards.

Otherwise, none of default map files will be loaded automatically.

Examples: −−fontmap=myfile1.map,+myfile2.map loads myfile1.map followed by

myfile2.map where all redefinitions of myfile2.map are ignored.

−−fontmap==myfile1.map,−myfile2.map loads the default map file followed by

myfile1.map and myfile2.map where all redefinitions of myfile1.map replace previous

entries. Afterwards, all definitions for the fonts given in myfile2.map are removed from

the font map tree.

For further information about the map file formats and the mode specifiers, see the

manuals of dvips (https://tug.org/texinfohtml/dvips.html) and dvipdfm

(https://ctan.org/tex-archive/dviware/dvipdfm).

−−grad−overlap

Tells dvisvgm to create overlapping grid segments when approximating color gradient fills

(also see option −−grad−segments below). By default, adjacent segments don’t overlap but

only touch each other like separate tiles. However, this alignment can lead to visible gaps

between the segments because the background color usually influences the color at the

boundary of the segments if the SVG renderer uses anti−aliasing to create smooth contours.

One way to avoid this and to create seamlessly touching color regions is to enlarge the

segments so that they extend into the area of their right and bottom neighbors. Since the

latter are drawn on top of the overlapping parts, the visible size of all segments keeps

unchanged. Just the former gaps disappear as the background is now completely covered by

the correct colors. Currently, dvisvgm computes the overlapping segments separately for

dvisvgm 2.9.1 2020−03−19 5

DVISVGM(1) dvisvgm Manual DVISVGM(1)

each patch of the mesh (a patch mesh may consist of multiple patches of the same type).

Therefore, there still might be visible gaps at the seam of two adjacent patches.

−−grad−segments=number

Determines the maximal number of segments per column and row used to approximate

gradient color fills. Since SVG 1.1 only supports a small subset of the shading algorithms

available in PostScript, dvisvgm approximates some of them by subdividing the area to be

filled into smaller, monochromatic segments. Each of these segments gets the average color

of the region it covers. Thus, increasing the number of segments leads to smaller

monochromatic areas and therefore a better approximation of the actual color gradient. As a

drawback, more segments imply bigger SVG files because every segment is represented by a

separate path element.

Currently, dvisvgm supports free− and lattice−form triangular patch meshes as well as

Coons and tensor−product patch meshes. They are approximated by subdividing the area of

each patch into a n×n grid of smaller segments. The maximal number of segments per

column and row can be changed with option −−grad−segments.

−−grad−simplify=delta

If the size of the segments created to approximate gradient color fills falls below the given

delta value, dvisvgm reduces their level of detail. For example, Bézier curves are replaced

by straight lines, and triangular segments are combined to tetragons. For a small delta, these

simplifications are usually not noticeable but reduce the size of the generated SVG files

significantly.

−h, −−help[=mode]

Prints a short summary of all available command−line options. The optional mode parameter

is an integer value between 0 and 2. It selects the display variant of the help text. Mode 0

lists all options divided into categories with section headers. This is also the default if

dvisvgm is called without parameters. Mode 1 lists all options ordered by the short option

names, while mode 2 sorts the lines by the long option names.

A values in brackets after the description text indicate the default parameter of the option.

They are applied if an option with a mandatory parameter is not used or if an optional

parameter is omitted. For example, option −−bbox requires a size parameter which defaults

to min if −−bbox is not used. Option −−zip, which isn’t applied by default, accepts an

optional compression level parameter. If it’s omitted, the stated default value 9 is used.

−−keep

Disables the removal of temporary files as created by Metafont (usually .gf, .tfm, and .log

files) or the TrueType/WOFF module.

−−libgs=path

This option is only available if the Ghostscript library is not directly linked to dvisvgm and

if PostScript support was not completely disabled during compilation. In this case, dvisvgm

tries to load the shared GS library dynamically during runtime. By default, it expects the

library’s name to be libgs.so.X (on Unix−like systems, where X is the ABI version of the

library) or gsdll32.dll/gsdll64.dll (Windows). If dvisvgm doesn’t find the library, option

−−libgs can be used to specify the correct path and filename, e.g.

−−libgs=/usr/local/lib/libgs.so.9 or −−libgs=\gs\gs9.25\bin\gsdll64.dll.

dvisvgm 2.9.1 2020−03−19 6

DVISVGM(1) dvisvgm Manual DVISVGM(1)

Alternatively, it’s also possible to assign the path to environment variable LIBGS, e.g.

export LIBGS=/usr/local/lib/libgs.so.9 or set LIBGS=\gs\gs9.25\bin\gsdll63.dll. LIBGS

has less precedence than the command−line option, i.e. dvisvgm ignores variable LIBGS if

−−libgs is given.

−L, −−linkmark=style

Selects the method how to mark hyperlinked areas. The style argument can take one of the

values none, box, and line, where box is the default, i.e. a rectangle is drawn around the

linked region if option −−linkmark is omitted. Style argument line just draws the lower

edge of the bounding rectangle, and none tells dvisvgm not to add any visible objects to

hyperlinks. The lines and boxes get the current text color selected. In order to apply a

different, constant color, a colon followed by a color specifier can be appended to the style

string. A color specifier is either a hexadecimal RGB value of the form #RRGGBB, or a

dvips color name

(https://en.wikibooks.org/wiki/LaTeX/Colors#The_68_standard_colors_known_to_dvips).

Moreover, argument style can take a single color specifier to highlight the linked region by a

frameless box filled with that color. An optional second color specifier separated by a colon

selects the frame color.

Examples: box:red or box:#ff0000 draws red boxes around the linked areas. yellow:blue

creates yellow filled rectangles with blue frames.

−l, −−list−specials

Prints a list of registered special handlers and exits. Each handler processes a set of special

statements belonging to the same category. In most cases, the categories are identified by the

prefix of the special statements. It’s usually a leading string followed by a colon or a blank,

e.g. color or ps. The listed handler names, however, don’t need to match these prefixes, e.g.

if there is no common prefix or if functionality is split into separate handlers in order to

allow to disable them separately with option −−no−specials. All special statements not

covered by one of the special handlers are silently ignored.

−M, −−mag=factor

Sets the magnification factor applied in conjunction with Metafont calls prior tracing the

glyphs. The larger this value, the better the tracing results. Nevertheless, large magnification

values can cause Metafont arithmetic errors due to number overflows. So, use this option

with care. The default setting usually produces nice results.

−−no−merge

Puts every single character in a separate text element with corresponding x and y attributes.

By default, new text or tspan elements are only created if a string starts at a location that

differs from the regular position defined by the characters' advance values.

−−no−mktexmf

Suppresses the generation of missing font files. If dvisvgm can’t find a font file through the

kpathsea lookup mechanism, it calls the external tools mktextfm or mktexmf. This option

disables these calls.

−n, −−no−fonts[=variant]

If this option is given, dvisvgm doesn’t create SVG font elements but uses paths instead.

The resulting SVG files tend to be larger but are concurrently more compatible with most

applications that don’t support SVG fonts. The optional argument variant selects the method

dvisvgm 2.9.1 2020−03−19 7

DVISVGM(1) dvisvgm Manual DVISVGM(1)

how to substitute fonts by paths. Variant 0 creates path and use elements in order to avoid

lengthy duplicates. Variant 1 creates path elements only. Option −−no−fonts implies

−−no−styles.

−c, −−scale=sx[,sy]

Scales the page content horizontally by sx and vertically by sy. This option is equivalent to

−TSsx,sy.

−S, −−no−specials[=names]

Disable processing of special commands embedded in the DVI file. If no further parameter

is given, all specials are ignored. To disable a selected set of specials, an optional

comma−separated list of names can be appended to this option. A name is the unique

identifier referencing the intended special handler as listed by option −−list−specials.

−−no−styles

By default, dvisvgm creates CSS styles and class attributes to reference fonts. This variant is

more compact than adding the complete font information to each text element over and over

again. However, if you prefer direct font references, the default behavior can be disabled

with option −−no−styles.

−O, −−optimize[=modules]

Applies several optimizations on the generated SVG tree to reduce the file size. The

optimizations are performed by running separate optimizer modules specified by optional

argument modules. It may consist of a single module name or a comma−separated list of

several module names. The corresponding modules are executed one by one in the given

order and thus transform the XML tree gradually.

The following list describes the currently available optimizer modules.

list

Lists all available optimizer modules and exits.

none

If this argument is given, dvisvgm doesn’t apply any optimization. none can’t be

combined with other module names.

all

Performs all optimizations listed below. This is also the default if option −−optimize is

used without argument. The modules are executed in a predefined order that usually

leads to the best results. all can’t be combined with other module names.

collapse−groups

Combines nested group elements (<g>...</g>) that contain only a single group each. If

possible, the group attributes are moved to the outermost element of the processed

subtree. This module also unwraps group elements that have no attributes at all.

group−attributes

Creates groups (<g>...</g>) for common attributes around adjacent elements. Each

attribute is moved to a separate group so that multiple common attributes lead to nested

groups. They can be combined by applying optimizer module collapse−groups

afterwards. The algorithm only takes inheritable properties, such as fill or

stroke−width, into account and only removes them from an element if none of the

other attributes, like id, prevents this.

dvisvgm 2.9.1 2020−03−19 8

DVISVGM(1) dvisvgm Manual DVISVGM(1)

remove−clippath

Removes all redundant clipPath elements. This optimization was already present in

former versions of dvisvgm and was always applied by default. This behavior is

retained, i.e. dvisvgm executes this module even if option −−optimize is not given. You

can use argument none to prevent that.

simplify−text

If a text element only contains whitespace nodes and tspan elements, all common

inheritable attributes of the latter are moved to the enclosing text element. All tspan

elements without further attributes are unwrapped.

simplify−transform

Tries to shorten all transform attributes. This module combines the transformation

commands of each attribute and decomposes the resulting transformation matrix into a

sequence of basic transformations, i.e. translation, scaling, rotation, and skewing. If this

sequence is shorter than the equivalent matrix expression, it’s assigned to the attribute.

Otherwise, the matrix expression is used.

−o, −−output=pattern

Sets the pattern specifying the names of the generated SVG files. Parameter pattern is a

string that may contain static character sequences as well as the variables %f, %p, %P,

%hd, %ho, and %hc. %f expands to the base name of the DVI file, i.e. the filename

without suffix, %p is the current page number, and %P the total number of pages in the

DVI file. An optional number (0−9) given directly after the percent sign specifies the

minimal number of digits to be written. If a particular value consists of less digits, the

number is padded with leading zeros. Example: %3p enforces 3 digits for the current page

number (001, 002, etc.). Without an explicit width specifier, %p gets the same number of

digits as %P.

If you need more control over the numbering, you can use arithmetic expressions as part of a

pattern. The syntax is %(expr) where expr may contain additions, subtractions,

multiplications, and integer divisions with common precedence. The variables p and P

contain the current page number and the total number of pages, respectively. For example,

−−output="%f−%(p−1)" creates filenames where the numbering starts with 0 rather than

1.

The variables %hX contain different hash values computed from the DVI page data and the

options given on the command−line. %hd and %hc are only set if option −−page−hashes

is present. Otherwise, it’s empty. For further information, see the description of option

−−page−hashes below.

The default pattern is %f−%p.svg if the DVI file consists of more than one page, and

%f.svg otherwise. That means, a DVI file foo.dvi is converted to foo.svg if foo.dvi is a

single−page document. Otherwise, multiple SVG files foo−01.svg, foo−02.svg, etc. are

produced. In Windows environments, the percent sign indicates dereferenced environment

variables, and must therefore be protected by a second percent sign, e.g.

−−output=%%f−%%p.

−p, −−page=ranges

This option selects the pages to be processed. Parameter ranges consists of a

comma−separated list of single page numbers and/or page ranges. A page range is a pair of

dvisvgm 2.9.1 2020−03−19 9

DVISVGM(1) dvisvgm Manual DVISVGM(1)

numbers separated by a hyphen, e.g. 5−12. Thus, a page sequence might look like this:

2−4,6,9−12,15. It doesn’t matter if a page is given more than once or if page ranges overlap.

dvisvgm always extracts the page numbers in ascending order and converts them only once.

In order to stay compatible with previous versions, the default page sequence is 1. dvisvgm

therefore converts only the first page and not the whole document if option −−page is

omitted. Usually, page ranges consist of two numbers denoting the first and last page to be

converted. If the conversion should start at page 1, or if it should continue up to the last DVI

page, the first or second range number can be omitted, respectively. Example: −−page=−10

converts all pages up to page 10, −−page=10− converts all pages starting with page 10.

Please consider that the page values don’t refer to the page numbers printed on the

corresponding page. Instead, the physical page count is expected, where the first page

always gets number 1.

−H, −−page−hashes[=params]

If this option is given, dvisvgm computes hash values of all pages to be processed. As long

as the page contents don’t change, the hash value of that page stays the same. This property

can be used to determine whether a DVI page must be converted again or can be skipped in

consecutive runs of dvisvgm. This is done by propagating the hash value to variable %hd

which can be accessed in the output pattern (see option −−output). By default, dvisvgm

changes the output pattern to %f−%hd if option −−page−hashes is given. As a result, all

SVG file names contain the hash value instead of the page number. When calling dvisvgm

again with option −−page−hashes with the same output pattern, it checks the existence of

the SVG file to be created and skips the conversion if it’s already present. This also applies

for consecutive calls of dvisvgm with different command−line parameters. If you want to

force another conversion of a DVI file that hasn’t changed, you must remove the

corresponding SVG files beforehand or add the parameter replace (see below). If you

manually set the output pattern to not contain a hash value, the conversion won’t be skipped.

Alternatively, the output pattern may contain the variables %ho and %hc. %ho expands to

a 32−bit hash representing the given command−line options that affect the generated SVG

output, like −−no−fonts and −−precision. Different combinations of options and parameters

lead to different hashes. Thus pattern %f−%hd−%ho creates filenames that change

depending on the DVI data and the given command−line options. Variable %hc provides a

combined hash computed from the DVI data and the command−line options. It has the same

length as %hd.

Since the page number isn’t part of the file name by default, different DVI pages with

identical contents get the same file name. Therefore, only the first one is converted while the

others are skipped. To create separate files for each page, you can add the page number to

the output pattern, e.g. −−output="%f−%p−%hc".

By default, dvisvgm uses the fast XXH64 hash algorithm to compute the values provided

through %hd and %hc. 64−bit hashes should be sufficient for most documents with an

av erage size of pages. Alternatively, XXH32 and MD5 can be used as well. The desired

algorithm is specified by argument params of option −−page−hashes. It takes one of the

strings MD5, XXH32, and XXH64, where the names can be given in lower case too, like

−−page−hashes=md5. Since version 0.7.1, xxHash provides an experimental 128−bit hash

function, whose algorithm may still change with the next versions of the library. If the

corresponding API is available, dvisvgm supports the new hash function and option

dvisvgm 2.9.1 2020−03−19 10

DVISVGM(1) dvisvgm Manual DVISVGM(1)

−−page−hashes additionally accepts the algorithm specifier XXH128.

Finally, option −−page−hashes can take a second argument that must be separated by a

comma. Currently, only the two parameters list and replace are evaluated, e.g.

−−page−hashes=md5,list or −−page−hashes=replace. When list is present, dvisvgm

doesn’t perform any conversion but just lists the hash values %hd and %hc of the pages

specified by option −−page. Parameter replace forces dvisvgm to convert a DVI page even

if a file with the target name already exists.

−P, −−pdf

If this option is given, dvisvgm does not expect a DVI but a PDF input file, and tries to

convert it to SVG. Similar to the conversion of DVI files, only the first page is processed by

default. Option −−page can be used to select different pages, page ranges, and/or page

sequences. The conversion is realized by creating a single pdffile special command which is

forwarded to the PostScript special handler. Therefore, this option is only available if

dvisvgm was built with PostScript support enabled, and requires Ghostscript to be

accessible. See option −−libgs for further information.

−d, −−precision=digits

Specifies the maximal number of decimal places applied to floating−point attribute values.

All attribute values written to the generated SVG file(s) are rounded accordingly. The

parameter digits accepts integer values from 0 to 6, where 0 enables the automatic selection

of significant decimal places. This is also the default value if dvisvgm is called without

option −−precision.

−−progress[=delay]

Enables a simple progress indicator shown when time−consuming operations like PostScript

specials are processed. The indicator doesn’t appear before the given delay (in seconds) has

elapsed. The default delay value is 0.5 seconds.

−r, −−rotate=angle

Rotates the page content clockwise by angle degrees around the page center. This option is

equivalent to −TRangle.

−R, −−relative

SVG allows to define graphics paths by a sequence of absolute and/or relative path

commands, i.e. each command expects either absolute coordinates or coordinates relative to

the current drawing position. By default, dvisvgm creates paths made up of absolute

commands. If option −−relative is given, relative commands are created instead. This

slightly reduces the size of the SVG files in most cases.

−−stdin

Tells dvisvgm to read the DVI or EPS input data from stdin instead from a file.

Alternatively to option −−stdin, a single dash (−) can be given. The default name of the

generated SVG file is stdin.svg which can be changed with option −−output.

−s, −−stdout

Don’t write the SVG output to a file but redirect it to stdout.

−−tmpdir[=path]

In some cases, dvisvgm needs to create temporary files to work properly. These files go to

the system’s temporary folder by default, e.g. /tmp on Linux systems. Option −−tmpdir

allows to specify a different location if necessary for some reason. Please note that dvisvgm

dvisvgm 2.9.1 2020−03−19 11

DVISVGM(1) dvisvgm Manual DVISVGM(1)

does not create this folder, so you must ensure that it actually exists before running dvisvgm.

If the optional parameter path is omitted, dvisvgm prints the location of the system’s temp

folder and exits.

−a, −−trace−all=[retrace]

This option forces dvisvgm to vectorize not only the glyphs actually required to render the

SVG file correctly – which is the default –, but processes all glyphs of all fonts referenced in

the DVI file. Because dvisvgm stores the tracing results in a font cache, all following

conversions of these fonts will speed up significantly. The boolean option retrace

determines how to handle glyphs already stored in the cache. By default, these glyphs are

skipped. Setting argument retrace to yes or true forces dvisvgm to retrace the corresponding

bitmaps again.

Note
This option only takes effect if font caching is active. Therefore, −−trace−all cannot be

combined with option −−cache=none.

−T, −−transform=commands

Applies a sequence of transformations to the SVG content. Each transformation is described

by a command beginning with a capital letter followed by a list of comma−separated

parameters. Following transformation commands are supported:

T tx[,ty]

Translates (moves/shifts) the page in direction of vector (tx,ty). If ty is omitted, ty=0 is

assumed. The expected unit length of tx and ty are TeX points (1pt = 1/72.27in).

However, there are several constants defined to simplify the unit conversion (see

below).

S sx[,sy]

Scales the page horizontally by sx and vertically by sy. If sy is omitted, sy=sx is

assumed.

R angle[,x,y]

Rotates the page clockwise by angle degrees around point (x,y). If the optional

arguments x and y are omitted, the page will be rotated around its center depending on

the chosen page format. When option −bnone is given, the rotation center is origin

(0,0).

KX angle

Skews the page along the x−axis by angle degrees. Argument angle can take any value

except 90+180k, where k is an integer.

KY angle

Skews the page along the y−axis by angle degrees. Argument angle can take any value

except 90+180k, where k is an integer.

FH [y]

Mirrors (flips) the page at the horizontal line through point (0,y). Omitting the optional

argument leads to y=h/2, where h denotes the page height (see pre−defined constants

below).

FV [x]

Mirrors (flips) the page at the vertical line through point (x,0). Omitting the optional

dvisvgm 2.9.1 2020−03−19 12

DVISVGM(1) dvisvgm Manual DVISVGM(1)

argument leads to x=w/2, where w denotes the page width (see pre−defined constants

below).

M m1,...,m6

Applies a transformation described by the 3×3 matrix

((m1,m2,m3),(m4,m5,m6),(0,0,1)), where the inner triples denote the rows.

Note
All transformation commands of option −T, −−transform are applied in the order of their

appearance. Multiple commands can optionally be separated by spaces. In this case the

whole transformation string has to be enclosed in double quotes to keep them together. All

parameters are expressions of floating point type. You can either give plain numbers or

arithmetic terms combined by the operators + (addition), − (subtraction), *

(multiplication), / (division) or % (modulo) with common associativity and precedence

rules. Parentheses may be used as well.

Additionally, some pre−defined constants are provided:

ux horizontal position of upper left page

corner in TeX point units

uy vertical position of upper left page

corner in TeX point units

h page height in TeX point units (0 in

case of −bnone)

w page width in TeX point units (0 in

case of −bnone)

Furthermore, you can use the 9 length constants pt, bp, cm, mm, in, pc, dd, cc, and sp,

e.g. 2cm or 1.6in. Thus, option −TT1in,0R45 moves the page content 1 inch to the right

and rotates it by 45 degrees around the page center afterwards.

For single transformations, there are also the short−hand options −c, −t and −r available.

In contrast to the −−transform commands, the order of these options is not significant, so

that it’s not possible to describe transformation sequences with them.

−t, −−translate=tx[,ty]

Translates (moves) the page content in direction of vector (tx,ty). This option is equivalent to

−TTtx,ty.

−v, −−verbosity=level

Controls the type of messages printed during a dvisvgm run:

0 no message output at all

1 error messages only

2 warning messages only

4 informational messages only

Note
By adding these values you can combine the categories. The default level is 7, i.e. all messages

are printed.

−V, −−version[=extended]

dvisvgm 2.9.1 2020−03−19 13

DVISVGM(1) dvisvgm Manual DVISVGM(1)

Prints the version of dvisvgm and exits. If the optional argument is set to yes, the version

numbers of the linked libraries are printed as well.

−z, −−zip[=level]

Creates a compressed SVG file with suffix .svgz. The optional argument specifies the

compression level. Valid values are in the range of 1 to 9 (default value is 9). Larger values

cause better compression results but may take slightly more computation time.

−Z, −−zoom=factor

Multiplies the values of the width and height attributes of the SVG root element by argument

factor while the coordinate system of the graphic content is retained. As a result, most SVG

viewers zoom the graphics accordingly. If a negative zoom factor is given, the width and

height attributes are omitted.

SUPPORTED SPECIALS
dvisvgm supports several sets of special commands that can be used to enrich DVI files with

additional features, like color, graphics, and hyperlinks. The evaluation of special commands is

delegated to dedicated handlers provided by dvisvgm. Each handler is responsible for all special

statements of the same command set, i.e. commands beginning with the same prefix. To get a list

of the actually provided special handlers, use option −−list−specials (see above). This section

gives an overview of the special commands currently supported.

bgcolor

Special statement for changing the background/page color. Since SVG 1.1 doesn’t support

background colors, dvisvgm inserts a rectangle of the chosen color into the generated SVG

document. This rectangle always gets the same size as the selected or computed bounding

box. This background color command is part of the color special set but is handled

separately in order to let the user turn it off. For an overview of the command syntax, see the

documentation of dvips, for instance.

color

Statements of this command set provide instructions to change the text/paint color. For an

overview of the exact syntax, see the documentation of dvips, for instance.

dvisvgm

dvisvgm offers its own small set of specials. The following list gives a brief overview.

dvisvgm:raw text

Adds an arbitrary sequence of XML nodes to the page section of the SVG document.

dvisvgm checks syntax and proper nesting of the inserted elements but does not

perform any validation, thus the user has to ensure that the resulting SVG is still valid.

Opening and closing tags may be distributed among different raw specials. The tags

themselves can also be split but must be continued with the immediately following raw

special. Both syntactically incorrect and wrongly nested tags lead to error messages.

Parameter text may also contain the expressions {?x}, {?y}, {?color}, and {?matrix}

that expand to the current x or y coordinate, the current color, and current

transformation matrix, respectively. Character sequence {?nl} expands to a newline

character. Finally, constructions of the form {?(expr)} enable the evaluation of

mathematical expressions which may consist of basic arithmetic operations including

modulo. Like above, the variables x and y represent the current coordinates. Example:

{?(−10*(x+2y)−5)}.

dvisvgm:rawdef text

dvisvgm 2.9.1 2020−03−19 14

DVISVGM(1) dvisvgm Manual DVISVGM(1)

This command is similar to dvisvgm:raw, but puts the XML nodes into the <defs>

section of the SVG document currently being generated.

dvisvgm:rawset name ... dvisvgm:endrawset

This pair of specials marks the begin and end of a definition of a named raw SVG

fragment. All dvisvgm:raw and dvisvgm:rawdef specials enclosed by

dvisvgm:rawset and dvisvgm:endrawset are not evaluated immediately but stored

together under the given name for later use. Once defined, the named fragment can be

referenced throughout the DVI file by dvisvgm:rawput (see below). The two

commands dvisvgm:rawset and dvisvgm:endrawset must not be nested, i.e. each call

of dvisvgm:rawset has to be followed by a corresponding call of dvisvgm:endrawset

before another dvisvgm:rawset may occur. Also, the identifier name must be unique

throughout the DVI file. Using dvisvgm:rawset multiple times together with the same

name leads to warning messages.

dvisvgm:rawput name

Inserts raw SVG fragments previously stored under the given name. dvisvgm

distinguishes between fragments that were specified with dvisvgm:raw or

dvisvgm:rawdef, and handles them differently: It inserts all dvisvgm:raw parts every

time dvisvgm:rawput is called, whereas the dvisvgm:rawdef portions go to the

<defs> section of the current SVG document only once.

dvisvgm:img width height file

Creates an image element at the current graphic position referencing the given file.

JPEG, PNG, and SVG images can be used here. However, dvisvgm does not check the

file format or the file name suffix. The lengths width and height can be given together

with a unit specifier (see option −−bbox) or as plain floating point numbers. In the

latter case, TeX point units are assumed (1in = 72.27pt).

dvisvgm:bbox lock

Locks the bounding box of the current page and prevents it from further updating, i.e.

graphics elements added after calling this special are not taken into account in

determining the extent of the bounding box.

dvisvgm:bbox unlock

Unlocks the previously locked bounding box of the current page so that it gets updated

again when adding graphics elements to the page.

dvisvgm:bbox n[ew] name

Defines or resets a local bounding box called name. The name may consist of letters

and digits. While processing a DVI page, dvisvgm continuously updates the (global)

bounding box of the current page in order to determine the minimal rectangle

containing all visible page components (characters, images, drawing elements etc.)

Additionally to the global bounding box, the user can request an arbitrary number of

named local bounding boxes. Once defined, these boxes are updated together with the

global bounding box starting with the first character that follows the definition. Thus,

the local boxes can be used to compute the extent of parts of the page. This is useful for

scenarios where the generated SVG file is post−processed. In conjunction with special

dvisvgm:raw, the macro {?bbox name} expands to the four values x, y, w, and h

(separated by spaces) specifying the coordinates of the upper left corner, width, and

height of the local box name. If box name wasn’t previously defined, all four values

equal to zero.

dvisvgm 2.9.1 2020−03−19 15

DVISVGM(1) dvisvgm Manual DVISVGM(1)

dvisvgm:bbox width height [depth] [transform]

Updates the bounding box of the current page by embedding a virtual rectangle (x, y,

width, height) where the lower left corner is located at the current DVI drawing

position (x,y). If the optional parameter depth is specified, dvisvgm embeds a second

rectangle (x, y, width, −depth). The lengths width, height, and depth can be given

together with a unit specifier (see option −−bbox) or as plain floating point numbers. In

the latter case, TeX point units are assumed (1in = 72.27pt). Depending on size and

position of the virtual rectangle, this command either enlarges the overall bounding box

or leaves it as is. It’s not possible to reduce its extent. This special should be used

together with dvisvgm:raw in order to update the viewport of the page properly. By

default, the box extents are assigned unchanged and, in particular, are not altered by

transformation commands. In order to apply the current transformation matrix, the

optional modifier transform can be added at the end of the special statement.

dvisvgm:bbox a[bs] x1 y1 x2 y2 [transform]

This variant of the bbox special updates the bounding box by embedding a virtual

rectangle (x1,y1,x2,y2). The points (x1,y1) and (x2,y2) denote the absolute coordinates

of two diagonal corners of the rectangle. As with the relative special variant described

above, the optional modifier transform allows for applying the current transformation

matrix to the bounding box.

dvisvgm:bbox f[ix] x1 y1 x2 y2 [transform]

This variant of the bbox special assigns an absolute (final) bounding box to the

resulting SVG. After executing this command, dvisvgm doesn’t further alter the

bounding box coordinates, except this special is called again later. The points (x1,y1)

and (x2,y2) denote the absolute coordinates of two diagonal corners of the rectangle. As

with the relative special variant described above, the optional modifier transform

allows for applying the current transformation matrix to the bounding box.

The following TeX snippet adds two raw SVG elements to the output and updates the

bounding box accordingly:

\special{dvisvgm:raw <circle cx='{?x}' cy='{?y}' r='10' stroke='black' fill='red'/>}%

\special{dvisvgm:bbox 10bp 10bp 10bp transform}%

\special{dvisvgm:bbox −10bp 10bp 10bp transform}

\special{dvisvgm:raw <path d='M50 200 L10 250 H100 Z' stroke='black' fill='blue'/>}%

\special{dvisvgm:bbox abs 10bp 200bp 100bp 250bp transform}

em

These specials were introduced with the emTeX distribution by Eberhard Mattes. They

provide line drawing statements, instructions for embedding MSP, PCX, and BMP image

files, as well as two PCL commands. dvisvgm supports only the line drawing statements and

ignores all other em specials silently. A description of the command syntax can be found in

the DVI driver documentation coming with emTeX (https://ctan.org/pkg/emtex).

html

The hyperref specification defines several variants on how to mark hyperlinked areas in a

DVI file. dvisvgm supports the plain HyperTeX special constructs as created with hyperref

package option hypertex. By default, all linked areas of the document are marked by a

rectangle. Option −−linkmark allows to change this behavior. See above for further details.

dvisvgm 2.9.1 2020−03−19 16

DVISVGM(1) dvisvgm Manual DVISVGM(1)

Information on syntax and semantics of the HyperTeX specials can be found in the hyperref

manual (https://ctan.org/pkg/hyperref).

papersize

The papersize special, which is an extension introduced by dvips, can be used to specify the

widths and heights of the pages in the DVI file. It affects the page it appears on as well as all

following pages until another papersize special is found. If there is more than one papersize

special present on a page, dvisvgm applies the last one. However, in order to stay compatible

with previous versions of dvisvgm that did not evaluate these specials, their processing must

be explicitly enabled by adding option −−bbox=papersize on the command−line.

Otherwise, dvisvgm ignores them and computes tight bounding boxes.

pdf

pdfTeX and dvipdfmx introduced several special commands related to the generation of

PDF files. Currently, only pdf:mapfile, pdf:mapline, pdf:pagesize, and PDF hyperlink

specials are supported by dvisvgm. The latter are the PDF pendants to the HTML HyperTeX

specials generated by the hyperref package in PDF mode.

pdf:pagesize is similar to the papersize special (see above) which specifies the size of the

current and all folowing pages. In order to actually apply the extents to the generated SVG

files, option −−bbox=papersize must be given.

pdf:mapfile and pdf:mapline allow for modifying the font map tree while processing the DVI

file. They are used by CTeX, for example. dvisvgm supports both, the dvips and dvipdfm

font map format. For further information on the command syntax and semantics, see the

documentation of \pdfmapfile in the pdfTeX user manual (https://ctan.org/pkg/pdftex).

ps

The famous DVI driver dvips (https://www.tug.org/texinfohtml/dvips.html) introduced its

own set of specials in order to embed PostScript code into DVI files, which greatly improves

the capabilities of DVI documents. One aim of dvisvgm is to completely evaluate all

PostScript fragments and to convert as many of them as possible to SVG. In contrast to

dvips, dvisvgm uses floating point arithmetics to compute the precise position of each

graphic element, i.e. it doesn’t round the coordinates. Therefore, the relative locations of the

graphic elements may slightly differ from those computed by dvips.

Since PostScript is a rather complex language, dvisvgm does not implement its own

PostScript interpreter but relies on Ghostscript (https://ghostscript.com) instead. If the

Ghostscript library was not linked to the dvisvgm binary, it is looked up and loaded

dynamically during runtime. In this case, dvisvgm looks for libgs.so.X on Unix−like systems

(supported ABI versions: 7,8,9), for libgs.X.dylib on macOS, and for gsdll32.dll or

gsdll64.dll on Windows. You can override the default file names with environment variable

LIBGS or the command−line option −−libgs. The library must be reachable through the ld

search path (*nix) or the PATH environment variable (Windows). Alternatively, the absolute

file path can be specified. If the library cannot be found, dvisvgm disables the processing of

PostScript specials and prints a warning message. Use option −−list−specials to check

whether PostScript support is available, i.e. entry ps is present.

The PostScript handler also recognizes and evaluates bounding box data generated by the

preview package (https://ctan.org/pkg/preview) with option tightpage. If such data is present

dvisvgm 2.9.1 2020−03−19 17

DVISVGM(1) dvisvgm Manual DVISVGM(1)

in the DVI file and if dvisvgm is called with option −−bbox=preview, dvisvgm sets the

width and total height of the SVG file to the values derived from the preview data.

Additionally, it prints a message showing the width, height, and depth of the box in TeX

point units to the console. Especially, the depth value can be read by a post−processor to

vertically align the SVG graphics with the baseline of surrounding text in HTML or

XSL−FO documents, for example. Please note that SVG bounding boxes are defined by a

width and (total) height. In contrast to TeX, SVG provides no means to differentiate between

height and depth, i.e. the vertical extents above and below the baseline, respectively.

Therefore, it is generally not possible to retrieve the depth value from the SVG file itself.

If you call dvisvgm with option −−bbox=min (the default) and preview data is present in the

DVI file, dvisvgm doesn’t apply the preview extents but computes a bounding box that

tightly encloses the page contents. The height, depth and width values written to console are

adapted accordingly.

tpic

The TPIC special set defines instructions for drawing simple geometric objects. Some

LaTeX packages, like eepic and tplot, use these specials to describe graphics.

EXAMPLES
dvisvgm file

Converts the first page of file.dvi to file.svg.

dvisvgm −p1−5 file

Converts the first five pages of file.dvi to file−1.svg,...,file−5.svg.

dvisvgm −p1− file

Converts all pages of file.dvi to separate SVG files.

dvisvgm −p1,3 −O file

Converts the first and third page of file.dvi to optimized SVG files.

dvisvgm − < file.dvi

Converts the first page of file.dvi to stdin.svg where the contents of file.dvi is read from

stdin.

dvisvgm −z file

Converts the first page of file.dvi to file.svgz with default compression level 9.

dvisvgm −p5 −z3 −ba4−l −o newfile file

Converts the fifth page of file.dvi to newfile.svgz with compression level 3. The bounding

box is set to DIN/ISO A4 in landscape format.

dvisvgm −−transform="R20,w/3,2h/5 T1cm,1cm S2,3" file

Converts the first page of file.dvi to file.svg where three transformations are applied.

ENVIRONMENT
dvisvgm uses the kpathsea library for locating the files that it opens. Hence, the environment

variables described in the library’s documentation influence the converter.

If dvisvgm was linked without the Ghostscript library, and if PostScript support has not been

disabled, the shared Ghostscript library is looked up during runtime via dlopen(). The

environment variable LIBGS can be used to specify path and file name of the library.

dvisvgm 2.9.1 2020−03−19 18

DVISVGM(1) dvisvgm Manual DVISVGM(1)

The pre−compiled Windows versions of dvisvgm require a working installation of MiKTeX 2.9

or above. dvisvgm does not work together with the portable edition of MiKTeX because it relies

on MiKTeX’s COM interface that is only accessible in a local installation. To enable the

evaluation of PostScript specials, the original Ghostscript DLL gsdll32.dll must be present and

reachable through the search path. 64−bit Windows builds require the 64−bit Ghostscript DLL

gsdll64.dll. Both DLLs come with the corresponding Ghostscript installers available from

https://ghostscript.com.

The environment variable DVISVGM_COLORS specifies the colors used to highlight various

parts of dvisvgm’s message output. It is only evaluated if option −−color is given. The value of

DVISVGM_COLORS is a list of colon−separated entries of the form gg=BF, where gg denotes

one of the color group indicators listed below, and BF are two hexadecimal digits specifying the

background (first digit) and foreground/text color (second digit). The color values are defined as

follows: 0=black, 1=red, 2=green, 3=yellow, 4=blue, 5=magenta, 6=cyan, 7=gray, 8=bright red,

9=bright green, A=bright yellow, B=bright blue, C=bright magenta, D=bright cyan, E=bright

gray, F=white. Depending on the terminal, the colors may differ. Rather than changing both the

text and background color, it’s also possible to change only one of them: An asterisk (*) in place

of a hexadecimal digit indicates the default text or background color of the terminal.

All malformed entries in the list are silently ignored.

er error messages

wn warning messages

pn messages about page numbers

ps page size messages

fw information about the files written

sm state messages

tr messages of the glyph tracer

pi progress indicator

Example: er=01:pi=*5 sets the colors of error messages (er) to red (1) on black (0), and those of

progress indicators (pi) to cyan (5) on default background (*).

FILES
The location of the following files is determined by the kpathsea library. To check the actual

kpathsea configuration you can use the kpsewhich utility.

*.enc Font encoding files

dvisvgm 2.9.1 2020−03−19 19

DVISVGM(1) dvisvgm Manual DVISVGM(1)

*.fgd Font glyph data files (cache files

created by dvisvgm)

*.map Font map files

*.mf Metafont input files

*.pfb PostScript Type 1 font files

*.pro PostScript header/prologue files

*.tfm TeX font metric files

*.ttf TrueType font files

*.vf Virtual font files

SEE ALSO
tex(1), mf(1), mktexmf(1), grodvi(1), potrace(1), and the kpathsea library info

documentation.

RESOURCES
Project home page

https://dvisvgm.de

Code repository

https://github.com/mgieseki/dvisvgm

BUGS
Please report bugs using the bug tracker at GitHub (https://github.com/mgieseki/dvisvgm/issues).

AUTHOR
Written by Martin Gieseking <martin.gieseking@uos.de>

COPYING
Copyright © 2005−2020 Martin Gieseking. Free use of this software is granted under the terms

of the GNU General Public License (GPL) version 3 or, (at your option) any later version.

dvisvgm 2.9.1 2020−03−19 20

