
AUTOINST(1) Marc Penninga AUTOINST(1)

NAME

autoinst − wrapper around the LCDF TypeTools, for installing and using OpenType fonts in
LaTeX.

SYNOPSIS

autoinst −help

autoinst [options] font(s)

DESCRIPTION

Eddie Kohler’s LCDF TypeTools are superb tools for installing OpenType fonts in LaTeX, but
they can be hard to use: they need many, often long, command lines and don’t generate the fd and
sty files LaTeX needs. autoinst simplifies the use of the TypeTools for font installation by
generating and executing all commands for otftotfm and by creating and installing all necessary fd

and sty files.

Given a family of font files (in otf or ttf format), autoinst will create several LaTeX font families:

− Four text families (with lining and oldstyle digits, each in both tabular and proportional
variants), all with the following shapes:

n Roman (i.e., upright) text

it, sl Italic and slanted (sometimes called oblique) text

sc Small caps

scit, scsl Italic and slanted small caps

sw Swash

nw ‘Upright swash’

− For each T1−encoded text family: a family of TS1−encoded symbol fonts, in roman, italic
and slanted shapes.

− Families with superiors, inferiors, numerators and denominators, in roman, italic and
slanted shapes.

− Families with ‘Titling’ characters; these ‘... replace the default glyphs with corresponding
forms designed specifically for titling. These may be all-capital and/or larger on the body,
and adjusted for viewing at larger sizes’ (according to the OpenType Specification).

− An ornament family, also in roman, italic and slanted shapes.

Of course, if your fonts don’t contain italics, oldstyle digits, small caps etc., the corresponding
shapes and families are not created. In addition, the creation of most families and shapes can be
controlled by the user (see ‘‘COMMAND-LINE OPTIONS’’ below).

These families use the FontPro project’s naming scheme: <FontFamily>−<Suffix>, where
<Suffix> is:

LF proportional (i.e., figures have varying widths) lining figures

TLF tabular (i.e., all figures have the same width) lining figures

OsF proportional oldstyle figures

TOsF tabular oldstyle figures

fontools 2020-12-18 1

AUTOINST(1) Marc Penninga AUTOINST(1)

Sup superior characters (note that most fonts have only an incomplete set of superior
characters: digits, some punctuation and the letters abdeilmnorst; normal forms are
used for other characters)

Inf inferior characters; usually only digits and some punctuation, normal forms for other
characters

Titl Titling characters; see above

Orn ornaments

Numr, Dnom

numerators and denominators

The individual fonts are named <FontName>−<suffix>−<shape>−<enc>, where <suffix> is the
same as above (but in lowercase), <shape> is either empty, ‘sc’ or ‘swash’, and <enc> is the
encoding (also in lowercase). A typical name in this scheme would be
‘FiraSans−Light−osf−sc−ly1’.

Using the fonts in your LaTeX documents

autoinst generates a style file for using the fonts in LaTeX documents, named <FontFamily>.sty.
This style file also takes care of loading the fontenc and textcomp packages. To use the fonts, add
the command \usepackage{<FontFamily>} to the preamble of your document.

This style file defines a number of options:

mainfont

Redefine \familydefault to make this font the main font for the document. This is a
no-op if the font is installed as a serif font; but if the font is installed as a sanserif or
typewriter font, this option saves you from having to redefine \familydefault yourself.

lining, oldstyle, tabular, proportional
Choose which figure style to use. The defaults are ‘oldstyle’ and ‘proportional’ (if
available).

scale=<number>, scale=MatchLowercase
Scale the font by a factor of <number>. E.g., to increase the size of the font by 5%, use
\usepackage[scale=1.05]{<FontFamily>}. The special value
MatchLowercase may be used to scale the font so that its x−height matches that of the
previously active font (which is usually Computer Modern, unless you have loaded another
font package before this one). The name scaled may be used as a synonym for scale.

medium, book, text, normal, regular
Select the weight that LaTeX will use as the ‘regular’ weight.

heavy, black, extrabold, demibold, semibold, bold
Select the weight that LaTeX will use as the ‘bold’ weight.

The last two groups of options will only work if you have the mweights package installed. The
default here is not to change LaTeX’s default, i.e. use the ‘m’ and ‘b’ weights.

The style file will also try to load the fontaxes package (on CTAN), which gives easy access to
various font shapes and styles. Using the machinery set up by fontaxes, the generated style file
defines a number of commands (which take the text to be typeset as argument) and declarations
(which don’t take arguments, but affect all text up to the end of the current group) to access
titling, superior and inferior characters:

fontools 2020-12-18 2

AUTOINST(1) Marc Penninga AUTOINST(1)

DECLARATION COMMAND SHORT FORM OF COMMAND

\tlshape \texttitling \texttl

\supfigures \textsuperior \textsup, \textsu

\inffigures \textinferior \textinf, \textin

In addition, the \swshape and \textsw commands are redefined to place swash on fontaxes’
secondary shape axis (fontaxes places it on the primary shape axis) to make them behave
properly when nested, so that \swshape\upshape will give upright swash.

There are no commands for accessing the numerator and denominator fonts; these can be selected
using fontaxes’ standard commands, e.g.,
\fontfigurestyle{numerator}\selectfont.

These commands are only generated for existing shapes and number styles; no commands are
generated for shapes and styles that don’t exist, or whose generation was turned off by the user.
Also these commands are built on top of fontaxes, so if that package cannot be found, you’re
limited to using the lower-level commands from standard NFSS (\fontfamily,
\fontseries, \fontshape etc.).

By default, autoinst generates text fonts with OT1, LY1 and T1 encodings, and the generated style
files use T1 as the default text encoding. Other encodings can be chosen using the −encoding

option (see ‘‘COMMAND-LINE OPTIONS’’ below).

Maths

This is an experimental feature; USE AT YOUR OWN RISK! Test the results thoroughly before
using them in real documents, and be warned that future versions of autoinst may introduce
incompatible changes.

The −math option tells autoinst to generate basic math fonts. When enabled, the generated style
file defines a few extra options to access these math fonts:

math

Use these fonts for the maths in your document.

mathlining, matholdstyle
Choose which figure style to use in maths. The default is ‘mathlining’.

mathcal

Use the swash characters from your fonts as the \mathcal alphabet. (This option only
exists if your fonts actually contain swash characters and a swsh feature to access them).

nomathgreek

Don’t redeclare greek letters in math.

math−style=<style>

Choose the ‘math style’ to use. With math−style=ISO, all latin and greek letters in
math are italic; with math−style=TeX (the default), uppercase greek is upright; with
math−style=french, all greek as well as uppercase latin is upright; and with
math−style=upright all letters are upright.

Note that this ‘math’ option only changes digits, latin and greek letters, plus a few basic
punctuation characters; all other mathematical symbols, operators, delimiters etc. are left as they
were before. If you don’t want to use TeX’s default versions of those symbols, load another math
package (such as mathdesign or newtxmath) before loading the autoinst−generated style file.

fontools 2020-12-18 3

AUTOINST(1) Marc Penninga AUTOINST(1)

Finally, note that autoinst doesn’t check if your fonts actually contains all of the required
characters; it just assumes that they do and sets up the style file accordingly. Even if your fonts
contain greek, characters such as \varepsilon may be missing. You may also find that some
glyphs are present in your fonts, but don’t work well in equations or don’t match with other
symbols; edit the generated style file to remove the declarations of these offending characters.
Once again: test the results before using them! If the characters themselves are fine but spaced
too tightly, you may try increasing the side bearings in math fonts with the −mathspacing option
(see below), e.g. −mathspacing=50.

NFSS codes

LaTeX’s New Font Selection System (NFSS) identifies fonts by a combination of family, series
(the concatenation of weight and width), shape and size. autoinst parses the font’s metadata to
determine these parameters. When this fails (usually because the font family contains
uncommon weights, widths or shapes), autoinst ends up with different fonts having the same

values for these font parameters; such fonts cannot be used in NFSS, since there’s no way
distinguish them. When autoinst detects such a situation, it will print an error message and
abort. If that happens, either rerun autoinst on a smaller set of fonts, or add the missing widths,
weights and shapes to the tables WIDTH, WEIGHT and SHAPE in the source code. Please also
send a bug report (see AUTHOR below).

The mapping of shapes to NFSS codes is done using the following table:

SHAPE CODE

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−

Roman, Upright n

Italic it

Oblique, Slant(ed), Incline(d) sl

(Exception: Adobe Silentium Pro contains two Roman shapes; we map the first of these to ‘n’,
for the second one we (ab)use the ‘it’ code as this family doesn’t contain an Italic shape.)

For weights and widths, autoinst tries to the standard NFSS codes (ul, el, l, sl, m, sb, b, eb and ub
for weights; uc, ec, c, sc, m, sx, x, ex and ux for widths) as much as possible. Of course, not all
81 combinations of these NFSS weights and widths will map to existing fonts; and conversely it
may not be possible to assign every existing font a unique code in a sane way (especially for the
weights, some font families offer more choices or finer granularity than NFSS’s codes can handle;
e.g., Fira Sans contains fifteen(!) different weights, including an additional ‘Medium’ weight
between Regular and Semibold). Therefore every font is also assigned a ‘series’ name that is
simply the concatenation of its weight and width (after expanding any abbreviations and
converting to lowercase). A font with ‘Cond’ width and ‘Ultra’ weight will then be known as
‘ultrablackcondensed’.

The exact mapping between fonts and NFSS codes can be found in the generated fd files and in
the log file (pro tip: run autoinst with the −dryrun option to check the chosen mapping
beforehand). The −nfssweight and −nfsswidth command-line options can be used to finetune the
mapping between NFSS codes and fonts.

To access specific weights or widths, one can always use the \fontseries command with the
full series name (i.e., \fontseries{demibold}\selectfont).

Ornaments

Ornament fonts are regular LY1−encoded fonts, with a number of ‘regular’ characters replaced
by ornament glyphs. The OpenType specification says that fonts should only put their ornaments

fontools 2020-12-18 4

AUTOINST(1) Marc Penninga AUTOINST(1)

in place of the lowercase ASCII letters, but some fonts put them in other positions (such as those
of the digits) as well.

Ornaments can be accessed like {\ornaments a} and {\ornaments\char"61}, or
equivalently \textornaments{a} and \textornaments{\char"61}. To see which
ornaments a font contains (and at which positions), run LaTeX on the file nfssfont.tex (which is
included in any standard LaTeX installation), supply the name of the ornament font (i.e.,
GaramondLibre−Regular−orn−u) and give the command \table\bye; this will create
a table of all glyphs in that font.

Note that versions of autoinst up to 20200428 handled ornaments differently, and fonts and style
files generated by those versions are not compatible with files generated by newer versions.

WARNINGS AND CAVEATS

OpenType fonts and licensing issues

Since pdfTeX cannot subset otf-flavoured OpenType fonts, otftotfm will convert such fonts to
Type1 (pfb) format. However, many fonts (at least those licensed under the SIL Open Font
License) do not allow distributing such converted versions under their original name.

To meet these licensing requirements, autoinst provides a −t1suffix command-line option
that appends a (user-defined) suffix to the names (both filename and internal font name) of all
generated Type1 fonts; see ‘‘COMMAND-LINE OPTIONS’’ below.

A note for MiKTeX users

Automatically installing the fonts into a suitable TEXMF tree (as autoinst tries to do by default)
only works for TeX-installations that use the kpathsea library; with TeX distributions that
implement their own directory searching (such as MiKTeX), autoinst will complain that it cannot
find the kpsewhich program and move all generated files into a subdirectory
./autoinst_output/ of the current directory. If you use such a TeX distribution, you
should either move these files to their correct destinations by hand, or use the −target option (see
‘‘COMMAND-LINE OPTIONS’’ below) to manually specify a TEXMF tree.

Also, some OpenType fonts contain so many kerning pairs that the resulting pl and vpl files are
too big for MiKTeX’s pltotf and vptovf; the versions that come with W32TeX
(http://www.w32tex.org) and TeXLive (http://tug.org/texlive) don’t seem to have this problem.

A note for MacTeX users

By default, autoinst will try to install all generated files into the $TEXMFLOCAL tree; when this
directory isn’t user-writable, it will use the $TEXMFHOME tree instead. Unfortunately, MacTeX’s
version of updmap−sys doesn’t search in $TEXMFHOME, and hence MacTeX will not find the
new fonts.

To remedy this, either run autoinst as root (so that it can install everything into $TEXMFLOCAL)
or manually run updmap −user to tell TeX about the files in $TEXMFHOME. The latter option
does, however, hav e some caveats; see https://tug.org/texlive/scripts−sys−user.html.

COMMAND-LINE OPTIONS

autoinst tries hard to do The Right Thing (TM) by default, so you usually won’t need these
options; but most aspects of its operation can be fine-tuned if you want to.

You may use either one or two dashes before options, and option names may be shortened to a
unique prefix (e.g., −encoding may be abbreviated to −enc or even −en, but −e is ambiguous (it
may mean either −encoding or −extra)).

fontools 2020-12-18 5

AUTOINST(1) Marc Penninga AUTOINST(1)

General options

−help

Print a (relatively) short help text and exit.

−dryrun

Don’t generate output; just parse input fonts and write a log file saying what autoinst would
have done.

−verbose

Add more details to the log file.

−version

Print autoinst’s version number and exit.

Font creation options

−encoding=encoding[,encoding]

Generate the specified encoding(s) for the text fonts. Multiple encodings may be specified
as a comma-separated list (without spaces!); the default choice of encodings is
‘OT1,LY1,T1’.

For each specified encoding XYZ, autoinst will first see if there is an encoding file XYZ.enc

in the current directory, and if found it will use that; otherwise it will use one of its built-in
encoding files. Currently autoinst comes with support for the OT1, T1/TS1, LY1, LGR,

T2A/B/C and T3/TS3 encodings. (These files are called fontools_ot1.enc etc. to avoid name
clashes with other packages; the ‘fontools_’ prefix may be omitted.)

−ts1/−nots1

Control the creation of TS1−encoded fonts. The default is −ts1 if the text encodings (see
−encoding above) include T1, −nots1 otherwise.

−lining/−nolining

Control the creation of fonts with lining figures. The default is −lining.

−oldstyle/−nooldstyle

Control the creation of fonts with oldstyle figures. The default is −oldstyle.

−proportional/−noproportional

Control the creation of fonts with proportional figures. The default is −proportional.

−tabular/−notabular

Control the creation of fonts with tabular figures. The default is −tabular.

−smallcaps/−nosmallcaps

Control the creation of small caps fonts. The default is −smallcaps.

−swash/−noswash

Control the creation of swash fonts. The default is −swash.

−titling/−notitling

Control the creation of titling families. The default is −titling.

−superiors/−nosuperiors

Control the creation of fonts with superior characters. The default is −superiors.

−noinferiors

fontools 2020-12-18 6

AUTOINST(1) Marc Penninga AUTOINST(1)

−inferiors [= none | auto | subs | sinf | dnom]
The OpenType standard defines several kinds of digits that might be used as inferiors or
subscripts: ‘Subscripts’ (OpenType feature ‘subs’), ‘Scientific Inferiors’ (’sinf ’), and
‘Denominators’ (’dnom’). This option allows the user to determine which of these styles
autoinst should use for the inferior characters. Alternatively, the value ‘auto’ tells autoinst

to use the first value in ‘sinf’, ‘subs’ or ‘dnom’ that is supported by the font. Saying just
−inferiors is equivalent to −inferiors=auto; otherwise the default is −noinferiors.

If you specify a style of inferiors that isn’t present in the font, autoinst will fall back to its

default behaviour of not creating fonts with inferiors at all; it won’t try to substitute one of

the other styles.

−fractions/−nofractions

Control the creation of fonts with numerators and denominators. The default is
−nofractions.

−ligatures/−noligatures

Some fonts create glyphs for the standard f−ligatures (ff, fi, fl, ffi, ffl), but don’t provide a
‘liga’ feature to access these. This option tells autoinst to add extra LIGKERN rules to the
generated fonts to enable the use of these ligatures. The default is −ligatures, except for
typewriter fonts.

Specify −noligatures to disable generation of ligatures even for fonts that do contain a ‘liga’
feature.

−ornaments/−noornaments

Control the creation of ornament fonts. The default is −ornaments.

−serif/−sanserif/−typewriter

Install the font as a serif, sanserif or typewriter font, respectively. This changes how you
access the font in LaTeX: with \rmfamily/\textrm, \sffamily/\textsf or
\ttfamily/\texttt.

Installing the font as a typewriter font will cause two further changes: it will − by default −
turn off the use of f−ligatures (though this can be overridden with the −ligatures option),
and it will disable hyphenation for this font. This latter effect cannot be re-enabled in
autoinst; if you want typewriter text to be hyphenated, use the hyphenat package.

If none of these options is specified, autoinst tries to guess: if the font’s filename contains
the string ‘mono’ or if the field isFixedPitch in the font’s post table is True, it will
select −typewriter; else if the filename contains ‘sans’ it will select −sanserif; otherwise it
will opt for −serif.

−math

Tells autoinst to create basic math fonts (see above).

−mathspacing=amount

Letterspace each character in the math fonts by amount units, where 1000 units equal one
em. In my opinion, many text fonts benefit from letterspacing by 50 to 100 units when used
in maths; some fonts need even more. Use your own judgement!

Output options

fontools 2020-12-18 7

AUTOINST(1) Marc Penninga AUTOINST(1)

−t1suffix [= SUFFIX]
Tell autoinst to modify the font names of all generated Type1−fonts, by adding SUFFIX to
the family name. If you use this option without specifying a SUFFIX value, autoinst will
use the value ‘‘PS’’. The default behaviour when this option is not given is to not modify
font names at all.

See also ‘‘OpenType fonts and licensing issues’’ above.

−target=DIRECTORY

Install all generated files into the TEXMF tree at DIRECTORY.

By default, autoinst searches the $TEXMFLOCAL and $TEXMFHOME trees and installs all
files into the first user-writable TEXMF tree it finds. If autoinst cannot find such a user-
writable directory (which shouldn’t happen, since $TEXMFHOME is supposed to be user-
writable) it will print a warning message and put all files into the subdirectory
./autoinst_output/ of the current directory. It’s then up to the user to move the
generated files to a better location and update all relevant databases (usually by calling
texhash and updmap).

−vendor=VENDOR

−typeface=TYPEFACE

These options are equivalent to otftotfm’s −−vendor and −−typeface options: they change
the ‘vendor’ and ‘typeface’ parts of the names of the subdirectories in the TEXMF tree where
generated files will be stored. The default values are ‘lcdftools’ and the font’s FontFamily
name. These options change only directory names, not the names of any generated files.

−logfile=filename

Write log data to filename instead of the default <fontfamily>.log. If the file already exists,
autoinst appends to it; it doesn’t overwrite an existing file.

Specialist options

−defaultlining/−defaultoldstyle

−defaulttabular/−defaultproportional

Tell autoinst which figure style is the current font family’s default (i.e., which figures you
get when you don’t specify any OpenType features).

Don’t use these options unless you are certain you need them! They are only needed for
fonts that don’t provide OpenType features for their default figure style; and even in that
case, autoinst’s default values (−defaultlining and −defaulttabular) are usually correct.

−nfssweight=code=weight

−nfsswidth=code=width

Map the NFSS code code to the given weight or width, overriding the built-in tables. Each
of these options may be given multiple times, to override more than one NFSS code.
Example: to map the ‘ul’ code to the ‘Thin’ weight, use −nfssweight=ul=thin. To
inhibit the use of the ‘ul’ code completely, use −nfssweight=ul=.

−extra=extra

Append extra as extra options to the command lines for otftotfm. To prevent extra from
accidentily being interpreted as options to autoinst, it should be properly quoted.

−nofigurekern

Some fonts provide kerning pairs for tabular figures. This is very probably not what you
want (e.g., numbers in tables won’t line up exactly). This option adds extra −−ligkern

fontools 2020-12-18 8

AUTOINST(1) Marc Penninga AUTOINST(1)

options to the commands for otftotfm to suppress such kerns. Note that this option leads to
very long commands (it adds one hundred −−ligkern options), which may cause problems
on some systems.

SEE ALSO

Eddie Kohler’s TypeTools and T1Utils (http://www.lcdf.org/type).

Perl can be obtained from http://www.perl.org; it is included in most Linux distributions. For
Windows, try ActivePerl (http://www.activestate.com) or Strawberry Perl
(http://strawberryperl.com).

LuaTeX (http://www.luatex.org) and XeTeX (http://www.tug.org/xetex) are Unicode-aware TeX
engines that can use OpenType fonts directly, without any (La)TeX−specific support files.

The FontPro project (https://github.com/sebschub/FontPro) offers very complete LaTeX support
(even for typesetting maths) for Adobe’s Minion Pro, Myriad Pro and Cronos Pro font families.

AUTHOR

Marc Penninga (marcpenninga@gmail.com)

When sending a bug report, please give as much relevant information as possible; this usually
includes (but may not be limited to) the log file (please add the −verbose command-line option,
for extra info). If you see any error messages, please include these verbatim; don’t paraphase.

COPYRIGHT

Copyright (C) 2005−2020 Marc Penninga.

LICENSE

This program is free software; you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation, either version 2 of the
License, or (at your option) any later version. A copy of the text of the GNU General Public
License is included in the fontools distribution; see the file GPLv2.txt.

DISCLAIMER

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more details.

VERSION

This document describes autoinst version 20201218.

RECENT CHANGES

(See the source for the full story, all the way back to 2005.)

2020−12−18 Fixed a problem with files not being found on Windows. Added extra
−−unicoding options to prevent getting lowercase f−ligatures in smallcaps for
some buggy fonts. Optimized font info parsing for DTL and TypeBy font families.
Cleaned up the code for better maintainability.

2020−07−29 Some changes in the generated sty and fd files, to improve compatibility with the
microtype package. Made sure that pfb fonts are always generated whenever the
input fonts are in otf format. Added the −t1suffix command-line option, to
modify the font and file names of those generated Type1 fonts.

2020−06−19 Added the nomathgreek option to generated style files. Reorganized the
generated style files to make them more standards-conforming.

fontools 2020-12-18 9

AUTOINST(1) Marc Penninga AUTOINST(1)

2020−05−27 Added basic (and still somewhat experimental) math support. Implemented the
scale=MatchLowercase option value in the generated style files. ‘Wide’
fonts are mapped to the ‘sx’ NFSS code instead of ‘x’, to cater for League Mono
Variable’s Wide and Extended widths. The generated style files now use
\textsup and \textinf instead of the more cryptic \textsu and \textin
to access superior and inferior characters (though the old forms are retained for
backwards compatibility).

2020−05−11 When present, use encoding files in the current working directory in preference of
the ones that come with autoinst. Changed the way ornament fonts are created;
ornament glyphs are now always included in the position chosen by the font’s
designer.

2020−04−28 Fix a bug where the first font argument would be mistaken for an argument to
−inferiors.

2020−01−29 Don’t create empty subdirectories in the target TEXMF tree.

fontools 2020-12-18 10

