
AUTOINST(1) Marc Penninga AUTOINST(1)

NAME

autoinst − wrapper around the LCDF TypeTools, for installing and using OpenType fonts in
(La)TeX.

SYNOPSIS

autoinst [options] fontfile(s)

DESCRIPTION

Eddie Kohler’s LCDF TypeTools are superb tools for installing OpenType fonts in LaTeX, but
they can be hard to use: they need many, often long, command lines and don’t generate the fd and
sty files LaTeX needs. autoinst simplifies the use of the TypeTools for font installation by
generating and executing all commands for otftotfm and by creating and installing all necessary fd

and sty files.

Given a family of font files (in otf or ttf format), autoinst will create several LaTeX font families:

− Four text families (with lining and oldstyle digits, each in both tabular and proportional
variants), all with the following shapes:

n Roman (i.e., upright) text

it, sl Italic and slanted (sometimes called oblique) text

sc Small caps

sw Swash

tl Titling shape. Meant for all-caps text; letterspacing and the positioning of
punctuation characters have been adjusted to suit all-caps text. (This shape is
only generated for the families with lining digits, since old-style digits make
no sense with all-caps text.)

scit, scsl Italic and slanted small caps

nw ‘‘Upright swash’’; usually roman text with a few ‘‘oldstyle’’ ligatures like ct,
sp and st.

tlit, tlsl Italic and slanted titling text

− For each T1−encoded text family: a family of TS1−encoded symbol fonts, in roman, italic
and slanted shapes.

− Families with superiors, inferiors, numerators and denominators, in roman, italic and
slanted shapes.

− An ornament family, also in roman, italic and slanted shapes.

Of course, if your fonts don’t contain italics, oldstyle digits, small caps etc., the corresponding
shapes and families are not created. In addition, the creation of most families and shapes can be
controlled by the user (see ‘‘COMMAND-LINE OPTIONS’’ below).

These families use the FontPro project’s naming scheme: <FontFamily>−<Suffix>, where
<Suffix> is:

LF proportional (i.e., figures have varying widths) lining figures

TLF tabular (i.e., all figures have the same width) lining figures

OsF proportional oldstyle figures

fontools 2019-04-01 1

AUTOINST(1) Marc Penninga AUTOINST(1)

TOsF tabular oldstyle figures

Sup superior characters (note that most fonts have only an incomplete set of superior
characters: digits, some punctuation and the letters abdeilmnorst; normal forms are
used for other characters)

Inf inferior characters; usually only digits and some punctuation, normal forms for other
characters

Orn ornaments

Numr numerators

Dnom denominators

The individual fonts are named <FontName>−<suffix>−<shape>−<enc>, where <suffix> is the
same as above (but in lowercase), <shape> is either empty, ‘‘sc’’, ‘‘swash’’ or ‘‘titling’’, and
<enc> is the encoding (also in lowercase). A typical name in this scheme would be
‘‘FiraSans−Light−osf−sc−ly1’’.

A note for MiKTeX users

Automatically installing the fonts into a suitable TEXMF tree (as autoinst tries to do by default)
only works for TeX-installations that use the kpathsea library; with TeX distributions that
implement their own directory searching (such as MiKTeX), autoinst will complain that it cannot
find the kpsewhich program and move all generated files into a subdirectory
./autoinst_output/ of the current directory. If you use such a TeX distribution, you
should either move these files to their correct destinations by hand, or use the −target option (see
‘‘COMMAND-LINE OPTIONS’’ below) to manually specify a TEXMF tree.

Also, some OpenType fonts contain so many kerning pairs that the resulting pl and vpl files are
too big for MiKTeX’s pltotf and vptovf; the versions that come with W32TeX
(http://www.w32tex.org) and TeXLive (http://tug.org/texlive) don’t seem to have this problem.

A note for MacTeX users

By default, autoinst will try to install all files into the $TEXMFLOCAL tree; when this directory
isn’t user-writable, it will use the $TEXMFHOME tree instead. Unfortunately, MacTeX’s version
of updmap−sys (which is called behind the scenes) doesn’t search in $TEXMFHOME, and hence
MacTeX will not find the new fonts.

To remedy this, either run autoinst as root (so that it can install everything into $TEXMFLOCAL)
or manually run updmap −user to tell TeX about the files in $TEXMFHOME. The latter option
does, however, hav e some caveats; see https://tug.org/texlive/scripts−sys−user.html.

Using the fonts in your LaTeX documents

autoinst generates a style file for using the fonts in LaTeX documents, named <FontFamily>.sty.
This style file also takes care of loading the fontenc and textcomp packages. To use the fonts, add
the command \usepackage{<FontFamily>} to the preamble of your document.

This style file defines a number of options:

lining, oldstyle, tabular, proportional
Choose which figure style to use. The defaults are ‘‘oldstyle’’ and ‘‘proportional’’ (if
available).

scale=<number>

Scale the font by a factor of <number>. E.g., to increase the size of the font by 5%, use
\usepackage[scale=1.05]{<FontFamily>}. May also be spelled scaled.

fontools 2019-04-01 2

AUTOINST(1) Marc Penninga AUTOINST(1)

This option is only available when you have the xkeyval package installed.

medium, book, text, regular
Select the weight that LaTeX will use as the ‘‘regular’’ weight; the default is regular.

heavy, black, extrabold, demibold, semibold, bold
Select the weight that LaTeX will use as the ‘‘bold’’ weight; the default is bold.

The previous two groups of options will only work if you have the mweights package installed.

The style file will also try to load the fontaxes package (available on CTAN), which gives easy
access to various font shapes and styles. Using the machinery set up by fontaxes, the generated
style file defines a number of commands (which take the text to be typeset as argument) and
declarations (which don’t take arguments, but affect all text up to the end of the current group) to
access titling, superior and inferior characters:

DECLARATION COMMAND SHORT FORM OF COMMAND

\tlshape \texttitling \texttl

\sufigures \textsuperior \textsu

\infigures \textinferior \textin

In addition, the \swshape and \textsw commands are redefined to place swash on fontaxes’
secondary shape axis (fontaxes places it on the primary shape axis) to make them behave
properly when nested, so that \swshape\upshape will give upright swash.

There are no commands for accessing the numerator and denominator fonts; these can be selected
using fontaxes’ standard commands, e.g.,
\fontfigurestyle{numerator}\selectfont.

The style file also provides a command \ornament{<number>}, where <number> is a
number from 0 to the total number of ornaments minus one. Ornaments are always typeset using
the current family, series and shape. A list of all ornaments in a font can be created by running
LaTeX on the file nfssfont.tex (part of a standard LaTeX installation) and supplying the name of
the ornament font.

To access ornament glyphs, autoinst creates a font-specific encoding file <FontFamily>_orn.enc,
but only if that file doesn’t yet exist in the current directory. This is a deliberate feature that
allows you to provide your own encoding vector, e.g. if your fonts use non-standard glyph names
for ornaments.

These commands are only generated for existing shapes and number styles; no commands are
generated for shapes and styles that don’t exist, or whose generation was turned off by the user.
Also these commands are built on top of fontaxes, so if that package cannot be found, you’re
limited to using the lower-level commands from standard NFSS (\fontfamily,
\fontseries, \fontshape etc.).

On the choice of text encoding

By default, autoinst generates text fonts with OT1, T1 and LY1 encodings, and the generated style
files use LY1 as the default text encoding. LY1 has been chosen over T1 because it has some
empty slots to accommodate the additional ligatures found in many OpenType fonts. Other
encodings can be chosen using the −encoding option (see ‘‘COMMAND-LINE OPTIONS’’

below).

fontools 2019-04-01 3

AUTOINST(1) Marc Penninga AUTOINST(1)

NFSS codes

CAVEAT: this functionality was almost completely rewritten in release 2019−03−14. Older

versions tried to map all fonts directly to short NFSS codes, but often had to invent non-standard

codes in order to deal with the many different weights and widths that occur in the wild. These

non-standard NFSS codes used by older versions of autoinst will no longer work for fonts

installed with newer versions; for those you’ll have to either use the long names or stick to the

standard NFSS codes. This change mainly concerns very light or very heavy weights and very

condensed widths; for more moderate weights and widths, existing code will very probably

continue to work.

LaTeX’s New Font Selection System (NFSS) identifies fonts by a combination of family, series
(the concatenation of weight and width), shape and size. autoinst parses the font’s metadata
(more precisely: the output of otfinfo −−info) to determine these parameters. When this
fails (usually because the font family contains uncommon weights, widths or shapes), autoinst

ends up with different fonts having the same values for these font parameters; such fonts cannot
be used in NFSS, since there’s no way distinguish them. When autoinst detects such a situation,
it will print an error message and abort. If that happens, either rerun autoinst on a smaller set of
fonts, or add the missing widths, weights and shapes to the tables %NFSS_WIDTH,
%NFSS_WEIGHT and %NFSS_SHAPE, near the top of the source code. Please also send a bug
report (see AUTHOR below).

The mapping of shapes to NFSS codes is done using the following table:

SHAPE CODE

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−

Roman, Upright n

Italic, Cursive, Kursive it

Oblique, Slant(ed), Incline(d) sl

(Exception: Adobe Silentium Pro contains two Roman shapes; we map the first of these to ‘‘n’’,
for the second one we [ab]use the ‘‘it’’ code as this family doesn’t contain an Italic shape.)

The mapping of weights and widths to NFSS code is a more complex, two-step proces. In the
first step, all fonts are assigned a ‘‘series’’ name that is simply the concatenation of its full weight
and width (after expanding any abbreviations and converting to lowercase). So a font with
‘‘Cond’’ width and ‘‘Ultra’’ weight will be known as ‘‘ultrablackcondensed’’.

In the second step, autoinst tries to map all combinations of NFSS codes (ul, el, l, sl, m, sb, b, eb
and ub for weights; uc, ec, c, sc, m, sx, x, ex and ux for widths) to actual fonts. Of course, not all
81 combinations of these NFSS weights and widths will map to existing fonts; and conversely it
may not be possible to assign every existing font a unique code in a sane way (especially on the
weight axis, some font families offer more choices or finer granularity than NFSS’s codes can
handle; e.g., Fira Sans contains fifteen(!) different weights, including an additional ‘‘Medium’’
weight between Regular and Semibold).

This mapping between NFSS codes and actual fonts is based on a few principles:

Usefulness. As many of the most commonly used NFSS codes as possible should point to actual
fonts.
Exactness. Exact matches always win: if the font family contains a Semibold Condensed font,
that’s what the ‘‘sbc’’ code will map to.

fontools 2019-04-01 4

AUTOINST(1) Marc Penninga AUTOINST(1)

Sanity. A code like ‘‘sb’’ will always map to something semi-boldish. If there’s no Semibold font
it might map to Demibold or Medium, but never to Black. If there is no close match, the NFSS

code will simply not be used.
Well-ordering. The mapping respects the ordering that is inherent in the NFSS codes, so ‘‘sb’’
will be heavier than ‘‘m’’ and lighter than ‘‘b’’.
Uniqueness. No two NFSS codes will map to the same font (with the exception of ‘‘bx’’; since
this is so ubiquitous in Latex, autoinst will treat it as a synonym for ‘‘b’’ if there is no
BoldExtended font).

These rules should ensure that the standard NFSS codes (and high-level commands such as
\bfseries, which are built on top of these codes) will ‘‘just work’’. To access specific weights
or widths, use the \fontseries command with the full series name (i.e.,
\fontseries{demibold}\selectfont).

To see exactly which NFSS codes map to which fonts, please refer to the generated fd files.

COMMAND-LINE OPTIONS

autoinst tries hard to do The Right Thing (TM) by default, so you usually won’t really need these
options; but most aspects of its operation can be fine-tuned if you want to.

You may use either one or two dashes before options, and option names may be shortened to a
unique prefix (e.g., −encoding may be abbreviated to −enc or even −en, but −e is ambiguous (it
may mean either −encoding or −extra)).

−dryrun

Don’t generate any output files; only parse the input fonts and create autoinst.log showing
which fonts would have been generated.

−encoding=encoding[,encoding]

Generate the specified encoding(s) for the text fonts. Multiple text encodings may be
specified as a comma-separated list: −encoding=OT1,T1,LY1 (without spaces!). The
generated style file passes these encodings to fontenc in the specified order, so the last one
will become the default text encoding for your document.

The default choice of encodings is ‘‘OT1,T1,LY1’’. For each encoding, a file
<encoding>.enc (in all lowercase!) should be somewhere where otftotfm can find it.
Suitable encoding files for OT1, T1/TS1, LY1, LGR and T2A/B/C come with autoinst. (These
files are called fontools_ot1.enc etc. to avoid name clashes with other packages; the
‘‘fontools_’’ prefix may be omitted.)

−ts1 / −nots1

Control the creation of TS1−encoded fonts. The default is −ts1 if the text encodings (see
−encoding above) include T1, −nots1 otherwise.

−sanserif

Install the font as a sanserif font, accessed via \sffamily and \textsf. The generated
style file redefines \familydefault, so including it will still make this font the default
text font.

−typewriter

Install the font as a typewriter font, accessed via \ttfamily and \texttt. The
generated style file redefines \familydefault, so including it will still make this font
the default text font.

fontools 2019-04-01 5

AUTOINST(1) Marc Penninga AUTOINST(1)

−lining / −nolining

Control the creation of fonts with lining figures. The default is −lining.

−oldstyle / −nooldstyle

Control the creation of fonts with oldstyle figures. The default is −oldstyle.

−proportional / −noproportional

Control the creation of fonts with proportional figures. The default is −proportional.

−tabular / −notabular

Control the creation of fonts with tabular figures. The default is −tabular.

−smallcaps / −nosmallcaps

Control the creation of small caps fonts. The default is −smallcaps.

−swash / −noswash

Control the creation of swash fonts. The default is −swash.

−titling / −notitling

Control the creation of titling fonts. The default is −titling.

−superiors / −nosuperiors

Control the creation of fonts with superior characters. The default is −superiors.

−inferiors=[none | auto | subs | sinf | dnom]
The OpenType standard defines several kinds of digits that might be used as inferiors or
subscripts: ‘‘Subscripts’’ (OpenType feature ‘‘subs’’), ‘‘Scientific Inferiors’’ (‘‘sinf ’’), and
‘‘Denominators’’ (‘‘dnom’’). This option allows the user to determine which of these styles
autoinst should use for the inferior characters. Alternatively, the value ‘‘auto’’ tells
autoinst to use the first value in the list ‘‘subs’’, ‘‘sinf ’’ or ‘‘dnom’’ that is supported by the
fonts. The default value is ‘‘none’’.

Note that if you specify a style of inferiors that isn’t present in the font, autoinst silently falls

back to its default behaviour of not creating fonts with inferiors; it doesn’t try to substitute

one of the other features.

−fractions / −nofractions

Control the creation of fonts with numerators and denominators. The default is
−nofractions.

−ornaments / −noornaments

Control the creation of ornament fonts. The default is −ornaments.

−defaultlining / −defaultoldstyle

−defaulttabular / −defaultproportional

Tell autoinst which figure style is the current font family’s default (i.e., which figures you
get when you don’t specify any OpenType features).

Don’t use these options unless you are certain you need them! They are only needed for
fonts that don’t provide OpenType features for their default figure style; and even in that
case, autoinst’s default values (−defaultlining and −defaulttabular) are usually correct.

−nofigurekern

Some fonts provide kerning pairs for tabular figures. This is very probably not what you
want (e.g., numbers in tables won’t line up exactly). This option adds extra −−ligkern

options to the commands for otftotfm to suppress such kerns. Note that this option leads to

fontools 2019-04-01 6

AUTOINST(1) Marc Penninga AUTOINST(1)

very long commands (it adds one hundred −−ligkern options), which may cause problems
on some systems.

−mergewidths / −nomergewidths

Some font families put Condensed, Narrow, Extended etc. fonts in separate families; this
option tells autoinst to merge those separate families into the main family. The default is
−nomergewidths.

−extra=text

Append text as extra options to the command lines for otftotfm. To prevent text from
accidentily being interpreted as options to autoinst, it should be properly quoted.

−manual

Manual mode; for users who want to post-process the generated files and commands. By
default, autoinst immediately executes all otftotfm commands it generates; in manual mode,
these are instead written to a file autoinst.bat. Furthermore it tells otftotfm to generate
human readable (and editable) pl/vpl files instead of the default tfm/vf ones, and to place all
generated files in a subdirectory ./autoinst_output/ of the current directory, rather
than install them into your TeX installation.

When using this option, you need to execute the following manual steps after autoinst has
finished:

− run pltotf and vptovf on the generated pl and vf files, to convert them to tfm/vf format;
− move all generated files to a proper TEXMF tree, and, if necessary, update the filename
database;
− tell TeX about the new map file (usually by running updmap or similar).

Note that some options (−target, −vendor and −typeface, −[no]updmap) are meaningless,
and hence ignored, in manual mode.

−target=DIRECTORY

Install all generated files into the TEXMF tree at DIRECTORY.

By default, autoinst searches the $TEXMFLOCAL and $TEXMFHOME trees and installs all
files into the first user-writable TEXMF tree it finds. If autoinst cannot find such a user-
writable directory (which shouldn’t happen, since $TEXMFHOME is supposed to be user-
writable) it will print a warning message and put all files into the subdirectory
./autoinst_output/ of the current directory. It’s then up to the user to move the
generated files to a better location and update all relevant databases (usually by calling
texhash and updmap).

−vendor=VENDOR

−typeface=TYPEFACE

These options are equivalent to otftotfm’s −−vendor and −−typeface options: they change
the ‘‘vendor’’ and ‘‘typeface’’ parts of the names of the subdirectories in the TEXMF tree
where generated files will be stored. The default values are ‘‘lcdftools’’ and the font’s
FontFamily name.

Note that these options change only directory names, not the names of any generated files.

−updmap / −noupdmap

Control whether or not updmap is called after the last call to otftotfm. The default is
−updmap.

fontools 2019-04-01 7

AUTOINST(1) Marc Penninga AUTOINST(1)

SEE ALSO

Eddie Kohler’s TypeTools (http://www.lcdf.org/type).

Perl can be obtained from http://www.perl.org; it is included in most Linux distributions. For
Windows, try ActivePerl (http://www.activestate.com) or Strawberry Perl
(http://strawberryperl.com).

XeTeX (http://www.tug.org/xetex) and LuaTeX (http://www.luatex.org) are Unicode-aware TeX
engines that can use OpenType fonts directly, without any (La)TeX−specific support files.

The FontPro project (https://github.com/sebschub/FontPro) offers very complete LaTeX support
(even for typesetting maths) for Adobe’s Minion Pro, Myriad Pro and Cronos Pro font families.

AUTHOR

Marc Penninga (marcpenninga@gmail.com)

When sending a bug report, please give as much relevant information as possible. If you see any
error messages (whether from autoinst itself, from the LCDF TypeTools, from Perl or from the
OS), include these verbatim; don’t paraphrase.

COPYRIGHT

Copyright (C) 2005−2019 Marc Penninga.

LICENSE

This program is free software; you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation, either version 2 of the
License, or (at your option) any later version. A copy of the text of the GNU General Public
License is included in the fontools distribution; see the file GPLv2.txt.

DISCLAIMER

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more details.

RECENT CHANGES

(See the source for the full story, all the way back to 2005.)

2019−04−01 Fine-tuned the decision where to put generated files; in particular, create
$TEXMFHOME if it doesn’t already exist and $TEXMFLOCAL isn’t user-writable.

In manual mode, or when we can’t find a user-writable TEXMF tree, put all
generated files into a subdirectory ./autoinst_output/ instead of all over
the current working directory.

Added to ‘‘auto’’ value to the inferiors option, to tell autoinst to use whatever
inferior characters are available.

2019−03−14 (never released to CTAN)
Overhauled the mapping of fonts (more specifically of weights and widths; the
mapping of shapes didn’t change) to NFSS codes. Instead of inventing our own
codes to deal with every possible weight and width out there, we now create
‘‘long’’ codes based on the names in the font metadata. Then we add ‘‘ssub’’ rules
to the fd files to map the standard NFSS codes to our fancy names (see the section
NFSS codes; based on discussions with Frank Mittelbach and Bob Tennent).

fontools 2019-04-01 8

AUTOINST(1) Marc Penninga AUTOINST(1)

2018−08−10 Added encoding files for LGR and T2A/B/C to fontools.

2018−03−26 Added the −(no)mergewidths option; tried to improve the documentation.

fontools 2019-04-01 9

