
spelling*

Stephan Hennig†

12th February 2013

Abstract

This package aids spell-checking of TEX documents compiled with
the LuaTEX engine. It can give visual feedback in pdf output similar
to wysiwyg word processors. The package relies on an external spell-
checker application to check spelling of a text file and to output a list
of bad spellings. The package should work with most spell-checkers,
even dumb, TEX-unaware ones.

Warning! This package is in a very early state. Everything may
change!

Contents
1 Introduction 1

2 Usage 2
2.1 Work-flow 2
2.2 Word lists 3
2.3 Highlighting spellling

mistakes 4
2.4 Text output 4

2.5 Text extraction 6
2.6 Code point mapping . . . 6
2.7 Tables 7

3 LanguageTool support 8
3.1 Installation 8
3.2 Usage 10

4 Bugs 11

1 Introduction
Ther1 are three main approaches to spell-checking TEX documents:

1. checking spelling in the .tex source file,
*This document describes the spelling package v0.3.
†sh2d@arcor.de
1A fotenoot containing misspelllings. But note how ‘misspelllings’ currently slips

through due to punctuation. Some annoying bugs are listed in section 4.

1

2. converting a .tex file to another format, for which a proved spell-
checking solution exists,

3. checking spelling after a .tex file has been processed by TEX.

All of these approaches have their strengths and weaknesses. This pack-
age follows the third approach, providing some unique features:

• In traditional solutions, text is extracted from typeset dvi, ps or pdf
files, including hyphenated words. Therefore, to avoid lots of false
positives being reported by the spell-checker, hyphenation has to be
switched off during the TEX run. So, one doesn’t work on the original
document any more.
In contrast to that, the spelling package works transparently on the
original .tex source file. Text is extracted during typesetting, after
LuaTEX has applied its catcode and macro machinery, but before hy-
phenation takes place.

• The spelling package can highlight words with known incorrect spelling
in pdf output, giving visual feedback similar to wysiwyg word pro-
cessors.2

2 Usage
The spelling package requires the LuaTEX engine. All functionality of the
package is implemented in Lua. The LATEX interface, which is described
below, is effectively a wrapper around the Lua interface.

Implementing such wrappers for other formats shouldn’t be too difficult.
The author is a LATEX-only user, though, and therefore grateful for contri-
butions. By the way, the LATEX package needs some polishing, too, e. g., a
key-value interface is desirable.

2.1 Work-flow

The work-flow of the spelling package is as follows:

1. After the package is loaded in the preamble of a .tex source file via
\usepackage{spelling}, a list of bad spellings is read from a file
named 〈jobname〉.spell.bad, if that file exists.

2Currently, only colouring words is implemented.

2

2. During the LuaTEX run, text is extracted from pages and all words
are checked against the list of bad spellings. Words with a known
incorrect spelling are highlighted in pdf output.

3. At the end of the LuaTEX run, in addition to the pdf file, a text
file is written, named 〈jobname〉.spell.txt, by default. The text file
should contain most of the text of the original document.

4. The text file is then checked by your favourite spell-checker applica-
tion, e. g., Aspell or Hunspell. The spell-checker should be able to write
a list of bad spellings to a file. Otherwise, visual feedback in pdf out-
put won’t work. Preferably, the file is named 〈jobname〉.spell.bad,
but any other file name works just as well.

5. Now, there are two ways to proceed:

(a) Visually minded people may just compile their document a second
time. This time, file 〈jobname〉.spell.bad is read-in again and
the words with incorrect spelling found by the spell-checker should
now be highlighted in pdf output. Checking the pdf file, the ne-
cessary corrections to the .tex source file can be applied.

(b) If you’re not interested in visual feedback or if your spell-checker
doesn’t provide a non-interactive mode, you can as well apply the
necessary corrections directly to the .tex source file(s), either
interactively, during the spell-checker run, or by looking at the
final list of bad spellings in an editor (whatever file it was saved
to). That way, the benefit of this package is, that spell-checker
input has already been processed by LuaTEX, but contains no
hyphenated words.

2.2 Word lists

As described above, if a file 〈jobname〉.spell.bad exists, it is loaded by the
spelling package. The words found in the file are stored in an internal list
of bad spellings and are later used for highlighting spelling mistakes in pdf
output.

Additionally, a second file 〈jobname〉.spell.good is read, if that file
exists. The words found in that file are stored in an internal list of good
spellings. Words in the list of good spellings are never highlighted in pdf
output. That is, words in the LuaTEX document are only considered spelling
mistakes if they occur in the list of bad spellings, but not in the list of good

3

spellings. The list of good spellings can be used to deal with false positives
(words incorrectly reported as bad spellings by the spell-checker).

Words from additional files can be appended to the internal lists of bad
and good spellings with the \spellingreadbad and \spellingreadgood \spellingreadbad

\spellingreadgoodcommands. Argument to both macros is a file name. File format is one
word per line. Letter case is significant. The file must be in the utf-8
encoding. As an example, the command
\spellingreadgood{myproject.whitelist}

reads words from a file myproject.whitelist and adds them to the list
of good spellings. Note, most spell-checkers provide means to deal with
unknown words via additional dictionaries. It is recommended to configure
your spell-checker to report as few false positives as possible.

2.3 Highlighting spellling mistakes

Enabling/disabling Highlighting spelling mistakes (words with known
incorrect spelling) in pdf output can be toggled on and off with command
\spellinghighlight. If the argument is on, highlighting is enabled. For \spellinghighlight
other arguments, highlighting is disabled. Highlighting is enabled, by de-
fault.

Colour The colour used for highlighting bad spellings can be determined
by command \spellinghighlightcolor. Argument is a colour statement
in the pdf language. As an example, the colour red in the rgb colour space is
represented by the statement 1 0 0 rg. In the cmyk colour space, a reddish
colour is represented by 0 1 1 0 k. Default colour used for highlighting is
1 0 0 rg, i. e., red in the rgb colour space. Warning: There’s currently no
error checking. Make sure, you’re applying a valid PDF colour statement!

2.4 Text output

Text file After loading the spelling package, at the end of the LuaTEX
run, a text file is written that contains most of the document text. The
text file is no close text rendering of the typeset document, but serves as
input for your favourite spell-checker application. It contains the document
text in a simple format: paragraphs separated by blank lines. A paragraph
is anything that, during typesetting, starts with a local_par whatsit node
in the node list representing a typeset page of the original document, e. g.,
paragraphs in running text, footnotes, marginal notes, (in-lined) \parbox
commands or cells from p-like table columns etc.

4

Paragraphs consist of words separated by spaces. A word is the textual
representation of a chain of consecutive nodes of type glyph, disc or kern.
Boxes are processed transparently. That is, the spelling package (highly
imperfectly) tries to recognise as a single word what in typeset output looks
like a single word. As an example, the LATEX code

foo\mbox{'s bar}s

which is typeset as

foo’s bars

is considered two words foo’s and bars, instead of the four words foo, ’s, bar
and s.3

Enabling/disabling Text output can be toggled on and off with com-
mand \spellingoutput. If the argument is on, text output is enabled. For \spellingoutput
other arguments, text output is disabled. Text output is enabled, by default.

File name Text output file name can be configured via command
\spellingoutputname. Argument is the new file name. Default text output \spellingoutputname
file name is 〈jobname〉.spell.txt.

Line length In text output, paragraphs can either be put on a single
line or broken into lines of a fixed length. The behaviour can be controlled
via command \spellingoutputlinelength. Argument is a number. If \spellingoutputlinelength
the number is 0 or less, paragraphs are put on a single line. For larger
arguments, the number specifies the maximum line length. Note, lines are
broken at spaces only. Words longer than maximum line length are put on
a single line exceeding maximum line length. Default line length is 72.

Line ending convention The end-of-line (eol) character in text out-
put can be configured via command \spellingoutputeol. Argument is an \spellingoutputeol
arbitrary sequence of characters in the utf-8 encoding.

Well, things are a bit more complicated, because in LuaTEX, as in the
original TEX, some characters are treated special. To keep LuaTEX from
messing with our eol characters in the input, we need to set their cat-
egory codes accordingly. As an example, to set eol character to follow dos

3This document has been compiled with a custom list of bad spellings, which is why
the word foo’s should be highlighted.

5

line ending convention (carriage return followed by line feed, TEX notation
^^M^^J), the following code can be used:

\begingroup
\catcode`\^^J=12% make line feed and carriage return
\catcode`\^^M=12% of category Other
\spellingoutputeol{^^M^^J}
\endgroup

For the unix line ending convention (a single line feed), just leave out ^^M
in the argument to \spellingoutputeol.

Default line ending convention depends on the operating system determ-
ined by LuaTEX. If os.type is either windows or msdos, dos line ending
convention is used. Otherwise unix line ending convention is used.

2.5 Text extraction

Enabling/disabling Text extraction can be enabled and disabled in the
document via command \spellingextract. If the argument is on, text \spellingextract
extraction is enabled. For other arguments, text extraction is disabled. The
command should be used in vertical mode, i. e., outside paragraphs. If text
extraction is disabled in the document preamble, an empty text file is written
at the end of the LuaTEX run. Text extraction is enabled, by default.

Note, text extraction and visual feedback are orthogonal features. That
is, if text extraction is disabled for part of a document, e. g., a long table,
words with a known incorrect spelling are still highlighted in that part.

2.6 Code point mapping

As explained in subsection 2.4, the text file written at the end of the LuaTEX
run is in the utf-8 encoding. Unicode contains a wealth of code points with
a special meaning, such as ligatures, alternative letters, symbols etc. Un-
fortunately, not all spell-checker applications are smart enough to correctly
interpret all Unicode code points that may occur in a document. For that
reason, a code point mapping feature has been implemented that allows for
mapping certain Unicode code points that may appear in a node list to ar-
bitrary strings in text output. A typical example is to map ligatures to the
characters corresponding to their constituting letters. The default mappings
applied can be found in Table 1.

Additional mappings can be declared by command \spellingmapping. \spellingmapping
This command takes two arguments, a number that refers to the Unicode

6

Unicode name code point target characters

LATIN CAPITAL LIGATURE IJ 0x0132 IJ
LATIN SMALL LIGATURE IJ 0x0133 ij
LATIN CAPITAL LIGATURE OE 0x0152 OE
LATIN SMALL LIGATURE OE 0x0153 oe
LATIN SMALL LETTER LONG S 0x017f s
LATIN CAPITAL LETTER SHARP S 0x1e9e SS
LATIN SMALL LIGATURE FF 0xfb00 ff
LATIN SMALL LIGATURE FI 0xfb01 fi
LATIN SMALL LIGATURE FL 0xfb02 fl
LATIN SMALL LIGATURE FFI 0xfb03 ffi
LATIN SMALL LIGATURE FFL 0xfb04 ffl
LATIN SMALL LIGATURE LONG S T 0xfb05 st
LATIN SMALL LIGATURE ST 0xfb06 st

Table 1: Default code point mappings.

code point, and a sequence of arbitrary characters that is the mapping target.
The code point number must be in a format that can be parsed by Lua. The
characters must be in the utf-8 encoding.

New mappings only have effect on the following document text. The
command should therefore be used in the document preamble. As an ex-
ample, the character A can be mapped to Z and vice versa with the following
code:

\spellingmapping{65}{Z}% A => Z
\spellingmapping{90}{A}% Z => A

Another command \spellingclearallmappings can be used to remove \spellingclearallmappings
all existing code point mappings.

2.7 Tables

How do tables fit into the simple text file format that has only paragraphs
and blank lines as described in subsection 2.4? What is a paragraph with
regards to tables? A whole table? A row? A single cell?

By default, only text from cells in p(aragraph)-like columns is put on
their own paragraph, because the corresponding node list branches contain a
local_par whatsit node (cf. subsection 2.4). The behaviour can be changed
with the \spellingtablepar command. This command takes as argument \spellingtablepar

7

a number. If the argument is 0, the behaviour is described as above. If
the argument is 1, a blank line is inserted before and after every table row
(but at most once between table rows). If the argument is 2, a blank line
is inserted before and after every table cell. By default, no blank lines are
inserted.

3 LanguageTool support
Installing spell-checkers and dictionaries can be a difficult task if there are
no pre-built packages available for an architecture. That’s one reason the
spelling package is rather spell-checker agnostic and the manual doesn’t re-
commend a particular spell-checker application. Another reason is, there’s
no best spell-checker. The only recommendation the author makes is not
to trust in one spell-checker, but to use multiple spell-checkers at the same
time, with different dictionaries or, better yet, different checking engines
under the hood.

Among the set of options available, LanguageTool, a style and grammar
checker4 that can also check spelling since version 1.8, deserves some notice
for its portability, ease of installation and active development. For these
reasons, the spelling package provides explicit LanguageTool support. Lan-
guageTool uses Hunspell as the spell-checking engine, augmenting results
with a rule based engine and a morphological analyser (depending on the
language). The spelling package can parse LanguageTool’s error reports in
the xml format, pick those errors that are spelling related and use them to
highlight bad spellings.5

3.1 Installation

Here are some brief installation instructions for the stand-alone version of
LanguageTool (tested with LanguageTool 2.0). The stand-alone version
contains a gui as well as a command-line interface. For the spelling package,
the latter is needed.

1. LanguageTool is primarily written in Java. Make sure a recent Java
Runtime Environment (jre) is installed.

2. Open a command-line and type
4http://www.languagetool.org/
5Support for style and grammar errors found by LanguageTool should be possible, but

requires major restructuring of the spelling package that won’t happen any time soon.

8

http://www.languagetool.org/

java -version

If you get an error message, find out the full path to the Java execut-
able (called java.exe on Windows) for later reference.

3. Download the stand-alone version of LanguageTool (should be a zip
archive).

4. Uncompress the downloaded archive to a location of your choice.

5. Open a command-line in the directory containing file LanguageTool.jar
and type

〈path to〉/java -jar LanguageTool.jar --help

Prepending the path to the Java executable is optional, depending on
the result in step 2. If you now see a list of LanguageTool’s command-
line options rush by, all is well.

6. For easier access to LanguageTool, create a small batch script and put
that somewhere into the PATH.

• For users of Unixoid systems, the script might look like

#!/bin/sh
〈path to〉/java -jar 〈path to〉/LanguageTool.jar $*

where 〈path to〉 should point to the Java executable (optional)
and file LanguageTool.jar (mandatory). If the script is named
lt.sh, you should be able to run LanguageTool on the command
shell by typing, e. g.,

sh lt.sh --version

Don’t forget to put the script into the PATH! For other ways of
making scripts executable, please consult the operating system
documentation.

• For Windows users, the script might look like

@echo off
〈path to〉\java -jar 〈path to〉\LanguageTool.jar %*

where 〈path to〉 should point to the Java executable (optional)
and file LanguageTool.jar (mandatory). If the script is named
lt.bat, you should be able to run LanguageTool on the command-
line by typing, e. g.,

9

lt --version

Don’t forget to put the script into the PATH!

3.2 Usage

The results of checking a text file with LanguageTool are written to an er-
ror report, either in a human readable format or in a machine friendly xml
format. The spelling package can only parse the latter format. When it was
said in subsection 2.2 that the spelling package reads files 〈jobname〉.spell.bad
and 〈jobname〉.spell.good, if they exist, that was not the whole truth. Ad-
ditionally, a file 〈jobname〉.spell.xml is read, if it exists. This file should
contain a LanguageTool error report in the xml format. Additional Langua-
geTool xml error reports can be loaded via the \spellingreadLT command. \spellingreadLT
Argument is a file name. Macros \spellingreadLT, \spellingreadbad and
\spellingreadgood can be used in combination in a TEX file.

To check a text file and create an error report in the xml format, Lan-
guageTool can be called on the command-line like this

lt 〈options〉 〈input file〉 > 〈error report〉

where 〈options〉 is a list of options described below, 〈input file〉 is the
text file written by the spelling package in the first LuaTEX run and 〈error
report〉 is the file containing the error report. Note, how standard output
is redirected to a file via the > operator. By default, LanguageTool writes
error reports to standard output, that is, the command-line. Redirection is
a feature most operating systems provide.

• Option -l determines the language (variant) of the file to check. As an
example, language variant US English can be selected via -l en-US.
The full list of languages supported by LanguageTool can be requested
via option --list.

• Option -c determines the encoding of the input file. Since the text
file written by the spelling package is in the utf-8 encoding, this part
should be -c utf-8.

• By default, LanguageTool outputs error reports in a human readable
format. The spelling package can only parse error reports in the xml
format. If the --api option is present, LanguageTool outputs xml
data.

10

• Users that don’t want to highlight bad spellings, but prefer to study
the list of bad spellings themselves, should refer to the -u option. But
note, that with the latter option present, LanguageTool doesn’t output
pure xml any more, even if the --api option is present. Make sure
such error reports aren’t read by the spelling package.

• If the --help option is present, LanguageTool shows more information
about command-line options.

As an example, to compile a LATEX file myletter.tex written in French
that uses the spelling package with standard settings to highlight bad spellings
and to use LanguageTool as a spell-checker, the following commands should
be typed on the command-line:

lualatex myproject
lt --api -c utf-8 -l fr myletter.spell.txt > myletter.spell.xml
lualatex myproject

4 Bugs
Note, this package is in a very early state. Expect bugs! Package develop-
ment is hosted at GitHub. The full list of known bugs and feature requests
can be found in the issue tracker. New bugs should be reported there.

The most user-visible issues are listed below:

• There’s no support for the Plain TEX or ConTEX formats other than
the API of the package’s Lua modules, yet (issue 1).

• Macros provided by the LATEX package have very long names. A key-
value package option interface would be much more user-friendly (is-
sue 2).

• There are a couple of issues with text extraction and highlighting in-
correct spellings:

– Text in head and foot lines is neither extracted nor highlighted
(issue 7).

– Punctuation characters are currently not stripped from words.
For that reason, misspellings of words with leading or trailing
punctuation will currently slip through. This affects at least one
word per sentence, the last one (issue 8).

11

http://github.com/sh2d/spelling/
http://github.com/sh2d/spelling/issues/
https://github.com/sh2d/spelling/issues/1
https://github.com/sh2d/spelling/issues/2
https://github.com/sh2d/spelling/issues/2
https://github.com/sh2d/spelling/issues/7
https://github.com/sh2d/spelling/issues/8

– The first word starting right after an hlist, e. g., the first word
within an \mbox, is never highlighted. It is extracted and written
to the text file, though. This might affect acronyms, names etc.
(issue 6).

– Bad spellings that are hyphenated at a page break are not high-
lighted (issue 10).

Any contributions are warmly welcome!

Happy TEXing!

12

https://github.com/sh2d/spelling/issues/6
https://github.com/sh2d/spelling/issues/10

	Introduction
	Usage
	Work-flow
	Word lists
	Highlighting spellling mistakes
	Text output
	Text extraction
	Code point mapping
	Tables

	LanguageTool support
	Installation
	Usage

	Bugs

