
lutabulartools
some useful tabular tools (LuaLaTeX-based)

Kale Ewasiuk (kalekje@gmail.com)

2021–11–07

lutabulartools is a package that contains a few useful macros to help with tables.
Most functions require LuaLaTeX. The following packages are loaded: booktabs,
multirow, makecell, xparse, array, xcolor, colortbl, luacode, penlight,

1 \MC – Magic Cell

\MC (magic cell) combines the facilities of \multirow and \multicolumn from the
multirow package, and \makcell from the titular package. With the help of LuaLa-
TeX, it takes an easy-to-use cell specification and employs said commands as required.
Here is the usage:

\MC * [cell spec] <cell format> (override multicolumn col) {contents}

* This will wrap the entire command in {}. This is necessary for siunitx single-column
width columns. However, the \\MC command attempts to detect this automatically.

[cell spec] Any letters placed in this argument are used for cell alignment. You can use one of
three: “t”, “m”, “b” for top, middle, bottom (vertical alignment), or “l”, “c”, “r” for
horizontal alignment. By default, \\MC will try to autodetect the horizontal alignment
based on the current column. If it can’t, it will be left-aligned. The default vertical
alginment is top.

This argument can also contain two integers, separated by a comma (if two are used).
“C,R”, “C”, or “,R” are a valid inputs, where R=rows (int), and C=columns, (int). If you
want a 1 column wide, multirow cell, you can pass “,R”. These numbers can be negative.
If no spec is passed, (argument empty), \\MC acts like a makecell. Additionally, you
can pass “+” in place of C (number of columns wide), and it will make the cell width fill
until the end of the current row.

Examples:
“\MC [2,2]” means two columns wide, two rows tall.
“\MC [2,1]” or “\MC [2]” or means two columns wide, one row tall.

1



“\MC [1,2]” or “\MC [,2]” means one column wide, two rows tall.
In any of these examples, you can place the alignment letters anywhere.

(override You may want to adjust the column specification of a multicolumn cell,
multicolumn) for example, using @{}c@{} to remove padding between the cell.

<cell format> You can place formatting like \bfseries here.

Here’s an example.

1 \begin{tabular}{| c | c | c | c | c |←↩
c |}\toprule

2 \MC[2,2cm]<\ttfamily >{2,2cm} & \MC←↩
[2r]<\ttfamily >{2r} & 5 & \MC[,2b←↩
]<\ttfamily >{,2b}\\

3 & & 3 & 4 & 5 & \\\midrule
4 1 & 2 & \MC[2l](@{}l)<\ttfamily >{2l ←↩

(\@\{\}l)} & 5 & 6666\\\cmidrule←↩
{3-4}

5 1 & \MC[+r]<\ttfamily >{+r} \\
6 \\
7 1 & 2 & 3 & 4 & 5 & \MC[,-2]<\←↩

ttfamily >{,\\-2}\\
8 \end{tabular}

2,2cm
2r 5

,2b3 4 5

1 2 2l ({}l) 5 6666

1 +r

1 2 3 4 5
,
-2

1.1 Notes

This package redefines the tabular and tabular* environments. It uses Lua pattern
matching to parse the column specification of the table to know how many columns there
are, and what the current column type is. If you have defined a column that creates
many, it will not work. This will be worked out in later package revisions.

2 Some additional rules

This package also redefines the booktabs midrules.
\gmidrule is a full gray midrule.

By taking advantage of knowing how many columns there are (if you chose to redefine
tabular), you can specify individual column numbers (for a one column wide rule), or
reference with respect to the last column (blank, +1, +0, or + means last column, +2
means second last column, for example) or omit the last number.

\cmidrule is a single partial rule, with the above features
\gcmidrule is a single partial gray rule, with the above features

You can add multiple “cmidrule”’s with the (g)cmidrules command. Separate with a
comma. You can apply global trimming of the rules with the “()” optional argument,

2



and then override it for a specific rule by placing “r” or “l” with the span specification.
\gcmidrules Can produce multiple, light gray partial rules
\cmidrules Can produce multiple black partial rules.

Here’s an example:

1 \begin{tabular}{c c c c c c}\toprule
2 1 & 2 & 3 & 4 & 5 & 6\\ \cmidrule←↩

{+1} % rule on last column
3 1 & 2 & 3 & 4 & 5 & 6\\ \cmidrules←↩

{1,3-+3,+} % rule on first col, ←↩
third to third last col, and last←↩
col

4 1 & 2 & 3 & 4 & 5 & 6\\ \cmidrules←↩
{1,3-+3rl,+} % same as above, but←↩
trim middle

5 1 & 2 & 3 & 4 & 5 & 6\\ \cmidrules(l←↩
){1,r3-+3,+1}% trim left for all,←↩
but only trim right for middle ←↩

rule
6 \end{tabular}

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

2.1 Midrule every Xth row

\midruleX With this command, you can place a rule every X rows. You can change the step size
and what kind of midrule you prefer.

\def\midruleXstep{5}
\def\midruleXrule{\gmidrule}

Usage: Insert midrulex at the end of each row using the column spec. Before you want
counting to begin, you should apply resetmidruleX (also to avoid header rows).

3



1 \def\midruleXstep{4}
2 \def\midruleXrule{\cmidrules{1,3-4}}
3 \begin{tabular}{rclc@{\midruleX}}
4 % ^^^ inject midrule
5 \toprule
6 Num & . & . & . \\
7 \midrule\resetmidruleX % reset
8 1 & & & \\
9 2 & & & \\
10 3 & & & \\
11 4 & & & \\
12 5 & & & \\
13 6 & & & \\
14 7 & & & \\
15 8 & & & \\
16 9 & & & \\
17 10 & & & \\
18 11 & & & \\
19 \resetmidruleX % no bottom rule
20 12 & & & \\
21 \bottomrule
22 \end{tabular}

Num . . .

1
2
3
4

5
6
7
8

9
10
11
12

4


