The LuaXML library

Paul Chakravarti Michal Hoftich
August 1, 2012

Contents
1 Overview
Features
Limitations
API
Options

Usage

ICT- S O

Handlers

T1 OVErview i it e e e e e e e e

72 Features e

73 APL . e
731 printHandler.
7.3.2 domHandler
7.3.3 simpleTreeHandler

74 Options e

75 Usage o o e e

[oelNeBENEENEEN BEN BEN eI~ 1) (=] =7 3] - L) —

8 History

® ®

9 License

Introduction

LuaXML is pure lua library for reading and serializing of the xm1 files. Current
release is aimed mainly as support for the odsfile package. In first release it
was included with the odsfile package, but as it is general library which can
be used also with other packages, I decided to distribute it as separate library.

Example of usage:

xml = require(’luaxml-mod-xml’)
handler = require(’luaxml-mod-handler’)

First load the libraries. In luaxml-mod-xml, there is xml parser and also
serializer. In luaxml-mod-handler, there are various handlers for dealing with
xml data. Handlers are objects with callback functions which are invoked for
every type of content in the xml file. More information about handlers can be
found in the original documentation, section 7.

sample = [[
<a>
<d>hello</d>

world.

<b at="Hi">another
]1]
treehandler = handler.simpleTreeHandler ()
x = xml.xmlParser (treehandler)
x:parse(sample)

You have to create handler object, using handler.simpleTreeHandler ()
and xml parser object using xml . xm1Parser (handler object). simpleTreehandler
creates simple table hierarchy, with top root node in treehandler.root

-- pretty printing function
function printable(tb, level)
level = level or 1
local spaces = string.rep(’ ’, levelx2)
for k,v in pairs(tb) do
if type(v) = "table" then
print(spaces .. k..’=’..v)
else
print(spaces .. k)
level = level + 1
printable(v, level)
end
end
end

-- print table
printable(treehandler.root)

-- print xml serialization of table
print(zml.serialize(treehandler.root))
-- direct access to the element

print (treehandler.root["a"] ["b"] [1])

—— output:
-- a
- d=hello

- 1=world.

- 2

- 1=another

-= _attr

- at=Hi

-- <7xml version="1.0" encoding="UTF-8"7>
-- <a>

-- <d>hello</d>

-- world.
- <b at="Hi">
- another

-

-—

-- world.

Note that simpleTreeHandler creates tables that can be easily accessed
using standard lua functions, but in case of mixed content, like

<a>hello
world

it produces wrong results. It is useful mostly for data xml files, not for text
formats like xhtml.

Because at the moment it is intended mainly as support for the odsfile pack-
age, there is little documentation, what follows is the original documentation
of LuaXML, which may be little bit obsolete now.

Original documentation

This document was created automatically from original source code comments
using Pandoc!

1 Overview

This module provides a non-validating XML stream parser in Lua.

2 Features

e Tokenises well-formed XML (relatively robustly)
e Flexible handler based event api (see below)
e Parses all XML Infoset elements - ie.

— Tags

— Text

— Comments

- CDATA

— XML Decl

— Processing Instructions
— DOCTYPE declarations

e Provides limited well-formedness checking (checks for basic syntax &
balanced tags only)

¢ Flexible whitespace handling (selectable)
e Entity Handling (selectable)

3 Limitations

e Non-validating
e No charset handling
e No namespace support

e Shallow well-formedness checking only (fails to detect most semantic er-
rors)

Thttp://johnmacfarlane.net/pandoc/

4 API

The parser provides a partially object-oriented API with functionality split
into tokeniser and hanlder components.

The handler instance is passed to the tokeniser and receives callbacks for
each XML element processed (if a suitable handler function is defined). The
API is conceptually similar to the SAX API but implemented differently.

The following events are generated by the tokeniser

handler:start - Start Tag

handler:end - End Tag

handler:text - Text

handler:decl - XML Declaration
handler:pi - Processing Instruction
handler:comment - Comment

handler:dtd - DOCTYPE definition
handler:cdata - CDATA

The function prototype for all the callback functions is
callback(val,attrs,start,end)

where attrs is a table and val/attrs are overloaded for specific callbacks - ie.

Callback val attrs (table)

start name { attributes (name=val).. }
end name nil

text <text> nil

cdata <text> nil

decl ”xml” { attributes (name=val).. }
pi pi name

{ attributes (if present)..
_text = <PI Text>
}

comment <text> nil
dtd root element

{ _root = <Root Element>,
_type SYSTEM|PUBLIC,
_name = <name>,

_uri = <uri>,
_internal = <internal dtd>

}

(start & end provide the character positions of the start/end of the element)
XML data is passed to the parser instance through the ‘parse’ method
(Nore: must be passed a single string currently)

5 Options

Parser options are controlled through the ‘self.options’ table. Available options
are -
e stripWs

Strip non-significant whitespace (leading/trailing) and do not generate
events for empty text elements

¢ expandEntities

Expand entities (standard entities + single char numeric entities only
currently - could be extended at runtime if suitable DTD parser added
elements to table (see obj. ENTITIES). May also be possible to expand
multibyre entities for UTF-8 only

e errorHandler

Custom error handler function

NOTE: Boolean options must be set to ‘nil’ not ‘0’

6 Usage

Create a handler instance -

h = { start = function(t,a,s,e) end,
end = function(t,a,s,e) end,
text = function(t,a,s,e) end,

cdata = text }

(or use predefined handler - see luaxml-mod-handler.lua)
Create parser instance -

p = xmlParser(h)

Set options -
p.options.xxxx = nil
Parse XML data -

xmlParser:parse("<?7xml... ")

7 Handlers

7.1 Overview

Standard XML event handler(s) for XML parser module (luaxml-mod-xml.lua)

7.2 Features

printHandler - Generate XML event trace

domHandler - Generate DOM-like node tree

simpleTreeHandler - Generate ’simple’ node tree

simpleTeXhandler - SAX like handler with support for CSS selectros

7.3 API

Must be called as handler function from xmlIParser and implement XML event
callbacks (see xmlParser.lua for callback API definition)

7.3.1 printHandler

printHandler prints event trace for debugging

7.3.2 domHandler

domHandler generates a DOM-like node tree structure with a single ROOT
node parent - each node is a table comprising fields below.

node = { _name = <Element Name>,
_type = ROOT|ELEMENT|TEXT|COMMENT |PI|DECL|DTD,
_attr = { Node attributes - see callback API },
_parent = <Parent Node>
_children = { List of child nodes - ROOT/NODE only }
}

The dom structure is capable of representing any valid XML document

7.3.3 simpleTreeHandler

simpleTreeHandler is a simplified handler which attempts to generate a more
‘natural’ table based structure which supports many common XML formats.

The XML tree structure is mapped directly into a recursive table structure
with node names as keys and child elements as either a table of values or di-
rectly as a string value for text. Where there is only a single child element this
is inserted as a named key - if there are multiple elements these are inserted
as a vector (in some cases it may be preferable to always insert elements as a
vector which can be specified on a per element basis in the options). Attributes
are inserted as a child element with a key of ‘_attr’.

Only Tag/Text & CDATA elements are processed - all others are ignored.

This format has some limitations - primarily

e Mixed-Content behaves unpredictably - the relationship between text el-
ements and embedded tags is lost and multiple levels of mixed content
does not work

e If a leaf element has both a text element and attributes then the text
must be accessed through a vector (to provide a container for the at-
tribute)

In general however this format is relatively useful.

7.4 Options

simpleTreeHandler.options.noReduce = { <tag> = bool,.. }

- Nodes not to reduce children vector even if omnly
one child

domHandler.options. (comment |pildtd|decl)Node = bool

- Include/exclude given node types

7.5 Usage

Pased as delegate in xmlParser constructor and called as callback by xml-
Parser:parse(xml) method.

8 History

This library is fork of LuaXML library originaly created by Paul Chakravarti.
Its original version can be found at http://manoelcampos.com/files/LuaXML--0.
0.0-1uab.1.tgz. Some files not needed for use with luatex were droped from
the distribution. Documentation was converted from original comments in the
source code.

9 License

This code is freely distributable under the terms of the Lua license (http:
//www.lua.org/copyright.html)

