
LuaTEX
Reference

beta 0.25.3

LuaTEX
Reference

Manual

copyright: LuaTEX development team
more info: www.luatex.org

version: April 18, 2008

1

Contents
1 Introduction 5

2 Basic TEX enhancements 7
2.1 Version information 7
2.2 UNICODE text support 7
2.3 Wide math characters 8
2.4 Extended tables 8
2.5 Attribute registers 9
2.5.1 Box attributes 9
2.6 LUA related primitives 10
2.6.1 \directlua 10
2.6.2 \latelua 11
2.6.3 \luaescapestring 11
2.6.4 \closelua 11
2.7 New E-TEX primitives 11
2.7.1 \clearmarks 11
2.7.2 \noligs and \nokerns 12
2.7.3 \formatname 12
2.7.4 \scantextokens 12
2.7.5 Catcode tables 12
2.7.6 \suppressfontnotfounderror 13
2.7.7 Font syntax 13
2.8 Debugging 14

3 LUA general 15
3.1 Initialization 15
3.1.1 LUATEX as a LUA interpreter 15
3.1.2 LUATEX as a LUA byte compiler 15
3.1.3 Other commandline processing 15
3.2 LUA changes 17
3.3 LUA modules 19

4 LUATEX LUA Libraries 21
4.1 The tex library 21
4.1.1 Integer parameters 21
4.1.2 Dimension parameters 23
4.1.3 Direction parameters 23
4.1.4 Glue parameters 23
4.1.5 Muglue parameters 24
4.1.6 Tokenlist parameters 24
4.1.7 Convert commands 24
4.1.8 Attribute, count, dimension and token registers 24

2

4.1.9 Box registers 25
4.1.10 Print functions 26
4.1.11 Helper functions 27
4.2 The token library 28
4.2.1 token.get_next 28
4.2.2 token.is_expandable 28
4.2.3 token.expand 28
4.2.4 token.is_activechar 29
4.2.5 token.create 29
4.2.6 token.command_name 29
4.2.7 token.command_id 29
4.2.8 token.csname_name 29
4.2.9 token.csname_id 30
4.3 The node library 30
4.3.1 Node handling functions 31
4.3.2 Attribute handling 36
4.4 The texio library 37
4.4.1 Printing functions 37
4.5 The pdf library 37
4.6 The img library 38
4.7 The mplib library 42
4.7.1 mplib.new 42
4.7.2 mp:statistics 43
4.7.3 mp:execute 43
4.7.4 mp:finish 43
4.7.5 Result table 43
4.7.6 Subsidiary table formats 45
4.8 The callback library 47
4.8.1 File discovery callbacks 47
4.8.2 File reading callbacks 50
4.8.3 Data processing callbacks 52
4.8.4 Node list processing callbacks 52
4.8.5 Information reporting callbacks 56
4.8.6 Font-related callbacks 57
4.9 The lua library 57
4.9.1 Variables 57
4.9.2 LUA bytecode registers 58
4.10 The kpse library 58
4.10.1 kpse.set_program_name 58
4.10.2 kpse.find_file 59
4.10.3 kpse.init_prog 60
4.10.4 kpse.readable_file 60
4.10.5 kpse.expand_path 61
4.10.6 kpse.expand_var 61

3

4.10.7 kpse.expand_braces 61
4.10.8 kpse.show_path 61
4.10.9 kpse.var_value 61
4.11 The status library 61
4.12 The texconfig table 63
4.13 The font library 64
4.13.1 Loading a TFM file 64
4.13.2 Loading a VF file 65
4.13.3 The fonts array 65
4.13.4 Checking a font's status 65
4.13.5 Defining a font directly 65
4.13.6 Projected next font id 66
4.13.7 Currently active font 66
4.13.8 Maximum font id 66
4.13.9 Iterating over all fonts 66
4.14 The fontforge library 66
4.14.1 Getting quick information on a font 66
4.14.2 Loading an OPENTYPE or TRUETYPE file 67
4.14.3 Applying a `feature file' 68
4.14.4 Applying an `afm file' 68
4.15 Fontforge font tables 68
4.16 The lang library 79

5 Languages and characters, Fonts and glyphs 81
5.1 Characters and glyphs 81
5.2 The main control loop 82
5.3 Loading patterns and exceptions 83
5.4 Applying hyphenation 84
5.5 Applying ligatures and kerning 85
5.6 Breaking paragraphs into lines 86

6 Font structure 87
6.1 Real fonts 91
6.2 Virtual fonts 93
6.2.1 Artificial fonts 94
6.2.2 Example virtual font 94

7 Nodes 97
7.1 LUA node representation 97
7.1.1 Auxiliary items 97
7.1.2 Main text nodes 98
7.1.3 whatsit nodes 102

4

8 Modifications 111
8.1 Changes from TEX 3.141592 111
8.2 Changes from E-TEX 2.2 111
8.3 Changes from PDFTEX 1.40 111
8.4 Changes from ALEPH RC4 112
8.5 Changes from standard WEB2C 113

9 Implementation notes 115
9.1 Primitives overlap 115
9.2 Memory allocation 115
9.3 Sparse arrays 115
9.4 Simple single-character csnames 116
9.5 Compressed format 116
9.6 Binary file reading 116

10 Known bugs and limitations 117

11 TODO 119

5Introduction

1 Introduction

This book will eventually become the reference manual of LuaTEX. At the moment, it simply reports
the behavior of the executable matching the snapshot or beta release date in the title page.

Features may come and go. The current version of LuaTEX is not meant for production and users
cannot depend on stability, nor on functionality staying the same.

Nothing is considered stable just yet. This manual therefore simply reflects the current state of
the executable. Absolutely nothing on the following pages is set in stone. When the need arises,
anything can (and will) be changed without prior notice.

If you are not willing to deal with this situation, you should wait for the stable version. Currently
we expect the first release to be available sometime in the summer of 2008.

LuaTEX consists of a number of interrelated but (still) distinguishable parts:

• pdfTEX version 1.40.3
• Aleph RC4 (from the TEXLive repository)
• Lua 5.1.2 (+ coco 1.1.3)
• Dedicated Lua libraries
• Various TEX extensions
• Parts of FontForge 2007.06.07
• Newly written compiled source code to glue it all together

Neither Aleph's I/O translation processes, nor tcx files, nor encTEX can be used, these encoding-related
functions are superseded by a Lua-based solution (reader callbacks). Also, some experimental pdfTEX
features are removed. These can be implemented in Lua instead.

6

7Basic TEX enhancements

2 Basic TEX enhancements

2.1 Version information
There are three new primitives to test the version of LuaTEX:

primitive explanation
\luatexversion A combination of major and minor number, as in pdfTeX. Current value: 25
\luatexrevision The revision, as in pdfTeX. Current value: 2
\luatexdatestamp A combination of the local date and hour when the current executable was com-

piled, the syntax is identical to \luatexrevision. Value for the executable
that generated this document: 2008041415.

Note that the \luatexdatestamp depends on both the compilation time and compilation place of the
current executable, it is defined in terms of the local time. The purpose of this primitive is solely to be
an aid in the development process, do not use it for anything besides debugging.

2.2 UNICODE text support
Text input and output is now considered to be Unicode text, so input characters can use the full range
of Unicode (220 + 216 = 10FFFF = 1114111).
Later chapters will talk of characters and glyphs. Although these are not the interchangeable, they are
closely related. During typesetting, a character is always converted to a suitable graphic representation
of that character in a specific font. However, while processing a list of to-be-typeset nodes, its contents
may still be seen as a character. Inside LuaTEX there is not yet a clear separation between the two
concepts. Until this is implemented, please do not be too harsh on us if we make errors in the usage of
the terms.
Note: for now, it only makes sense to use values above the base plane ("0xFFFF) for \mathcode and
\catcode assignments, since the hyphenation patterns are still limited to max. 16-bit values, so the
other commands will not know what to do with those high values.
A few primitives are affected by this, all in a similar fashion: each of them has to accomodate for a larger
range of acceptable numbers. For instance, \char now accepts values between 0 and 1114111. This
should not be a problem for well-behaved input files, but it could create incompatibilities for input that
would have generated an error when processed by older TEX-based engines. The maximum number of
allocations is "10FFFF or 220 + 216 (21 bits). The maximum value that can be assigned are:

primitive bits hex numeric
\char 21 10FFFF 220 + 216

\chardef 21 10FFFF 220 + 216

\lccode 21 10FFFF 220 + 216

\uccode 21 10FFFF 220 + 216

Basic TEX enhancements8

\sfcode 15 7FFF 215

\catcode 4 F 24

As far as the core engine is concerned, all input and output to text files is utf-8 encoded. Input files can
be pre-processed using the reader callback. This will be explained in a later chapter.
Output in byte-sized chunks can be achieved by using characters just outside of the valid unicode range,
starting at the value 1.114.112 (0x110000). When the times comes to print a character c >= 1.114.112,
LuaTEX will actually print the single byte corresponding to c − 1.114.112.
Output to the terminal uses ^^ notation for the lower control range (c < 32), with the exception of ^^I,
^^J and ^^M. These are considered `safe' and therefore printed as-is.
Normalization of the Unicode input can be handled by a macro package during callback processing (this
will be explained in section 4.8.2).

2.3 Wide math characters
Text handling is now extended up to the full Unicode range, but math mode deals mostly with glyphs in
fonts directly and fonts tend to be 16-bit at maximum. The extension from 8-bit to 16-bit was already
present in Aleph by means of a set of extra primitives.
Therefore, the math primitives from TEX and Aleph are kept mostly as they are, except for the ones that
convert from input to math commands like matcode and omathcode. The traditional TEX primitives are
unchanged, their arguments are upscaled from 8 to 16 bits internally (as in Aleph).

primitive max index/bits hex numeric
\mathchardef 15 8000 23 ∗ 24 ∗ 28

\mathcode 8=15 FF = 800 23 ∗ 24 ∗ 28

\delcode 8=24 FF = FFFFF 24 ∗ 28 ∗ 24 ∗ 28

\mathchar 15 7FFF 23 ∗ 24 ∗ 28

\mathaccent 15 7FFF 23 ∗ 24 ∗ 28

\delimiter 27 7FFFFFF 23 ∗ 24 ∗ 28 ∗ 24 ∗ 28

\radical 27 7FFFFFF 23 ∗ 24 ∗ 28 ∗ 24 ∗ 28

\omathchardef 27 8000000 23 ∗ 28 ∗ 216

\omathcode 21=27 10FFFF = 8000000 23 ∗ 28 ∗ 216

\odelcode 21=24+24 10FFFF = FFFFFF 28 ∗ 216

+ FFFFFF +28 ∗ 216

\omathchar 27 7FFFFFF 23 ∗ 28 ∗ 218

\omathaccent 27 7FFFFFF 23 ∗ 28 ∗ 218

\odelimiter 27+24 7FFFFFF + FFFFFF 23 ∗ 28 ∗ 216 + 28 ∗ 216

\oradical 27+24 7FFFFFF + FFFFFF 23 ∗ 28 ∗ 216 + 28 ∗ 216

2.4 Extended tables
All traditional TEX and ε-TEX registers can be 16 bit numbers as in Aleph. The affected commands are:

9Basic TEX enhancements

\count
\dimen
\skip
\muskip
\marks
\toks

\countdef
\dimendef
\skipdef
\muskipdef
\toksdef
\box

\unhbox
\unvbox
\copy
\unhcopy
\unvcopy
\wd

\ht
\dp
\setbox
\vsplit

The same is true for the font-related pdfTEX tables like \rpcode etc.

2.5 Attribute registers
Attributes are a completely new concept in LuaTEX. Syntactically, they behave a lot like counters:
attributes obey TEX's nesting stack and can be used after \the etc. just like the normal \count
registers.

\attribute 〈16-bit number〉 〈optional equals〉 〈31-bit number〉
\attributedef 〈csname〉 〈optional equals〉 〈16-bit number〉

Conceptually, an attribute is either `set' or `unset'. Set attributes can only have values of 0 or more,
otherwise they are considered unset and automatically remapped to an special negative value meaning
`unset' (currently that value is −1, but please test on negativity, not on a specific value). All attributes
start out in the `unset' state (in iniTEX).
Attributes can be used as extra counter values, but their usefulness comes mostly from the fact that the
numbers and values of all `set' attributes are attached to all nodes created in their scope. These can then
be queried from any Lua code that deals with node processing. Future versions of LuaTEX will probably
be using specific negative attribute ids for internal use. Further information about how to use attributes
for node list processing from lua is given in chapter 7.

2.5.1 Box attributes
Nodes typically receive the list of attributes that is in effect when they are created. This moment can be
quite asynchronous. For example: in paragraph building, the individual line boxes are created after the
\par command has been processed, so they will receive the list of attributes that is in effect then, not
the attributes that were in effect in, say, the first or third line of the paragraph.
Similar situations happen in LuaTEX regularly. A few of the more obvious problematic cases are dealt
with: the attributes for nodes that are created during hyphenation and ligaturing borrow their attributes
from their surrounding glyphs, and it is possible to influence box attributes directly.
But many other inserted nodes, like the nodes resulting from math mode and alignments, are processed
`out of order', and will have the attributes that are in effect at the precise moment of creation (which is
often later than expected). This area needs studying, and is in fact one of the reasons for a beta at this
moment.
It is possible to fine-tune the list of attributes that are applied to a hbox, vbox or vtop by the use of
the keyword attr. An example:

Basic TEX enhancements10

\attribute2=5
\setbox0=\hbox {Hello}
\setbox2=\hbox attr1=12 attr2=-1{Hello}

This will set the attribute list of the box 2 to 1 = 12, and the attributes of box 0 will be 2 = 5. As you
can see, assigning a negative value causes an attribute to be ignored.
The attr keyword(s) should come before a to or spread, if that is also specified.

2.6 LUA related primitives
In order to merge Lua code with TEX input, a few new primitives are needed. LuaTEX has support for
65536 separate Lua interpreter states. States are automatically created based on the integer argument
to the primitives \directlua and \latelua.

2.6.1 \directlua
The primitive \directlua is used to execute Lua code immediately. The syntax is

\directlua 〈16-bit number〉 〈general text〉
The 〈general text〉 is expanded fully, and then fed into the Lua interpreter state indicated by the
〈16-bit number〉. If the state does not exist yet, it will be initialized automatically. After reading
and expansion has been applied to the 〈general text〉, the resulting token list is converted to a string
as if it was displayed using \the\toks. On the Lua side, each \directlua block is treated as a
separate chunk.
The conversion from and to a token list means that you normally can not use Lua line comments (starting
with --) within the argument, as there typically will be only one `line', so that comment will then run
on until the end of the input. You will either need to use TEX-style line comments (starting with %), or
change the TEX category codes locally.
The \directlua command is expandable: the results of the Lua code become effective immediately. As
an example, the following input:

$\pi = \directlua0{tex.print(math.pi)}$

will result in π = 3.1415926535898
Because the 〈general text〉 is a chunk, the normal Lua error handling is triggered if there is a problem
in the included code. The Lua error messages should be clear enough, but the contextual information is
still pretty bad. Typically, you will only see the line number of the right brace at the end of the code.
While on the subject of errors: some of the things you can do inside Lua code can break up LuaTEX
pretty bad. If you are not careful while working with the node list interface, you may even end up with
assertion errors from within the TEX portion of the executable.

11Basic TEX enhancements

2.6.2 \latelua
\latelua stores Lua code in a whatsit that will be processed inside the output routine. Its intended
use is very similar to \pdfliteral. Within the Lua code, you can print pdf statements directly to the
pdf file.

\latelua 〈16-bit number〉 〈general text〉

2.6.3 \luaescapestring
This primitive converts a TEX token sequence so that it can be safely used as the contents of a Lua
string: embedded backslashes, double and single quotes, and newlines and carriage returns are escaped.
This is done by prepending an extra token consisting of a backslash with category code 12, and for the
line endings, converting them to n and r respectively. The token sequence is fully expanded.

\luaescapestring 〈general text〉
Most often, this command is not actually the best way to deal with the differences between the TEX and
Lua. In very short bits of Lua code it is often not needed, and for longer stretches of Lua code it is easier
to keep the code in a separate file and load it using Lua's dofile:

\directlua0 { dofile('mysetups.lua')}

2.6.4 \closelua
This primitive allows you to close a Lua state, freeing all of its used memory.

\closelua 〈16-bit number〉
You cannot close the initial Lua state (0), attempts to do so will be silently ignored.
States are never closed automatically except when a fatal out of memory error occurs, at which point
LuaTEX will exit anyway.
Also be aware that Lua states are not closed immediately, but only when the \output routine comes
into play next (because there may be pending \latelua calls).

2.7 New E-TEX primitives

2.7.1 \clearmarks
This primitive clears a marks class completely, resetting all three connected mark texts to empty.

\clearmarks 〈16-bit number〉

Basic TEX enhancements12

2.7.2 \noligs and \nokerns
These primitives prohibit ligature and kerning insertion at the time when the initial node list is built by
LuaTEX's main control loop. They are part of a temporary trick and will be removed in the near future.
For now, you need to enable these primitives when you want to do node list processing of `characters',
where TEX's normal processing would get in the way.

\noligs 〈integer〉
\nokerns 〈integer〉

2.7.3 \formatname
\formatname's syntax is identical to \jobname.
In iniTEX, the expansion is empty. Otherwise, the expansion is the value that \jobname had during the
iniTEX run that dumped the currently loaded format.

2.7.4 \scantextokens
The syntax of \scantextokens is identical to \scantokens.
This is a slightly adapted version of ε-TEX's \scantokens. The differences are:

• The last (and usually only) line does not have a \endlinechar appended
• \scantextokens never raises an EOF error, and it does not execute \everyeof tokens.
• The `.. while end of file ..' error tests are not executed, allowing the expansion to end on a different

grouping level or while a conditional is still incomplete.

2.7.5 Catcode tables
Catcode tables are a new feature that allows you to switch to a predefined catcode regime in a single
statement. You can have a practically unlimited number of different tables.
The subsystem is backward compatible: if you never use the following commands, your document will
not notice any difference in behavior compared to traditional TEX.
The contents of each catcode table is independent from any other catcode tables, and their contents is
stored and retrieved from the format file.

2.7.5.1 \catcodetable

\catcodetable 〈28-bit number〉
The \catcodetable switches to a different catcode table. Such a table has to be previously created
using one of the two primitives below, or it has to be zero (table zero is initialized by iniTEX).

13Basic TEX enhancements

2.7.5.2 \initcatcodetable

\initcatcodetable 〈28-bit number〉
The \initcatcodetable creates a new table with catcodes identical to those defined by iniTEX:

0 _ escape
5 ^^M return car_ret
9 ^^@ null ignore
10 <space> space spacer
11 a – z letter
11 A – Z letter
12 everything else other
14 % comment
15 ^^? delete invalid_char

The new catcode table is allocated globally: it will not go away after the current group has ended. If
the supplied number is identical to the currently active table, an error is raised.

2.7.5.3 \savecatcodetable

\savecatcodetable 〈28-bit number〉
\savecatcodetable copies the current set of catcodes to a new table with the requested number. The
definitions in this new table are all treated as if they were made in the outermost level.
The new table is allocated globally: it will not go away after the current group has ended. If the supplied
number is the currently active table, an error is raised.

2.7.6 \suppressfontnotfounderror
\suppressfontnotfounderror = 1

If this new integer parameter is non-zero, then LuaTEX will not complain about font metrics that are not
found. Instead it will silently skip the font assignment, making the requested csname for the font \ifx
equal to \nullfont, so that it can be tested against that without bothering the user.

2.7.7 Font syntax
LuaTEX will accept a braced argument as a font name:

\font\myfont = {cmr10}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes place
inside the argument.

Basic TEX enhancements14

2.8 Debugging
If \tracingonline is larger than 2, the node list display will also print the node number of the nodes.

15Lua general

3 LUA general

3.1 Initialization

3.1.1 LUATEX as a LUA interpreter
There are some situations that make LuaTEX behave like it is a Lua interpreter only:

• If a --luaonly option is given on the commandline
• If the executable is named texlua (or luatexlua)
• if the only non-option argument (file) on the commandline has the extension lua or luc.

In this mode, it will set Lua's arg[0] to the found script name, pushing preceding options in negative
values and the rest of the commandline in the positive values, just like the Lua interpreter.
LuaTEX will exit immediately after executing the specified Lua script and is, in effect, a somewhat bulky
standalone Lua interpreter with a bunch of extra preloaded libraries.

3.1.2 LUATEX as a LUA byte compiler
There are two situations that make LuaTEX behaves like the Lua byte compiler:

• If a --luaconly option is given on the commandline
• If the executable is named texluac

In this mode, LuaTEX is exactly like luac from the standalone Lua distribution, except that it does not
have the -l switch, and that it accepts (but ignores) the --luaconly switch.

3.1.3 Other commandline processing
When the LuaTEX executable starts, it looks for the --lua commandline option. If there is no --lua
option, the commandline is interpreted in a similar fashion as in traditional pdfTEX and Aleph. But if the
option is present, LuaTEX will enter an alternative mode of commandline parsing in comparison to the
standard web2c programs.
In this mode, a small series of actions is taken in order. At first, it will only interpret a small subset of
the commandline directly:

--lua=s load and execute a Lua initialization script
--safer disable easily exploitable Lua commands
--help display help and exit
--version display version and exit

Lua general16

Now it searches for the requested Lua initialization script. If it can not be found using the actual name
given on the commandline, a second attempt is made by prepending the value of the environment variable
LUATEXDIR, if that variable is defined.
Then it checks the --safer switch. You can use that to disable some Lua commands that can easily be
abused by a malicious document. At the moment, this switch nils the following functions:

library functions
os execute exec setenv rename remove tmpdir
io popen output tmpfile
lfs rmdir mkdir chdir lock touch

And it makes io.open() fail on files that are opened for anything besides reading.
Next the initialization script is loaded and executed. From within the script, the entire commandline is
available in the Lua table arg, beginning with arg[0], containing the name of the executable.
Commandline processing happens very early on. So early, in fact, that none of TEX's initializations have
taken place yet. For that reason, the tex, token, node and pdf tables are off-limits during the execution
of the startup file (they are nilled). Special care is taken that texio.write and texio.write_nl
function properly, so that you can at least report your actions to the log file when (and if) it eventually
becomes opened (note that TEX does not even know its \jobname yet at this point). See chapter 4 for
more information about the LuaTEX-specific Lua extension tables.
The Lua initialization script is loaded into Lua state 0, and everything you do will remain visible during
the rest of the run, with the exception of the aforementioned tex, token, node and pdf tables: those will
be initialized to their documented state after the execution of the script. You should not store anything
in variables or within tables with these four global names, as they will be overwritten completely.
We recommend you use the startup file only for your own TEX-independent initializations (if you need
any), to parse the commandline, set values in the texconfig table, and register the callbacks you need.
LuaTEX will fetch some of the other commandline options from the texconfig table at the end of script
execution (see the description of the texconfig table later on in this document for more details on
which ones exactly).
Unless the texconfig table tells it not to start kpathsea at all (set texconfig.kpse_init to false
for that), LuaTEX acts on three more commandline options after the initialization script is finished:

flag meaning
--fmt=s set the format name
--progname=s set the progname (only for kpathsea)
--ini enable iniTEX mode

In order to initialize the built-in kpathsea library properly, LuaTEX needs to know the correct `progname'
to use, and for that it needs to check --progname (and --ini and --fmt, if --progname is missing).

17Lua general

3.2 LUA changes
The C coroutine (COCO) patches from luajit are applied to the Lua core, the used version is 1.1.3. See
http://luajit.org/coco.html for details.
The read("*line") function from the io library has been adjusted so that it is line-ending neutral:
any of LF, CR or CR+LF are acceptable line endings.
The tostring() printer for numbers has been changed so that it returns 0 instead of something
like 2e-5 (which confused TEX enormously) when the value is so small that TEX cannot distinguish it
from zero.
Dynamic loading of .so and .dll files is disabled on all platforms.
luafilesystem has been extended with two extra boolean functions (isdir(filename) and is-
file(filename)) and one extra string field in its attributes table (permissions).
The string library has an extra function: string.explode(s[,m]). This function returns an array
containing the string argument s split into substrings based on the value of the string argument m. The
second argument is a string that is either empty (this splits the string into characters), a single character
(this splits on each occurrence of that character, possibly introducing empty strings), or a single character
followed by the plus sign + (this special version does not create empty substrings). The default value for
m is ` +' (multiple spaces).
Note: m is not hidden by surrounding braces (as it would be if this function was written in TEX macros).
The string library also has six extra iterators that return strings piecemeal:

• string.utfvalues(s) (returns an integer value in the Unicode range)
• string.utfcharacters(s) (returns a string with a single utf-8 token in it)
• string.characters(s) (a string containing one byte)
• string.characterpairs(s) (two strings each containing one byte) will produce an empty second

string in the string length was odd.
• string.bytes(s) (a single byte value)
• string.bytepairs(s) (two byte values) Will produce nil instead of a number as its second return

value if the string length was odd.

The string.characterpairs() and string.bytepairs() are useful especially in the conversion
of UTF-16 encoded data into UTF-8.
Note: The string library functions find etc. are not Unicode-aware. In cases where this is required
(i. e. because the pattern used for searching contains characters above code point 127), the corresponding
functions from unicode.utf8 should be used.

The os library has a few extra functions and variables:

• os.exec(commandline) is a variation on os.execute.
The commandline can be either a single string or a single table.

Lua general18

If the argument is a table: LuaTEX first checks if there is a value at integer index zero. If there is,
this is the command to be executed. Otherwise, it will use the value at integer index one. (if neither
are present, nothing at all happens).
The set of consecutive values starting at integer 1 in the table are the arguments that are passed
on to the command (the value at index 1 becomes argv[0]). The command is searched for in the
execution path, so there is normally no need to pass on a fully qualified pathname.
If the argument is a string, then it is automatically converted into a table by splitting on whitespace.
In this case, it is impossible for the command and first argument to differ from each other.
In the string argument format, whitespace can be protected by putting (part of) an argument inside
single or double quotes. One layer of quotes is interpreted by LuaTEX, and all occurences of \", \'
or \\ within the quoted text are un-escaped. In the table format, there is no string handling taking
place.
This function normally does not return control back to the lua script: the command will replace the
current process. However, it will return nil, 'error' if there was a problem while attempting to
execute the command.
On windows, the current process is actually kept in memory until after the execution of the command
has finished. This prevents crashes in situations where TEXLua scripts are run inside integrated TEX
environments.
(the original reason for this command is that it cleans out the current process before starting the new
one, making it especially useful for use in TEXLua.)

• os.spawn(commandline) is a returning version of os.exec, with otherwise identical calling
conventions.
If the command ran ok, then the return value is the exit status of the command. Otherwise, it will
return nil, 'error'.

• os.setenv('key','value') This sets a variable in the environment. Passing nil instead of a
value string will remove the variable.

• os.env This is a hash table containing a dump of the variables and values in the process environment
at the start of the run. It is writeable, but the actual environment is not updated automatically.

• os.gettimeofday() Returns the current `unix time', but as a float. This function is not available
on the SunOS platforms, so do not use this function for portable documents.

• os.times() Returns the current process times cf. the unix C library `times' call in seconds. This
function is not available on the Windows and SunOS platforms, so do not use this function for portable
documents.

• os.tmpdir() This will create a directory in the `current directory' with the name luatex.XXXXXX
where the X-es are replaced by a unique string. The function also returns this string, so you can
lfs.chdir() into it, or nil if it failed to create the directory. The user is responsible for cleaning
up at the end of the run, it does not happen automatically.

• os.type This is a string that gives a global indication of the class of operating system. The possible
values are currently windows, unix, and msdos (you are unlikely to find this value `in the wild').

• os.name This is a string that gives a more precise indication of the operating system. These possible
values are not yet fixed, and for os.type values windows and msdos, the os.name values are
simply windows and msdos

19Lua general

The list for the type unix is more precise: linux, freebsd, openbsd, solaris, sunos
(pre-solaris), hpux, irix, macosx, bsd (unknown, but BSD-like), sysv (unknown, but SYSV-like),
generic (unknown).
(os.version is planned as a future extension)

In stock Lua, many things depend on the current locale. In LuaTEX, we can't do that, because it makes
documents unportable. While LuaTEX is running if forces the following locale settings:

LC_CTYPE=C
LC_COLLATE=C
LC_NUMERIC=C

3.3 LUA modules
Some modules that are normally external to Lua are statically linked in with LuaTEX, because they offer
useful functionality:

• slnunicode, from the Selene libraries, http://luaforge.net/projects/sln. (version 1.1)
This library has been slightly extended so that the unicode.utf8.* functions also accept the first
256 values of Plane 18. This is the range LuaTEX uses for raw binary output, as explained above,

• luazip, from the kepler project, http://www.keplerproject.org/luazip/. (version 1.2.1, but patched for
compilation with lua 5.1)

• luafilesystem, also from the kepler project, http://www.keplerproject.org/luafilesystem/. (version
1.2, but patched for compilation with lua 5.1)

• lpeg, by Roberto Ierusalimschy, http://www.inf.puc-rio.br/~roberto/lpeg.html. (version 0.8.1)
Note: lpeg is not Unicode-aware, but interprets strings on a byte-per-byte basis. This mainly
means that lpeg.S cannot be used with characters above code point 127, since those characters are
encoded using two bytes, and thus lpeg.S will look for one of those two bytes when matching, not
the combination of the two.
The same is true for lpeg.R, although the latter will display an error message if used with charac-
ters above code point 127: I. e. lpeg.R('aä') results in the message bad argument #1 to'R'
(range must have two characters), since to lpeg, ä is two 'characters' (bytes), so aä totals
three.

• lzlib, by Tiago Dionizio, http://mega.ist.utl.pt/~tngd/lua/. (version 0.2)
• md5, by Roberto Ierusalimschy http://www.inf.puc-rio.br/~roberto/md5/md5-5/md5.html.

20

21LuaTEX Lua Libraries

4 LUATEX LUA Libraries
The interfacing between TEX and Lua is facilitated by a set of library modules. The Lua libraries in this
chapter are all defined and initialized by the LuaTEX executable. Together, they allow Lua scripts to
query and change a number of TEX's internal variables, run various internal functions TEX, and set up
LuaTEX's hooks to execute Lua code.

4.1 The tex library
The tex table contains a large list of virtual internal TEX parameters that are partially writable.
The designation `virtual' means that these items are not properly defined in Lua, but are only frontends
that are handled by a metatable that operates on the actual TEX values. As a result, most of the Lua
table operators (like pairs and #) do not work on such items.
At the moment, it is possible to access almost every parameter that has these characteristics:

• You can use it after \the
• It is a single token.

This excludes parameters that need extra arguments, like \the\scriptfont.
The subset comprising simple integer and dimension registers are writable as well as readable (stuff like
\tracingcommands and \parindent).

4.1.1 Integer parameters
The integer parameters accept and return Lua numbers.
Read-write:

tex.adjdemerits
tex.binoppenalty
tex.brokenpenalty
tex.catcodetable
tex.clubpenalty
tex.day
tex.defaulthyphenchar
tex.defaultskewchar
tex.delimiterfactor
tex.displaywidowpenalty
tex.doublehyphendemerits
tex.endlinechar
tex.errorcontextlines
tex.escapechar

tex.exhyphenpenalty
tex.fam
tex.finalhyphendemerits
tex.floatingpenalty
tex.globaldefs
tex.hangafter
tex.hbadness
tex.holdinginserts
tex.hyphenpenalty
tex.interlinepenalty
tex.language
tex.lastlinefit
tex.lefthyphenmin
tex.linepenalty

LuaTEX Lua Libraries22

tex.localbrokenpenalty
tex.localinterlinepenalty
tex.looseness
tex.mag
tex.maxdeadcycles
tex.month
tex.newlinechar
tex.outputpenalty
tex.pausing
tex.pdfadjustinterwordglue
tex.pdfadjustspacing
tex.pdfappendkern
tex.pdfcompresslevel
tex.pdfdecimaldigits
tex.pdfgamma
tex.pdfgentounicode
tex.pdfimageapplygamma
tex.pdfimagegamma
tex.pdfimagehicolor
tex.pdfimageresolution
tex.pdfinclusionerrorlevel
tex.pdfminorversion
tex.pdfobjcompresslevel
tex.pdfoutput
tex.pdfpagebox
tex.pdfpkresolution
tex.pdfprependkern
tex.pdfprotrudechars
tex.pdftracingfonts
tex.pdfuniqueresname
tex.postdisplaypenalty

tex.predisplaydirection
tex.predisplaypenalty
tex.pretolerance
tex.relpenalty
tex.righthyphenmin
tex.savinghyphcodes
tex.savingvdiscards
tex.showboxbreadth
tex.showboxdepth
tex.time
tex.tolerance
tex.tracingassigns
tex.tracingcommands
tex.tracinggroups
tex.tracingifs
tex.tracinglostchars
tex.tracingmacros
tex.tracingnesting
tex.tracingonline
tex.tracingoutput
tex.tracingpages
tex.tracingparagraphs
tex.tracingrestores
tex.tracingscantokens
tex.tracingstats
tex.uchyph
tex.vbadness
tex.widowpenalty
tex.year

23LuaTEX Lua Libraries

Read-only:
tex.deadcycles
tex.insertpenalties

tex.parshape
tex.prevgraf

tex.spacefactor

4.1.2 Dimension parameters
The dimension parameters accept Lua numbers (signifying scaled points) or strings (with included di-
mension). The result is always a string.
Read-write:
tex.boxmaxdepth
tex.delimitershortfall
tex.displayindent
tex.displaywidth
tex.emergencystretch
tex.hangindent
tex.hfuzz
tex.hoffset
tex.hsize
tex.lineskiplimit
tex.mathsurround
tex.maxdepth
tex.nulldelimiterspace

tex.overfullrule
tex.pagebottomoffset
tex.pageheight
tex.pagerightoffset
tex.pagewidth
tex.parindent
tex.pdfdestmargin
tex.pdfeachlinedepth
tex.pdfeachlineheight
tex.pdffirstlineheight
tex.pdfhorigin
tex.pdflastlinedepth
tex.pdflinkmargin

tex.pdfpageheight
tex.pdfpagewidth
tex.pdfpxdimen
tex.pdfthreadmargin
tex.pdfvorigin
tex.predisplaysize
tex.scriptspace
tex.splitmaxdepth
tex.vfuzz
tex.voffset
tex.vsize

Read-only:
tex.pagedepth
tex.pagefilllstretch
tex.pagefillstretch
tex.pagefilstretch

tex.pagegoal
tex.pageshrink
tex.pagestretch
tex.pagetotal

tex.prevdepth

4.1.3 Direction parameters
The direction parameters are read-only and return a Lua string.
tex.bodydir
tex.mathdir

tex.pagedir
tex.pardir

tex.textdir

4.1.4 Glue parameters
All glue parameters are read-only and return a Lua string.

tex.abovedisplayshortskip
tex.abovedisplayskip
tex.baselineskip
tex.belowdisplayshortskip

tex.belowdisplayskip
tex.leftskip
tex.lineskip
tex.parfillskip

tex.parskip
tex.rightskip
tex.spaceskip
tex.splittopskip

LuaTEX Lua Libraries24

tex.tabskip
tex.topskip

tex.xspaceskip

4.1.5 Muglue parameters
All muglue parameters are read-only and return a Lua string.
tex.medmuskip
tex.thickmuskip

tex.thinmuskip

4.1.6 Tokenlist parameters
All tokenlist parameters are read-only and return a Lua string.
tex.errhelp
tex.everycr
tex.everydisplay
tex.everyeof
tex.everyhbox

tex.everyjob
tex.everymath
tex.everypar
tex.everyvbox
tex.output

tex.pdfpageattr
tex.pdfpageresources
tex.pdfpagesattr
tex.pdfpkmode

4.1.7 Convert commands
The supported commands at this moment are:
tex.AlephVersion
tex.Alephrevision
tex.OmegaVersion
tex.Omegarevision
tex.eTeXVersion

tex.eTeXrevision
tex.formatname
tex.jobname
tex.luatexrevision
tex.luatexdatestamp

tex.pdfnormaldeviate
tex.pdftexbanner
tex.pdftexrevision

All `convert' commands are read-only and return a Lua string.
If you are wondering why this list looks haphazard; these are all the cases of the `convert' internal
command that do not require an argument.

4.1.8 Attribute, count, dimension and token registers
TEX's attributes (\attribute), counters (\count), dimensions (\dimen) and token (\toks) registers
can be accessed and written to using four virtual sub-tables of the tex table:
tex.attribute
tex.count

tex.dimen
tex.toks

It is possible to use the names of relevant \attributedef, \countdef, \dimendef, or \toksdef
control sequences as indices to these tables:

tex.count.scratchcounter = 0
enormous = tex.dimen['maxdimen']

25LuaTEX Lua Libraries

In this case, LuaTEX looks up the value for you on the fly. You have to use a valid \countdef (or
\attributedef, or \dimendef, or \toksdef), anything else will generate an error (the intent is to
eventually also allow <chardef tokens> and even macros that expand into a number).
The attribute and count registers accept and return Lua numbers.
The dimension registers accept Lua numbers (in scaled points) or strings (with an included absolute
dimension; em and ex and px are forbidden). The result is always a number in scaled points.
The token registers accept and return Lua strings. Lua strings are converted to and from token lists using
\the\toks style expansion: all category codes are either space (10) or other (12).
As an alternative to array addressing, there are also accessor functions defined:

tex.setdimen(number n, string s)
tex.setdimen(string s, string s)
tex.setdimen(number n, number n)
tex.setdimen(string s, number n)
number n = tex.getdimen(number n)
number n = tex.getdimen(string s)

tex.setcount(number n, number n)
tex.setcount(string s, number n)
number n = tex.getcount(number n)
number n = tex.getcount(string s)

tex.settoks (number n, string s)
tex.settoks (string s, string s)
string s = tex.gettoks (number n)
string s = tex.gettoks (string s)

4.1.9 Box registers
The current dimensions of \box registers can be read and altered using three other virtual sub-tables :

tex.wd
tex.ht
tex.dp

These are indexed strictly by number.
The box size registers accept Lua numbers (in scaled points) or strings (with included dimension). The
result is always a number in scaled points.
As an alternative to array addressing, there are also accessor functions defined:

tex.setboxwd(number n, number n)
number n = tex.getboxwd(number n)

LuaTEX Lua Libraries26

tex.setboxht(number n, number n)
number n = tex.getboxht(number n)

tex.setboxdp(number n, number n)
number n = tex.getboxdp(number n)

It is also possible to set and query actual boxes, using the node interface as defined in the node library:

tex.box

for array access, or

tex.setbox(number n, <node> s)
<node> n = tex.getbox(number n)

for function-based access.
Be warned that an assignment like

tex.box[0] = tex.box[2]

does not copy the node list, it just duplicates a node pointer. If \box2 will be cleared by TEX commands
later on, the contents of \box0 becomes invalid as well. To prevent this from happening, always use
node.copy_list() unless you are assigning to a temporary variable:

tex.box[0] = node.copy_list(tex.box[2])

4.1.10 Print functions
The tex table also contains the three print functions that are the major interface from Lua scripting to
TEX.
The arguments to these three functions are all stored in an in-memory virtual file that is fed to the TEX
scanner as the result of the expansion of \directlua.
The total amount of returnable text from a \directlua command is only limited by available system
ram. However, each separate printed string has to fit completely in TEX's input buffer.

4.1.10.1 tex.print

tex.print(string s, ...)
tex.print(number n, string s, ...)

Each string argument is treated by TEX as a separate input line.

27LuaTEX Lua Libraries

The optional parameter can be used to print the strings using the catcode regime defined by
\catcodetable n. If n is not a valid catcode table, then it is ignored, and the currently active
catcode regime is used instead.
The very last string of the very last tex.print() command in a \directlua will not have the
\endlinechar appended, all others do.

4.1.10.2 tex.sprint

tex.sprint(string s, ...)
tex.sprint(number n, string s, ...)

Each string argument is treated by TEX as a special kind of input line that makes it suitable for use as
a partial line input mechanism:

• TEX does not switch to the `new line' state, so that leading spaces are not ignored.
• No \endlinechar is inserted.
• Trailing spaces are not removed.

(Note that this does not prevent TEX itself from eating spaces as result of interpreting the line. For
example, in

before\directlua0{tex.sprint("\\relax")tex.sprint(" inbetween")}after

the space before inbetween will be gobbled as a result of the `normal' scanning of \relax).

4.1.10.3 tex.write

tex.write(string s, ...)

Each string argument is treated by TEX as a special kind of input line that makes is suitable for use as
a quick way to dump information:

• All catcodes on that line are either `space' (for ' ') or `character' (for all others).
• There is no \endlinechar appended.

4.1.11 Helper functions

4.1.11.1 tex.round

number n = tex.round(number o)

Rounds lua number o, and returns a number that is in the range of a valid TEX register value. If the
number starts out of range, it generates a `Number to big' error as well.

LuaTEX Lua Libraries28

4.1.11.2 tex.scale

number n = tex.scale(number o, number delta)
table n = tex.scale(table o, number delta)

Multiplies the lua numbers o and delta, and returns a rounded number that is in the range of a valid
TEX register value. In the table version, it creates a copy of the table with all numeric top--level values
scaled in that manner. If the multiplied number(s) are of range, it generates `Number to big' error(s) as
well.

4.2 The token library
The token table contains interface functions to TEX's handling of tokens. These functions are most
useful when combined with the token_filter callback, but they could be used standalone as well.
A token is represented in Lua as a small table. For the moment, this table consists of three numeric
entries:

no. meaning description
1 command code this is a value between 0 and 130 (approximately)
2 command modifier this is a value between 0 and 221

3 control sequence id for commands that are not the result of control sequences, like letters and
characters, it is zero, otherwise, it is a number pointing into the `equivalence
table'

4.2.1 token.get_next

token t = token.get_next()

This fetches the next input token from the current input source, without expansion.

4.2.2 token.is_expandable

boolean b = token.is_expandable(token t)

This tests if the token t could be expanded.

4.2.3 token.expand

token.expand()

If a token is expandable, this will expand one level of it, so that the first token of the expansion will now
be the next token to be read by tex.get_next().

29LuaTEX Lua Libraries

4.2.4 token.is_activechar

boolean b = token.is_activechar(token t)

This is a special test that is sometimes handy. Discovering whether some token is the result of an active
character turned out to be very hard otherwise.

4.2.5 token.create

token t = token.create(string csname)
token t = token.create(number charcode)
token t = token.create(number charcode, number catcode)

This is the token factory. If you feed it a string, then it is the name of a control sequence (without leading
backslash), and it will be looked up in the equivalence table.
If you feed it number, then this is assumed to be an input character, and an optional second number
gives its category code. This means it is possible to overrule a character's category code, with a few
exceptions: the category codes 0 (escape), 9 (ignored), 13 (active), 14 (comment), and 15 (invalid) cannot
occur inside a token. The values 0, 9, 14 and 15 are therefore illegal as input to token.create(), and
active characters will be resolved immediately.
Note: unknown string sequences and never defined active characters will result in a token representing
an `undefined control sequence' with a near-random name. It is not possible to define brand new control
sequences using token.create!

4.2.6 token.command_name

string commandname = token.command_name(token t)

This returns the name associated with the `command' value of the token in LuaTEX. There is not always
a direct connection between these names and primitives. For instance, all \ifxxx tests are grouped
under if_fest, and the `command modifier' defines which test is to be run.

4.2.7 token.command_id

number i = token.command_idtring commandname)

This returns a number that is the inverse operation of the previous command, to be used as the first item
in a token table.

4.2.8 token.csname_name

string csname = token.csname_name(token t)

LuaTEX Lua Libraries30

This returns the name associated with the `equivalence table' value of the token in LuaTEX. It returns the
string value of the command used to create the current token, or an empty string if there is no associated
control sequence.

4.2.9 token.csname_id

number i = token.csname_id(string csname)

This returns a number that is the inverse operation of the previous command, to be used as the third
item in a token table.

4.3 The node library
The node library contains functions that facilitate dealing with (lists of) nodes and their values. They
allow you to create, alter, copy, delete, and insert LuaTEX node objects, the core objects within the
typesetter.
LuaTEX nodes are represented in Lua as userdata with the metadata type luatex.node. The various
parts within a node can be accessed using named fields.
Each node has at least the three fields next, id, and subtype:

• The next field returns the userdata object for the next node in a linked list of nodes, or nil, if there
is no next node.

• The id indicates TEX's `node type'. The field id has a numeric value for efficiency reasons, but some
of the library functions also accept a string value instead of id.

• The subtype is another number. It often gives further information about a node of a particular id,
but it is most important when dealing with `whatsits', because they are differentiated solely based
on their subtype.

The other available fields depend on the id (and for `whatsits', the subtype) of the node. Further
details on the various fields and their meanings are given in chapter 7.
TEX's math nodes are not yet supported: there is not yet an interface to the internals of the math list
and it is not possible to create them from Lua. Support for unset (alignment) nodes is partial: they can
be queried and modified from Lua code, but not created.
Nodes can be compared to each other, but: you are actually comparing indices into the node memory.
This means that equality tests can only be trusted under very limited conditions. It will not work correctly
in any situation where one of the two nodes has been freed and/or reallocated: in that case, there will
be false positives.
At the moment, memory management of nodes should still be done explicitly by the user. Nodes are not
`seen' by the Lua garbage collector, so you have to call the node free-ing functions yourself when you
are no longer in need of a node (list). Nodes form linked lists without reference counting, so you have
to be careful that when control returns back to LuaTEX itself, you have not deleted nodes that are still

31LuaTEX Lua Libraries

referenced from a next pointer elsewhere, and that you did not create nodes that are referenced more
than once.

4.3.1 Node handling functions

4.3.1.1 node.types

table t = node.types()

This function returns an array that maps node id numbers to node type strings, providing an overview of
the possible top-level id types.

4.3.1.2 node.whatsits

table t = node.whatsits()

TEX's `whatsits' all have the same id. The various subtypes are defined by their subtype. The function
is much like node.types, except that it provides an array of subtype mappings.

4.3.1.3 node.id

number id = node.id(string type)

This converts a single type name to its internal numeric representation.

4.3.1.4 node.subtype

number subtype = node.subtype(string type)

This converts a single whatsit name to its internal numeric representation (subtype).

4.3.1.5 node.type

string type = node.type(number id)

This converts a internal numeric representation to an external string representation.

4.3.1.6 node.fields

table t = node.fields(number id)
table t = node.fields(number id, number subtype)

LuaTEX Lua Libraries32

This function returns an array of valid field names for a particular type of node. If you want to get the
valid fields for a `whatsit', you have to supply the second argument also. In other cases, any given second
argument will be silently ignored.
This function accepts string id and subtype values as well.

4.3.1.7 node.has_field

boolean t = node.has_field(<node> n, string field)

This function returns a boolean that is only true if n is actually a node, and it has the field.

4.3.1.8 node.new

<node> n = node.new(number id)
<node> n = node.new(number id, number subtype)

Creates a new node. All of the new node's fields are initialized to either zero or nil except for id
and subtype (if supplied). If you want to create a new whatsit, then the second argument is required,
otherwise it need not be present. As with all node functions, this function creates a node on the TEX
level.
This function accepts string id and subtype values as well.

4.3.1.9 node.free

node.free(<node> n)

Removes the node n from TEX's memory. Be careful: no checks are done on whether this node is still
pointed to from a register or some next field: it is up to you to make sure that the internal data structures
remain correct.

4.3.1.10 node.flush_list

node.flush_list(<node> n)

Removes the node list n and the complete node list following n from TEX's memory. Be careful: no checks
are done on whether any of these nodes is still pointed to from a register or some next field: it is up to
you to make sure that the internal data structures remain correct.

4.3.1.11 node.copy

<node> m = node.copy(<node> n)

33LuaTEX Lua Libraries

Creates a deep copy of node n, including all nested lists as in the case of a hlist or vlist node. Only the
next field is not copied.

4.3.1.12 node.copy_list

<node> m = node.copy_list(<node> n)

Creates a deep copy of the node list that starts at n.

4.3.1.13 node.hpack

<node> h = node.hpack(<node> n)
<node> h = node.hpack(<node> n, number w, string info)

This function creates a new hlist by packaging the list that begins at node n into a horizontal box.
With only a single argument, this box is created using the natural width of its components. In the
three argument form, info must be either additional or exactly, and w is the additional (\hbox
spread) or exact (\hbox to) width to be used.
Caveat: at this moment, there can be unexpected side-effects to this function, like updating some of the
\marks and \inserts.

4.3.1.14 node.slide

<node> m = node.slide(<node> n)

Returns the last node of the node list that starts at n. As a side-effect, it also creates a reverse chain of
prev pointers between nodes.

4.3.1.15 node.length

number i = node.length(<node> n)
number i = node.length(<node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n. If m is also supplied it stops at
m instead of at the end of the list. The node m is not counted.

4.3.1.16 node.count

number i = node.count(number id, <node> n)
number i = node.count(number id, <node> n, <node> m)

LuaTEX Lua Libraries34

Returns the number of nodes contained in the node list that starts at n that have an matching id field.
If m is also supplied, counting stops at m instead of at the end of the list. The node m is not counted.
This function also accept string id's.

4.3.1.17 node.traverse

<node> t = node.traverse(<node> n)

This is an iterator that loops over the node list that starts at n.

4.3.1.18 node.traverse_id

<node> t = node.traverse_id(number id, <node> n)

This is an iterator that loops over all the nodes in the list that starts at n that have a matching id field.

4.3.1.19 node.remove

<node> head, current = node.remove(<node> head, <node> current)

This function removes the node current from the list following head. It is your responsibility to make
sure it is really part of that list. The return values are the new head and current nodes. The returned
current is the node in the calling argument, and is only passed back as a convenience (its next field
will be cleared). The returned head is more important, because if the function is called with current
equal to head, it will be changed.

4.3.1.20 node.insert_before

<node> head, new = node.insert_before(<node> head, <node> current, <node>
new)

This function inserts the node new before current into the list following head. It is your responsibility
to make sure that current is really part of that list. The return values are the (potentially mutated)
head and the new, set up to be part of the list (with correct next field). If head is initially nil, it will
become new.

4.3.1.21 node.insert_after

<node> head, new = node.insert_after(<node> head, <node> current, <node>
new)

35LuaTEX Lua Libraries

This function inserts the node new after current into the list following head. It is your responsibility
to make sure that current is really part of that list. The return values are the head and the new, set
up to be part of the list (with correct next field). If head is initially nil, it will become new.

4.3.1.22 node.first_character

<node> n = node.first_character(<node> n)
<node> n = node.first_character(<node> n, <node> m)

Returns the first node that is a glyph node with a subtype indicating it is a character, or nil.

4.3.1.23 node.ligaturing

<node> h, <node> t, <boolean> success = node.ligaturing(<node> n)
<node> h, <node> t, <boolean> success = node.ligaturing(<node> n, <node> m)

Apply TEX-style ligaturing to the specified nodelist. The tail node m is optional. The two returned nodes
h and t are the new head and tail (both n and m can change into a new ligature).

4.3.1.24 node.kerning

<node> h, <node> t, <boolean> success = node.kerning(<node> n)
<node> h, <node> t, <boolean> success = node.kerning(<node> n, <node> m)

Apply TEX-style kerning to the specified nodelist. The tail node m is optional. The two returned nodes h
and t are the head and tail (either one of these can be an inserted kern node, because special kernings
with word boundaries are possible).

4.3.1.25 node.unprotect_glyphs

node.unprotect_glyphs(<node> n)

Substracts 256 from all glyph node subtypes. This and the next function are helpers to convert from
characters to glyphs during node processing.

4.3.1.26 node.protect_glyphs

node.protect_glyphs(<node> n)

Adds 256 to all glyph node subtypes in the node list starting at n, except that if the value is 1, it adds
only 255. The special handling of 1 means that characters will become glyphs after substraction of
256.

LuaTEX Lua Libraries36

4.3.1.27 node.last_node

<node> n = node.last_node()

This function pops the last node from TEX's `current list'. It returns that node, or nil if the current list
is empty.

4.3.1.28 node.write

node.write(<node> n)

This is an experimental function that will append a node list to TEX's `current list'. There is no error
checking yet!

4.3.2 Attribute handling
Attributes appear as linked list of userdata objects in the attr field of individual nodes. They can be
handled individually, but it is much safer and more efficient to use the dedicated functions associated
with them.

4.3.2.1 node.has_attribute

number v = node.has_attribute(<node> n, number id)
number v = node.has_attribute(<node> n, number id, number val)

Tests if a node has the attribute with number id set. If val is also supplied, also tests if the value
matches val. It returns the value, or, if no match is found, nil.

4.3.2.2 node.set_attribute

node.set_attribute(<node> n, number id, number val)

Sets the attribute with number id to the value val. Duplicate assignments are ignored.

4.3.2.3 node.unset_attribute

number v = node.unset_attribute(<node> n, number id, number val)
number v = node.unset_attribute(<node> n, number id)

Unsets the attribute with number id. If val is also supplied, it will only perform this operation if the
value matches val. Missing attributes or attribute-value pairs are ignored.
If the attribute was actually deleted, returns its old value. Otherwise, returns nil.

37LuaTEX Lua Libraries

4.4 The texio library
This library takes care of the low-level I/O interface.

4.4.1 Printing functions

4.4.1.1 texio.write

texio.write(string target, string s, ...)
texio.write(string s, ...)

Without the target argument, writes all given strings to the same location(s) TEX writes messages to
at this moment. If \batchmode is in effect, it writes only to the log, otherwise it writes to the log and
the terminal.
The optional target can be one of three possibilities: term, log or term and log.
Note: If several strings are given, and if the first of these strings is or might be one of the targets above,
the target must be specified explicitely to prevent Lua from interpreting the first string as the target.

4.4.1.2 texio.write_nl

texio.write_nl(string target, string s, ...)
texio.write_nl(string s, ...)

Like texio.write, but make sure that the given strings will appear at the beginning of a new line.
You can pass a single empty string if you only want to move to the next line.

4.5 The pdf library
This table contains the current h and v values that define the location on the output page. The values
can be queried and set using scaled points as units.

pdf.v
pdf.h

The associated function calls are

pdf.setv(number n)
number n = pdf.getv()
pdf.seth(number n)
number n = pdf.geth()

LuaTEX Lua Libraries38

It also holds a print function to write stuff to the pdf document that can be used from within a \latelua
argument. This function is not to be used inside \directlua unless you know exactly what you are
doing.

pdf.print

pdf.print(string s)
pdf.print(string type, string s)

The optional parameter can be used to mimic the behavior of \pdfliteral: the type is direct or
page.

4.6 The img library
The img library can be used as an alternative to \pdfximage and \pdfrefximage, and the associated
`satellite' commands like \pdfximagebbox.

img.new

<image> var = img.new()
<image> var = img.new(image_spec)

This function creates a userdata object of type `image'. The image_spec argument is optional. If it is
given, it must be a table, and that table must contain a filename key. A number of other keys can also
be useful, these are explained below.
You can either say

a=img.new()

followed by

a.filename="foo.png"

or you can put the file name (and some or all of the other keys) into a table directly, like so:

a=img.new{filename='foo.pdf',page=1}

The generated <image> userdata object allows access to a set of user-specified values as well as a
set of values that are normally filled in and updated automatically by LuaTEX itself. Some of those are
derived from the actual image file, others are updated to reflect the PDF output status of the object.
There is one required user-specified field: the file name (filename). It can optionally be augmented by
the requested image dimensions (width, depth, height), user-specified image attributes (attr), the

39LuaTEX Lua Libraries

requested PDF page identifier (page), the requested boundingbox (pagebox) for PDF inclusion, the
requested color space object (colorspace).
The function img.new does not access the actual image file, it just creates the <image> userdata object
and initializes some memory structures. The <image> object and its internal structures are automatically
garbage collected.
Once the image is scanned, all the values in the <image> become frozen, and you cannot change them
any more.

img.keys

<table> keys = img.keys()

This function returns a list of all the possible image_spec keys, both user-supplied and automatic ones.

Field name Type Description
depth number Image depth for LuaTEX (in scaled points)
height number Image height for LuaTEX (in scaled points)
width number Image width for LuaTEX (in scaled points)
transform number Image transform, integer number 0..7
attr string Image attributes for LuaTEX
filename string Image file name
page ?? Identifier for the requested image page (type is number or string, default is the

number 1)
pagebox string Requested bounding box. One of "none", "media", "crop", "bleed", "trim", "art"
filepath string Full (expanded) file name of the image
colordepth number Number of bits used by the color space
colorspace number Color space object number
imagetype string One of "pdf", "png", "jpg", "jbig2", or nil
objnum number PDF image object number
index number PDF image name suffix
pages number Total number of available pages
xsize number Natural image width
ysize number Natural image height
xres number Horizontal natural image resolution (dpi)
yres number Vertical natural image resolution (dpi)

A running (undefined) dimension in width, height, or depth is represented as nil in Lua, so if you
want to load an image at its `natural' size, you do not have to specify any of those three fields.
The transform allows to mirror and rotate the image in steps of 90 deg. The default value 0 gives an
unmirrored, unrotated image. Values 1..3 give counterclockwise rotation by 90, 180, or 270 deg., whereas
with values 4..7 the image is first mirrored and then rotated counterclockwise by 90, 180, or 270 deg.
The transform operation gives the same visual result as if you would externally preprocess the image
by a graphics tool and then use it by LuaTEX.

LuaTEX Lua Libraries40

img.scan

<image> var = img.scan(<image> var)
<image> var = img.scan(image_spec)

When you say img.scan(a) for a new image, the file is scanned, and variables such as xsize, ysize,
image type, number of pages, and the resolution are extracted. Each of the width, height, depth
fields are set up according to the image dimensions, if they were not given an explicit value already.
An image file will never be scanned more than once for a given image variable. With all subsequent
img.scan(a) calls only the dimensions are again set up (if they have been changed by the user in the
meantime).
For ease of use, you can do right-away a

a=img.scan{filename="foo.png"}

without a prior img.new.
Nothing is written yet at this point, so you can do a=img.scan, retrieve the available info like image
width and height, and then throw away a again by saying a=nil. In that case no image object will be
reserved in the PDF, and the used memory will be cleaned up automatically.

img.copy

<image> var = img.copy(<image> var)
<image> var = img.copy(image_spec)

If you say a = b, then both variables point to the same <image> object. if you want to write out an
image with different sizes, you can do a b=img.copy(a).
Afterwards, a and b still reference the same actual image dictionary, but the dimensions for b can now
be changed from their initial values that were just copies from a.

img.write

<image> var = img.write(<image> var)
<image> var = img.write(image_spec)

By img.write(a) a pdf object number is allocated, and a whatsit node of subtype pdf_refximage
is generated and put into the output list. By this the image a is placed into the pdf page stream, and the
image file is written out into an image stream object after the shipping of the current page is finished.
Again you can do a terse call like

img.write{filename="foo.png"}

The <image> variable is returned in case you want it for later processing.

41LuaTEX Lua Libraries

img.immediatewrite

<image> var = img.immediatewrite(<image> var)
<image> var = img.immediatewrite(image_spec)

By img.immediatewrite(a) a pdf object number is allocated, and the image file for image a is written
out immediately into the pdf file as an image stream object (like with \immediate\pdfximage). The
object number of the image stream dictionary is then available by the objnum key. No pdf_refximage
whatsit node is generated. You will need a img.write(a) or img.node(a) call to let the image appear
on the page, or reference it by another trick; else you will have a dangling image object in the pdf file.
Also here you can do a terse call like

a = img.immediatewrite{filename="foo.png"}

The <image> variable is returned; you will most likely need it.

img.node

<node> n = img.node(<image> var)
<node> n = img.node(image_spec)

This function allocates a pdf object number and returns a whatsit node of subtype pdf_refximage,
filled with the image parameters width, height, depth, and objnum. Also here you can do a terse
call like:

n = img.node{filename="foo.png"}

This example outputs an image:

node.write(img.node{filename="foo.png"})

img.types

<table> types = img.types()

This function returns a list with the supported image file type names, currently these are `pdf', `png',
`jpg', and `jbig2'.

img.boxes

<table> boxes = img.boxes()

This function returns a list with the supported pdf page box names, currently these are `media', `crop',
`bleed', `trim', and `art' (all in lowercase letters).

LuaTEX Lua Libraries42

4.7 The mplib library
The MetaPost library interface registers itself in the table mplib. It is based on the MPlib beta version
0.40 (based on MetaPost 1.003).

4.7.1 mplib.new
To create a new metapost instance, call

mp = mplib.new({...})

This creates the mp instance object. The argument hash can have a number of different fields, as follows:

name type description default
error_line number line width for terminal and log 79
half_error_line number ``half'' of line width 50
max_print_line number line length in ps output 100
main_memory number total memory size 5000
hash_size number hash size 9500
hash_prime number prime number for hashing 7919
param_size number max. simultaneous macro parame-

ters
150

max_in_open number max. input file nestings 10
random_seed number the initial random seed variable
interaction string the interaction mode, one of "batch",

"nonstop", "scroll", "errorstop"
"errorstop"

ini_version boolean the –ini switch false
troff_mode boolean the -T switch false
print_found_names boolean whether long file names should be

printed to the log and terminal
streams

false

mem_name string –mem plain.mem
job_name string –jobname mpout
find_file function a function to find files only local files

The find_file function should be of this form:

string found = finder (string name, string mode, string type)

name the requested file
mode the file mode: 'r' or 'w'
type the kind of file, one of: "mp", "mem", "tfm", "map", "pfb", "enc"

Return either the full pathname of the found file, or nil if the file cannot be found.

43LuaTEX Lua Libraries

4.7.2 mp:statistics

table stats = mp:statistics()

Returns the vital statistics for an MPlib instance. There are four fields, giving the maximum number of
used items in each of the four statically allocated object classes:

main_memory number memory size
hash_size number hash size
param_size number simultaneous macro parameters
max_in_open number input file nesting levels

4.7.3 mp:execute
You can ask the MP interpreter to run a bit of code by calling

local rettable = mp:execute('metapost language chunk')

for various bits of Metapost language input.
Be sure to check the rettable.status (see below) because when a fatal Metapost error occurs the
MPlib instance will become unusable thereafter.
Generally speaking, it is best to keep your chunks small, but beware that all chunks have to obey proper
syntax, like each of them is a small file. For instance, you cannot split a single statement over multiple
chunks.

4.7.4 mp:finish

local rettable = mp:finish()

If for some reason you want to stop using an MPlib instance while processing is not yet actually done,
you can call mp:finish. Memory and files can be closed by the Lua garbage collector, but an explicit
mp:finish is the only way to capture the final part of the output streams.

4.7.5 Result table
The return value of mp:execute and mp:finish is a table with a few possible keys (only `status' is
always guaranteed to be present).

log string output to the 'log' stream
term string output to the 'term' stream
error string output to the 'error' stream (only used for `Out Of Memory')
status number the return value. 0 = good, 1 = warning, 2 = errors, 3 = fatal error
fig table An array of generated figures (if any)

LuaTEX Lua Libraries44

When status equals 3, you should stop using this MPlib instance immediately, it is no longer capable
of processing input.
If it is present, each of the entries in the fig array is a userdata representing a figure object, and each
of those has a number of object methods you can call:

boundingbox function returns the bounding box, as an array of 4 values
postscript function return a string that is the ps output of the fig
objects function returns the actual array of graphic objects in this fig
copy_objects function returns a deep copy of the array of graphic objects in this fig
filename function the filename this fig's PostScript output would have written to in standalone

mode

NOTE: you can call fig:objects() only once for any one fig object!
When the boundingbox represents a `negated rectangle' (i.w. the first set of coordinates is larger than
the second set), the picture is empty.
Graphical objects come in various types that each have a different list of accessible values. The types
are: 'fill', 'outline', 'text', 'start_clip', 'stop_clip', 'start_bounds', 'stop_bounds', 'special'.
There is helper function (mplib.fields(obj)) to get the list of accessible values for a particular
object, but you can just as easily use the tables given below.
All graphical objects have a field type that gives the object type as a string value, that not explicit
mentioned in the tables. In the following, numbers are PostScript points represented as a floating point
number, unless stated otherwise. Field values that are of table are explained in the next section.

4.7.5.1 fill

path table the list of knots
htap table the list of knots for the reversed trajectory
pen table knots of the pen
color table the object's color
linejoin number line join style (bare number)
miterlimit number miterlimit
prescript string the prescript text
postscript string the postscript text

The entries htap and pen are optional.

4.7.5.2 outline

path table the list of knots
pen table knots of the pen
color table the object's color

45LuaTEX Lua Libraries

linejoin number line join style (bare number)
miterlimit number miterlimit
linecap number line cap style (bare number)
dash table representation of a dash list
prescript string the prescript text
postscript string the postscript text

The entry dash is optional.

4.7.5.3 text

text string the text
font string font tfm name
dsize number font size
color table the object's color
width number
height number
depth number
transform table a text transformation
prescript string the prescript text
postscript string the postscript text

4.7.5.4 special

prescript string special text

4.7.5.5 start_bounds, start_clip

path table the list of knots

4.7.5.6 stop_bounds, stop_clip

No fields available.

4.7.6 Subsidiary table formats

4.7.6.1 Paths and pens

Paths and pens (that are really just a special type of paths as far as MPlib is concerned) are represented
by an array where each entry is a table that represents a knot.

LuaTEX Lua Libraries46

left_type string when present: 'endpoint', but ususally absent
right_type string like left_type
x_coord number X coordinate of this knot
y_coord number Y coordinate of this knot
left_x number X coordinate of the precontrol point of this knot
left_y number Y coordinate of the precontrol point of this knot
right_x number X coordinate of the postcontrol point of this knot
right_y number Y coordinate of the postcontrol point of this knot

There is one special case: pens that are (possibly transformed) ellipses have an extra string-valued key
type with value elliptical besides the array part containing the knot list.

4.7.6.2 Colors

A color is an integer array with 0, 1, 3 or 4 values:

0 Marking only No values.
1 Greyscale 0ne value in the range 0 .. 1, `black' is 0
3 RGB 3 values in the range 0 .. 1, `black' is 0,0,0
4 CMYK 4 values in the range 0 .. 1, `black' is 0,0,0,1

If the color model of the internal object was unitialized, then it was initialized to the values repre-
senting `black' in the colorspace defaultcolormodel that was in effect at the time of the shipout.

4.7.6.3 Transforms

Each transform is a six-item array.

1 number represents x
2 number represents y
3 number represents xx
4 number represents yx
5 number represents xy
6 number represents yy

Note that the translation (index 1 and 2) comes first. This differs from the ordering in PostScript, where
the translation comes last.

4.7.6.4 Dashes

Each dash is two-item hash, using the same model as PostScript for the representation of the dashlist.
dashes is an array of `on' and `off', values, and offset is the phase of the pattern.

47LuaTEX Lua Libraries

dashes hash an array of on-off numbers
offset number the starting offset value

4.8 The callback library
This library has functions that register, find and list callbacks.
The callback library is only available in Lua state zero (0).

id, error = callback.register(string callback_name,function callback_func)
id, error = callback.register(string callback_name,nil)

where the callback_name is a predefined callback name, see below. The function returns the internal
id of the callback or nil, if the callback could not be registered. In the latter case, error contains an
error message, otherwise it is nil.
LuaTEX internalizes the callback function in such a way that it does not matter if you redefine a function
accidentally.
Callback assignments are always global. You can use the special value nil instead of a function for
clearing the callback.
Currently, callbacks are not dumped into the format file.

table info = callback.list()

The keys in the table are the known callback names, the value is a boolean where true means that the
callback is currently set (active).

function f = callback.find(callback_name)

If the callback is not set, callback.find returns nil.

4.8.1 File discovery callbacks

4.8.1.1 find_read_file and find_write_file

Your callback function should have the following conventions:

string actual_name = function (number id_number, string asked_name)

Arguments:

id_number
This number is zero for the log or \input files. For TEX's \read or \write the number is incre-
mented by one, so \read0 becomes 1.

asked_name

LuaTEX Lua Libraries48

This is the user-supplied filename, as found by \input, \openin or \openout.

Return value:

actual_name
This is the filename used. For the very first file that is read in by TEX, you have to make sure you
return an actual_name that has an extension and that is suitable for use as jobname. If you don't,
you will have to manually fix the name of the log file and output file after LuaTEX is finished, and
an eventual format filename will become mangled. That is because these file names depend on the
jobname.
You have to return nil if the file cannot be found.

4.8.1.2 find_font_file

Your callback function should have the following conventions:

string actual_name = function (string asked_name)

The asked_name is an otf or tfm font metrics file.
Return nil if the file cannot be found.

4.8.1.3 find_output_file

Your callback function should have the following conventions:

string actual_name = function (string asked_name)

The asked_name is the pdf or dvi file for writing.

4.8.1.4 find_format_file

Your callback function should have the following conventions:

string actual_name = function (string asked_name)

The asked_name is a format file for reading (the format file for writing is always opened in the current
directory).

4.8.1.5 find_vf_file

Like find_font_file, but for virtual fonts. This applies to both Aleph's ovf files and traditional
Knuthian vf files.

49LuaTEX Lua Libraries

4.8.1.6 find_ocp_file

Like find_font_file, but for ocp files.

4.8.1.7 find_map_file

Like find_font_file, but for map files.

4.8.1.8 find_enc_file

Like find_font_file, but for enc files.

4.8.1.9 find_sfd_file

Like find_font_file, but for subfont definition files.

4.8.1.10 find_pk_file

Like find_font_file, but for pk bitmap files. The argument name is a bit special in this case. Its
form is

<base res>dpi/<fontname>.<actual res>pk

So you may be asked for 600dpi/manfnt.720pk. It is up to you to find a `reasonable' bitmap file to
go with that specification.

4.8.1.11 find_data_file

Like find_font_file, but for embedded files (\pdfobj file '...').

4.8.1.12 find_opentype_file

Like find_font_file, but for OpenType font files.

4.8.1.13 find_truetype_file and find_type1_file

Your callback function should have the following conventions:

string actual_name = function (string asked_name)

LuaTEX Lua Libraries50

The asked_name is a font file. This callback is called while LuaTEX is building its internal list of needed
font files, so the actual timing may surprise you. Your return value is later fed back into the matching
read_file callback.
Strangely enough, find_type1_file is also used for OpenType (otf) fonts.

4.8.1.14 find_image_file

Your callback function should have the following conventions:

string actual_name = function (string asked_name)

The asked_name is an image file. Your return value is used to open a file from the harddisk, so make
sure you return something that is considered the name of a valid file by your operating system.

4.8.2 File reading callbacks

4.8.2.1 open_read_file

Your callback function should have the following conventions:

table env = function (string file_name)

Argument:

file_name
The filename returned by a previous find_read_file or the return value of kpse.find_file()
if there was no such callback defined.

Return value:

env
This is a table containing at least one required and one optional callback function for this file. The
required field is reader and the associated function will be called once for each new line to be read,
the optional one is close that will be called once when LuaTEX is done with the file.
LuaTEX never looks at the rest of the table, so you can use it to store your private per-file data. Both
the callback functions will receive the table as their only argument.

4.8.2.1.1 reader

LuaTEX will run this function whenever it needs a new input line from the file.

function(table env)
return string line

end

51LuaTEX Lua Libraries

Your function should return either a string or nil. The value nil signals that the end of file has occurred,
and will make TEX call the optional close function next.

4.8.2.1.2 close

LuaTEX will run this optional function when it decides to close the file.

function(table env)
return

end

Your function should not return any value.

4.8.2.2 General file readers

There is a set of callbacks for the loading of binary data files. These all use the same interface:

function(string name)
return boolean success, string data, number data_size

end

The name will normally be a full path name as it is returned by either one of the file discovery callbacks
or the internal version of kpse.find_file().

success
Return false when a fatal error occured (e. g. when the file cannot be found, after all).

data
The bytes comprising the file.

data_size
The length of the data, in bytes.

Return an empty string and zero if the file was found but there was a reading problem.
The list of functions is:

read_font_file This function is called when TEX needs to read a ofm or tfm file.
read_vf_file for virtual fonts.
read_ocp_file for ocp files.
read_map_file for map files.
read_enc_file for encoding files.
read_sfd_file for subfont definition files.
read_pk_file for pk bitmap files.
read_data_file for embedded files (\pdfobj file '...').
read_truetype_file for TrueType font files.
read_type1_file for Type1 font files.
read_opentype_file for OpenType font files.

LuaTEX Lua Libraries52

4.8.3 Data processing callbacks

4.8.3.1 process_input_buffer

This callback allows you to change the contents of the line input buffer just before LuaTEX actually starts
looking at it.

function(string buffer)
return string adjusted_buffer

end

If you return nil, LuaTEX will pretend like your callback never happened. You can gain a small amount
of processing time from that.

4.8.3.2 token_filter

This callback allows you to replace the way LuaTEX fetches lexical tokens.

function()
return table token

end

The calling convention for this callback is a bit more complicated than for most other callbacks. The
function should either return a Lua table representing a valid to-be-processed token or tokenlist, or
something else like nil or an empty table.
If your Lua function does not return a table representing a valid token, it will be immediately called
again, until it eventually does return a useful token or tokenlist (or until you reset the callback value to
nil). See the description of token for some handy functions to be used in conjunction with this callback.
If your function returns a single usable token, then that token will be processed by LuaTEX immediately.
If the function returns a token list (a table consisting of a list of consecutive token tables), then that
list will be pushed to the input stack at a completely new token list level, with its token type set to
`inserted'. In either case, the returned token(s) will not be fed back into the callback function.

4.8.4 Node list processing callbacks
The description of nodes and node lists is in chapter 7.

4.8.4.1 buildpage_filter

This callback is called whenever LuaTEX is ready to move stuff to the main vertical list. You can use this
callback to do specialized manipulation of the page building stage like imposition or column balancing.

53LuaTEX Lua Libraries

function(<node> head, string extrainfo)
return true | false | <node> newhead

end

As for all the callbacks that deal with nodes, the return value can be one of three things:

• boolean true signals succesful processing
• node signals that the `head' node should be replaced by this node
• boolean false signals that the `head' node list should be ignored and flushed from memory

The string extrainfo gives some additional information about what TEX's state is with respect to the
`current page'. The possible values are:

value explanation
alignment a (partial) alignment is being added
box a typeset box is being added
begin_of_par the beginning of a new paragraph
vmode_par \par was found in vertical mode
hmode_par \par was found in horizontal mode
insert an insert is added
penalty a penalty (in vertical mode)
before_display immediately before a display starts
after_display a display is finished

4.8.4.2 pre_linebreak_filter

This callback is called just before LuaTEX starts converting a list of nodes into a stack of \hboxes. The
removal of a possible final skip and the subsequent insertion of \parfillskip has not happened yet
at that moment.

function(<node> head, string groupcode)
return true | false | <node> newhead

end

The string called groupcode identifies the nodelist's context within TEX's processing. The
range of possibilities is given in the table below, but not all of those can actually appear in
pre_linebreak_filter, some are for the hpack_filter and vpack_filter callbacks that will
be explained in the next two paragraphs.

value explanation
hbox \hbox in horizontal mode
adjusted_hbox \hbox in vertical mode
vbox \vbox
vtop \vtop
align \halign or \valign
disc discretionaries

LuaTEX Lua Libraries54

insert packaging an insert
vcenter \vcenter
local_box \localleftbox or \localrightbox
split_off top of a \vsplit
split_keep remainder of a \vsplit
align_set alignment cell
fin_row alignment row

4.8.4.3 post_linebreak_filter

This callback is called just after LuaTEX has converted a list of nodes into a stack of \hboxes.

function(<node> head, string groupcode)
return true | false | <node> newhead

end

4.8.4.4 hpack_filter

This callback is called when TEX is ready to start boxing some horizontal mode material. Math items
are ignored at the moment.

function(<node> head, string groupcode, number size, string packtype)
return true | false | <node> newhead

end

The packtype is either additional or exactly. If additional, then the size is a \hbox spread
... argument. If exactly, then the size is a \hbox to In both cases, the number is in scaled
points.

4.8.4.5 vpack_filter

This callback is called when TEX is ready to start boxing some vertical mode material. Math displays
are ignored at the moment.
This function is very similar to the hpack_filter. Besides the fact that it is called at different moments,
there is an extra variable that matches TEX's \maxdepth setting.

function(<node> head, string groupcode, number size, string packtype, num-
ber maxdepth)

return true | false | <node> newhead
end

55LuaTEX Lua Libraries

4.8.4.6 pre_output_filter

This callback is called when TEX is ready to start boxing the box 255 for \output.

function(<node> head, string groupcode, number size, string packtype, number
maxdepth)

return true | false | <node> newhead
end

4.8.4.7 hyphenate

function(<node> head, <node> tail)
end

No return values. This callback has to insert discretionary nodes in the node list it receives.

4.8.4.8 ligaturing

function(<node> head, <node> tail)
end

No return values. This callback has to apply ligaturing to the node list it receives.
You don't have to worry about return values because the head node that is passed on to the callback is
guaranteed not to be a glyph_node (if need be, a temporary node will be prepended), and therefore it
cannot be affected by the mutations that take place. After the callback, the internal value of the `tail of
the list' will be recalculated.
The next of head is guaranteed to be non-nil.
The next of tail is guaranteed be nil, and therefore the second callback argument can often be ignored.
It is provided for orthogonality, and because it can sometimes be handy when special processing has to
take place.

4.8.4.9 kerning

function(<node> head, <node> tail) end

No return values. This callback has to apply kerning between the nodes in the node list it receives. See
ligaturing for calling conventions.

LuaTEX Lua Libraries56

4.8.5 Information reporting callbacks

4.8.5.1 start_run

function()

Replaces the code that prints LuaTEX's banner.

4.8.5.2 stop_run

function()

Replaces the code that prints LuaTEX's statistics and `output written to' messages.

4.8.5.3 start_page_number

function()

Replaces the code that prints the [and the page number at the begin of \shipout. This callback
will also override the printing of box information that normally takes place when \tracingoutput is
positive.

4.8.5.4 stop_page_number

function()

Replaces the code that prints the] at the end of \shipout.

4.8.5.5 show_error_hook

function()
return

end

This callback is run from inside the TEX error function, and the idea is to allow you to do some extra
reporting on top of what TEX already does (none of the normal actions are removed). You may find some
of the values in the status table useful.

message
is the formal error message TEX has given to the user. (the line after the '!').

indicator

57LuaTEX Lua Libraries

is either a filename (when it is a string) or a location indicator (a number) that can mean lots of
different things like a token list id or a \read number.

lineno
is the current line number.

This is an investigative item for 'testing the water' only. The final goal is the total replacement of TEX's
error handling routines, but that needs lots of adjustments in the web source because TEX deals with
errors in a somewhat haphazard fashion. This is why the exact definition of indicator is not given
here.

4.8.6 Font-related callbacks

4.8.6.1 define_font

function(string name, number size, number id) return table font end

The string name is the filename part of the font specification, as given by the user.
The number size is a bit special:

• if it is positive, it specifies an `at size' in scaled points.
• if it is negative, its absolute value represents a `scaled' setting relative to the designsize of the font.

The internal structure of the font table that is to be returned is explained in chapter 6. That table is
saved internally, so you can put extra fields in the table for your later Lua code to use.

4.9 The lua library
This library contains two read-only items:

4.9.1 Variables
number n = lua.id

This returns the id number of the instance.

string s = lua.version

This returns a LuaTEX version identifier string. The value is currently lua.version, but it is soon to be
replaced by something more elaborate.

LuaTEX Lua Libraries58

4.9.2 LUA bytecode registers
Lua registers can be used to communicate Lua functions across Lua states. The accepted values for
assignments are functions and nil. Likewise, the retrieved value is either a function or nil.

lua.bytecode[n] = function () .. end
lua.bytecode[n]()

The contents of the lua.bytecode array is stored inside the format file as actual Lua bytecode, so it
can also be used to preload Lua code.
Note: The function must not contain any upvalues. Currently, functions containing upvalues can be stored
(and their upvalues are set to nil), but this is an artefact of the current Lua implementation and thus
subject to change.
The associated function calls are

function f = lua.getbytecode(number n)
lua.setbytecode(number n, function f)

Note: Since a Lua file loaded using loadfile(filename) is essentially an anonymous function, a
complete file can be stored in a bytecode register like this:

lua.bytecode[n] = loadfile(filename)

Now all definitions (functions, variables) contained in the file can be created by executing this bytecode
register:

lua.bytecode[n]()

4.10 The kpse library
This library provides an interface to the kpathsea file search method.
Before the search library can be used at all, its database has to be initialized. When LuaTEX is used to
typeset documents, this happens automatically (that is, unless explicitly prohibited by the user's startup
script. See section 3.1 for more details). In TEXLua mode, the initialization has to be done explicitly via
the kpse.set_program_name function.

4.10.1 kpse.set_program_name
Sets the kpathsea executable (and optionally program) name.

kpse.set_program_name(string name)
kpse.set_program_name(string name, string progname)

59LuaTEX Lua Libraries

The second argument controls the use of the `dotted' values in the texmf.cnf configuration file, and
defaults to the first argument.

4.10.2 kpse.find_file
The most often used function in the library is find_file:

string f = kpse.find_file(string filename)
string f = kpse.find_file(string filename, string ftype)
string f = kpse.find_file(string filename, boolean mustexist)
string f = kpse.find_file(string filename, string ftype, boolean mustexist)
string f = kpse.find_file(string filename, string ftype, number dpi)

Arguments:

filename
the name of the file you want to find, with or without extension.

ftype
maps to the -format argument of kpsewhich. The supported ftype values are the same as the ones
supported by the standalone kpsewhich program:

LuaTEX Lua Libraries60

'gf'
'pk'
'bitmap font'
'tfm'
'afm'
'base'
'bib'
'bst'
'cnf'
'ls-R'
'fmt'
'map'
'mem'
'mf'
'mfpool'
'mft'
'mp'
'mppool'
'MetaPost support'
'ocp'
'ofm'
'opl'
'otp'
'ovf'
'ovp'
'graphic/figure'

'tex'
'TeX system documentation'
'texpool'
'TeX system sources'
'PostScript header'
'Troff fonts'
'type1 fonts'
'vf'
'dvips config'
'ist'
'truetype fonts'
'type42 fonts'
'web2c files'
'other text files'
'other binary files'
'misc fonts'
'web'
'cweb'
'enc files'
'cmap files'
'subfont definition files'
'opentype fonts'
'pdftex config'
'lig files'
'texmfscripts'

The default type is tex.
mustexist

is similar to kpsewhich's -must-exist, and the default is false. If you specify true (or a non-
zero integer), then the kpse library will search the disk as well as the ls-R databases.

dpi
This is used for the size argument of the formats pk, gf, and bitmap font.

4.10.3 kpse.init_prog
Extra initialization for programs that need to generate bitmap fonts.

kpse.init_prog(string prefix, number base_dpi, string mfmode)
kpse.init_prog(string prefix, number base_dpi, string mfmode, string fall-
back)

4.10.4 kpse.readable_file
Test if an (absolute) file name is a readable file

61LuaTEX Lua Libraries

string f = kpse.readable_file(string name)

The return value is the actual absolute filename you should use, because the disk name is not always
the same as the requested name, due to aliases and system-specific handling under e. g. msdos.
Returns nil if the file does not exist or is not readable.

4.10.5 kpse.expand_path

Like kpsewhich's -expand-path:

string r = kpse.expand_path(string s)

4.10.6 kpse.expand_var

Like kpsewhich's -expand-var:

string r = kpse.expand_var(string s)

4.10.7 kpse.expand_braces

Like kpsewhich's -expand-braces:

string r = kpse.expand_braces(string s)

4.10.8 kpse.show_path

Like kpsewhich's -show-path:

string r = kpse.show_path(string ftype)

4.10.9 kpse.var_value

Like kpsewhich's -var-value:

string r = kpse.var_value(string s)

4.11 The status library
This contains a number of run-time configuration items that you may find useful in message reporting,
as well as an iterator function that gets all of the names and values as a table.

LuaTEX Lua Libraries62

table info = status.list()

The keys in the table are the known items, the value is the current value.
Almost all of the values in status are fetched through a metatable at run-time whenever they are
accessed, so you cannot use pairs on status, but you can use pairs on info, of course.
If you do not need the full list, you can also ask for a single item by using its name as an index into
status.
The current list is:

key explanation
pdf_gone written pdf bytes
pdf_ptr not yet written pdf bytes
dvi_gone written dvi bytes
dvi_ptr not yet written dvi bytes
total_pages number of written pages
output_file_name name of the pdf or dvi file
log_name name of the log file
banner terminal display banner
var_used variable (one-word) memory in use
dyn_used token (multi-word) memory in use
str_ptr number of strings
init_str_ptr number of iniTEX strings
max_strings maximum allowed strings
pool_ptr string pool index
init_pool_ptr iniTEX string pool index
pool_size current size allocated for string characters
node_mem_usage a string giving insight into currently used nodes
var_mem_max number of allocated words for nodes
fix_mem_max number of allocated words for tokens
fix_mem_end maximum number of used tokens
cs_count number of control sequences
hash_size size of hash
hash_extra extra allowed hash
font_ptr number of active fonts
max_in_stack max used input stack entries
max_nest_stack max used nesting stack entries
max_param_stack max used parameter stack entries
max_buf_stack max used buffer position
max_save_stack max used save stack entries
stack_size input stack size
nest_size nesting stack size
param_size parameter stack size
buf_size current allocated size of the line buffer
save_size save stack size

63LuaTEX Lua Libraries

obj_ptr max pdf object pointer
obj_tab_size pdf object table size
pdf_os_cntr max pdf object stream pointer
pdf_os_objidx pdf object stream index
pdf_dest_names_ptr max pdf destination pointer
dest_names_size pdf destination table size
pdf_mem_ptr max pdf memory used
pdf_mem_size pdf memory size
largest_used_mark max referenced marks class
filename name of the current input file
inputid numeric id of the current input
linenumber location in the current input file
lasterrorstring last error string
luabytecodes number of active Lua bytecode registers
luabytecode_bytes number of bytes in Lua bytecode registers
luastates number of active Lua interpreters
luastate_bytes number of bytes in use by Lua interpreters
output_active true if the \output routine is active

4.12 The texconfig table
This is a table that is created empty. A startup Lua script could fill this table with a number of settings
that are read out by the executable after loading and executing the startup file.

key type default explanation
string_vacancies number 75000 cf. web2c docs
pool_free number 5000 cf. web2c docs
max_strings number 15000 cf. web2c docs
strings_free number 100 cf. web2c docs
nest_size number 50 cf. web2c docs
max_in_open number 15 cf. web2c docs
param_size number 60 cf. web2c docs
save_size number 4000 cf. web2c docs
stack_size number 300 cf. web2c docs
dvi_buf_size number 16384 cf. web2c docs
error_line number 79 cf. web2c docs
half_error_line number 50 cf. web2c docs
max_print_line number 79 cf. web2c docs
ocp_list_size number 1000 cf. web2c docs
ocp_buf_size number 1000 cf. web2c docs
ocp_stack_size number 1000 cf. web2c docs
hash_extra number 0 cf. web2c docs
pk_dpi number 72 cf. web2c docs

LuaTEX Lua Libraries64

kpse_init boolean true false totally disables kpathsea initialisation
(only ever unset this if you implement all file find
callbacks!)

trace_file_names boolean true false disables TEX's normal file open-close
feedback (the assumption is that callbacks will
take care of that)

src_special_auto boolean false source specials sub-item
src_special_everypar boolean false source specials sub-item
src_special_everyparend boolean false source specials sub-item
src_special_everycr boolean false source specials sub-item
src_special_everymath boolean false source specials sub-item
src_special_everyhbox boolean false source specials sub-item
src_special_everyvbox boolean false source specials sub-item
src_special_everydisplay boolean false source specials sub-item
file_line_error boolean false do file:line style error messages
halt_on_error boolean false abort run on the first encountered error
formatname string if no format name was given on the commandline,

this key will be tested first instead of simply quit-
ting

jobname string if no input file name was given on the command-
line, this key will be tested first instead of simply
giving up

4.13 The font library
The font library provides the interface into the internals of the font system, and also it contains helper
functions to load traditional TEX font metrics formats. Other font loading functionality is provided by the
fontforge library that will be discussed in the next section.

4.13.1 Loading a TFM file
table fnt = font.read_tfm(string name, number s)

The number is a bit special:

• if it is positive, it specifies an `at size' in scaled points.
• if it is negative, its absolute value represents a `scaled' setting relative to the designsize of the font.

The internal structure of the metrics font table that is returned is explained in chapter 6.

65LuaTEX Lua Libraries

4.13.2 Loading a VF file
table vf_fnt = font.read_vf(string name, number s)

The meaning of the number s, and the format of the returned table is similar to the one returned by the
read_tfm() function.

4.13.3 The fonts array
The whole table of TEX fonts is accessible from lua using a virtual array.

font.fonts[n] = { ... }
table f = font.fonts[n]

See chapter 6 for the structure of the tables. Because this is a virtual array, you cannot call pairs on
it, but see below for the font.each iterator.
The two metatable functions implementing the virtual array are:

table f = font.getfont(number n)
font.setfont(number n, table f)

Also note the following: assignments can only be made to fonts that have already been defined in TEX,
but have not been accessed at all since that definition. This limits the usability of the write access to
font.fonts quite a lot, a less stringent ruleset will likely be implemented later.

4.13.4 Checking a font's status
You can test for the status of a font by calling this function:

boolean f = font.frozen(number n)

The return value is one of true (unassignable), false (can be changed) or nil (not a valid font at all).

4.13.5 Defining a font directly
You can define your own font into font.fonts by calling this function:

number i = font.define(table f)

The return value is the internal id number of the defined font (the index into font.fonts). If the font
creation fails, an error is raised. The table is a font structure, as explained in chapter 6.

LuaTEX Lua Libraries66

4.13.6 Projected next font id
number i = font.nextid();

This returns the font id number that would be returned by a font.define call if it was executed at
this spot in the code flow. This is useful for virtual fonts that need to reference themselves.

4.13.7 Currently active font
number i = font.current();
font.current(number i);

This gets or sets the currently used font number.

4.13.8 Maximum font id
number i = font.max();

This is the largest used index in font.fonts.

4.13.9 Iterating over all fonts
for i,v in font.each() do
...

end

This is an iterator over each of the defined TEX fonts. The first returned value is the index in font.fonts,
the second the font itself, as a lua table. The indices are listed incrementally, but they do not always
form an array of consecutive numbers: in some cases there can be holes in the sequence.

4.14 The fontforge library

4.14.1 Getting quick information on a font
local info = fontforge.info('filename')

This function returns either nil, or a table, or an array of small tables (in the case of a TrueType
collection). The returned table(s) will contain six fairly interesting information items from the font(s)
defined by the file:

67LuaTEX Lua Libraries

key type explanation
fontname string the `PostScript' name of the font
fullname string The formal name of the font
familyname string The family name this font belongs to
weight string A string indicating the color value of the font
version string The internal font version
italicangle float The slant angle

Getting information through this function is (sometimes much) more efficient than loading the font prop-
erly, and is therefore handy when you want to create a dictionary of available fonts based on a directory
contents.

4.14.2 Loading an OPENTYPE or TRUETYPE file
If you want to use an OpenType font, you have to get the metric information from somewhere. Using the
fontforge library, the basic way to get that information is thus:

function load_font (filename)
local metrics = nil
local font = fontforge.open(filename)
if font then

metrics = fontforge.to_table(font)
fontforge.close(font)

end
return metrics

end

myfont = load_font('/opt/tex/texmf/fonts/data/arial.ttf')

The main function call is

f, w = fontforge.open('filename')

The first return value is a table representation of the font. The second return value is a table containing
any warnings and errors reported by fontforge while opening the font. In normal typesetting, you would
probably ignore the second argument, but it can be useful for debugging purposes.
For TrueType collections (when filename ends in 'ttc'), you have to use a second string argument to
specify which font you want from the collection. Use one of the fullname strings that are returned by
fontforge.info for that.

f, w = fontforge.open('filename','fullname')

The font file is parsed and partially interpreted by the font loading routines from FontForge. The file
format can be OpenType, TrueType, TrueType Collection, CFF, or Type1.
There are a few advantages to this approach compared to reading the actual font file ourselves:

LuaTEX Lua Libraries68

• The font is automatically re-encoded, so that the metrics table for TrueType and OpenType fonts
is using Unicode for the character indices.

• Many features are pre-processed into a format that is easier to handle than just the bare tables
would be.

• PostScript-based OpenType fonts do not store the character height and depth in the font file, so the
character boundingbox has to be calculated in some way.

• In the future, it may be interesting to allow Lua scripts access to the font program itself, perhaps
even creating or changing the font.

4.14.3 Applying a ‘feature file'
You can apply a `feature file' to a loaded font:

fontforge.apply_featurefile(f,'filename')

A `feature file' is a textual representation of the features in an OpenType font. See http:
//www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html and http://fontforge.sourceforge
.net/featurefile.html for a more detailed description of feature files.

4.14.4 Applying an ‘afm file'
You can apply an `afm file' to a loaded font:

fontforge.apply_afmfile(f,'filename')

An `afm file' is a textual representation of (some of) the metainformation in a Type 1 font. See http:/
/www.adobe.com/devnet/font/pdfs/5004.AFM_Spec.pdf for more information about afm files.
Note: if you fontforge.open() a PFB file named font.pfb, the library will automatically search
for and apply font.afm, if it exists in the same directory as font.pfb. In that case, there is no need
for an explicit call to apply_afmfile().

4.15 Fontforge font tables
The top-level keys in the returned table are (the explanations in this part of the documentation are not
yet finished):

key type explanation
table_version number indicates the metrics version
fontname string PostScript font name
fullname string official font name
familyname string family name
weight string weight indicator
copyright string copyright information

69LuaTEX Lua Libraries

filename string the file name
version string font version
italicangle float slant angle
units_per_em number 1000 for PostScript-based fonts, usually 2048 for

TrueType
ascent number height of ascender in units_per_em
descent number depth of descender in units_per_em
upos float
uwidth float
vertical_origin number
uniqueid number
glyphcnt number number of included glyphs
glyphs array
glyphmax number maximum used index the glyphs array
hasvmetrics number
order2 number set to 1 for TrueType splines, 0 otherwise
strokedfont number
weight_width_slope_only number
head_optimized_for_cleartype number
uni_interp enum unset, none, adobe, greek, japanese, trad_chinese,

simp_chinese, korean, ams
origname string the file name, as supplied by the user
map table
private table
xuid string
pfminfo table
names table
cidinfo table
subfonts array
cidmaster array
commments string
anchor_classes table
ttf_tables table
kerns table
vkerns table
texdata table
lookups table
gpos table
gsub table
chosenname string
macstyle number
fondname string
design_size number
fontstyle_id number

LuaTEX Lua Libraries70

fontstyle_name table
design_range_bottom number
design_range_top number
strokewidth float
mark_classes array
mark_class_names array
creationtime number
modificationtime number
os2_version number

1 Glyph items

The glyphs is an array containing the per-character information (quite a few of these are only present
if nonzero).

key type explanation
name string the glyph name
unicode number unicode code point, or -1
boundingbox array array of four numbers
width number (only for horizontal fonts)
vwidth number (only for vertical fonts)
lsidebearing number (only if nonzero)
glyph_class number (only if nonzero)
kerns array (only for horizontal fonts, if set)
vkerns array (only for vertical fonts, if set)
dependents array linear array of glyph name strings (only if nonempty)
lookups table (only if nonempty)
ligatures table (only if nonempty)
anchors table (only if set)
tex_height number (only if set)
tex_depth number (only if set)
tex_sub_pos number (only if set)
tex_super_pos number (only if set)
comment string (only if set)

The kerns and vkerns are linear arrays of small hashes:

key type explanation
char string
off number
lookup string

The lookups is a hash, based on lookup subtable names, with the value of each key inside that a linear
array of small hashes:

71LuaTEX Lua Libraries

key type explanation
type enum position, pair, substitution, alternate, multiple, ligature,

lcaret, kerning, vkerning, anchors, contextpos, contextsub,
chainpos, chainsub, reversesub, max, kernback, vkernback

specification table extra data

For the first seven values of type, there can be additional sub-information, stored in the sub-table
specification:

value type explanation
position table a table of the offset_specs type
pair table one string: paired, and an array of one or two offset_specs tables: offsets
substitution table one string: variant
alternate table one string: components
multiple table one string: components
ligature table two strings: components, char
lcaret array linear array of numbers

Tables for offset_specs contain up to four number-valued fields: x (a horizontal offset), y (a vertical
offset), h (an advance width correction) and v (an advance height correction).
The ligatures is a linear array of small hashes:

key type explanation
lig table uses the same substructure as a single possub item
char string
components array linear array of named components
ccnt number

The anchor table is indexed by a string signifying the anchor type, which is one of

key type explanation
mark table placement mark
basechar table mark for attaching combining items to a base char
baselig table mark for attaching combining items to a ligature
basemark table generic mark for attaching combining items to connect to
centry table cursive entry point
cexit table cursive exit point

The content of these is an short array of defined anchors, with the entry keys being the anchor names.
For all except baselig, the value is a single table with this definition:

key type explanation
x number x location
y number y location
ttf_pt_index number truetype point index, only if given

LuaTEX Lua Libraries72

For baselig, the value is a small array of such anchor sets sets, one for each constituent item of the
ligature.
For clarification, an anchor table could for example look like this :

['anchor']={
['basemark']={
['Anchor-7']={ ['x']=170, ['y']=1080 }
},
['mark']={
['Anchor-1'] ={ ['x']=160, ['y']=810 },
['Anchor-4']= { ['x']=160, ['y']=800 }
},
['baselig']={
[1] = { ['Anchor-2'] ={ ['x']=160, ['y']=650 } },
[2] = { ['Anchor-2']= { ['x']=460, ['y']=640 } }
}
},

2 map table

The top-level map is a list of encoding mappings. Each of those is a table itself.

key type explanation
enccount number
encmax number
backmax number
remap table
map array non-linear array of mappings
backmap array non-linear array of backward mappings
enc table

The remap table is very small:

key type explanation
firstenc number
lastenc number
infont number

The enc table is a bit more verbose:

key type explanation
enc_name string
char_cnt number
char_max number
unicode array of Unicode position numbers

73LuaTEX Lua Libraries

psnames array of PostScript glyph names
builtin number
hidden number
only_1byte number
has_1byte number
has_2byte number
is_unicodebmp number (only if nonzero)
is_unicodefull number (only if nonzero)
is_custom number (only if nonzero)
is_original number (only if nonzero)
is_compact number (only if nonzero)
is_japanese number (only if nonzero)
is_korean number (only if nonzero)
is_tradchinese number (only if nonzero)
is_simplechinese number (only if nonzero)
low_page number
high_page number
iconv_name string
iso_2022_escape string

3 private table

This is the font's private PostScript dictionary, if any. Keys and values are both strings.

4 cidinfo table

key type explanation
registry string
ordering string
supplement number
version number

5 pfminfo table

The pfminfo table contains most of the OS/2 information:

key type explanation
pfmset number
winascent_add number
windescent_add number
hheadascent_add number
hheaddescent_add number
typoascent_add number

LuaTEX Lua Libraries74

typodescent_add number
subsuper_set number
panose_set number
hheadset number
vheadset number
pfmfamily number
weight number
width number
avgwidth number
firstchar number
lastchar number
fstype number
linegap number
vlinegap number
hhead_ascent number
hhead_descent number
hhead_descent number
os2_typoascent number
os2_typodescent number
os2_typolinegap number
os2_winascent number
os2_windescent number
os2_subxsize number
os2_subysize number
os2_subxoff number
os2_subyoff number
os2_supxsize number
os2_supysize number
os2_supxoff number
os2_supyoff number
os2_strikeysize number
os2_strikeypos number
os2_family_class number
os2_xheight number
os2_capheight number
os2_defaultchar number
os2_breakchar number
os2_vendor string
panose table

The panose subtable has exactly 10 string keys:

key type explanation
familytype string Values as in the OpenType font specification: Any, No Fit, Text and

Display, Script, Decorative, Pictorial

75LuaTEX Lua Libraries

serifstyle string See the OpenType font specification for values
weight string id.
proportion string id.
contrast string id.
strokevariation string id.
armstyle string id.
letterform string id.
midline string id.
xheight string id.

6 names table

Each item has two top-level keys:

key type explanation
lang string language for this entry
names table

The names keys are the actual TrueType name strings. The possible keys are:

key explanation
copyright
family
subfamily
uniqueid
fullname
version
postscriptname
trademark
manufacturer
designer
descriptor
venderurl
designerurl
license
licenseurl
idontknow
preffamilyname
prefmodifiers
compatfull
sampletext
cidfindfontname

LuaTEX Lua Libraries76

7 anchor_classes table

The anchor_classes classes:

key type explanation
name string A descriptive id of this anchor class
lookup string
type string One of 'mark', 'mkmk', 'curs', 'mklg'

8 gpos table

Th gpos table has one array entry for each lookup.

key type explanation
type string One of 'gpos_single', 'gpos_pair', 'gpos_cursive', 'gpos_mark2base', 'gpos_mark2ligature',

'gpos_mark2mark', 'gpos_context', 'gpos_contextchain'
flags table
name string
features array
subtables array

The flags table has a true value for each of the lookup flags that is actually set:

key type explanation
r2l boolean
ignorebaseglyphs boolean
ignoreligatures boolean
ignorecombiningmarks boolean

The features table has:

key type explanation
tag string
scripts table
ismax number (only if true)

The scripts table within features has:

key type explanation
script string
langs array of strings

The subtables table has:

key type explanation
name string

77LuaTEX Lua Libraries

suffix string (only if used)
anchor_classes number (only if used)
vertical_kerning number (only if used)
kernclass table (only if used)

The kernclass with subtables table has:

key type explanation
firsts array of strings
seconds array of strings
lookup string associated lookup
offsets array of numbers

9 gsub table

This has identical layout to the gpos table, except for the type:

key type explanation
type string One of 'gsub_single', 'gsub_multiple', 'gsub_alternate', 'gsub_ligature', 'gsub_context',

'gsub_contextchain', 'gsub_reversecontextchain'

10 ttf_tables table

key type explanation
tag string
len number
maxlen number
data number

11 kerns table

Substructure is identical to the per-glyph subtable.

12 vkerns table

Substructure is identical to the per-glyph subtable.

13 texdata table

key type explanation
type string unset, text, math, mathext
params array 22 font numeric parameters

LuaTEX Lua Libraries78

14 lookups table

Top-level lookups is quite different from the ones at character level. The keys in this hash are strings,
the values the actual lookups, represented as dictionary tables.

key type explanation
type number
format enum One of 'glyphs', 'class', 'coverage', 'reversecoverage'
tag string
current_class array
before_class array
after_class array
rules array an array of rule items

Rule items have one common item and one specialized item:

key type explanation
lookups array A linear array of lookup names
glyph array Only if the parent's format is `glyph'
class array Only if the parent's format is `glyph'
coverage array Only if the parent's format is `glyph'
reversecoverage array Only if the parent's format is `glyph'

A glyph table is:

key type explanation
names string
back string
fore string

A class table is:

key type explanation
current array of numbers
before array of numbers
after array of numbers

coverage:

key type explanation
current array of strings
before array of strings
after array of strings

reversecoverage:

79LuaTEX Lua Libraries

key type explanation
current array of strings
before array of strings
after array of strings
replacements string

4.16 The lang library
This library provides the interface to LuaTEX's structure representing a language, and the associated
functions.

<language> l = lang.new()
<language> l = lang.new(number id)

This function creates a new userdata object. An object of type <language> is the first argument to
most of the other functions in the lang library. These functions can also be used as if they were object
methods, using the colon syntax.
Without an argument, the next available internal id number will be assigned to this object. With argument,
an object will be created that links to the internal language with that id number.

number n = lang.id(<language> l)

returns the internal \language id number this object refers to.

string n = lang.hyphenation(<language> l)
lang.hyphenation(<language> l, string n)

Either returns the current hyphenation exceptions for this language, or adds new ones. The syntax of
the string is explained in the next chapter, section 5.3.

lang.clear_hyphenation(<language> l)

Clears the exception dictionary for this language.

string n = lang.clean(string o)

Creates a hypenation key from the supplied hyphenation value. The syntax of the argument string is
explained in the next chapter, section 5.3. This function is useful if you want to do something else based
on the words in a dictionary file, like spell-checking.

string n = lang.patterns(<language> l)
lang.patterns(<language> l, string n)

Adds additional patterns for this language object, or returns the current set. The syntax of this string is
explained in the next chapter, section 5.3.

LuaTEX Lua Libraries80

lang.clear_patterns(<language> l)

Clears the pattern dictionary for this language.

number n = lang.prehyphenchar(<language> l)
lang.prehyphenchar(<language> l, number n)

Gets or sets the `pre-break' hyphen character for this font (initially the hyphen, decimal 45).

number n = lang.posthyphenchar(<language> l)
lang.posthyphenchar(<language> l, number n)

Gets or sets the `post-break' hyphen character for this font (initially null, decimal 0).

boolean success = lang.hyphenate(<node> head)
boolean success = lang.hyphenate(<node> head, <node> tail)

Inserts hyphenation points (discretionary nodes) in a node list. If tail is given as argument, processing
stops on that node. Currently, succes is always true if head (and tail, if specified) are proper nodes,
regardless of possible other errors.

81Languages and characters, Fonts and glyphs

5 Languages and characters, Fonts and glyphs
LuaTEX's internal handling of the characters and glyphs that eventually become typeset is quite different
from the way TEX82 handles those same objects. The easiest way to explain the difference is to focus
on unrestricted horizontal mode (i. e. paragraphs) and hyphenation first. Later on, it will be easy to deal
with the differences that occur in horizontal and math modes.
In TEX82, the characters you type are converted into char_node records when they are encountered by
the main control loop. TEX attaches and processes the font information while creating those records, so
that the resulting `horizontal list' contains the final forms of ligatures and implicit kerning.
When it becomes necessary to hyphenate words in a paragraph, TEX converts (one word at time) the
char_node records into a string array by replacing ligatures with their components and ignoring the
kerning. Then it runs the hyphenation algorithm on this string, and converts the hyphenated result back
into a `horizontal list' that is consecutively spliced back into the paragraph stream.
The char_node records are somewhat misnamed, as they are glyph positions in specific fonts, and
therefore not really `characters' in the linguistic sense. There is no language information inside the
char_node records. Instead, language information is passed along using language whatsit records
inside the horizontal list.
In LuaTEX, the situation is quite different. The characters you type are always converted into
glyph_node records with a special subtype to identify them as being intended as linguistic charac-
ters. LuaTEX stores the needed language information in those records, but does not do any font-related
processing at the time of node creation.
When it becomes necessary to typeset a paragraph, LuaTEX first inserts all hyphenation points right
into the whole node list. Next, it processes all the font information in the whole list (creating ligatures
and adjusting kerning), and finally it adjusts all the subtype identifiers so that the records are `glyph
nodes' from now on.
That was the broad overview. The rest of this chapter will deal with the minutiae of the new process.

5.1 Characters and glyphs
TEX82 (including pdfTEX) differentiated between char_nodes and lig_nodes. The former are simple
items that contained nothing but a `character' and a `font' field, and they lived in the same memory as
tokens did. The latter also contained a list of components, and a subtype indicating whether this ligature
was the result of a word boundary, and it was stored in the same place as other nodes like boxes and
kerns and glues.
In LuaTEX, these two types are merged into one, somewhat larger structure called a glyph_node.
Besides having the old character, font, and component fields, and the new special fields like `attr'
(see section 7.1.2.12), these nodes also contain:

• A subtype, split into four main types:

Languages and characters, Fonts and glyphs82

− `character' – for characters to be hyphenated
− `glyph' – for specific font glyphs
− `ligature' – for ligatures
− `ghost' – for `ghost objects'
The latter two make further use of two extra fields:
− `left' – for ligatures: created from a left word boundary. for ghosts: created from \leftghost
− `right' – for ligatures: created from a right word boundary. for ghosts: created from \rightghost
for ligatures, both bits can be set at the same time (in case of a single-glyph word).

• glyph_nodes of type `character' also contain language data, split into four items that were
current when the node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits),
\righthyphenmin (8 bits), and \uchyph (1 bit).

Incidentally, LuaTEX allows 32768 separate languages, and words can be 256 characters long.
Because the \uchyph value is saved in the actual nodes, its handling is subtly different from TEX82:
changes to \uchyph become effective immediately, not at the end of the current partial paragraph.
Typeset boxes now always have their language information embedded in the nodes themselves, so there
is no longer a possible dependancy on the surrounding language settings. In TEX82, a mid-paragraph
statement like \unhbox0 would process the box using the current paragraph language unless there was
a \setlanguage issued inside the box. In LuaTEX, all language variables are already frozen.

5.2 The main control loop
In LuaTEX's main loop, almost all input characters that are to be typeset are converted into glyph_node
records with subtype `character', but there are a few small exceptions.
First, the \accent primitives creates nodes with subtype `glyph' instead of `character': one for the actual
accent and one for the accentee. The primary reason for this is that \accent in TEX82 is explicitly
dependent on the current font encoding, so it would not make much sense to attach a new meaning to the
primitive's name, as that would invalidate many old documents and macro packages. A secondary reason
is that in TEX82, \accent prohibits hyphenation of the current word. Since in LuaTEX hyphenation only
takes place on `character' nodes, it is possible to achieve the same effect.
This change of meaning did happen with \char, that now generates `character' nodes, consistent with
its changed meaning in X ETEX. The changed status of \char is not yet finalized, but if it stays as it is
now, a new primitive \glyph should be added to directly insert a font glyph id.
Second, all the results of processing in math mode eventually become nodes with `glyph' subtypes.
Third, the Aleph-derived commands \leftghost and \rightghost create nodes of a third subtype:
`ghost'. These nodes are ignored completely by all further processing until the stage where inter-glyph
kerning is added.
Fourth, automatic discretionaries are handled differently. TEX82 inserts an empty discretionary after
sensing an input character that matches the \hyphenchar in the current font. This test is wrong, in our
opinion: wether or not hyphenation takes place should not depend on the current font, it is a language
property.

83Languages and characters, Fonts and glyphs

In LuaTEX, it works like this: if LuaTEX senses a string of input characters that matches the value
of the new integer parameter \exhyphenchar, it will insert an empty discretionary after that series
of nodes. Initex sets the \exhyphenchar=`\-. Incidentally, this is a global parameter instead of a
language-specific one because it may be useful to change the value depending on the document structure
instead of the text language.
The exact status and meaning of \hyphenchar is still under consideration, it will probably become
used in the character to glyph conversion stage. Currently it is simply ignored.
Fifth, \setlanguage no longer creates whatsits. The meaning of \setlanguage is changed so that
it is now an integer parameter like all others. That integer parameter is used in \glyph_node creation
to add language information to the glyph nodes. In conjunction, the \language primitive is extended
so that it always also updates the value of \setlanguage.
Sixth, the \noboundary command (this command prohibits word boundary processing where that would
normally take place) now does create whatsits. These whatsits are needed because the exact place of
the \noboundary command in the input stream has to be retained until after the ligature and font
processing stages.
Finally, there is no longer a main_loop label in the code. Remember that TEX82 did quite a lot
of processing while adding char_nodes to the horizontal list? For speed reasons, it handled that
processing code outside of the `main control' loop, and only the first character of any `word' was handled
by that `main control' loop. In LuaTEX, there is no longer a need for that (all hard work is done
later), and the (now very small) bits of character-handling code have been moved back inline. When
\tracingcommands is on, this is visible because the full word is reported, instead of just the initial
character.

5.3 Loading patterns and exceptions
The hyphenation algorithm in LuaTEX is quite different from the one in TEX82, although it uses essentially
the same user input.
After expansion, the argument for \patterns has to be proper UTF-8, no \char or \chardef-ed
commands are allowed. (The current implementation is even more strict, and will reject all non-unicode
characters, but that will be changed in the future. For now, the generated errors are a valuable tool in
discovering font-encoding specific pattern files)
Likewise, the expanded argument for \hyphenation also has to be proper UTF-8, but here a tiny little
bit of extra syntax is provided:

1. three sets of arguments in curly braces ({}{}{}) indicates a desired complex discretionary, with
arguments as in \discretionary's command in normal document input.

2. - indicates a desired simple discretionary, cf. \- and \discretionary{-}{}{} in normal docu-
ment input.

3. Internal command names are ignored. This rule is provided especially for \discretionary, but it
also helps to deal with \relax commands that may sneak in.

4. = indicates a hyphen in the document input (but that is only useful in documents where
\exhyphenchar is not equal to the hyphen).

Languages and characters, Fonts and glyphs84

The expanded argument is first converted back to a space-separated string while dropping the internal
command names. This string is then converted into a dictionary by a routine that creates key--value
pairs by converting the other listed items. It is important to note that the keys in an exception dictionary
can always be generated from the values. Here are a few examples:

value implied key (input) effect
ta-ble table ta\-ble (= ta\discretionary {-}{}{}ble)
ba{k-}{}{c}ken backen ba\discretionary {k-}{}{c}ken

The resultant patterns and exception dictionary will be stored under the language code that is the
present value of \language.
In the last line of the table, you see there is no \discretionary command in the value: the command
is optional in the TEX-based input syntax. The underlying reason for that is that it is conceivable that a
whole dictionary of words is stored as a plain text file and loaded into LuaTEX using one of the functions
in the Lua lang library. This loading method is quite a bit faster than going through the TEX language
primitives, but some (most?) of that speed gain would be lost if it had to interpret command sequences
while doing so.
The motivation behind the ε-TEX extension \savinghyphcodes was that hyphenation heavily depended
on font encodings. This is no longer true in LuaTEX, and the corresponding primitive is ignored pending
complete removal. The future semantics of \uppercase and \lowercase are still under consideration,
no changes have taken place yet.

5.4 Applying hyphenation
The internal structures LuaTEX uses for the insertion of discretionaries in words is very different from
the ones in TEX82, and that means there are some noticable differences in handling as well.
First and foremost, there is no `compressed trie' involved in hyphenation. The algorithm still reads
PATGEN-generated pattern files, but LuaTEX uses a finite state hash to match the patterns against the
word to be hyphenated. This algorithm is based on the `libhnj' library used by OpenOffice. The memory
allocation for this new implementation is completely dynamic, so the web2c setting for trie_size is
ignored.
Differences between LuaTEX and TEX82 that are a direct result of that:

• LuaTEX happily hyphenates the full Unicode character range.
• Pattern and exception dictionary size is limited by the available memory only, all allocations are

done dynamically. The trie-related settings in texmf.cnf are ignored.
• Because there is no `trie preparation' stage, language patterns never become frozen. This means that

the primitive \patterns (and its lua counterpart lang.patterns) can be used at any time, not
only in initex.

• Only the string representation of \patterns and \hyphenation is stored in the format file. At
format load time, they are simply re-evaluated. It follows that there is no real reason to preload

85Languages and characters, Fonts and glyphs

languages in the format file. In fact, it is usually not a good idea to do so. It is much smarter to load
patterns no sooner than the first time they are actually needed.

• LuaTEX uses the language-specific variables \prehyphenchar and \posthyphenchar in the
creation of discretionaries, instead of TEX82's \hyphenchar.

Previously, there were problems with changing the node attributes mid-word, but that problem is now
solved, as nodes in a word are not converted to and from a string any more (this was required by the
old hyphenation code), they are edited in place. Inserted characters and ligatures inherit their attributes
from the nearest glyph node item (usually the preceding one, but the following one for the items inserted
at the left-hand side of a word).
Word boundaries are no longer implied by font switches, but by language switches. One word can have
two separate fonts and still be hyphenated correctly (but it can not have two different languages, the
\setlanguage command forces a word boundary).
All languages start out with \prehyphenchar=`\- and \posthyphenchar=0. When you assign the
values of \prehyphenchar and \posthyphenchar, you are actually changing the settings for the
current \language, this behavior is compatible with \patterns and \hyphenation.
LuaTEX also hyphenates the first word in a paragraph.
Words can be up to 256 characters long (up from 64 in TEX82). Longer words generate an error right now,
but eventually either the limitation will be removed or perhaps it will become possbile to silently ignore
the excess characters (this is what happens in TEX82, but there the behavior cannot be controlled).
If you are using the Lua function lang.hyphenate, you should be aware that this function expects to
receive a list of `character' nodes. It will not operate properly in the presence of `glyph', `ligature', or
`ghost' nodes, nor does it know how to deal with kerning. In the near future, it will be able to skip over
`ghost' nodes, and we may add a less fuzzy function you can call as well.
The hyphenation exception dictionary is maintained as key-value hash, and that is also dynamic, so the
hyph_size setting is not used either.
A technical paper detailing the new algorithm will be released as a separate document.

5.5 Applying ligatures and kerning
After all possible hyphenation points have been inserted in the list, LuaTEX will process the list to
convert the `character' nodes into `glyph' and `ligature' nodes. This is actually done in two stages: first
all ligatures are processed, then all kerning information is applied to the result list. But those two
stages are somewhat dependent on each other: If the used font makes it possible to do so, the ligaturing
stage adds virtual `character' nodes to the word boundaries in the list. While doing so, it removes and
interprets noboundary nodes. The kerning stage deletes those word boundary items after it is done
with them, and it does the same for `ghost' nodes. Finally, at the end of the kerning stage, all remaining
`character' nodes are converted to `glyph' nodes.
This work separation is worth mentioning because, if you overrule from Lua only one of the two callbacks
related to font handling, then you have to make sure you perform the tasks normally done by LuaTEX
itself in order to make sure that the other, non-overrruled, routine continues to function properly.

Languages and characters, Fonts and glyphs86

Work in this area is not yet complete, but most of the possible cases are handled by our rewritten
ligaturing engine. We are working hard to make sure all of the possible inputs will become supported
soon.
For example, take the word office, hyphenated of-fice, using a `normal' font with all the f-i
ligatures:

Initial: {o}{f}{f}{i}{c}{e}
After hyphenation: {o}{f}{{-},{},{}}{f}{i}{c}{e}
First ligature stage: {o}{{f}{-},{f},{ff}}{i}{c}{e}
Final result: {o}{{f}{-},{fi},{ffi}}{c}{e}

That's bad enough, but if there was a hyphenation point between the f and the i: of-f-ice, the final
result should be:

{o}{{f}{-},
{{f}{-},
{i},
{fi}},

{{ff}{-},
{i},
{ffi}}}{c}{e}

with discretionaries in the post-break text as well as in the replacement text of the top-level discretionary
that resulted from the first hyphenation point. And this is only a simple case.

5.6 Breaking paragraphs into lines
This code is still almost unchanged, but because of the above-mentioned changes with respect to discre-
tionaries and ligatures, line breaking will potentially be different from traditional TEX. The actual line
breaking code is still based on the TEX82 algorithms, and it does not expect there to be discretionaries
inside of discretionaries.
But that situation is now fairly common in LuaTEX, due to the changes to the ligaturing mechanism.
And also, the LuaTEX discretionary nodes are implemented slightly different from the TEX82 nodes: the
no_break text is now embedded inside the disc node, where previously these nodes kept their place in
the horizontal list (the discretionary node contained a counter indicating how many nodes to skip).
The combined effect of these two differences is that LuaTEX does not always use all of the potential
breakpoints in a paragraph, especially when fonts with many ligatures are used.

87Font structure

6 Font structure
All TEX fonts are represented to Lua code as tables, and internally as C structures. All keys in the
table below are saved in the internal font structure if they are present in the table returned by the de-
fine_font callback, or if they result from the normal tfm/vf reading routines if there is no define_font
callback defined.
The column `from vf' means that this key will be created by the font.read_vf() routine, `from tfm'
means that the key will be created by the font.read_tfm() routine, and `used' means whether or not
the LuaTEX engine itself will do something with the key.
The top-level keys in the table are as follows:

key from vf from tfm used value type description
name yes yes yes string metric (file) name
area no yes yes string (directory) location, typically empty
used no yes yes boolean used already? (initial: false)
characters yes yes yes table the defined glyphs of this font
checksum yes yes no number default: 0
designsize no yes yes number expected size (default: 655360 == 10pt)
direction no yes yes number default: 0 (LTR)
encodingbytes no no yes number default: depends on format
encodingname no no yes string encoding name
fonts yes no yes table locally used fonts
fullname no no yes string actual (PostScript) name
header yes no no string header comments, if any
hyphenchar no no yes number default: TeX's \hyphenchar
parameters no yes yes hash default: 7 parameters, all zero
size no yes yes number loaded (at) size. (default: same as designsize)
skewchar no no yes number default: TeX's \skewchar
type yes no yes string basic type of this font
format no no yes string disk format type
embedding no no yes string pdf inclusion
filename no no yes string disk file name
tounicode no yes yes number if 1, LuaTEX assumes per-glyph tounicode en-

tries are present in the font
stretch no no yes number the `stretch' value from \pdffontexpand
shrink no no yes number the `shrink' value from \pdffontexpand
step no no yes number the `step' value from \pdffontexpand
auto_expand no no yes boolean the `autoexpand keyword from \pdffontexpand
expansion_factor no no no number the actual expansion factor of an expanded

font
attributes no no yes string the \pdffontattr

The key name is always required.

Font structure88

The keys stretch, shrink, step and optionally auto_expand only have meaning when used to-
gether: they can be used to replace a post-loading \pdffontexpand command.
The expansion_factor is value that can be present inside a font in font.fonts. It is the ac-
tual expansion factor (a value between -shrink and stretch, with step step) of a font that was
automatically generated by the font expansion algorithm.
The key attributes can be used to replace \pdffontattr.
The key used is set by the engine when a font is actively in use, this makes sure that the font's definition
is written to the output file (dvi or pdf). The tfm reader sets it to false.
The direction is a number signalling the `normal' direction for this font. There are sixteen possibilities:

number meaning number meaning
0 LT 8 TT
1 LL 9 TL
2 LB 10 TB
3 LR 11 TR
4 RT 12 BT
5 RL 13 BL
6 RB 14 BB
7 RR 15 BR

These are Omega-style direction abbreviations: the first character indicates the `first' edge of the char-
acter glyphs (the edge that is seen first in the writing direction), the second the `top' side.
The parameters is a hash with mixed key types. There are seven possible string keys, as well as a
number of integer indices (these start from 8 up). The seven strings are actually used instead of the
bottom seven indices, because that gives a nicer user interface.
The names and their internal remapping:

name internal remapped number
slant 1
space 2
space_stretch 3
space_shrink 4
x_height 5
quad 6
extra_space 7

The keys type, format, embedding, fullname and filename are used to embed OpenType fonts
in the result pdf.
The characters table is a list of character hashes indexed by an integer number. The number is the
`internal code' TEX knows this character by.
Two very special string indexes can be used also: left_boundary is a virtual character whose ligatures
and kerns are used to handle word boundary processing. right_boundary is similar but not actually
used for anything (yet!).

89Font structure

Other index keys are ignored.
Each character hash itself is a hash. For example, here is the character `f' (decimal 102) in the font cmr10
at 10 points:

[102] = {
['width'] = 200250,
['height'] = 455111,
['depth'] = 0,
['italic'] = 50973,
['kerns'] = {

[63] = 50973,
[93] = 50973,
[39] = 50973,
[33] = 50973,
[41] = 50973

},
['ligatures'] = {
[102] = {

['char'] = 11,
['type'] = 0

},
[108] = {

['char'] = 13,
['type'] = 0

},
[105] = {

['char'] = 12,
['type'] = 0

}
}

}

The following top-level keys can be present inside a character hash:

key from vf from tfm used value type description
width yes yes yes number character's width, in sp (default 0)
height no yes yes number character's height, in sp (default 0)
depth no yes yes number character's depth, in sp (default 0)
italic no yes yes number character's italic correction, in sp (default

zero)
left_protruding no no maybe number character's \lpcode
right_protruding no no maybe number character's \rpcode
expansion_factor no no maybe number character's \efcode
tounicode no no maybe string character's Unicode equivalent(s), in UTF-16BE

hexadecimal format

Font structure90

next no yes yes number the `next larger' character index
extensible no yes yes table the constituent parts of an extensible recipe
kerns no yes yes table kerning information
ligatures no yes yes table ligaturing information
commands yes no yes array virtual font commands
name no no no string the character (PostScript) name
index no no yes number the (OpenType or TrueType) font glyph in-

dex
used no yes yes boolean typeset already (default: false)?

The values of left_protruding and right_protruding are used only when \pdfprotrudechars
is non-zero.
Whether or not expansion_factor is used depends on the font's global expansion settings, as well
as on the value of \pdfadjustspacing.
The usage of tounicode is this: if this font specifies a tounicode=1 at the top level, then LuaTEX will
construct a /ToUnicode entry for the PDF font (or font subset) based on the character-level tounicode
strings, where they are available. If a character does not have a sensible Unicode equivalent, do not
provide a string either (no empty strings).
If the font-level tounicode is not set, then LuaTEX will build up /ToUnicode based on the TEX code
points you used, and any character-level tounicodes will be ignored. At the moment, the string format
is exactly the format that is expected by Adobe CMAP files (UTF-16BE in hexadecimal encoding), minus
the enclosing angle brackets. This may change in the future. Small example: the tounicode for a fi
ligature would be 00660069.
The presence of extensible will overrule next, if that is also present.
The extensible table is very simple:

key type description
top number `top' character index
mid number `middle' character index
bot number `bottom' character index
rep number `repeatable' character index

The kerns table is a hash indexed by character index (and `character index' is defined as either a non-
negative integer or the string value right_boundary), with the values the kerning to be applied, in
scaled points.
The ligatures table is a hash indexed by character index (and `character index' is defined as either
a non-negative integer or the string value right_boundary), with the values being yet another small
hash, with two fields:

key type description
type number the type of this ligature command, default 0
char number the character index of the resultant ligature

91Font structure

The char field in a ligature is required.
The type field inside a ligature is the numerical or string value of one of the eight possible ligature
types supported by TEX. When TEX inserts a new ligature, it puts the new glyph in the middle of the
left and right glyphs. The original left and right glyphs can optionally be retained, and when at least
one of them is kept, it is also possible to move the new `insertion point' forward one or two places. The
glyph that ends up to the right of the insertion point will become the next `left'.

textual (Knuth) number string result
l + r =: n 0 =: |n
l + r =:| n 1 =:| |nr
l + r |=: n 2 |=: |ln
l + r |=:| n 3 |=:| |lnr
l + r =:|> n 5 =:|> n|r
l + r |=:> n 6 |=:> l|n
l + r |=:|> n 7 |=:|> l|nr
l + r |=:|>> n 11 |=:|>> ln|r

The default value is 0, and can be left out. That signifies a `normal' ligature where the ligature replaces
both original glyphs. In this table the | indicates the final insertion point.
The commands array is explained below.

6.1 Real fonts
Whether or not a TEX font is a `real' font that should be written to the pdf document is decided by
the type value in the top-level font structure. If the value is real, then this is a proper font, and the
inclusion mechanism will attempt to add the needed font object definitions to the pdf.
Values for type:

value description
real this is a base font
virtual this is a virtual font

The actions to be taken depend on a number of different variables:

• Whether the used font fits in an 8-bit encoding scheme or not
• The type of the disk font file
• The level of embedding requested

A font that uses anything other than an 8-bit encoding vector has to be written to the pdf in a different
way.
The rule is: if the font table has encodingbytes set to 2, then this is a wide font, in all other cases it
isn't. The value 2 is the default for OpenType and TrueType fonts loaded via Lua. For Type1 fonts, you

Font structure92

have to set encodingbytes to 2 explicitly. For pk bitmap fonts, wide font encoding is not supported
at all.
If no special care is needed, LuaTEX currently falls back to the mapfile-based solution used by pdfTEX
and dvips. This behavior will be removed in the future, when the existing code becomes integrated in the
new subsystem.
But if this is a `wide' font, then the new subsystem kicks in, and some extra fields have to be present in
the font structure. In this case, LuaTEX does not use a map file at all.
The extra fields are: format, embedding, fullname, cidinfo (as explained above), filename, and
the index key in the separate characters.
Values for format are:

value description
type1 this is a PostScript Type1 font
type3 this is a bitmapped (pk) font
truetype this is a TrueType or TrueType-based OpenType font
opentype this is a PostScript-based OpenType font

(type3 fonts are provided for backward compatibility only, and do not support the new wide encoding
options.)
Values for embedding are:

value description
no don't embed the font at all
subset include and atttempt to subset the font
full include this font in its entirety

It is not possible to artificially modify the transformation matrix for the font at the moment.
The other fields are used as follows: The fullname will be the PostScript/pdf font name. The cidinfo
will be used as the character set (the CID /Ordering and /Registry keys). The filename points
to the actual font file. If you include the full path in the filename or if the file is in the local directory,
LuaTEX will run a little bit more efficient because it will not have to re-run the find_xxx_file callback
in that case.
Be careful: when mixing old and new fonts in one document, it is possible to create PostScript name
clashes that can result in printing errors. When this happens, you have to change the fullname of the
font.
Typeset strings are written out in a wide format using 2 bytes per glyph, using the index key in the
character information as value. The overall effect is like having an encoding based on numbers instead of
traditional (PostScript) name-based reencoding. The way to get the correct index numbers for Type1
fonts is by loading the font via fontforge.open; use the table indices as index fields.
This type of reencoding means that there is no longer a clear connection between the text in your input
file and the strings in the output pdf file. Dealing with this is high on the agenda.

93Font structure

6.2 Virtual fonts
You have to take the following steps if you want LuaTEX to treat the returned table from define_font
as a virtual font:

• Set the top-level key type to virtual.
• Make sure there is at least one valid entry in fonts (see below)
• Give a commands array to every character (see below)

The presence of the toplevel type key with the specific value virtual will trigger handling of the rest
of the special virtual font fields in the table, but the mere existance of 'type' is enough to prevent LuaTEX
from looking for a virtual font on its own.
Therefore, this also works `in reverse': if you are absolutely certain that a font is not a virtual font,
assigning the value base or real to type will inhibit LuaTEX from looking for a virtual font file,
thereby saving you a disk search.
The fonts is another Lua array. The values are one- or two-key hashes themselves, each entry indicating
one of the base fonts in a virtual font. An example makes this easy to understand

fonts = { { name = 'ptmr8a', size = 655360},
{ name = 'psyr', size = 600000},
{ id = 38 } }

says that the first referenced font (index 1) in this virtual font is ptrmr8a loaded at 10pt, and the second
is psyr loaded at a little over 9pt. The third one is previously defined font that is known to LuaTEX as
fontid `38'.
The array index numbers are used by the character command definitions that are part of each character.
The commands array is a hash where each item is another small array, with the first entry representing
a command and the extra items being the parameters to that command. The allowed commands and their
arguments are:

command name arguments arg type description
font 1 number select a new font from the local fonts table
char 1 number typeset this character number from the current font, and move

right by the character's width
node 1 node output this node (list), and move right by the width of this

list
slot 2 number a shortcut for the combination of a font and char command
push 0 save current position
nop 0 do nothing
pop 0 pop position
rule 2 2 numbers output a rule w ∗ h, and move right.
down 1 number move down on the page
right 1 number move right on the page

Font structure94

special 1 string output a \special command
comment any any the arguments of this command are ignored

Here is a rather elaborate glyph commands example:

...
commands = {
{'push'}, -- remember where we are
{'right', 5000}, -- move right about 0.08pt
{'font', 3}, -- select the fonts[3] entry
{'char', 97}, -- place character 97 (ASCII 'a')
{'pop'}, -- go all the way back
{'down', -200000}, -- move upwards by about 3pt
{'special', 'pdf: 1 0 0 rg'} -- switch to red color
{'rule', 500000, 20000} -- draw a bar
{'special','pdf: 0 g'} -- back to black

}
...

The default value for font is always 1 at the start of the commands array. Therefore, if the virtual font
is essentially only a re-encoding, then you do usually not have create an explicit `font' command in the
array.
Rules inside of commands arrays are built up using only two dimensions: they do not have depth. For
correct vertical placement, an extra down command may be needed.
Regardless of the amount of movement you create within the commands, the output pointer will always
move by exactly the width that was given in the width key of the character hash. Any movements that
take place inside the commands array are ignored on the upper level.

6.2.1 Artificial fonts
Even in a `real' font, there can be virtual characters. When LuaTEX encounters a commands field inside
a character when it becomes time to typeset the character, it will interpret the commands, just like for a
true virtual character. In this case, if you have created no `fonts' array, then the default (and only) `base'
font is taken to be the current font itself. In practice, this means that you can create virtual duplicates
of existing characters which is useful if you want to create composite characters.
Note: this feature does not work the other way around. There can not be `real' characters in a virtual
font! You cannot use this technique for font re-encoding either; you need a truly virtual font for that
(because characters that are already present cannot be altered).

6.2.2 Example virtual font
Finally, here is a plain TEX input file with a virtual font demonstration:

95Font structure

\directlua0 {
callback.register('define_font',
function (name,size)
if name == 'cmr10-red' then
f = font.read_tfm('cmr10',size)
f.name = 'cmr10-red'
f.type = 'virtual'
f.fonts = {{ name = 'cmr10', size = size }}
for i,v in pairs(f.characters) do
if (string.char(i)):find('[tacohanshartmut]') then

v.commands = {
{'special','pdf: 1 0 0 rg'},
{'char',i},
{'special','pdf: 0 g'},
}

else
v.commands = {{'char',i}}

end
end

else
f = font.read_tfm(name,size)

end
return f

end
)

}

\font\myfont = cmr10-red at 10pt \myfont This is a line of text \par
\font\myfontx= cmr10 at 10pt \myfontx Here is another line of text \par

96

97Nodes

7 Nodes

7.1 LUA node representation
TEX's nodes are represented in Lua as userdata object with a variable set of fields. In the following
syntax tables, such the type of such a userdata object is represented as 〈node〉.
The current return value of node.types() is: hlist (0), vlist (1), rule (2), ins (3), mark (4),
adjust (5), disc (7), whatsit (8), math (9), glue (10), kern (11), penalty (12), unset (13), style
(14), choice (15), ord (16), op (17), bin (18), rel (19), open (20), close (21), punct (22), inner
(23), radical (24), fraction (25), under (26), over (27), accent (28), vcenter (29), left (30),
right (31), margin_kern (32), glyph (33), align_record (34), pseudo_file (35), pseudo_line
(36), page_insert (37), split_insert (38), expr_stack (39), nested_list (40), span (41), at-
tribute (42), glue_spec (43), attribute_list (44), action (45), temp (46), align_stack (47),
movement_stack (48), if_stack (49), unhyphenated (50), hyphenated (51), delta (52), pas-
sive (53), shape (54), fake (100), but as already mentioned, the math and alignment nodes in this list
are not supported at the moment. The useful list is described in the next sections.

7.1.1 Auxiliary items
A few node-typed userdata objects do not occur in the `normal' list of nodes, but can be pointed to from
within that list. They are not quite the same as regular nodes, but it is easier for the library routines to
treat them as if they were.

7.1.1.1 glue_spec items

Skips are about the only type of data objects in traditional TEX that are not a simple value. The structure
that represents the glue components of a skip is called a glue_spec, and it has the following accessible
fields:

key type explanation
width number
stretch number
stretch_order number
shrink number
shrink_order number

These objects are reference counted, so there is actually an extra field named ref_count as well. This
item type will likely disappear in the future, and the glue fields themselves will become part of the nodes
referencing glue items.

Nodes98

7.1.1.2 attribute_list and attribute items

The newly introduced attribute registers are non-trivial, because the value that is attached to a node is
essentially a sparse array of key-value pairs.
It is generally easiest to deal with attribute lists and attributes by using the dedicated functions in the
node library, but for completeness, here is the low-level interface.
An attribute_list item is used as a head pointer for a list of attribute items. It has only one
user-visible field:

field type explanation
next <node> pointer to the first attribute

A normal node's attribute field will point to an item of type attribute_list, and the next field in
that item will point to the first defined `attribute' item, whose next will point to the second `attribute'
item, etc.
Valid fields in attribute items:

field type explanation
next <node> pointer to the next attribute
number number the attribute type id
value number the attribute value

7.1.1.3 action item

Valid fields: action_type, named_id, action_id, file, new_window, data, ref_count
These are a special kind of item that only appears inside pdf start link objects.

field type explanation
action_type number
action_id number or string
named_id number
file string
new_window number
data string
ref_count number

7.1.2 Main text nodes
These are the nodes that comprise actual typesetting commands.
A few fields are present in all nodes regardless of their type, these are:

field type explanation
next <node> The next node in a list, or nil

99Nodes

id number The node's type (id) number
subtype number The node subtype identifier

The subtype is sometimes just a stub entry. Not all nodes actually use the subtype, but this way you
can be sure that all nodes accept it as a valid field name, and that is often handy in node list traversal.
In the following tables next and id are not explicitly mentioned.
Besides these three fields, almost all nodes also have an attr field, and there is a also a field called
prev. That last field is always present, but only initialized on explicit request: when the function
node.slide() is called, it will set up the prev fields to be a backwards pointer in the argument node
list.

7.1.2.1 hlist nodes

Valid fields: attr, width, depth, height, dir, shift, glue_order, glue_sign, glue_set, list

field type explanation
subtype number unused
attr <node> The head of the associated attribute list
width number
height number
depth number
shift number a displacement perpendicular to the character progression direction
glue_order number a number in the range 0–4, indicating the glue order
glue_set number the calculated glue ratio
glue_sign number
list <node> the body of this list
dir number the direction of this box

7.1.2.2 vlist nodes

Valid fields: As for hlist, except that `shift' is a displacement perpendicular to the line progression
direction.

7.1.2.3 rule nodes

Valid fields: attr, width, depth, height, dir

field type explanation
subtype number unused
attr <node>
width number rule size. The special value −1073741824 is used for `running' glue dimensions
height number ' '

Nodes100

depth number ' '
dir number the direction of this rule

7.1.2.4 ins nodes

Valid fields: attr, cost, depth, height, spec, list

field type explanation
subtype number the insertion class
attr <node>
cost number the penalty associated with this insert
height number
depth number
list <node> the body of this insert
spec <node> a pointer to the \splittopskip glue spec

7.1.2.5 mark nodes

Valid fields: attr, class, mark

field type explanation
subtype number unused
attr <node>
class number the mark class
mark table a table representing a token list

7.1.2.6 adjust nodes

Valid fields: attr, list

field type explanation
subtype number 0 = normal, 1 = `pre'
attr <node>
list <node> adjusted material

7.1.2.7 disc nodes

Valid fields: attr, pre, post, replace

field type explanation
subtype number indicates the source of a discretionary. 0 = the \discretionary command, 1

= the \- command, 2 = added automatically following a -, 3 = added by the
hyphenation algorithm

101Nodes

attr <node>
pre <node> pointer to the pre-break text
post <node> pointer to the post-break text
replace <node> pointer to the no-break text

7.1.2.8 math nodes

Valid fields: attr, surround

field type explanation
subtype number 0 = `on', 1 = `off'
attr <node>
surround number width of the \mathsurround kern

7.1.2.9 glue nodes

Valid fields: attr, spec, leader

field type explanation
subtype number 0 = \skip, 1–18 = internal glue parameters, 100 = \leaders, 101 =

\cleaders, 102 = \xleaders
attr <node>
spec <node> pointer to a glue_spec item
leader <node> pointer to a box or rule for leaders

7.1.2.10 kern nodes

Valid fields: attr, kern

field type explanation
subtype number 0 = from font, 1 = from \kern or \/, 2 = from \accent
attr <node>
kern number

7.1.2.11 penalty nodes

Valid fields: attr, penalty

field type explanation
subtype number not used
attr <node>
penalty number

Nodes102

7.1.2.12 glyph nodes

Valid fields: attr, char, font, lang, left, right, uchyph, components, xoffset, yoffset

field type explanation
subtype number bitfield, with bits:

bit 0 character
bit 1 glyph
bit 2 ligature
bit 3 ghost
bit 4 left
bit 5 right

attr <node>
char number
font number
lang number
left number
right number
uchyph boolean
components <node> pointer to ligature components
xoffset number
yoffset number

See section 5.1 for a detailed description of the subtype field.

7.1.2.13 margin_kern nodes

Valid fields: attr, width, glyph

field type explanation
subtype number 0 = left side, 1 = right side
attr <node>
width number
glyph <node>

7.1.3 whatsit nodes
Whatsit nodes come in many subtypes that you can ask for by running node.whatsits(): write
(1), close (2), special (3), local_par (6), dir (7), pdf_literal (8), pdf_refobj (10),
pdf_refxform (12), pdf_refximage (14), pdf_annot (15), pdf_start_link (16), pdf_end_link
(17), pdf_dest (19), pdf_thread (20), pdf_start_thread (21), pdf_end_thread (22),
pdf_save_pos (23), pdf_thread_data (24), pdf_link_data (25), open (0), pdf_setmatrix

103Nodes

(40), pdf_restore (42), fake (100), late_lua (35), user_defined (44), pdf_colorstack (39),
pdf_save (41), cancel_boundary (43), close_lua (36),

7.1.3.1 open nodes

Valid fields: attr, stream, name, area, ext

field type explanation
attr <node>
stream number TEX's stream id number
name string file name
ext string file extension
area string file area

7.1.3.2 write nodes

Valid fields: attr, stream, data

field type explanation
attr <node>
stream number TEX's stream id number
data table a table representing the token list to be written

7.1.3.3 close nodes

Valid fields: attr, stream

field type explanation
attr <node>
stream number TEX's stream id number

7.1.3.4 special nodes

Valid fields: attr, data

field type explanation
attr <node>
data string the \special information

Nodes104

7.1.3.5 language nodes

LuaTEX does not have language whatsits any more. All language information is already present inside
the glyph nodes themselves. This whatsit subtype will be removed in the next release.

7.1.3.6 local_par nodes

Valid fields: attr, pen_inter, pen_broken, dir, box_left, box_left_width, box_right,
box_right_width

field type explanation
attr <node>
pen_inter number interline penalty
pen_broken number broken penalty
dir number the direction of this par
box_left <node> the \localleftbox
box_left_width number width of the \localleftbox
box_right <node> the \localrightbox
box_right_width number width of the \localrightbox

7.1.3.7 dir nodes

Valid fields: attr, dir, level, dvi_ptr, dvi_h

field type explanation
attr <node>
dir number the direction
level number nesting level of this direction whatsit
dvi_ptr number a saved dvi buffer byte offset
dir_h number a saved dvi position

7.1.3.8 pdf_literal nodes

Valid fields: attr, mode, data

field type explanation
attr <node>
mode number the `mode' setting of this literal
data string the \pdfliteral information

7.1.3.9 pdf_refobj nodes

Valid fields: attr, objnum

105Nodes

field type explanation
attr <node>
objnum number the referenced pdf object number

7.1.3.10 pdf_refxform nodes

Valid fields: attr, width, height, depth, objnum.

field type explanation
attr <node>
width number
height number
depth number
objnum number the referenced pdf object number

Be aware that pdf_refxform nodes have dimensions that are used by LuaTEX.

7.1.3.11 pdf_refximage nodes

Valid fields: attr, width, height, depth, objnum

field type explanation
attr <node>
width number
height number
depth number
objnum number the referenced pdf object number

Be aware that pdf_refximage nodes have dimensions that are used by LuaTEX.

7.1.3.12 pdf_annot nodes

Valid fields: attr, width, height, depth, objnum, data

field type explanation
attr <node>
width number
height number
depth number
objnum number the referenced pdf object number
data string the annotation data

Nodes106

7.1.3.13 pdf_start_link nodes

Valid fields: attr, width, height, depth, objnum, link_attr, action

field type explanation
attr <node>
width number
height number
depth number
objnum number the referenced pdf object number
link_attr table the link attribute token list
action <node> the action to perform

7.1.3.14 pdf_end_link nodes

Valid fields: attr

field type explanation
attr <node>

7.1.3.15 pdf_dest nodes

Valid fields: attr, width, height, depth, named_id, dest_id, dest_type, xyz_zoom, objnum

field type explanation
attr <node>
width number
height number
depth number
named_id number is the dest_id a string value?
dest_id number or string the destination id
dest_type number type of destination
xyz_zoom number
objnum number the pdf object number

7.1.3.16 pdf_thread nodes

Valid fields: attr, width, height, depth, named_id, thread_id, thread_attr

field type explanation
attr <node>
width number
height number
depth number

107Nodes

named_id number is the tread_id a string value?
tread_id number or string the thread id
thread_attr number extra thread information

7.1.3.17 pdf_start_thread nodes

Valid fields: attr, width, height, depth, named_id, thread_id, thread_attr

field type explanation
attr <node>
width number
height number
depth number
named_id number is the tread_id a string value?
tread_id number or string the thread id
thread_attr number extra thread information

7.1.3.18 pdf_end_thread nodes

Valid fields: attr

field type explanation
attr <node>

7.1.3.19 pdf_save_pos nodes

Valid fields: attr

field type explanation
attr <node>

7.1.3.20 late_lua nodes

Valid fields: attr, reg, data

field type explanation
attr <node>
reg number Lua state id number
data string data to execute

Nodes108

7.1.3.21 close_lua nodes

Valid fields: attr, reg

field type explanation
attr <node>
reg number Lua state id number

7.1.3.22 pdf_colorstack nodes

Valid fields: attr, stack, cmd, data

field type explanation
attr <node>
stack number colorstack id number
cmd number command to execute
data string data

7.1.3.23 pdf_setmatrix nodes

Valid fields: attr, data

field type explanation
attr <node>
data string data

7.1.3.24 pdf_save nodes

Valid fields: attr

field type explanation
attr <node>

7.1.3.25 pdf_restore nodes

Valid fields: attr

field type explanation
attr <node>

109Nodes

7.1.3.26 user_defined nodes

User-defined whatsit nodes can only be created and handled from Lua code. In effect, they are an
extension to the extension mechanism. The LuaTEX engine will simply step over such whatsits without
ever looking at the contents.
Valid fields: attr, user_id, type, value

field type explanation
attr <node>
user_id number id number
type number type of the value
value number

string
<node>
table

The type can have one of five distinct values:

value explanation
97 the value is an attribute node list
100 the value is a number
110 the value is a node list
115 the value is a token list in string form
116 the value is a token list in lua table form

110

111Modifications

8 Modifications
Besides the expected changes caused by new functionality, there are a number of not-so-expected
changes. These are sometimes a side-effect of a new (conflicting) feature, or, more often than not, a
change necessary to clean up the internal interfaces.

8.1 Changes from TEX 3.141592
• See chapter 5 for many small changes related to paragraph building, language handling, and hy-

phenation.
• There is no pool file, all strings are embedded during compilation.
• plus 1 fillll does not generate an error. The extra `l' is simply typeset.
• The \endlinechar can be either added (values 0 or more), or not (negative values). If it is added,

the character is always decimal 13 a/k/a ^^M a/k/a carriage return (This change may be temporary).
• The banner line and the statistics messages are different, as well as many warnings and error texts.

8.2 Changes from E-TEX 2.2
• The ε-TEX functionality is always present and enabled (but see below about TEXXeT), so the

prepended asterisk or -etex switch for iniTEX is not needed.
• TEXXeT is not present, so the primitives

\TeXXeTstate
\beginR
\beginL
\endR
\endL

are missing.
• Some of the tracing information that is output by ε-TEX's \tracingassigns and

\tracingrestores is not there.
• Register management in LuaTEX uses the Aleph model, so the maximum value is 65535 and the

implementation uses a flat array instead of the mixed flat&sparse model from ε-TEX.
• savinghyphcodes is a no-op and may possibly be removed. See chapter 5 for details.

8.3 Changes from PDFTEX 1.40

Modifications112

• The (experimental) support for snap nodes has been removed, because it is much more natural to
build this functionality on top of node processing and attributes. The associated primitives that are
now gone are: \pdfsnaprefpoint, \pdfsnapy, and \pdfsnapycomp.

• The (experimental) support for specialized spacing around nodes has also been removed. The asso-
ciated primitives that are now gone are: \pdfadjustinterwordglue, \pdfprependkern, and
\pdfappendkern, as well as the five supporting primitives \knbscode, \stbscode, \shbscode,
\knbccode, and \knaccode.

• A number of `utility functions' is removed:
\pdfelapsedtime
\pdfescapehex
\pdfescapename
\pdfescapestring
\pdffiledump
\pdffilemoddate

\pdffilesize
\pdflastmatch
\pdfmatch
\pdfmdfivesum
\pdfresettimer
\pdfshellescape

\pdfstrcmp
\pdfunescapehex

• A few other experimental primitives are also provided without the extra pdf prefix, so they can also
be called like this:
\primitive
\ifprimitive

\ifabsnum
\ifabsdim

• The definitions for new didot and new cicero are patched.
• The \pdfprimitive is bugfixed.
• The \pdftexversion is set to 200.

8.4 Changes from ALEPH RC4
• The input translations from Aleph are not implemented, the related primitives are not available:

\DefaultInputMode
\noDefaultInputMode
\noInputMode
\InputMode
\DefaultOutputMode
\noDefaultOutputMode
\noOutputMode
\OutputMode
\DefaultInputTranslation

\noDefaultInputTranslation
\noInputTranslation
\InputTranslation
\DefaultOutputTranslation
\noDefaultOutputTranslation
\noOutputTranslation
\OutputTranslation

• A small series of bounds checking fixes to \ocp and \ocplist has been added to prevent the system
from crashing due to array indexes running out of bounds.

• The \hoffset bug when \pagedir TRT is fixed, removing the need for an explicit fix to \hoffset
• A bug causing \fam to fail for family numbers above 15 is fixed.
• Some bits of Aleph assumed 0 and null were identical. This resulted for instance in a bug that

sometimes caused an eternal loop when trying to \show a box.
• A fair amount of other minor bugs are fixed as well, most of these related to \tracingcommands

output.

113Modifications

• The number of possible fonts, ocps and ocplists is smaller than their maximum Aleph value (around
5000 fonts and 30000 ocps / ocplists).

• The internal function scan_dir() has been renamed to scan_direction() to prevent a naming
clash.

• The ^^ notation can come in five and six item repetitions also, to insert characters that do not fit in
the BMP.

• Glues immediately after direction change commands are not legal breakpoints.
• The \ocp and \ocplist statistics at the end of a run are only printed if OCP's are actually used.

8.5 Changes from standard WEB2C
• There is no mltex
• There is no enctex
• The following commandline switches are silently ignored, even in non-Lua mode:

-8bit
-translate-file=TCXNAME
-mltex
-enc
-etex

• \openout whatsits are not written to the log file.
• Some of the so-called web2c extensions are hard to set up in non-kpse mode because texmf.cnf is

not read: shell-escape is off (but that is not a problem because of Lua's os.execute), and the
paranoia checks on openin and openout do not happen (however, it is easy for a Lua script to do
this itself by overloading io.open).

114

115Implementation notes

9 Implementation notes

9.1 Primitives overlap
The primitives

\pdfpagewidth \pagewidth
\pdfpageheight \pageheight
\fontcharwd \charwd
\fontcharht \charht
\fontchardp \chardp
\fontcharic \charic

are all aliases of each other.

9.2 Memory allocation
The single internal memory heap that traditional TEX used for tokens and nodes is split into two separate
arrays. Each of these will grow dynamically when needed.
The texmf.cnf settings related to main memory are no longer used (these are: main_memory,
mem_bot, extra_mem_top and extra_mem_bot). `Out of main memory' errors can still occur, but
the limiting factor is now the amount of RAM in your system, not a predefined limit.
Also, the memory (de)allocation routines for nodes are completely rewritten. The relevant code now
lives in the C file luanode.c, and basically uses a dozen or so avail lists instead of a doubly-linked
model. An extra function layer is added so that the code can ask for nodes by type instead of directly
requisitioning a certain amount of memory words.
Because of the split into two arrays and the resulting differences in the data structures, some of the
Pascal web macros have been duplicated. For instance, there are now vlink and vinfo as well as
link and info. All access to the variable memory array is now hidden behind a macro called vmem.
The implementation of the growth of two arrays (via reallocation) introduces a potential pitfall: the
memory arrays should never be used as the left hand side of a statement that can modify the array in
question.
The input line buffer and pool size are now also reallocated when needed, and the texmf.cnf settings
buf_size and pool_size are silently ignored.

9.3 Sparse arrays
The \mathcode, \delcode, \catcode, \sfcode, \lccode and \uccode tables are now sparse
arrays that are implemented in C. They are no longer part of the TEX `equivalence table' and because

Implementation notes116

each had 1.1 million entries with a few memory words each, this makes a major difference in memory
usage.
These assignments do not yet show up when using the etex tracing routines \tracingassigns and
\tracingrestores (code simply not written yet).
A side-effect of the current implementation is that \global is now more expensive in terms of processing
than non-global assignments.
See mathcodes.c and textcodes.c if you are interested in the details.
Also, the glyph ids within a font are now managed by means of a sparse array and glyph ids can go up
to index 221 − 1.

9.4 Simple single-character csnames
Single-character commands are no longer treated specially in the internals, they are stored in the hash
just like the multiletter csnames.
The code that displays control sequences explicitly checks if the length is one when it has to decide
whether or not to add a trailing space.

9.5 Compressed format
The format is passed through zlib, allowing it to shrink to roughly half of the size it would have had in
uncompressed form. This takes a bit more CPU cycles but much less disk I/O, so it should still be faster.

9.6 Binary file reading
All of the internal code is changed in such a way that if one of the read_xxx_file callbacks is not set,
then the file is read by a C function using basically the same convention as the callback: a single read
into a buffer big enough to hold the entire file contents. While this uses more memory than the previous
code (that mostly used getc calls), it can be quite a bit faster (depending on your I/O subsystem).

117Known bugs and limitations

10 Known bugs and limitations
The bugs below are going to be fixed eventually.
The top ones will be fixed soon, but in the later items either the actual problem is hard to find, or the
code that causes the bug is going to be replaced by a new subsystem soon anyway, or it may not be
worth the hassle and the limitations will eventually be documented.

• The current linebreaking implementation does not yet take all possible breakpoints into account
where ligatures are involved in the process. This means that line breaks may change in future
versions.

• Sometimes font loading via fontforge generates a message like this

Bad call to gww_iconv_open, neither arg is UCS4 (EUC-CN->UTF-8)

during font loading. This is a limitation of the internal iconv implementation.
• Font expansion does not work quite as it should. On the mailing list (sep 21), Jonathan Sauer posted

a very nice test file along with an explanation.
• tex.print() and tex.sprint() do not work if \directlua is used in an otp file (in the output

of an expression rule).
• Handling of attributes in math mode is not complete. The data structures in math mode are quite

different from those in text mode, so this will take some extra effort to implement correctly.
• When used inside \directlua, pdf.print() should create a literal node instead of flushing

immediately.
• At the moment, only characters in plane 0 and plane 1 can be assigned catcode 13 (i. e. turned into

active characters). This is a temporary measure to reduce the memory requirements of LuaTEX. In
general, LuaTEX's memory footprint is a bit larger that we would like (with plain.fmt preloaded
it needs about 55MB).

• Not all of Aleph's direction commands are handled properly in pdf mode, and especially the vertical
scripts support is missing almost completely (only TRT and TLT are routinely tested).

• Letter spacing (\letterspacefont) is currently non-functional due to massive changes in the
virtual font handling. This functionality may actually be removed completely in the future, because
it is straightforward to set up letterspacing using the Lua `define_font' interface.

• Node pointers are not always checked for validity, so if you make a mistake in the node list processing,
LuaTEX may terminate itself with an assertion error or `Emergency stop'.

• In dvi generation mode, using a \textdir switch inside the preamble of a \halign results in
overprinted text in the dvi file, because the column width is not taken into account during the final
placement phase (this is a bug inherited from Aleph). Also, Aleph apparently dislikes having more
than one non-grouped \textdir command in a single lined paragraph.

• Certain constructs in math mode leak memory nodes.

118

119TODO

11 TODO

On top of the `normal' extensions that are planned, there are some more specific small feature requests.
Whether these will all be included is not certain yet, (and new requests are welcome).

• Implement the TEX primitive \dimension, cf. \number.
• Change the Lua table tex.dimen to accept and return float values instead of strings.
• Do something about \withoutpt and/or a new register type \real?
• Create callback for the automatic creation of missing characters in fonts.
• Implement the TEX primitive \htdp?
• Do boxes with dual baselines.
• A way to (re?)calculate the width of a \vbox, taking only the natural width of the included items

into account.
• Make the number of the output box configurable.
• Complete the attributes in math and switch all the nodes to a double-linked list.
• Finish the interface from Lua to TEX's internals, specially the hash and equivalence table (a small

subpart is implementing \csname lookups for tex.box access).
• Use of Type1C for embedded PostScript font subsets in traditional 8-bit encodings.
• Support font reencoding of 8-bit fonts via char index instead of via map files.
• Attempt to parse OFM level 0 fonts that are masquerading as level 1.
• Add line numbers and input context information to the lua errors.

TODO120

	Introduction
	Basic TEX enhancements
	Version information
	UNICODE text support
	Wide math characters
	Extended tables
	Attribute registers
	Box attributes

	LUA related primitives
	\directlua
	\latelua
	\luaescapestring
	\closelua

	New ETEX primitives
	\clearmarks
	\noligs and \nokerns
	\formatname
	\scantextokens
	Catcode tables
	\suppressfontnotfounderror
	Font syntax

	Debugging

	LUA general
	Initialization
	LUATEX as a LUA interpreter
	LUATEX as a LUA byte compiler
	Other commandline processing

	LUA changes
	LUA modules

	LUATEX LUA Libraries
	The luatex {tex} library
	Integer parameters
	Dimension parameters
	Direction parameters
	Glue parameters
	Muglue parameters
	Tokenlist parameters
	Convert commands
	Attribute, count, dimension and token registers
	Box registers
	Print functions
	Helper functions

	The luatex {token} library
	luatex {token.get_next}
	luatex {token.is_expandable}
	luatex {token.expand}
	luatex {token.is_activechar}
	luatex {token.create}
	luatex {token.command_name}
	luatex {token.command_id}
	luatex {token.csname_name}
	luatex {token.csname_id}

	The luatex {node} library
	Node handling functions
	Attribute handling

	The luatex {texio} library
	Printing functions

	The luatex {pdf} library
	The luatex {img} library
	The luatex {mplib} library
	luatex {mplib.new}
	luatex {mp:statistics}
	luatex {mp:execute}
	luatex {mp:finish}
	Result table
	Subsidiary table formats

	The luatex {callback} library
	File discovery callbacks
	File reading callbacks
	Data processing callbacks
	Node list processing callbacks
	Information reporting callbacks
	Font-related callbacks

	The luatex {lua} library
	Variables
	LUA bytecode registers

	The luatex {kpse} library
	luatex {kpse.set_program_name}
	luatex {kpse.find_file}
	luatex {kpse.init_prog}
	luatex {kpse.readable_file}
	luatex {kpse.expand_path}
	luatex {kpse.expand_var}
	luatex {kpse.expand_braces}
	luatex {kpse.show_path}
	luatex {kpse.var_value}

	The luatex {status} library
	The luatex {texconfig} table
	The luatex {font} library
	Loading a TFM file
	Loading a VF file
	The fonts array
	Checking a font's status
	Defining a font directly
	Projected next font id
	Currently active font
	Maximum font id
	Iterating over all fonts

	The luatex {fontforge} library
	Getting quick information on a font
	Loading an OPENTYPE or TRUETYPE file
	Applying a 'feature file'
	Applying an 'afm file'

	Fontforge font tables
	The luatex {lang} library

	Languages and characters, Fonts and glyphs
	Characters and glyphs
	The main control loop
	Loading patterns and exceptions
	Applying hyphenation
	Applying ligatures and kerning
	Breaking paragraphs into lines

	Font structure
	Real fonts
	Virtual fonts
	Artificial fonts
	Example virtual font

	Nodes
	LUA node representation
	Auxiliary items
	Main text nodes
	whatsit nodes

	Modifications
	Changes from TEX 3.141592
	Changes from ETEX 2.2
	Changes from PDFTEX 1.40
	Changes from ALEPH RC4
	Changes from standard WEBC

	Implementation notes
	Primitives overlap
	Memory allocation
	Sparse arrays
	Simple single-character csnames
	Compressed format
	Binary file reading

	Known bugs and limitations
	TODO

