
The LuaTEX-ja package

The LuaTEX-ja project team

May 15, 2013

Contents

I User’s manual 3

1 Introduction 3
1.1 Backgrounds . 3
1.2 Major Changes from pTEX . 3
1.3 Notations . 4
1.4 About the project . 4

2 Getting Started 5
2.1 Installation . 5
2.2 Cautions . 5
2.3 Using in plain TEX . 6
2.4 Using in LATEX . 6

3 Changing Fonts 6
3.1 plain TEX and LATEX 2𝜀 . 6
3.2 fontspec . 7
3.3 Preset . 8
3.4 \CID, \UTF and macros in otf package . 9

4 Changing Parameters 10
4.1 Editing the range of JAchars . 10
4.2 kanjiskip and xkanjiskip . 12
4.3 Insertion Setting of xkanjiskip . 12
4.4 Shifting Baseline . 12

II Reference 13

5 Font Metric and Japanese Font 13
5.1 \jfont . 13
5.2 Prefix psft . 14
5.3 Structure of JFM file . 15
5.4 Math Font Family . 17
5.5 Callbacks . 17

6 Parameters 18
6.1 \ltjsetparameter . 18
6.2 List of Parameters . 19

7 Other Control Sequences 20
7.1 Control Sequences for Compatibility . 20
7.2 \inhibitglue . 20

8 Control Sequences for LATEX 2𝜀 21
8.1 Patch for NFSS2 . 21

1

9 Extensions 22
9.1 luatexja-fontspec.sty . 22
9.2 luatexja-otf.sty . 22
9.3 luatexja-adjust.sty . 22

III Implementations 22

10 Storing Parameters 23
10.1 Used Dimensions, Attributes and whatsit nodes . 23
10.2 Stack System of LuaTEX-ja . 24

11 Linebreak after Japanese Character 25
11.1 Reference: Behavior in pTEX . 25
11.2 Behavior in LuaTEX-ja . 25

12 Patch for the listings package 26

References 27

A The category code of non-kanji characters defined in JIS X 0213 28

B Package versions used in this document 31

This documentation is far from complete. It may have many grammatical (and contextual) errors. Also,
several parts (especially, Section ??) are written in Japanese only.

2

Part I

User’s manual
1 Introduction

The LuaTEX-ja package is a macro package for typesetting high-quality Japanese documents when using LuaTEX.

1.1 Backgrounds

Traditionally, ASCII pTEX, an extension of TEX, and its derivatives are used to typeset Japanese documents in
TEX. pTEX is an engine extension of TEX: so it can produce high-quality Japanese documents without using very
complicated macros. But this point is a mixed blessing: pTEX is left behind from other extensions of TEX, especially
𝜀-TEX and pdfTEX, and from changes about Japanese processing in computers (e.g., the UTF-8 encoding).

Recently extensions of pTEX, namely upTEX (Unicode-implementation of pTEX) and 𝜀-pTEX (merging of pTEX
and 𝜀-TEX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaTEX changed the whole situation. With using Lua ‘callbacks’, users can customize
the internal processing of LuaTEX. So there is no need to modify sources of engines to support Japanese typesetting:
to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major Changes from pTEX

The LuaTEX-ja package is under much influence of pTEX engine. The initial target of development was to implement
features of pTEX. However, LuaTEX-ja is not a just porting of pTEX; unnatural specifications/behaviors of pTEX were
not adopted.

The followings are major changes from pTEX:

• A Japanese font is a tuple of a ‘real’ font, a Japanese font metric (JFM, for short).

• In pTEX, a line break after Japanese character is ignored (and doesn’t yield a space), since line breaks
(in source files) are permitted almost everywhere in Japanese texts. However, LuaTEX-ja doesn’t have this
function completely, because of a specification of LuaTEX.

• The insertion process of glues/kerns between two Japanese characters and between a Japanese character and
other characters (we refer glues/kerns of both kinds as JAglue) is rewritten from scratch.

– As LuaTEX’s internal character handling is ‘node-based’ (e.g., of{}fice doesn’t prevent ligatures),
the insertion process of JAglue is now ‘node-based’.

– Furthermore, nodes between two characters which have no effects in line break (e.g., \special node)
and kerns from italic correction are ignored in the insertion process.

– Caution: due to above two points, many methods which did for the dividing the process of the insertion of
JAglue in pTEX are not effective anymore. In concrete terms, the following two methods are not effective
anymore:

\hskip2\zw ちょ{}っと\hskip2\zw ちょ\/っと

If you want to do so, please put an empty hbox between it instead:

\hskip2\zw ちょ\hbox{}っと

– In the process, two Japanese fonts which only differ in their ‘real’ fonts are identified.

• At the present, vertical typesetting (tategaki), is not supported in LuaTEX-ja.

For detailed information, see Part III.

3

1.3 Notations

In this document, the following terms and notations are used:

• Characters are divided into two types:

– JAchar: standing for characters which used in Japanese typesetting, such as Hiragana, Katakana, Kanji
and other Japanese punctuation marks.

– ALchar: standing for all other characters like alphabets.

We say ‘alphabetic fonts’ for fonts used in ALchar, and ‘Japanese fonts’ for fonts used in JAchar.

• A word in a sans-serif font (like prebreakpenalty) means an internal parameter for Japanese typesetting,
and it is used as a key in \ltjsetparameter command.

• A word in typewriter font with underline (like fontspec) means a package or a class of LATEX.

• In this document, natural numbers start from 0.

1.4 About the project

Project Wiki Project Wiki is under construction.

• http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29 (English)

• http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage (Japanese)

• http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28zh%29 (Chinese)

This project is hosted by SourceForge.JP.

Members

• Hironori KITAGAWA • Kazuki MAEDA • Takayuki YATO

• Yusuke KUROKI • Noriyuki ABE • Munehiro YAMAMOTO

• Tomoaki HONDA • Shuzaburo SAITO • MA Qiyuan

4

http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28zh%29

2 Getting Started

2.1 Installation

To install the LuaTEX-ja package, you will need:

• LuaTEX beta-0.74.0 (or later)

• luaotfload v2.2

• luatexbase v0.6 (2013/05/04)

• xunicode v0.981 (2011/09/09)

From this version of LuaTEX-ja, TEX Live 2012 (or older version) is no longer supported, since LuaTEX binary
and luaotfload is updated in TEX Live 2013. And conversely, older versions of LuaTEX-ja (20130318.1 or earlier)
don’t work in TEX Live 2013.

Now LuaTEX-ja is available from the following archive and distributions:

• CTAN (in the macros/luatex/generic/luatexja directory)

• MiKTEX (in luatexja.tar.lzma)

• TEX Live (in texmf-dist/tex/luatex/luatexja)

• W32TEX (in luatexja.tar.xz)

If you are using TEX Live 2013, you can install LuaTEX-ja from TEX Live manager (tlmgr):

$ tlmgr install luatexja

If you want to install manually, do the following instruvtions:

1. Download the source archive, by one of the following method. At the present, LuaTEX-ja has no stable release.

• Copy the Git repository:

$ git clone git://git.sourceforge.jp/gitroot/luatex-ja/luatexja.git

• Download the tar.gz archive of HEAD in the master branch from

http:
//git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz.

Note that the master branch, and hence the archive in CTAN, are not updated frequently; the forefront of
development is not the master branch.

2. Extract the archive. You will see src/ and several other sub-directories. But only the contents in src/ are
needed to work LuaTEX-ja.

3. Copy all the contents of src/ into one of your TEXMF tree. TEXMF/tex/luatex/luatexja/ is an example
location. If you cloned entire Git repository, making a symbolic link of src/ instead copying is also good.

4. If mktexlsr is needed to update the file name database, make it so.

2.2 Cautions

• The encoding of your source file must be UTF-8. No other encodings, such as EUC-JP or Shift-JIS, are not
supported.

• LuaTEX-ja is very slower than pTEX. Using LuaJITTEXslightly improve the situation.

5

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz
http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

2.3 Using in plain TEX

To use LuaTEX-ja in plain TEX, simply put the following at the beginning of the document:

\input luatexja.sty

This does minimal settings (like ptex.tex) for typesetting Japanese documents:

• The following 6 Japanese fonts are preloaded:

classification font name ‘10 pt’ ‘7 pt’ ‘5 pt’

mincho Ryumin-Light \tenmin \sevenmin \fivemin
gothic GothicBBB-Medium \tengt \sevengt \fivegt

– It is widely accepted that the font ‘Ryumin-Light’ and ‘GothicBBB-Medium’ aren’t embedded into
PDF files, and a PDF reader substitute them by some external Japanese fonts (e.g., Kozuka Mincho is
used for Ryumin-Light in Adobe Reader). We adopt this custom to the default setting.

– A character in an alphabetic font is generally smaller than a Japanese font in the same size. So actual
size specification of these Japanese fonts is in fact smaller than that of alphabetic fonts, namely scaled
by 0.962216.

• The amount of glue that are inserted between a JAchar and an ALchar (the parameter xkanjiskip) is set to

(0.25 ⋅ 0.962216 ⋅ 10 pt)+1 pt
−1 pt = 2.40554 pt+1 pt

−1 pt.

2.4 Using in LATEX

LATEX 2𝜀 Using in LATEX 2𝜀 is basically same. To set up the minimal environment for Japanese, you only have to
load luatexja.sty:

\usepackage{luatexja}

It also does minimal settings (counterparts in pLATEX are plfonts.dtx and pldefs.ltx):

• JY3 is the font encoding for Japanese fonts (in horizontal direction).
When vertical typesetting is supported by LuaTEX-ja in the future, JT3 will be used for vertical fonts.

• Two font families mc and gt are defined:

classification family \mdseries \bfseries scale

mincho mc Ryumin-Light GothicBBB-Medium 0.962216
gothic gt GothicBBB-Medium GothicBBB-Medium 0.962216

Remark that the bold series in both family are same as the medium series of gothic family. This is a convention
in pLATEX. This is a trace that there were only 2 fonts (these are Ryumin-Light and GothicBBB-Medium) in
early years of DTP.

• Japanese characters in math mode are typeset by the font family mc.

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based documents,
you are better to use class files other than article.cls, book.cls, and so on. At the present, we have the
counterparts of jclasses (standard classes in pLATEX) and jsclasses (classes by Haruhiko Okumura), namely,
ltjclasses and ltjsclasses.

3 Changing Fonts

3.1 plain TEX and LATEX 2𝜀
plain TEX To change Japanese fonts in plain TEX, you must use the control sequence \jfont. So please see
Subsection 5.1.

6

LATEX 2𝜀 (NFSS2) For LATEX 2𝜀, LuaTEX-ja adopted most of the font selection system of pLATEX 2𝜀 (in plfonts.dtx).

• Two control sequences \mcdefault and \gtdefault are used to specify the default font families for mincho
and gothic, respectively. Default values: mc for \mcdefault and gt for \gtdefault.

• Commands \fontfamily, \fontseries, \fontshape and \selectfont can be used to change attributes
of Japanese fonts.

encoding family series shape selection

alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape \useroman
Japanese fonts \kanjiencoding \kanjifamily \kanjiseries \kanjishape \usekanji

both — – \fontseries \fontshape —
auto select \fontencoding \fontfamily — — \usefont

\fontencoding{<encoding>} changes the encoding of alphabetic fonts or Japanese fonts depending on
the argument. For example, \fontencoding{JY3} changes the encoding of Japanese fonts to JY3 and
\fontencoding{T1} changes the encoding of alphabetic fonts to T1. \fontfamily also changes the family
of Japanese fonts, alphabetic fonts, or both. For detail, see Subsection 8.1.

• For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily. However,
in the present implementation, using \DeclareFontFamily doesn’t cause any problem.

Remark: Japanese Characters in Math Mode Since pTEX supports Japanese characters in math mode, there
are sources like the following:

1 $f_{高温}$~($f_{\text{high temperature}}$).
2 \[y=(x-1)^2+2\quad よって\quad y>0 \]
3 $5\in 素:=\{\,p\in\mathbb N:\text{p is a prime

}\,\}$.

𝑓高温 (𝑓high temperature).

𝑦 = (𝑥 − 1)2 + 2 よって 𝑦 > 0

5 ∈ 素 ∶= { 𝑝 ∈ ℕ ∶ 𝑝 is a prime }.

We (the project members of LuaTEX-ja) think that using Japanese characters in math mode are allowed if and only
if these are used as identifiers. In this point of view,

• The lines 1 and 2 above are not correct, since ‘高温’ in above is used as a textual label, and ‘よって’ is used
as a conjunction.

• However, the line 3 is correct, since ‘素’ is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

1 $f_{\text{高温}}$~%
2 ($f_{\text{high temperature}}$).
3 \[y=(x-1)^2+2\quad
4 \mathrel{\text{よって}}\quad y>0 \]
5 $5\in 素:=\{\,p\in\mathbb N:\text{p is a prime

}\,\}$.

𝑓高温 (𝑓high temperature).

𝑦 = (𝑥 − 1)2 + 2 よって 𝑦 > 0

5 ∈ 素 ∶= { 𝑝 ∈ ℕ ∶ 𝑝 is a prime }.

We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to change Japanese
fonts in math mode in this chapter. For the method, please see Subsection 5.4.

3.2 fontspec

To coexist with the fontspec package, it is needed to load luatexja-fontspec package in the preamble. This
additional package automatically loads luatexja and fontspec package, if needed.

In luatexja-fontspec package, the following 7 commands are defined as counterparts of original commands
in the fontspec package:

7

Japanese fonts \jfontspec \setmainjfont \setsansjfont \newjfontfamily
alphabetic fonts \fontspec \setmainfont \setsansfont \newfontfamily

Japanese fonts \newjfontface \defaultjfontfeatures \addjfontfeatures
alphabetic fonts \newfontface \defaultfontfeatures \addfontfeatures

1 \fontspec[Numbers=OldStyle]{LMSans10-Regular}
2 \jfontspec{IPAexMincho}
3 JIS~X~0213:2004→辻

4

5 \addjfontfeatures{CJKShape=JIS1990}
6 JIS~X~0208:1990→辻

JIS X 0213:2004→辻
JIS X 0208:1990→

Note that there is no command named \setmonojfont, since it is popular for Japanese fonts that nearly all
Japanese glyphs have same widths. Also note that the kerning feature is set off by default in these 7 commands,
since this feature and JAglue will clash (see 5.1).

3.3 Preset

To use standard Japanese font settings easily, one can load luatexja-preset package with several options. This
package provides functions in a part of otf package and a part of PXchfon package by Takayuki Yato, and loads
luatexja-fontspec internally.

General options

deluxe Specifying this option enables us to use mincho with two weights (medium and bold), gothic with
three weights (medium, bold and heavy), and rounded gothic1. The heavy weight of gothic can be used
by “changing the family” \gtebfamily. This is because fontspec package can handle only medium
(\mdseries) and bold (\bfseries).

expert Use horizontal kana alternates, and define a control sequence \rubyfamily to use kana characters
designed for ruby.

bold Use bold gothic as bold mincho.

90jis Use 90JIS glyph variants if possible.

jis2004 Use JIS2004 glyph variants if possible.

jis Use the JFM jfm-jis.lua, instead of jfm-ujis.lua, which is the default JFM of LuaTEX-ja.

Kozuka fonts There is not ‘Kozuka Maru Gothic’, therefore Kozuka Gothic H is used as a substitute for rounded
gothic.

kozuka-pro kozuka-pr6 kozuka-pr6n

mincho medium Kozuka Mincho Pro R Kozuka Mincho ProVI R Kozuka Mincho Pr6N R
mincho bold Kozuka Mincho Pro B Kozuka Mincho ProVI B Kozuka Mincho Pr6N B

gothic medium
without deluxe Kozuka Gothic Pro M Kozuka Gothic ProVI M Kozuka Gothic Pr6N M
with deluxe Kozuka Gothic Pro R Kozuka Gothic ProVI R Kozuka Gothic Pr6N R

gothic bold Kozuka Gothic Pro B Kozuka Gothic ProVI B Kozuka Gothic Pr6N B
gothic heavy Kozuka Gothic Pro H Kozuka Gothic ProVI H Kozuka Gothic Pr6N H
(rounded gothic) Kozuka Gothic Pro H Kozuka Gothic ProVI H Kozuka Gothic Pr6N H

1Provided by \mgfamily, because rounded gothic is called maru gothic (丸ゴシック) in Japanese.

8

Hiragino and Morisawa

hiragino-pro hiragino-pron

mincho medium Hiragino Mincho Pro W3 Hiragino Mincho Pr6N W3
mincho bold Hiragino Mincho Pro W6 Hiragino Mincho Pr6N W6

gothic medium
without deluxe Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic ProN W6
with deluxe Hiragino Kaku Gothic Pro W3 Hiragino Kaku Gothic ProN W3

gothic bold Hiragino Kaku Gothic Pro W6 Hiragino Kaku Gothic ProN W6
gothic heavy Hiragino Kaku Gothic Std W8 Hiragino Kaku Gothic StdN W8
rounded gothic Hiragino Maru Gothic Pro W4 Hiragino Maru Gothic ProN W4

morisawa-pro morisawa-pr6n

mincho medium Ryumin Pro L-KL Ryumin Pr6N L-KL
mincho bold Futo Min A101 Pro Bold Futo Min A101 Pr6N Bold
gothic medium Chu Gothic BBB Pro Med Chu Gothic BBB Pr6N Med
gothic bold Futo Go B101 Pro Bold Futo Go B101 Pr6N Bold
gothic heavy Midashi Go Pro MB31 Midashi Go Pr6N MB31
rounded gothic Jun Pro 101 Jun Pr6N 101

Settings for single weight Next, we describe settings for using only single weight. In four settings below, we use
same fonts for medium and bold (and heavy) weights. (Hence \mcfamily\bfseries and \mcfamily\mdseries
yields same Japanese fonts, if deluxe option is also specified).

noembed ipa ipaex ms

mincho Ryumin-Light (non-embedded) IPAMincho IPAexMincho MS Mincho
gothic GothicBBB-Medium (non-embedded) IPAGothic IPAexGothic MS Gothic

Using HG fonts We can use HG fonts bundled with Microsoft Office for realizing multiple weights in Japanese
fonts.

ipa-hg ipaex-hg ms-hg

mincho medium IPAMincho IPAexMincho MS Mincho

mincho bold HG Mincho E

Gothic medium
without deluxe IPAGothic IPAexGothic MS Gothic
with jis2004 IPAGothic IPAexGothic MS Gothic

otherwise HG Gothic M

gothic bold HG Gothic E

gothic heavy HG Soei Kaku Gothic UB

rounded gothic HG Maru Gothic PRO

Note that HG Mincho E, HG Gothic E, HG Soei Kaku Gothic UB and HG Maru Gothic PRO are internally
specified by:

default by font name (HGMinchoE, etc.).

90jis by filename (hgrme.ttc, hgrge.ttc, hgrsgu.ttc, hgrsmp.ttf).

jis2004 by filename (hgrme04.ttc, hgrge04.ttc, hgrsgu04.ttc, hgrsmp04.ttf).

3.4 \CID, \UTF and macros in otf package

Under pLATEX, otf package (developed by Shuzaburo Saito) is used for typesetting characters which is in Adobe-Japan1-6
CID but not in JIS X 0208. Since this package is widely used, LuaTEX-ja supports some of functions in otf package.
If you want to use these functions, load luatexja-otf package.

9

1 \jfontspec{KozMinPr6N-Regular.otf}
2 森\UTF{9DD7}外と内田百\UTF{9592}とが\UTF{9AD9}島

屋に行く。

3

4 \CID{7652}飾区の\CID{13706}野家，

5 \CID{1481}城市，葛西駅，

6 高崎と\CID{8705}\UTF{FA11}
7

8 \aj半角{はんかくカタカナ}

森鷗外と内田百閒とが髙島屋に行く。
飾区の𠮷野家，葛城市，葛西駅，高崎と髙﨑
はんかくｶﾀｶﾅ

4 Changing Parameters

There are many parameters in LuaTEX-ja. And due to the behavior of LuaTEX, most of them are not stored as internal
register of TEX, but as an original storage system in LuaTEX-ja. Hence, to assign or acquire those parameters, you
have to use commands \ltjsetparameter and \ltjgetparameter.

4.1 Editing the range of JAchars

To edit the range of JAchars, you have to assign a non-zero natural number which is less than 217 to the character
range first. This can be done by using \ltjdefcharrange. For example, the next line assigns whole characters in
Supplementary Ideographic Plane and the character ‘漢’ to the range number 100.

\ltjdefcharrange{100}{"20000-"2FFFF,`漢}

This assignment of numbers to ranges are always global, so you should not do this in the middle of a document.
If some character has been belonged to some non-zero numbered range, this will be overwritten by the new

setting. For example, whole SIP belong to the range 4 in the default setting of LuaTEX-ja, and if you specify the
above line, then SIP will belong to the range 100 and be removed from the range 4.

After assigning numbers to ranges, the jacharrange parameter can be used to customize which character range
will be treated as ranges of JAchars, as the following line (this is just the default setting of LuaTEX-ja):

\ltjsetparameter{jacharrange={-1, +2, +3, -4, -5, +6, +7, +8}}

The argument to jacharrange parameter is a list of integer. Negative integer −𝑛 in the list means that ‘the characters
that belong to range 𝑛 are treated as ALchar’, and positive integer +𝑛 means that ‘the characters that belong to
range 𝑛 are treated as JAchar’.

Default Setting LuaTEX-ja predefines eight character ranges for convenience. They are determined from the
following data:

• Blocks in Unicode 6.0.

• The Adobe-Japan1-UCS2 mapping between a CID Adobe-Japan1-6 and Unicode.

• The PXbase bundle for upTEX by Takayuki Yato.

Now we describe these eight ranges. The alphabet ‘J’ or ‘A’ after the number shows whether characters in
the range is treated as JAchars or not by default. These settings are similar to the prefercjk settings defined in
PXbase bundle.

Range 8J Symbols in the intersection of the upper half of ISO 8859-1 (Latin-1 Supplement) and JIS X 0208 (a
basic character set for Japanese). This character range consists of the following characters:

• § (U+00A7, Section Sign)
• ¨ (U+00A8, Diaeresis)
• ° (U+00B0, Degree sign)
• ± (U+00B1, Plus-minus sign)

• ´ (U+00B4, Spacing acute)
• ¶ (U+00B6, Paragraph sign)
• × (U+00D7, Multiplication sign)
• ÷ (U+00F7, Division Sign)

10

Table 1. Unicode blocks in predefined character range 3.

U+2000–U+206F General Punctuation U+2070–U+209F Superscripts and Subscripts
U+20A0–U+20CF Currency Symbols U+20D0–U+20FF Comb. Diacritical Marks for Symbols
U+2100–U+214F Letterlike Symbols U+2150–U+218F Number Forms
U+2190–U+21FF Arrows U+2200–U+22FF Mathematical Operators
U+2300–U+23FF Miscellaneous Technical U+2400–U+243F Control Pictures
U+2500–U+257F Box Drawing U+2580–U+259F Block Elements
U+25A0–U+25FF Geometric Shapes U+2600–U+26FF Miscellaneous Symbols
U+2700–U+27BF Dingbats U+2900–U+297F Supplemental Arrows-B
U+2980–U+29FF Misc. Mathematical Symbols-B U+2B00–U+2BFF Miscellaneous Symbols and Arrows

Table 2. Unicode blocks in predefined character range 6.

U+2460–U+24FF Enclosed Alphanumerics U+2E80–U+2EFF CJK Radicals Supplement
U+3000–U+303F CJK Symbols and Punctuation U+3040–U+309F Hiragana
U+30A0–U+30FF Katakana U+3190–U+319F Kanbun
U+31F0–U+31FF Katakana Phonetic Extensions U+3200–U+32FF Enclosed CJK Letters and Months
U+3300–U+33FF CJK Compatibility U+3400–U+4DBF CJK Unified Ideographs Extension A
U+4E00–U+9FFF CJK Unified Ideographs U+F900–U+FAFF CJK Compatibility Ideographs
U+FE10–U+FE1F Vertical Forms U+FE30–U+FE4F CJK Compatibility Forms
U+FE50–U+FE6F Small Form Variants U+20000–U+2FFFF (Supplementary Ideographic Plane)

Range 1A Latin characters that some of them are included in Adobe-Japan1-6. This range consist of the following
Unicode ranges, except characters in the range 8 above:

• U+0080–U+00FF: Latin-1 Supplement
• U+0100–U+017F: Latin Extended-A
• U+0180–U+024F: Latin Extended-B
• U+0250–U+02AF: IPA Extensions
• U+02B0–U+02FF: Spacing Modifier Letters

• U+0300–U+036F: Combining Diacritical
Marks

• U+1E00–U+1EFF: Latin Extended Additional

Range 2J Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these characters.

• U+0370–U+03FF: Greek and Coptic
• U+0400–U+04FF: Cyrillic

• U+1F00–U+1FFF: Greek Extended

Range 3J Punctuations and Miscellaneous symbols. The block list is indicated in Table 1.

Range 4A Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks which are not
in other predefined ranges. Hence, instead of showing the block list, we put the definition of this range itself:

\ltjdefcharrange{4}{%
"500-"10FF, "1200-"1DFF, "2440-"245F, "27C0-"28FF, "2A00-"2AFF,
"2C00-"2E7F, "4DC0-"4DFF, "A4D0-"A82F, "A840-"ABFF, "FB50-"FE0F,
"FE20-"FE2F, "FE70-"FEFF, "FB00-"FB4F, "10000-"1FFFF, "E000-"F8FF} % non-Japanese

Range 5A Surrogates and Supplementary Private Use Areas.

Range 6J Characters used in Japanese. The block list is indicated in Table 2.

Range 7J Characters used in CJK languages, but not included in Adobe-Japan1-6. The block list is indicated in
Table 3.

11

Table 3. Unicode blocks in predefined character range 7.

U+1100–U+11FF Hangul Jamo U+2F00–U+2FDF Kangxi Radicals
U+2FF0–U+2FFF Ideographic Description Characters U+3100–U+312F Bopomofo
U+3130–U+318F Hangul Compatibility Jamo U+31A0–U+31BF Bopomofo Extended
U+31C0–U+31EF CJK Strokes U+A000–U+A48F Yi Syllables
U+A490–U+A4CF Yi Radicals U+A830–U+A83F Common Indic Number Forms
U+AC00–U+D7AF Hangul Syllables U+D7B0–U+D7FF Hangul Jamo Extended-B

4.2 kanjiskip and xkanjiskip

JAglue is divided into the following three categories:

• Glues/kerns specified in JFM. If \inhibitglue is issued around a Japanese character, this glue will not be
inserted at the place.

• The default glue which inserted between two JAchars (kanjiskip).

• The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following.

\ltjsetparameter{kanjiskip={0pt plus 0.4pt minus 0.4pt},
xkanjiskip={0.25\zw plus 1pt minus 1pt}}

It may occur that JFM contains the data of ‘ideal width of kanjiskip’ and/or ‘ideal width of xkanjiskip’. To use
these data from JFM, set the value of kanjiskip or xkanjiskip to \maxdimen.

4.3 Insertion Setting of xkanjiskip

It is not desirable that xkanjiskip is inserted into every boundary between JAchars and ALchars. For example,
xkanjiskip should not be inserted after opening parenthesis (e.g., compare ‘(あ’ and ‘(あ’). LuaTEX-ja can control
whether xkanjiskip can be inserted before/after a character, by changing jaxspmode for JAchars and alxspmode
parameters ALchars respectively.

1 \ltjsetparameter{jaxspmode={`あ,preonly},
alxspmode={`\!,postonly}}

2 pあq い!う
p あq い! う

The second argument preonlymeans ‘the insertion of xkanjiskip is allowed before this character, but not after’.
the other possible values are postonly, allow and inhibit.

jaxspmode and alxspmode use a same table to store the parameters on the current version. Therefore, line 1
in the code above can be rewritten as follows:

\ltjsetparameter{alxspmode={`あ,preonly}, jaxspmode={`\!,postonly}}

One can use also numbers to specify these two parameters (see Subsection 6.2).
If you want to enable/disable all insertions of kanjiskip and xkanjiskip, set autospacing and autoxspacing

parameters to true/false, respectively.

4.4 Shifting Baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline of one of
the pair is needed. In pTEX, this is achieved by setting \ybaselineshift to a non-zero length (the baseline of
alphabetic fonts is shifted below). However, for documents whose main language is not Japanese, it is good to shift
the baseline of Japanese fonts, but not that of alphabetic fonts. Because of this, LuaTEX-ja can independently set
the shifting amount of the baseline of alphabetic fonts (yalbaselineshift parameter) and that of Japanese fonts
(yjabaselineshift parameter).

12

1 \vrule width 150pt height 0.4pt depth 0pt\hskip
-120pt

2 \ltjsetparameter{yjabaselineshift=0pt,
yalbaselineshift=0pt}abcあいう

3 \ltjsetparameter{yjabaselineshift=5pt,
yalbaselineshift=2pt}abcあいう

abc あいう abc あいう

Here the horizontal line in above is the baseline of a line.
There is an interesting side-effect: characters in different size can be vertically aligned center in a line, by setting

two parameters appropriately. The following is an example (beware the value is not well tuned):

1 xyz漢字

2 {\scriptsize
3 \ltjsetparameter{yjabaselineshift=-1pt,
4 yalbaselineshift=-1pt}
5 XYZひらがな

6 }abcかな

xyz 漢字 XYZ ひらがな abc かな

Part II

Reference
5 Font Metric and Japanese Font

5.1 \jfont

To load a font as a Japanese font, you must use the \jfont instead of \font, while \jfont admits the same syntax
used in \font. LuaTEX-ja automatically loads luaotfload package, so TrueType/OpenType fonts with features
can be used for Japanese fonts:

1 \jfont\tradgt={file:ipaexg.ttf:script=latn;%
2 +trad;-kern;jfm=ujis} at 14pt
3 \tradgt{}当／体／医／区

當／體／醫／區

Note that the defined control sequence (\tradgt in the example above) using \jfont is not a font_def token,
hence the input like \fontname\tradgt causes a error. We denote control sequences which are defined in \jfont
by ⟨jfont_cs⟩.

JFM As noted in Introduction, a JFM has measurements of characters and glues/kerns that are automatically
inserted for Japanese typesetting. The structure of JFM will be described in the next subsection. At the calling of
\jfont, you must specify which JFM will be used for this font by the following keys:

jfm=⟨name⟩ Specify the name of JFM. If specified JFM has not been loaded, LuaTEX-ja search and load a file
named jfm-⟨name⟩.lua.
The following JFMs are shipped with LuaTEX-ja:

jfm-ujis.lua A standard JFM in LuaTEX-ja. This JFM is based on upnmlminr-h.tfm, a metric for
UTF/OTF package that is used in upTEX. When you use the luatexja-otf package, you should use
this JFM.

jfm-jis.lua A counterpart for jis.tfm, ‘JIS font metric’ which is widely used in pTEX. A major
difference of jfm-ujis.lua and this jfm-jis.lua is that most characters under jfm-ujis.lua
are square-shaped, while that under jfm-jis.lua are horizontal rectangles.

jfm-min.lua A counterpart for min10.tfm, which is one of the default Japanese font metric shipped
with pTEX. There are notable difference between this JFM and other 2 JFMs, as shown in Table 4.

jfmvar=⟨string⟩ Sometimes there is a need that ….

13

Table 4. Differences between JFMs shipped with LuaTEX-ja

jfm-ujis.lua jfm-jis.lua jfm-min.lua

Example 1[4] ◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き

ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き

ました．

◆◆◆◆◆◆◆
ある日モモちゃ
んがお使いで迷
子になって泣き

ました．
Example 2 ちょっと！何 ちょっと！何 ちょっと！何

Bounding Box 漢 漢 漢

1 \ltjsetparameter{differentjfm=both}
2 \jfont\F=file:ipam.ttf:jfm=ujis
3 \jfont\G=file:ipag.ttf:jfm=ujis
4 \jfont\H=file:ipag.ttf:jfm=ujis;jfmvar=hoge
5

6 \F ）{\G 【】}（ % halfwidth space
7 ）{\H 『』}（ % fullwidth space
8

9 \ltjsetparameter{differentjfm=paverage}

）【】（）『』（

Note: kern feature Some fonts have information for inter-glyph spacing. However, this information is not well-compatible
with LuaTEX-ja. More concretely, this kerning space from this information are inserted before the insertion process
of JAglue, and this causes incorrect spacing between two characters when both a glue/kern from the data in the
font and it from JFM are present.

• You should specify -kern in jfont when you want to use other font features, such as script=... .

• If you want to use Japanese fonts in proportional width, and use information from this font, use jfm-prop.lua
for its JFM, and …. TODO: kanjiskip?

5.2 Prefix psft

Besides ‘file:’ and ‘name:’ prefixes, one can use ‘psft:’ prefix in \jfont (and \font), to specify a ‘name-only’
Japanese font which will not be embedded to PDF. Typical use of this prefix is to specify the ‘standard’ Japanese
fonts, namely, ‘Ryumin-Light’ and ‘GothicBBB-Medium’. OpenType font features, such as ‘+jp90’, have no meaning
in ‘name-only’ fonts using this ‘psft:’ prefix. This is because we can’t expect what fonts are actually used by the
PDF reader.

cid key The default font defined by using psft: prefix is for Japanese typesetting; it is Adobe-Japan1-6 CID-keyed
font. One can specify cid key to use other CID-keyed non-embedded fonts for Chinese or Korean typesetting.

1 \jfont\testJ={psft:Ryumin-Light:cid=Adobe-Japan1-6;jfm=jis} % Japanese
2 \jfont\testD={psft:Ryumin-Light:jfm=jis} % default value is Adobe-Japan1-6
3 \jfont\testC={psft:AdobeMingStd-Light:cid=Adobe-CNS1-6;jfm=jis} % Traditional Chinese
4 \jfont\testG={psft:SimSun:cid=Adobe-GB1-5;jfm=jis} % Simplified Chinese
5 \jfont\testK={psft:Batang:cid=Adobe-Korea1-2;jfm=jis} % Korean

Note that the code above specifies jfm-jis.lua, which is for Japanese fonts, as JFM for Chinese and Korean fonts.
At present, LuaTEX-ja supports only 4 values written in the sample code above. Specifying other values, e.g.,

\jfont\test={psft:Ryumin-Light:cid=Adobe-Japan2;jfm=jis}

produces the following error:

14

1 ! Package luatexja Error: bad cid key `Adobe-Japan2'.
2

3 See the luatexja package documentation for explanation.
4 Type H <return> for immediate help.
5 <to be read again>
6 \par
7 l.78
8

9 ? h
10 I couldn't find any non-embedded font information for the CID
11 `Adobe-Japan2'. For now, I'll use `Adobe-Japan1-6'.
12 Please contact the LuaTeX-ja project team.
13 ?

extend and slant The following setting can be specified as OpenType font features:

extend=⟨extend⟩ expand the font horizontally by ⟨extend⟩.

slant=⟨slant⟩ slant the font.

These two settings are also supported with psft prefix. Note that LuaTEX-ja doesn’t adjust JFMs by these extend
and slant settings; you have to write new JFMs on purpose. For example, the following example uses the standard
JFM jfm-ujis.lua, hence letter-spacing and the width of italic correction are not correct:

1 \jfont\E=psft:Ryumin-Light:extend=1.5;jfm=ujis
2 \E あいうえお

3

4 \jfont\S=psft:Ryumin-Light:slant=1;jfm=ujis
5 \S あいう\/ABC

あいうえお
あいう ABC

5.3 Structure of JFM file

A JFM file is a Lua script which has only one function call:

luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are devoted to
describe the structure of this table. Note that all lengths in a JFM file are floating-point numbers in design-size unit.

dir=⟨direction⟩ (required)
The direction of JFM. At the present, only 'yoko' is supported.

zw=⟨length⟩ (required)
The amount of the length of the ‘full-width’.

zh=⟨length⟩ (required)
The amount of the ‘full-height’ (height + depth).

kanjiskip={⟨natural⟩, ⟨stretch⟩, ⟨shrink⟩} (optional)
This field specifies the ‘ideal’ amount of kanjiskip. As noted in Subsection 4.2, if the parameter kanjiskip
is \maxdimen, the value specified in this field is actually used (if this field is not specified in JFM, it is
regarded as 0 pt). Note that ⟨stretch⟩ and ⟨shrink⟩ fields are in design-size unit too.

xkanjiskip={⟨natural⟩, ⟨stretch⟩, ⟨shrink⟩} (optional)
Like the kanjiskip field, this field specifies the ‘ideal’ amount of xkanjiskip.

15

height

depth

width

left
down

Consider a node containing Japanese character whose value of the
align field is 'middle'.

• The black rectangle is a frame of the node. Its width, height and
depth are specified by JFM.

• Since the align field is 'middle', the ‘real’ glyph is centered
horizontally (the green rectangle).

• Furthermore, the glyph is shifted according to values of fields
left and down. The ultimate position of the real glyph is
indicated by the red rectangle.

Figure 1. The position of the ‘real’ glyph.

Character classes Besides from above fields, a JFM file have several sub-tables those indices are natural numbers.
The table indexed by 𝑖 ∈ 𝜔 stores information of ‘character class’ 𝑖. At least, the character class 0 is always present,
so each JFM file must have a sub-table whose index is [0]. Each sub-table (its numerical index is denoted by 𝑖) has
the following fields:

chars={⟨character⟩, ...} (required except character class 0)
This field is a list of characters which are in this character type 𝑖. This field is optional if 𝑖 = 0, since all
JAchar which do not belong any character classes other than 0 are in the character class 0 (hence, the
character class 0 contains most of JAchars). In the list, character(s) can be specified in the following form:

• a Unicode code point
• the character itself (as a Lua string, like 'あ')
• a string like 'あ*' (the character followed by an asterisk)
• several “imaginary” characters (We will describe these later.)

width=⟨length⟩, height=⟨length⟩, depth=⟨length⟩, italic=⟨length⟩ (required)
Specify width of characters in character class 𝑖, height, depth and the amount of italic correction. All
characters in character class 𝑖 are regarded that its width, height and depth are as values of these fields. But
there is one exception: if 'prop' is specified in width field, width of a character becomes that of its ‘real’
glyph

left=⟨length⟩, down=⟨length⟩, align=⟨align⟩
These fields are for adjusting the position of the ‘real’ glyph. Legal values of align field are 'left',
'middle' and 'right'. If one of these 3 fields are omitted, left and down are treated as 0, and align
field is treated as 'left'. The effects of these 3 fields are indicated in Figure 1.
In most cases, left and down fields are 0, while it is not uncommon that the align field is 'middle' or
'right'. For example, setting the align field to 'right' is practically needed when the current character
class is the class for opening delimiters’.

kern={[𝑗]=⟨kern⟩, [𝑗′]={⟨kern⟩, [⟨ratio⟩]}, ...}

glue={[𝑗]={⟨width⟩, ⟨stretch⟩, ⟨shrink⟩, [⟨priority⟩], [⟨ratio⟩]}, ...}

end_stretch=⟨kern⟩

end_shrink=⟨kern⟩

Imaginary characters As described before, you can specify several ‘imaginary characters’ in chars field. The
most of these characters are regarded as the characters of class 0 in pTEX. As a result, LuaTEX-ja can control
typesetting finer than pTEX. The following is the list of ‘imaginary characters’:

'boxbdd' The beginning/ending of a horizontal box, and the beginning of a noindented paragraph.

'parbdd' The beginning of an (indented) paragraph.

16

Table 5. Control sequences for Japanese math fonts

Japanese fonts alphabetic fonts

\jfam ∈ [0, 256) \fam
jatextfont ={⟨jfam⟩,⟨jfont_cs⟩} \textfont⟨fam⟩=⟨font_cs⟩
jascriptfont ={⟨jfam⟩,⟨jfont_cs⟩} \scriptfont⟨fam⟩=⟨font_cs⟩
jascriptscriptfont ={⟨jfam⟩,⟨jfont_cs⟩} \scriptscriptfont⟨fam⟩=⟨font_cs⟩

'jcharbdd' A boundary between JAchar and anything else (such as ALchar, kern, glue, …).

−1 The left/right boundary of an inline math formula.

Porting JFM from pTEX …

5.4 Math Font Family

TEX handles fonts in math formulas by 16 font families2, and each family has three fonts: \textfont, \scriptfont
and \scriptscriptfont.

LuaTEX-ja’s handling of Japanese fonts in math formulas is similar; Table 5 shows counterparts to TEX’s
primitives for math font families. There is no relation between the value of \fam and that of \jfam; with appropriate
settings, you can set both \fam and \jfam to the same value.

5.5 Callbacks

Like LuaTEX itself, LuaTEX-ja also has callbacks. These callbacks can be accessed via luatexbase.add_to_callback
function and so on, as other callbacks.

luatexja.load_jfm callback With this callback you can overwrite JFMs. This callback is called when a new
JFM is loaded.

1 function (<table> jfm_info, <string> jfm_name)
2 return <table> new_jfm_info
3 end

The argument jfm_info contains a table similar to the table in a JFM file, except this argument has chars
field which contains character codes whose character class is not 0.
An example of this callback is the ltjarticle class, with forcefully assigning character class 0 to 'parbdd'
in the JFM jfm-min.lua.

luatexja.define_font callback This callback and the next callback form a pair, and you can assign letters
which don’t have fixed code points in Unicode to non-zero character classes. This luatexja.define_font
callback is called just when new Japanese font is loaded.

1 function (<table> jfont_info, <number> font_number)
2 return <table> new_jfont_info
3 end

You may assume that jfont_info has the following fields:

size_cache A table which contains the information of a JFM, and this table must not be changed. The
contents of this table are similar to that which is written is the JFM file, but the following differ:

• There is a chars table, …
• The value in zw, zh, kanjiskip, xkanjiskip fields are now scaled by real font size, and in

scaled-pont unit.
• ...

2Omega, Aleph, LuaTEX and 𝜀-(u)pTEX can handles 256 families, but an external package is needed to support this in plain TEX and LATEX.

17

• There is no dir field in this table.
var The value specified in jfmvar=... at a call of \jfont.

The returned table new_jfont_info also should include these two fields. The font_number is a font
number.
A good example of this and the next callbacks is the luatexja-otf package, supporting "AJ1-xxx" form
for Adobe-Japan1 CID characters in a JFM. This callback doesn’t replace any code of LuaTEX-ja.

luatexja.find_char_class callback This callback is called just when LuaTEX-ja is trying to determine which
character class a character chr_code belongs. A function used in this callback should be in the following
form:

1 function (<number> char_class, <table> jfont_info, <number> chr_code)
2 if char_class~=0 then return char_class
3 else
4
5 return (<number> new_char_class or 0)
6 end
7 end

The argument char_class is the result of LuaTEX-ja’s default routine or previous function calls in this
callback, hence this argument may not be 0. Moreover, the returned new_char_class should be as same as
char_class when char_class is not 0, otherwise you will overwrite the LuaTEX-ja’s default routine.

luatexja.set_width callback This callback is called when LuaTEX-ja is trying to encapsule a JAchar glyph_node,
to adjust its dimension and position.

1 function (<table> shift_info, <table> jfont_info, <number> char_class)
2 return <table> new_shift_info
3 end

The argument shift_info and the returned new_shift_info have down and left fields, which are the
amount of shifting down/left the character in a scaled-point.
A good example is test/valign.lua. After loading this file, the vertical position of glyphs is automatically
adjusted; the ratio (height ∶ depth) of glyphs is adjusted to be that of letters in the character class 0. For
example, suppose that

• The setting of the JFM: (height) = 88𝑥, (depth) = 12𝑥 (the standard values of Japanese OpenType
fonts);

• The value of the real font: (height) = 28𝑦, (depth) = 5𝑦 (the standard values of Japanese TrueType
fonts).

Then, the position of glyphs is shifted up by

88𝑥
88𝑥 + 12𝑥

(28𝑦 + 5𝑦) − 28𝑦 = 26
25

𝑦 = 1.04𝑦.

6 Parameters

6.1 \ltjsetparameter

As noted before, \ltjsetparameter and \ltjgetparameter are control sequences for accessing most parameters
of LuaTEX-ja. One of the main reason that LuaTEX-ja didn’t adopted the syntax similar to that of pTEX (e.g., \prebreakpenalty`）
=10000) is the position of hpack_filter callback in the source of LuaTEX, see Section 10.

\ltjsetparameter and \ltjglobalsetparameter are control sequences for assigning parameters. These
take one argument which is a ⟨key⟩=⟨value⟩ list. Allowed keys are described in the next subsection. The difference
between \ltjsetparameter and \ltjglobalsetparameter is only the scope of assignment; \ltjsetparameter
does a local assignment and \ltjglobalsetparameter does a global one. They also obey the value of \globaldefs,
like other assignment.

\ltjgetparameter is for acquiring parameters. It always takes a parameter name as first argument, and also
takes the additional argument—a character code, for example—in some cases.

18

1 \ltjgetparameter{differentjfm},
2 \ltjgetparameter{autospacing},
3 \ltjgetparameter{prebreakpenalty}{`）}.

paverage, 1, 10000.

The return value of \ltjgetparameter is always a string. This is outputted by tex.write(), so any character
other than space ‘ ’ (U+0020) has the category code 12 (other), while the space has 10 (space).

6.2 List of Parameters

The following is the list of parameters which can be specified by the \ltjsetparameter command. [\cs] indicates
the counterpart in pTEX, and symbols beside each parameter has the following meaning:

• No mark: values at the end of the paragraph or the hbox are adopted in the whole paragraph/hbox.

• ‘∗’ : local parameters, which can change everywhere inside a paragraph/hbox.

• ‘†’: assignments are always global.

jcharwidowpenalty =⟨penalty⟩ [\jcharwidowpenalty] Penalty value for suppressing orphans. This penalty
is inserted just after the last JAchar which is not regarded as a (Japanese) punctuation mark.

kcatcode ={⟨chr_code⟩,⟨natural number⟩} An additional attributes which each character whose character
code is ⟨chr_code⟩ has. At the present version, the lowermost bit of ⟨natural number⟩ indicates whether
the character is considered as a punctuation mark (see the description of jcharwidowpenalty above).

prebreakpenalty ={⟨chr_code⟩,⟨penalty⟩} [\prebreakpenalty]

postbreakpenalty ={⟨chr_code⟩,⟨penalty⟩} [\postbreakpenalty]

jatextfont ={⟨jfam⟩,⟨jfont_cs⟩} [\textfont in TEX]

jascriptfont ={⟨jfam⟩,⟨jfont_cs⟩} [\scriptfont in TEX]

jascriptscriptfont ={⟨jfam⟩,⟨jfont_cs⟩} [\scriptscriptfont in TEX]

yjabaselineshift =⟨dimen⟩∗

yalbaselineshift =⟨dimen⟩∗ [\ybaselineshift]

jaxspmode ={⟨chr_code⟩,⟨mode⟩} Setting whether inserting xkanjiskip is allowed before/after a JAchar whose
character code is ⟨chr_code⟩. The followings are allowed for ⟨mode⟩:

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed both before the character and after the character. This is the

default value.

This parameter is similar to the \inhibitxspcode primitive of pTEX, but not compatible with \inhibitxspcode.

alxspmode ={⟨chr_code⟩,⟨mode⟩} [\xspcode]
Setting whether inserting xkanjiskip is allowed before/after a ALchar whose character code is ⟨chr_code⟩.
The followings are allowed for ⟨mode⟩:

0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed before the character and after the character. This is the default

value.

Note that parameters jaxspmode and alxspmode share a common table, hence these two parameters are
synonyms of each other.

19

autospacing =⟨bool⟩∗ [\autospacing]

autoxspacing =⟨bool⟩∗ [\autoxspacing]

kanjiskip =⟨skip⟩ [\kanjiskip]

xkanjiskip =⟨skip⟩ [\xkanjiskip]

differentjfm =⟨mode⟩† Specify how glues/kerns between two JAchars whose JFM (or size) are different. The
allowed arguments are the followings:

average
both
large
small
pleft
pright
paverage

jacharrange =⟨ranges⟩∗

kansujichar ={⟨digit⟩, ⟨chr_code⟩} [\kansujichar]

7 Other Control Sequences

7.1 Control Sequences for Compatibility

The following control sequences are implemented for compatibility with pTEX. Note that these don’t support JIS X 0213,
but only JIS X 0208.

\kuten

\jis

\euc

\sjis

\ucs

\kansuji

7.2 \inhibitglue

\inhibitglue suppresses the insertion of JAglue. The following is an example, using a special JFM that there
will be a glue between the beginning of a box and ‘あ’, and also between ‘あ’ and ‘ウ’.

1 \jfont\g=psft:Ryumin-Light:jfm=test \g
2 \fbox{\hbox{あウあ\inhibitglue ウ}}
3 \inhibitglue\par\noindent あ1
4 \par\inhibitglue\noindent あ2
5 \par\noindent\inhibitglue あ3
6 \par\hrule\noindent あoff\inhibitglue ice

あ ウあウ

あ 1
あ 2

あ 3
あ office

With the help of this example, we remark the specification of \inhibitglue:

• The call of \inhibitglue in the (internal) vertical mode is simply ignored.

• The call of \inhibitglue in the (restricted) horizontal mode is only effective on the spot; does not get over
boundary of paragraphs. Moreover, \inhibitglue cancels ligatures and kernings, as shown in the last line
of above example.

• The call of \inhibitglue in math mode is just ignored.

20

8 Control Sequences for LATEX 2𝜀
8.1 Patch for NFSS2

As described in Subsection 2.4, LuaTEX-ja simply adopted plfonts.dtx in pLATEX 2𝜀 for the Japanese patch for
NFSS2. For an convenience, we will describe control sequences which are not described in Subsection 3.1.

\DeclareYokoKanjiEncoding{⟨encoding⟩}{⟨text-settings⟩}{⟨math-settings⟩}
In NFSS2 under LuaTEX-ja, distinction between alphabetic font families and Japanese font families are only
made by their encodings. For example, encodings OT1 and T1 are for alphabetic font families, and a Japanese
font family cannot have these encodings. This command defines a new encoding scheme for Japanese font
family (in horizontal direction).

\DeclareKanjiEncodingDefaults{⟨text-settings⟩}{⟨math-settings⟩}

\DeclareKanjiSubstitution{⟨encoding⟩}{⟨family⟩}{⟨series⟩}{⟨shape⟩}

\DeclareErrorKanjiFont{⟨encoding⟩}{⟨family⟩}{⟨series⟩}{⟨shape⟩}{⟨size⟩}
The above 3 commands are just the counterparts for DeclareFontEncodingDefaults and others.

\reDeclareMathAlphabet{⟨unified-cmd⟩}{⟨al-cmd⟩}{⟨ja-cmd⟩}

\DeclareRelationFont{⟨ja-encoding⟩}{⟨ja-family⟩}{⟨ja-series⟩}{⟨ja-shape⟩}
{⟨al-encoding⟩}{⟨al-family⟩}{⟨al-series⟩}{⟨al-shape⟩}
This command sets the ‘accompanied’ alphabetic font family (given by the latter 4 arguments) with respect to
a Japanese font family given by the former 4 arguments.

\SetRelationFont
This command is almost same as \DeclareRelationFont, except that this command does a local assignment,
where \DeclareRelationFont does a global assignment.

\userelfont
Change current alphabetic font encoding/family/… to the ‘accompanied’ alphabetic font family with respect
to current Japanese font family, which was set by \DeclareRelationFont or \SetRelationFont. Like
\fontfamily, \selectfont is required to take an effect.

\adjustbaseline
…

\fontfamily{⟨family⟩}
As in LATEX 2𝜀, this command changes current font family (alphabetic, Japanese, or both) to ⟨family⟩. Which
family will be changed is determined as follows:

• Let current encoding scheme for Japanese fonts be ⟨ja-enc⟩. Current Japanese font family will be changed to
⟨family⟩, if one of the following two conditions is met:

– The family ⟨family⟩ under the encoding ⟨ja-enc⟩ has been already defined by \DeclareKanijFamily.
– A font definition named ⟨ja-enc⟩⟨family⟩.fd (the file name is all lowercase) exists.

• Let current encoding scheme for alphabetic fonts be ⟨al-enc⟩. For alphabetic font family, the criterion as
above is used.

• There is a case which none of the above applies, that is, the font family named ⟨family⟩ doesn’t seem to
be defined neither under the encoding ⟨ja-enc⟩, nor under ⟨al-enc⟩. In this case, the default family for font
substitution is used for alphabetic and Japanese fonts. Note that current encoding will not be set to ⟨family⟩,
unlike the original implementation in LATEX.

As closing this subsection, we shall introduce an example of \SetRelationFont and \userelfont:

1 \kanjifamily{gt}\selectfont あいうxyz
2 \SetRelationFont{JY3}{gt}{m}{n}{OT1}{pag}{m}{n}
3 \userelfont\selectfont あいうabc

あいう xyz あいう abc

21

no adjustment 　　　　■　　　　■　　　　■　　　　■以上の原理は，「包除原理」とよく呼ばれるが
without priority 　　　　■　　　　■　　　　■　　　　■以上の原理は，「包除原理」とよく呼ばれるが
with priority 　　　　■　　　　■　　　　■　　　　■以上の原理は，「包除原理」とよく呼ばれるが

Note: the value of kanjiskip is 0 pt+1/5 em
−1/5 em in this figure, for making the difference obvious.

Figure 2. Line adjustment

9 Extensions

9.1 luatexja-fontspec.sty

As described in Subsection 3.2, this optional package provides the counterparts for several commands defined
in the fontspec package．In addition to ‘font features’ in the original fontspec, the following ‘font features’
specifications are allowed for the commands of Japanese version:

CID=⟨name⟩

JFM=⟨name⟩

JFM-var=⟨name⟩
These 3 font features correspond to cid, jfm and jfmvar keys for \jfont respectively. CID is effective
only when with NoEmbed described below. See Subsections 5.1 and 5.2 for details.

NoEmbed By specifying this font feature, one can use ‘name-only’ Japanese font which will not be embedded in
the output PDF file. See Subsection 5.2.

9.2 luatexja-otf.sty

This optional package supports typesetting characters in Adobe-Japan1. luatexja-otf.sty offers the following
2 low-level commands:

\CID{⟨number⟩} Typeset a character whose CID number is ⟨number⟩.

\UTF{⟨hex_number⟩} Typeset a character whose character code is ⟨hex_number⟩ (in hexadecimal). This command
is similar to \char"⟨hex_number⟩, but please remind remarks below.

Remarks Characters by \CID and \UTF commands are different from ordinary characters in the following points:

• Always treated as JAchars.

• Processing codes for supporting OpenType features (e.g., glyph replacement and kerning) by the luaotfload
package is not performed to these characters.

Additional Syntax of JFM luatexja-otf.sty extends the syntax of JFM; the entries of chars table in JFM
now allows a string in the form 'AJ1-xxx', which stands for the character whose CID number in Adobe-Japan1 is
xxx.

9.3 luatexja-adjust.sty

...

22

Part III

Implementations
10 Storing Parameters

10.1 Used Dimensions, Attributes and whatsit nodes

Here the following is the list of dimensions and attributes which are used in LuaTEX-ja.

\jQ (dimension) \jQ is equal to 1 Q = 0.25 mm, where ‘Q’ (also called ‘級’) is a unit used in Japanese
phototypesetting. So one should not change the value of this dimension.

\jH (dimension) There is also a unit called ‘歯’ which equals to 0.25 mm and used in Japanese phototypesetting.
This \jH is a synonym of \jQ.

\ltj@zw (dimension) A temporal register for the ‘full-width’ of current Japanese font.

\ltj@zh (dimension) A temporal register for the ‘full-height’ (usually the sum of height of imaginary body
and its depth) of current Japanese font.

\jfam (attribute) Current number of Japanese font family for math formulas.

\ltj@curjfnt (attribute) The font index of current Japanese font.

\ltj@charclass (attribute) The character class of Japanese glyph_node.

\ltj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point (2−16 pt).

\ltj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point (2−16 pt).

\ltj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node.

\ltj@autoxspc (attribute) Whether the auto insertion of xkanjiskip is allowed at the node.

\ltj@icflag (attribute) An attribute for distinguishing ‘kinds’ of a node. One of the following value is assigned
to this attribute:

italic (1) Glues from an italic correction (\/). This distinction of origins of glues (from explicit \kern, or
from \/) is needed in the insertion process of xkanjiskip.

packed (2)
kinsoku (3) Penalties inserted for the word-wrapping process of Japanese characters (kinsoku).
from_jfm (6) Glues/kerns from JFM.
kanji_skip (9) Glues for kanjiskip.
xkanji_skip (10) Glues for xkanjiskip.
processed (11) Nodes which is already processed by ….
ic_processed (12) Glues from an italic correction, but also already processed.
boxbdd (15) Glues/kerns that inserted just the beginning or the ending of an hbox or a paragraph.

\ltj@kcat𝑖 (attribute) Where 𝑖 is a natural number which is less than 7. These 7 attributes store bit vectors
indicating which character block is regarded as a block of JAchars.

Furthermore, LuaTEX-ja uses several ‘user-defined’ whatsit nodes for inrernal processing. All those nodes store
a natural number (hence the node’s type is 100).

inhibitglue Nodes for indicating that \inhibitglue is specified. The value field of these nodes doesn’t matter.

stack_marker Nodes for LuaTEX-ja’s stack system (see the next subsection). The value field of these nodes is
current group.

23

char_by_cid Nodes for Japanese Characters which the callback process of luaotfload won’t be applied, and
the character code is stored in the value field. Each node having this user_id is converted to a ‘glyph_node’
after the callback process of luaotfload. This user_id is only used by the luatexja-otf package.

begin_par Nodes for indicating beginning of a paragraph. A paragraph which is started by \item in list-like
environments has a horizontal box for its label before the actual contents. So …

These whatsits will be removed during the process of inserting JAglues.

10.2 Stack System of LuaTEX-ja

Background LuaTEX-ja has its own stack system, and most parameters of LuaTEX-ja are stored in it. To clarify
the reason, imagine the parameter kanjiskip is stored by a skip, and consider the following source:

1 \ltjsetparameter{kanjiskip=0pt}ふがふが.%
2 \setbox0=\hbox{\ltjsetparameter{kanjiskip=5pt}ほ

げほげ}
3 \box0.ぴよぴよ\par

ふがふが. ほ げ ほ げ. ぴよぴよ

As described in Subsection 6.2, the only effective value of kanjiskip in an hbox is the latest value, so the value
of kanjiskip which applied in the entire hbox should be 5 pt. However, by the implementation method of LuaTEX,
this ‘5 pt’ cannot be known from any callbacks. In the tex/packaging.w (which is a file in the source of LuaTEX),
there are the following codes:

void package(int c)
{

scaled h; /* height of box */
halfword p; /* first node in a box */
scaled d; /* max depth */
int grp;
grp = cur_group;
d = box_max_depth;
unsave();
save_ptr -= 4;
if (cur_list.mode_field == -hmode) {

cur_box = filtered_hpack(cur_list.head_field,
cur_list.tail_field, saved_value(1),
saved_level(1), grp, saved_level(2));

subtype(cur_box) = HLIST_SUBTYPE_HBOX;

Notice that unsave is executed before filtered_hpack (this is where hpack_filter callback is executed): so
‘5 pt’ in the above source is orphaned at unsave, and hence it can’t be accessed from hpack_filter callback.

The method The code of stack system is based on that in a post of Dev-luatex mailing list3.
These are two TEX count registers for maintaining information: \ltj@@stack for the stack level, and \ltj@@group@level

for the TEX’s group level when the last assignment was done. Parameters are stored in one big table named charprop_stack_table,
where charprop_stack_table[𝑖] stores data of stack level 𝑖. If a new stack level is created by \ltjsetparameter,
all data of the previous level is copied.

To resolve the problem mentioned in ‘Background’ above, LuaTEX-ja uses another thing: When a new stack
level is about to be created, a whatsit node whose type, subtype and value are 44 (user_defined), 30112, and current
group level respectively is appended to the current list (we refer this node by stack_flag). This enables us to know
whether assignment is done just inside a hbox. Suppose that the stack level is 𝑠 and the TEX’s group level is 𝑡 just
after the hbox group, then:

• If there is no stack_flag node in the list of the hbox, then no assignment was occurred inside the hbox. Hence
values of parameters at the end of the hbox are stored in the stack level 𝑠.

• If there is a stack_flag node whose value is 𝑡 + 1, then an assignment was occurred just inside the hbox group.
Hence values of parameters at the end of the hbox are stored in the stack level 𝑠 + 1.

3[Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.

24

start 𝑁

𝑀

𝑆

𝐾

scan a c.s.

G, O 10

G, O
1010

(∗)
(∗)

5 [␣]

G, O

55 [\par]

J

J

O

10

G, J

J

5

G Beginning of group (usually {)
and ending of group (usually }).

J Japanese characters.

5 end-of-line (usually ^^J).

10 space (usually ␣).

O other characters, whose category code is in
{3, 4, 6, 7, 8, 11, 12, 13}.

[␣], [\par] emits a space, or \par.

• We omitted about category codes 9 (ignored), 14 (comment) and 15 (invalid) from the above diagram. We also ignored
the input like ‘^^A’ or ‘^^df’.

• When a character whose category code is 0 (escape character) is seen by TEX, the input processor scans a control sequence
(scan a c.s.). These paths are not shown in the above diagram.
After that, the state is changed to State 𝑆 (skipping blanks) in most cases, but to State 𝑀 (middle of line) sometimes.

Figure 3. State transitions of pTEX’s input processor.

• If there are stack_flag nodes but all of their values are more than 𝑡 + 1, then an assignment was occurred in
the box, but it is done is ‘more internal’ group. Hence values of parameters at the end of the hbox are stored
in the stack level 𝑠.

Note that to work this trick correctly, assignments to \ltj@@stack and \ltj@@group@level have to be local
always, regardless the value of \globaldefs. This problem is resolved by using \directlua{tex.globaldefs=0}
(this assignment is local).

11 Linebreak after Japanese Character

11.1 Reference: Behavior in pTEX

In pTEX, a line break after a Japanese character doesn’t emit a space, since words are not separated by spaces in
Japanese writings. However, this feature isn’t fully implemented in LuaTEX-ja due to the specification of callbacks
in LuaTEX. To clarify the difference between pTEX and LuaTEX, We briefly describe the handling of a line break
in pTEX, in this subsection.

pTEX’s input processor can be described in terms of a finite state automaton, as that of TEX in Section 2.5 of [1].
The internal states are as follows:

• State 𝑁 : new line

• State 𝑆: skipping spaces

• State 𝑀 : middle of line

• State 𝐾: after a Japanese character

The first three states—𝑁 , 𝑆 and 𝑀—are as same as TEX’s input processor. State 𝐾 is similar to state 𝑀 , and is
entered after Japanese characters. The diagram of state transitions are indicated in Figure 3. Note that pTEX doesn’t
leave state 𝐾 after ‘beginning/ending of a group’ characters.

11.2 Behavior in LuaTEX-ja

States in the input processor of LuaTEX is the same as that of TEX, and they can’t be customized by any callbacks.
Hence, we can only use process_input_buffer and token_filter callbacks for to suppress a space by a line
break which is after Japanese characters.

25

However, token_filter callback cannot be used either, since a character in category code 5 (end-of-line) is
converted into an space token in the input processor. So we can use only the process_input_buffer callback.
This means that suppressing a space must be done just before an input line is read.

Considering these situations, handling of an end-of-line in LuaTEX-ja are as follows:

A character U+FFFFF (its category code is set to 14 (comment) by LuaTEX-ja) is appended to an input
line, before LuaTEX actually process it, if and only if the following three conditions are satisfied:

1. The category code of \endlinechar4 is 5 (end-of-line).
2. The category code of U+FFFFF itself is 14 (comment).
3. The input line matches the following ‘regular expression’:

(any char)∗(JAchar)({catcode = 1} ∪ {catcode = 2})
∗

Remark The following example shows the major difference from the behavior of pTEX:

1 \ltjsetparameter{autoxspacing=false}
2 \ltjsetparameter{jacharrange={-6}}xあ

3 y\ltjsetparameter{jacharrange={+6}}zあ

4 u

xyzあ u

• There is no space between ‘x’ and ‘y’, since the line 2 ends with a JAchar ‘あ’ (this ‘あ’ considered as an
JAchar at the ending of line 1).

• There is no space between ‘あ’ (in the line 3) and ‘u’, since the line 3 ends with an ALchar (the letter ‘あ’
considered as an ALchar at the ending of line 2).

12 Patch for the listings package

It is well-known that the listings package outputs weird results for Japanese input. The listings package
makes most of letters active and assigns output command for each letter [2]. But Japanese characters are not
included in these activated letters. For pTEX series, there is no method to make Japanese characters active; a patch
jlisting.sty [3] resolves the problem forcibly.

In LuaTEX-ja, the problem is resolved by using process_input_buffer callback. The callback function
inserts the output command before each letter above U+0080. This method can omits the process to make all
Japanese characters active (most of the activated characters are not used in many cases).

If listings.sty and LuaTEX-ja were loaded, then the patch lltjp-listings.sty is loaded automatically
at \begin{document}.

Class of characters Roughly speaking, the listings package processes input as follows:

1. Collects letters and digits, which can be used for the name of identifiers.

2. When reading an other, outputs the collected character string (with modification, if needed).

3. Collects others.

4. When reading a letter or a digit, outputs the collected character string.

5. Turns back to 1.

By the above process, line breaks inside of an identifier are blocked. A flag \lst@ifletter indicates whether the
previous character can be used for the name of identifiers or not.

For Japanese characters, line breaks are permitted on both sides except for parentheses, dashes, etc. To process
Japanese characters, The pacth lltjp-listings.sty introduces a new flag \lst@ifkanji, which indicates
whether the previous character is Japanese character or not. For illustration, we introduce the following classes
of character:

4Usually, it is ⟨return⟩ (whose character code is 13).

26

Letter Other Kanji Open Close

\lst@ifletter T F T F T
\lst@ifkanji F F T T F
Meaning identifier char other alphabet most of Japanese char open paren close paren

Note that digits in the listings package can be Letter or Other according to circumstances.
For example, let us consider the case an Open comes after a Letter. Since an Open represents Japanese open

parenthesis, it is preferred to be permitted to insert line break after the Letter. Therefore, the collected character
string is output in this case.

The following table summarizes 5 × 5 = 25 cases:

Next

Letter Other Kanji Open Close

Letter collects outputs collects
Other outputs collects outputs collects

Prev Kanji outputs collects
Open collects
Close outputs collects

In the above table,

• “outputs” means to output the collected character string (i.e., line breaking is permitted there).

• “collects” means to append the next character to the collected character string (i.e., line breaking is prohibited
there).

Classification of characters Characters are classified according to jacharrange parameter (see Section 4.1):

• ALchars above U+0080 are Letter.

• JAchars are classified in the order as follows:

1. Characters whose prebreakpenalty is greater than or equal to 0 are Open.
2. Characters whose postbreakpenalty is greater than or equal to 0 are Close.
3. Characters that don’t satisfy the above two conditions are Kanji.

The width of halfwidth kana (U+FF61–U+FF9F) is same as the width of ALchar; the width of the other JAchars
is double the width of ALchar.

The classification process is executed every time a character appears in listing environments.

References

[1] Victor Eijkhout, TEX by Topic, A TEXnician’s Reference, Addison-Wesley, 1992.

[2] C. Heinz, B. Moses. The Listings Package.

[3] Thor Watanabe. Listings - MyTeXpert. http://mytexpert.sourceforge.jp/index.php?Listings

[4] 乙部厳己，min10 フォントについて．http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.
pdf

[5] W3C Japanese Layout Task Force (ed), Requirements for Japanese Text Layout (W3C Working Group Note),
2011, 2012. http://www.w3.org/TR/jlreq/

[6] 日本工業規格 (Japanese Industrial Standard) JIS X 4051, 日本語文書の組版方法 (Formatting rules for
Japanese documents), 1993, 1995, 2004.

27

http://mytexpert.sourceforge.jp/index.php?Listings
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf
http://argent.shinshu-u.ac.jp/~otobe/tex/files/min10.pdf
http://www.w3.org/TR/jlreq/

A The category code of non-kanji characters defined in JIS X 0213

In these tables, the default catcode (LuaTEX-ja) and kcatcode ((u)pTEX) of non-kanji characters defined in JIS X 0213
from row 1 to row 13 is summarized. Each character is printed as follows:

あ LUP

The tables are generated by using \jis command for characters included in JIS X 0208. Each character in the tables
means:

• The background of a character regarded as ALchar in LuaTEX-ja is colored light blue.

• The first letter L means that the character is available for the name of a control sequence in X ETEX and
LuaTEX-ja (its catcode is 11).

• The second letter U means that the character is available for the name of a control sequence in upTEX (its
kcatcode is 16 or 17). upTEX regards these characters as Japanese character.

• The third letter Pmeans that the character is available for the name of a control sequence in pTEX (its kcatcode
is 16 or 17).

• If the third letter is - (or the character is printed in red), the character is not included in JIS X 0208. Therefore,
you can consider the character is not available in pTEX.

• The kana for Japanese syllable beginning with a voiced velar nasal consonant.kana in rows 4 and 5 are omitted.

Row 1

"0 "1 "2 "3 "4 "5 "6 "7 "8 "9 "A "B "C "D "E "F

"2x 　　　L 　、　 　。　 　，　 　．　 　・　U 　：　 　；　 　？　 　！　 　゙　U 　゚　U 　́　 　`　L 　̈　

"3x 　^　L 　̄　L 　＿　L 　ヽ　LU 　ヾ　LU 　ゝ　LU 　ゞ　LU 　〃　L 　仝　LU 　々　L 　〆　L 　〇　L 　ー　LU 　―　 　‐　 　／　L

"4x 　＼　L 　〜　 　‖　 　｜　L 　…　 　‥　 　‘　 　’　 　“　 　”　 　（　 　）　 　〔　 　〕　 　［　 　］　

"5x 　｛　 　｝　 　〈　 　〉　 　《　 　》　 　「　 　」　 　『　 　』　 　【　 　】　 　＋　L 　−　 　±　 　×　

"6x 　÷　 　＝　L 　≠　 　＜　L 　＞　L 　≦　 　≧　 　∞　 　∴　 　♂　 　♀　 　°　 　′　 　″　 　℃　 　￥　

"7x 　＄　 　￠　 　￡　 　％　 　＃　L 　＆　L 　＊　L 　＠　L 　§　 　☆　 　★　 　○　 　●　 　◎　 　◇　

Row 2

"0 "1 "2 "3 "4 "5 "6 "7 "8 "9 "A "B "C "D "E "F

"2x 　◆　 　□　 　■　 　△　 　▲　 　▽　 　▼　 　※　 　〒　L 　→　 　←　 　↑　 　↓　 　〓　L 　＇　L -

"3x 　＂　L - 　−　L - 　〜　L - 　〳　L - 　〴　L - 　〵　L - 　〻　L - 　〼　L - 　ヿ　LU- 　ゟ　LU- 　∈　 　∋　 　⊆　 　⊇　 　⊂　 　⊃　

"4x 　∪　 　∩　 　⊄　 - 　⊅　 - 　⊊　 - 　⊋　 - 　∉　 - 　∅　 - 　⌅　 - 　⌆　 - 　∧　 　∨　 　￢　L 　⇒　 　⇔　 　∀　

"5x 　∃　 　⊕　 - 　⊖　 - 　⊗　 - 　∥　 - 　∦　 - 　｟　 - 　｠　 - 　〘　 - 　〙　 - 　〖　 - 　〗　 - 　∠　 　⊥　 　⌒　 　∂　

"6x 　∇　 　≡　 　≒　 　≪　 　≫　 　√　 　∽　 　∝　 　∵　 　∫　 　∬　 　≢　 - 　≃　 - 　≅　 - 　≈　 - 　≶　 -

"7x 　≷　 - 　↔　 - 　Å　L 　‰　 　♯　 　♭　 　♪　 　†　 　‡　 　¶　 　♮　 - 　♫　 - 　♬　 - 　♩　 - 　◯　

28

Row 3

"0 "1 "2 "3 "4 "5 "6 "7 "8 "9 "A "B "C "D "E "F

"2x 　▷　 - 　▶　 - 　◁　 - 　◀　 - 　↗　 - 　↘　 - 　↖　 - 　↙　 - 　⇄　 - 　⇨　 - 　⇦　 - 　⇧　 - 　⇩　 - 　⤴　 - 　⤵　 -

"3x 　０　LUP 　１　LUP 　２　LUP 　３　LUP 　４　LUP 　５　LUP 　６　LUP 　７　LUP 　８　LUP 　９　LUP 　⦿　 - 　◉　 - 　〽　L - 　﹆　L - 　﹅　L - 　◦　 -

"4x 　•　 - 　Ａ　LUP 　Ｂ　LUP 　Ｃ　LUP 　Ｄ　LUP 　Ｅ　LUP 　Ｆ　LUP 　Ｇ　LUP 　Ｈ　LUP 　Ｉ　LUP 　Ｊ　LUP 　Ｋ　LUP 　Ｌ　LUP 　Ｍ　LUP 　Ｎ　LUP 　Ｏ　LUP

"5x 　Ｐ　LUP 　Ｑ　LUP 　Ｒ　LUP 　Ｓ　LUP 　Ｔ　LUP 　Ｕ　LUP 　Ｖ　LUP 　Ｗ　LUP 　Ｘ　LUP 　Ｙ　LUP 　Ｚ　LUP 　∓　 - 　ℵ　L - 　ℏ　L - 　㏋　L - 　ℓ　L -

"6x 　℧　 - 　ａ　LUP 　ｂ　LUP 　ｃ　LUP 　ｄ　LUP 　ｅ　LUP 　ｆ　LUP 　ｇ　LUP 　ｈ　LUP 　ｉ　LUP 　ｊ　LUP 　ｋ　LUP 　ｌ　LUP 　ｍ　LUP 　ｎ　LUP 　ｏ　LUP

"7x 　ｐ　LUP 　ｑ　LUP 　ｒ　LUP 　ｓ　LUP 　ｔ　LUP 　ｕ　LUP 　ｖ　LUP 　ｗ　LUP 　ｘ　LUP 　ｙ　LUP 　ｚ　LUP 　゠　U- 　–　 - 　⧺　 - 　⧻　 -

Row 4

"0 "1 "2 "3 "4 "5 "6 "7 "8 "9 "A "B "C "D "E "F

"2x 　ぁ　LUP 　あ　LUP 　ぃ　LUP 　い　LUP 　ぅ　LUP 　う　LUP 　ぇ　LUP 　え　LUP 　ぉ　LUP 　お　LUP 　か　LUP 　が　LUP 　き　LUP 　ぎ　LUP 　く　LUP

"3x 　ぐ　LUP 　け　LUP 　げ　LUP 　こ　LUP 　ご　LUP 　さ　LUP 　ざ　LUP 　し　LUP 　じ　LUP 　す　LUP 　ず　LUP 　せ　LUP 　ぜ　LUP 　そ　LUP 　ぞ　LUP 　た　LUP

"4x 　だ　LUP 　ち　LUP 　ぢ　LUP 　っ　LUP 　つ　LUP 　づ　LUP 　て　LUP 　で　LUP 　と　LUP 　ど　LUP 　な　LUP 　に　LUP 　ぬ　LUP 　ね　LUP 　の　LUP 　は　LUP

"5x 　ば　LUP 　ぱ　LUP 　ひ　LUP 　び　LUP 　ぴ　LUP 　ふ　LUP 　ぶ　LUP 　ぷ　LUP 　へ　LUP 　べ　LUP 　ぺ　LUP 　ほ　LUP 　ぼ　LUP 　ぽ　LUP 　ま　LUP 　み　LUP

"6x 　む　LUP 　め　LUP 　も　LUP 　ゃ　LUP 　や　LUP 　ゅ　LUP 　ゆ　LUP 　ょ　LUP 　よ　LUP 　ら　LUP 　り　LUP 　る　LUP 　れ　LUP 　ろ　LUP 　ゎ　LUP 　わ　LUP

"7x 　ゐ　LUP 　ゑ　LUP 　を　LUP 　ん　LUP 　ゔ　LU- 　ゕ　LU- 　ゖ　LU-

Row 5

"0 "1 "2 "3 "4 "5 "6 "7 "8 "9 "A "B "C "D "E "F

"2x 　ァ　LUP 　ア　LUP 　ィ　LUP 　イ　LUP 　ゥ　LUP 　ウ　LUP 　ェ　LUP 　エ　LUP 　ォ　LUP 　オ　LUP 　カ　LUP 　ガ　LUP 　キ　LUP 　ギ　LUP 　ク　LUP

"3x 　グ　LUP 　ケ　LUP 　ゲ　LUP 　コ　LUP 　ゴ　LUP 　サ　LUP 　ザ　LUP 　シ　LUP 　ジ　LUP 　ス　LUP 　ズ　LUP 　セ　LUP 　ゼ　LUP 　ソ　LUP 　ゾ　LUP 　タ　LUP

"4x 　ダ　LUP 　チ　LUP 　ヂ　LUP 　ッ　LUP 　ツ　LUP 　ヅ　LUP 　テ　LUP 　デ　LUP 　ト　LUP 　ド　LUP 　ナ　LUP 　ニ　LUP 　ヌ　LUP 　ネ　LUP 　ノ　LUP 　ハ　LUP

"5x 　バ　LUP 　パ　LUP 　ヒ　LUP 　ビ　LUP 　ピ　LUP 　フ　LUP 　ブ　LUP 　プ　LUP 　ヘ　LUP 　ベ　LUP 　ペ　LUP 　ホ　LUP 　ボ　LUP 　ポ　LUP 　マ　LUP 　ミ　LUP

"6x 　ム　LUP 　メ　LUP 　モ　LUP 　ャ　LUP 　ヤ　LUP 　ュ　LUP 　ユ　LUP 　ョ　LUP 　ヨ　LUP 　ラ　LUP 　リ　LUP 　ル　LUP 　レ　LUP 　ロ　LUP 　ヮ　LUP 　ワ　LUP

"7x 　ヰ　LUP 　ヱ　LUP 　ヲ　LUP 　ン　LUP 　ヴ　LUP 　ヵ　LUP 　ヶ　LUP

Row 6

"0 "1 "2 "3 "4 "5 "6 "7 "8 "9 "A "B "C "D "E "F

"2x 　Α　L P 　Β　L P 　Γ　L P 　Δ　L P 　Ε　L P 　Ζ　L P 　Η　L P 　Θ　L P 　Ι　L P 　Κ　L P 　Λ　L P 　Μ　L P 　Ν　L P 　Ξ　L P 　Ο　L P

"3x 　Π　L P 　Ρ　L P 　Σ　L P 　Τ　L P 　Υ　L P 　Φ　L P 　Χ　L P 　Ψ　L P 　Ω　L P 　♤　 - 　♠　 - 　♢　 - 　♦　 - 　♡　 - 　♥　 - 　♧　 -

"4x 　♣　 - 　α　L P 　β　L P 　γ　L P 　δ　L P 　ε　L P 　ζ　L P 　η　L P 　θ　L P 　ι　L P 　κ　L P 　λ　L P 　μ　L P 　ν　L P 　ξ　L P 　ο　L P

"5x 　π　L P 　ρ　L P 　σ　L P 　τ　L P 　υ　L P 　φ　L P 　χ　L P 　ψ　L P 　ω　L P 　ς　L - 　⓵　 - 　⓶　 - 　⓷　 - 　⓸　 - 　⓹　 - 　⓺　 -

"6x 　⓻　 - 　⓼　 - 　⓽　 - 　⓾　 - 　☖　 - 　☗　 - 　〠　L - 　☎　 - 　☀　 - 　☁　 - 　☂　 - 　☃　 - 　♨　 - 　▱　 - 　ㇰ　LU- 　ㇱ　LU-

"7x 　ㇲ　LU- 　ㇳ　LU- 　ㇴ　LU- 　ㇵ　LU- 　ㇶ　LU- 　ㇷ　LU- 　ㇸ　LU- 　ㇹ　LU- 　ㇷ　LU- 　ㇺ　LU- 　ㇻ　LU- 　ㇼ　LU- 　ㇽ　LU- 　ㇾ　LU- 　ㇿ　LU-

29

Row 7

"0 "1 "2 "3 "4 "5 "6 "7 "8 "9 "A "B "C "D "E "F

"2x 　А　L 　Б　L 　В　L 　Г　L 　Д　L 　Е　L 　Ё　L 　Ж　L 　З　L 　И　L 　Й　L 　К　L 　Л　L 　М　L 　Н　L

"3x 　О　L 　П　L 　Р　L 　С　L 　Т　L 　У　L 　Ф　L 　Х　L 　Ц　L 　Ч　L 　Ш　L 　Щ　L 　Ъ　L 　Ы　L 　Ь　L 　Э　L

"4x 　Ю　L 　Я　L 　⎾　 - 　⎿　 - 　⏀　 - 　⏁　 - 　⏂　 - 　⏃　 - 　⏄　 - 　⏅　 - 　⏆　 - 　⏇　 - 　⏈　 - 　⏉　 - 　⏊　 - 　⏋　 -

"5x 　⏌　 - 　а　L 　б　L 　в　L 　г　L 　д　L 　е　L 　ё　L 　ж　L 　з　L 　и　L 　й　L 　к　L 　л　L 　м　L 　н　L

"6x 　о　L 　п　L 　р　L 　с　L 　т　L 　у　L 　ф　L 　х　L 　ц　L 　ч　L 　ш　L 　щ　L 　ъ　L 　ы　L 　ь　L 　э　L

"7x 　ю　L 　я　L 　ヷ　LU- 　ヸ　LU- 　ヹ　LU- 　ヺ　LU- 　⋚　 - 　⋛　 - 　⅓　 - 　⅔　 - 　⅕　 - 　✓　 - 　⌘　 - 　␣　 - 　⏎　 -

Row 8

"0 "1 "2 "3 "4 "5 "6 "7 "8 "9 "A "B "C "D "E "F

"2x 　─　 　│　 　┌　 　┐　 　┘　 　└　 　├　 　┬　 　┤　 　┴　 　┼　 　━　 　┃　 　┏　 　┓　

"3x 　┛　 　┗　 　┣　 　┳　 　┫　 　┻　 　╋　 　┠　 　┯　 　┨　 　┷　 　┿　 　┝　 　┰　 　┥　 　┸　

"4x 　╂　 　㉑　L - 　㉒　L - 　㉓　L - 　㉔　L - 　㉕　L - 　㉖　L - 　㉗　L - 　㉘　L - 　㉙　L - 　㉚　L - 　㉛　L - 　㉜　L - 　㉝　L - 　㉞　L - 　㉟　L -

"5x 　㊱　L - 　㊲　L - 　㊳　L - 　㊴　L - 　㊵　L - 　㊶　L - 　㊷　L - 　㊸　L - 　㊹　L - 　㊺　L - 　㊻　L - 　㊼　L - 　㊽　L - 　㊾　L - 　㊿　L -

"6x 　◐　 - 　◑　 - 　◒　 - 　◓　 - 　‼　 - 　⁇　 - 　⁈　 - 　⁉　 - 　Ǎ　L -

"7x 　ǎ　L - 　ǐ　L - 　Ḿ　L - 　ḿ　L - 　Ǹ　L - 　ǹ　L - 　Ǒ　L - 　ǒ　L - 　ǔ　L - 　ǖ　L - 　ǘ　L - 　ǚ　L - 　ǜ　L -

Row 9

"0 "1 "2 "3 "4 "5 "6 "7 "8 "9 "A "B "C "D "E "F

"2x 　€　 - 　 　 - 　¡　 - 　¤　 - 　¦　 - 　©　 - 　ª　L - 　«　 - 　　 - 　®　 - 　̄　 - 　²　 - 　³　 - 　·　 - 　̧　 -

"3x 　¹　 - 　º　L - 　»　 - 　¼　 - 　½　 - 　¾　 - 　¿　 - 　À　L - 　Á　L - 　Â　L - 　Ã　L - 　Ä　L - 　Å　L - 　Æ　L - 　Ç　L - 　È　L -

"4x 　É　L - 　Ê　L - 　Ë　L - 　Ì　L - 　Í　L - 　Î　L - 　Ï　L - 　Ð　L - 　Ñ　L - 　Ò　L - 　Ó　L - 　Ô　L - 　Õ　L - 　Ö　L - 　Ø　L - 　Ù　L -

"5x 　Ú　L - 　Û　L - 　Ü　L - 　Ý　L - 　Þ　L - 　ß　L - 　à　L - 　á　L - 　â　L - 　ã　L - 　ä　L - 　å　L - 　æ　L - 　ç　L - 　è　L - 　é　L -

"6x 　ê　L - 　ë　L - 　ì　L - 　í　L - 　î　L - 　ï　L - 　ð　L - 　ñ　L - 　ò　L - 　ó　L - 　ô　L - 　õ　L - 　ö　L - 　ø　L - 　ù　L - 　ú　L -

"7x 　û　L - 　ü　L - 　ý　L - 　þ　L - 　ÿ　L - 　Ā　L - 　Ī　L - 　Ū　L - 　Ē　L - 　Ō　L - 　ā　L - 　ī　L - 　ū　L - 　ē　L - 　ō　L -

Row 10

"0 "1 "2 "3 "4 "5 "6 "7 "8 "9 "A "B "C "D "E "F

"2x 　Ą　L - 　̆　 - 　Ł　L - 　Ľ　L - 　Ś　L - 　Š　L - 　Ş　L - 　Ť　L - 　Ź　L - 　Ž　L - 　Ż　L - 　ą　L - 　̨　 - 　ł　L - 　ľ　L -

"3x 　ś　L - 　̌　L - 　š　L - 　ş　L - 　ť　L - 　ź　L - 　̋　 - 　ž　L - 　ż　L - 　Ŕ　L - 　Ă　L - 　Ĺ　L - 　Ć　L - 　Č　L - 　Ę　L - 　Ě　L -

"4x 　Ď　L - 　Ń　L - 　Ň　L - 　Ő　L - 　Ř　L - 　Ů　L - 　Ű　L - 　Ţ　L - 　ŕ　L - 　ă　L - 　ĺ　L - 　ć　L - 　č　L - 　ę　L - 　ě　L - 　ď　L -

"5x 　đ　L - 　ń　L - 　ň　L - 　ő　L - 　ř　L - 　ů　L - 　ű　L - 　ţ　L - 　̇　 - 　Ĉ　L - 　Ĝ　L - 　Ĥ　L - 　Ĵ　L - 　Ŝ　L - 　Ŭ　L - 　ĉ　L -

"6x 　ĝ　L - 　ĥ　L - 　ĵ　L - 　ŝ　L - 　ŭ　L - 　ɱ　L - 　ʋ　L - 　ɾ　L - 　ʃ　L - 　ʒ　L - 　ɬ　L - 　ɮ　L - 　ɹ　L - 　ʈ　L - 　ɖ　L - 　ɳ　L -

"7x 　ɽ　L - 　ʂ　L - 　ʐ　L - 　ɻ　L - 　ɭ　L - 　ɟ　L - 　ɲ　L - 　ʝ　L - 　ʎ　L - 　ɡ　L - 　ŋ　L - 　ɰ　L - 　ʁ　L - 　ħ　L - 　ʕ　L -

30

Row 11

"0 "1 "2 "3 "4 "5 "6 "7 "8 "9 "A "B "C "D "E "F

"2x 　ʔ　L - 　ɦ　L - 　ʘ　L - 　ǂ　L - 　ɓ　L - 　ɗ　L - 　ʄ　L - 　ɠ　L - 　Ɠ　L - 　œ　L - 　Œ　L - 　ɨ　L - 　ʉ　L - 　ɘ　L - 　ɵ　L -

"3x 　ə　L - 　ɜ　L - 　ɞ　L - 　ɐ　L - 　ɯ　L - 　ʊ　L - 　ɤ　L - 　ʌ　L - 　ɔ　L - 　ɑ　L - 　ɒ　L - 　ʍ　L - 　ɥ　L - 　ʢ　L - 　ʡ　L - 　ɕ　L -

"4x 　ʑ　L - 　ɺ　L - 　ɧ　L - 　ɚ　L - 　æ　L - 　ǽ　L - 　ὰ　L - 　ά　L - 　ɔ　L - 　ɔ　L - 　ʌ　L - 　ʌ　L - 　ə　L - 　ə　L - 　ɚ　L - 　ɚ　L -

"5x 　ὲ　L - 　έ　L - 　͡　L - 　̍　L - 　̩　L - 　ː　L - 　ˑ　L - 　̆　L - 　‿　 - 　̋　L - 　́　L - 　̄　L - 　̀　L - 　̏　L - 　̌　L - 　̂　L -

"6x 　˥　 - 　˦　 - 　˧　 - 　˨　 - 　˩　 - 　˩　 - 　˥　 - 　̥　L - 　̬　L - 　̹　L - 　̜　L - 　̟　L - 　̠　L - 　̈　L - 　̽　L - 　̩　L -

"7x 　̯　L - 　˞　 - 　̤　L - 　̰　L - 　̼　L - 　̴　L - 　̝　L - 　̞　L - 　̘　L - 　̙　L - 　̪　L - 　̺　L - 　̻　L - 　̃　L - 　̚　L -

Row 12

"0 "1 "2 "3 "4 "5 "6 "7 "8 "9 "A "B "C "D "E "F

"2x 　❶　 - 　❷　 - 　❸　 - 　❹　 - 　❺　 - 　❻　 - 　❼　 - 　❽　 - 　❾　 - 　❿　 - 　⓫　 - 　⓬　 - 　⓭　 - 　⓮　 - 　⓯　 -

"3x 　⓰　 - 　⓱　 - 　⓲　 - 　⓳　 - 　⓴　 - 　ⅰ　 - 　ⅱ　 - 　ⅲ　 - 　ⅳ　 - 　ⅴ　 - 　ⅵ　 - 　ⅶ　 - 　ⅷ　 - 　ⅸ　 - 　ⅹ　 - 　ⅺ　 -

"4x 　ⅻ　 - 　ⓐ　 - 　ⓑ　 - 　ⓒ　 - 　ⓓ　 - 　ⓔ　 - 　ⓕ　 - 　ⓖ　 - 　ⓗ　 - 　ⓘ　 - 　ⓙ　 - 　ⓚ　 - 　ⓛ　 - 　ⓜ　 - 　ⓝ　 - 　ⓞ　 -

"5x 　ⓟ　 - 　ⓠ　 - 　ⓡ　 - 　ⓢ　 - 　ⓣ　 - 　ⓤ　 - 　ⓥ　 - 　ⓦ　 - 　ⓧ　 - 　ⓨ　 - 　ⓩ　 - 　㋐　L - 　㋑　L - 　㋒　L - 　㋓　L - 　㋔　L -

"6x 　㋕　L - 　㋖　L - 　㋗　L - 　㋘　L - 　㋙　L - 　㋚　L - 　㋛　L - 　㋜　L - 　㋝　L - 　㋞　L - 　㋟　L - 　㋠　L - 　㋡　L - 　㋢　L - 　㋣　L - 　㋺　L -

"7x 　㋩　L - 　㋥　L - 　㋭　L - 　㋬　L - 　⁑　 - 　⁂　 -

Row 13

"0 "1 "2 "3 "4 "5 "6 "7 "8 "9 "A "B "C "D "E "F

"2x 　①　 - 　②　 - 　③　 - 　④　 - 　⑤　 - 　⑥　 - 　⑦　 - 　⑧　 - 　⑨　 - 　⑩　 - 　⑪　 - 　⑫　 - 　⑬　 - 　⑭　 - 　⑮　 -

"3x 　⑯　 - 　⑰　 - 　⑱　 - 　⑲　 - 　⑳　 - 　Ⅰ　 - 　Ⅱ　 - 　Ⅲ　 - 　Ⅳ　 - 　Ⅴ　 - 　Ⅵ　 - 　Ⅶ　 - 　Ⅷ　 - 　Ⅸ　 - 　Ⅹ　 - 　Ⅺ　 -

"4x 　㍉　L - 　㌔　L - 　㌢　L - 　㍍　L - 　㌘　L - 　㌧　L - 　㌃　L - 　㌶　L - 　㍑　L - 　㍗　L - 　㌍　L - 　㌦　L - 　㌣　L - 　㌫　L - 　㍊　L - 　㌻　L -

"5x 　㎜　L - 　㎝　L - 　㎞　L - 　㎎　L - 　㎏　L - 　㏄　L - 　㎡　L - 　Ⅻ　 - 　㍻　L -

"6x 　〝　 - 　〟　 - 　№　 - 　㏍　L - 　℡　 - 　㊤　L - 　㊥　L - 　㊦　L - 　㊧　L - 　㊨　L - 　㈱　L - 　㈲　L - 　㈹　L - 　㍾　L - 　㍽　L - 　㍼　L -

"7x 　∮　 - 　∟　 - 　⊿　 - 　❖　 - 　☞　 -

B Package versions used in this document

This document was typeset using the following packages:

geometry.sty 2010/09/12 v5.6 Page Geometry

keyval.sty 1999/03/16 v1.13 key=value parser (DPC)

ifpdf.sty 2011/01/30 v2.3 Provides the ifpdf switch (HO)

ifvtex.sty 2010/03/01 v1.5 Detect VTeX and its facilities (HO)

ifxetex.sty 2010/09/12 v0.6 Provides ifxetex conditional

luatexja-adjust.sty 2013/05/14

luatexja.sty 2013/05/14 Japanese Typesetting with LuaTeX

luatexja-core.sty 2013/05/14 Core of LuaTeX-ja

luaotfload.sty 2013/05/10 v2.2 OpenType layout system

luatexbase.sty 2013/05/11 v0.6 Resource management for the LuaTeX macro programmer

ifluatex.sty 2010/03/01 v1.3 Provides the ifluatex switch (HO)

luatex.sty 2010/03/09 v0.4 LuaTeX basic definition package (HO)

infwarerr.sty 2010/04/08 v1.3 Providing info/warning/error messages (HO)

31

etex.sty 1998/03/26 v2.0 eTeX basic definition package (PEB)

luatex-loader.sty 2010/03/09 v0.4 Lua module loader (HO)

luatexbase-compat.sty 2011/05/24 v0.4 Compatibility tools for LuaTeX

luatexbase-modutils.sty 2013/05/11 v0.6 Module utilities for LuaTeX

luatexbase-loader.sty 2013/05/11 v0.6 Lua module loader for LuaTeX

luatexbase-regs.sty 2011/05/24 v0.4 Registers allocation for LuaTeX

luatexbase-attr.sty 2013/05/11 v0.6 Attributes allocation for LuaTeX

luatexbase-cctb.sty 2013/05/11 v0.6 Catcodetable allocation for LuaTeX

luatexbase-mcb.sty 2013/05/11 v0.6 Callback management for LuaTeX

ltxcmds.sty 2011/11/09 v1.22 LaTeX kernel commands for general use (HO)

pdftexcmds.sty 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO)

xkeyval.sty 2012/10/14 v2.6b package option processing (HA)

ltj-cctbreg.sty 2013/05/14

ltj-base.sty 2013/05/14

ltj-latex.sty 2013/05/14 LaTeX support of LuaTeX-ja

lltjfont.sty 2013/05/14 Patch to NFSS2 for LuaTeX-ja

lltjdefs.sty 2013/05/14 Default font settings of LuaTeX-ja

lltjcore.sty 2013/05/14 Patch to LaTeX2e Kernel for LuaTeX-ja

luatexja-compat.sty 2013/05/14 Compatibility with pTeX

expl3.sty 2013/03/14 v4469 L3 Experimental code bundle wrapper

l3names.sty 2012/12/07 v4346 L3 Namespace for primitives

l3bootstrap.sty 2013/01/08 v4420 L3 Experimental bootstrap code

l3basics.sty 2013/01/10 v4428 L3 Basic definitions

l3expan.sty 2013/02/03 v4458 L3 Argument expansion

l3tl.sty 2013/01/08 v4415 L3 Token lists

l3seq.sty 2013/01/12 v4434 L3 Sequences and stacks

l3int.sty 2013/01/13 v4444 L3 Integers

l3quark.sty 2012/11/04 v4268 L3 Quarks

l3prg.sty 2013/02/13 v4459 L3 Control structures

l3clist.sty 2013/01/08 v4414 L3 Comma separated lists

l3token.sty 2013/01/10 v4428 L3 Experimental token manipulation

l3prop.sty 2013/01/09 v4423 L3 Property lists

l3msg.sty 2013/01/08 v4412 L3 Messages

l3file.sty 2013/01/14 v4446 L3 File and I/O operations

l3skip.sty 2013/01/13 v4444 L3 Dimensions and skips

l3keys.sty 2013/02/24 v4461 L3 Experimental key-value interfaces

l3fp.sty 2013/01/19 v4449 L3 Floating points

l3box.sty 2013/01/08 v4411 L3 Experimental boxes

l3coffins.sty 2012/09/09 v4212 L3 Coffin code layer

l3color.sty 2012/08/29 v4156 L3 Experimental color support

l3luatex.sty 2012/08/03 v4049 L3 Experimental LuaTeX-specific functions

l3candidates.sty 2013/03/14 v4468 L3 Experimental additions to l3kernel

amsmath.sty 2013/01/14 v2.14 AMS math features

amstext.sty 2000/06/29 v2.01

amsgen.sty 1999/11/30 v2.0

amsbsy.sty 1999/11/29 v1.2d

amsopn.sty 1999/12/14 v2.01 operator names

tikz.sty 2010/10/13 v2.10 (rcs-revision 1.76)

pgf.sty 2008/01/15 v2.10 (rcs-revision 1.12)

pgfrcs.sty 2010/10/25 v2.10 (rcs-revision 1.24)

everyshi.sty 2001/05/15 v3.00 EveryShipout Package (MS)

pgfcore.sty 2010/04/11 v2.10 (rcs-revision 1.7)

graphicx.sty 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)

graphics.sty 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)

trig.sty 1999/03/16 v1.09 sin cos tan (DPC)

pgfsys.sty 2010/06/30 v2.10 (rcs-revision 1.37)

xcolor.sty 2007/01/21 v2.11 LaTeX color extensions (UK)

32

pgfcomp-version-0-65.sty 2007/07/03 v2.10 (rcs-revision 1.7)

pgfcomp-version-1-18.sty 2007/07/23 v2.10 (rcs-revision 1.1)

pgffor.sty 2010/03/23 v2.10 (rcs-revision 1.18)

pgfkeys.sty

pict2e.sty 2011/04/05 v0.2y Improved picture commands (HjG,RN,JT)

multienum.sty

float.sty 2001/11/08 v1.3d Float enhancements (AL)

booktabs.sty 2005/04/14 v1.61803 publication quality tables

multicol.sty 2011/06/27 v1.7a multicolumn formatting (FMi)

listings.sty 2007/02/22 1.4 (Carsten Heinz)

lstmisc.sty 2007/02/22 1.4 (Carsten Heinz)

showexpl.sty 2013/03/21 v0.3k Typesetting example code (RN)

calc.sty 2007/08/22 v4.3 Infix arithmetic (KKT,FJ)

ifthen.sty 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC)

varwidth.sty 2009/03/30 ver 0.92; Variable-width minipages

hyperref.sty 2012/11/06 v6.83m Hypertext links for LaTeX

hobsub-hyperref.sty 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO)

hobsub-generic.sty 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO)

hobsub.sty 2012/05/28 v1.13 Construct package bundles (HO)

intcalc.sty 2007/09/27 v1.1 Expandable calculations with integers (HO)

etexcmds.sty 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO)

kvsetkeys.sty 2012/04/25 v1.16 Key value parser (HO)

kvdefinekeys.sty 2011/04/07 v1.3 Define keys (HO)

pdfescape.sty 2011/11/25 v1.13 Implements pdfTeX's escape features (HO)

bigintcalc.sty 2012/04/08 v1.3 Expandable calculations on big integers (HO)

bitset.sty 2011/01/30 v1.1 Handle bit-vector datatype (HO)

uniquecounter.sty 2011/01/30 v1.2 Provide unlimited unique counter (HO)

letltxmacro.sty 2010/09/02 v1.4 Let assignment for LaTeX macros (HO)

hopatch.sty 2012/05/28 v1.2 Wrapper for package hooks (HO)

xcolor-patch.sty 2011/01/30 xcolor patch

atveryend.sty 2011/06/30 v1.8 Hooks at the very end of document (HO)

atbegshi.sty 2011/10/05 v1.16 At begin shipout hook (HO)

refcount.sty 2011/10/16 v3.4 Data extraction from label references (HO)

hycolor.sty 2011/01/30 v1.7 Color options for hyperref/bookmark (HO)

auxhook.sty 2011/03/04 v1.3 Hooks for auxiliary files (HO)

kvoptions.sty 2011/06/30 v3.11 Key value format for package options (HO)

url.sty 2006/04/12 ver 3.3 Verb mode for urls, etc.

rerunfilecheck.sty 2011/04/15 v1.7 Rerun checks for auxiliary files (HO)

amsthm.sty 2004/08/06 v2.20

luatexja-otf.sty 2013/05/14

luatexja-ajmacros.sty 2013/05/14

luatexja-preset.sty 2013/05/14 Japanese font presets

luatexja-fontspec.sty 2013/05/14 fontspec support of LuaTeX-ja

fontspec.sty 2013/05/03 v2.3b Font selection for XeLaTeX and LuaLaTeX

xparse.sty 2013/03/12 v4467 L3 Experimental document command parser

fontspec-patches.sty 2013/05/03 v2.3b Font selection for XeLaTeX and LuaLaTeX

fixltx2e.sty 2006/09/13 v1.1m fixes to LaTeX

fontspec-luatex.sty 2013/05/03 v2.3b Font selection for XeLaTeX and LuaLaTeX

fontenc.sty

xunicode.sty 2011/09/09 v0.981 provides access to latin accents and many other characters in Unicode
lower plane

unicode-math.sty 2013/03/16 v0.7d Unicode maths in XeLaTeX and LuaLaTeX

l3keys2e.sty 2013/03/12 v4467 LaTeX2e option processing using LaTeX3 keys

catchfile.sty 2011/03/01 v1.6 Catch the contents of a file (HO)

fix-cm.sty 2006/09/13 v1.1m fixes to LaTeX

filehook.sty 2011/10/12 v0.5d Hooks for input files

unicode-math-luatex.sty

33

lualatex-math.sty 2013/01/13 v1.2 Patches for mathematics typesetting with LuaLaTeX

etoolbox.sty 2011/01/03 v2.1 e-TeX tools for LaTeX

metalogo.sty 2010/05/29 v0.12 Extended TeX logo macros

lltjp-fontspec.sty 2013/05/14 Patch to fontspec for LuaTeX-ja

lltjp-xunicode.sty 2013/05/14 Patch to xunicode for LuaTeX-ja

lltjp-unicode-math.sty 2013/05/14 Patch to unicode-math for LuaTeX-ja

lltjp-listings.sty 2013/05/14 Patch to listings for LuaTeX-ja

epstopdf-base.sty 2010/02/09 v2.5 Base part for package epstopdf

grfext.sty 2010/08/19 v1.1 Manage graphics extensions (HO)

nameref.sty 2012/10/27 v2.43 Cross-referencing by name of section

gettitlestring.sty 2010/12/03 v1.4 Cleanup title references (HO)

34

	I User's manual
	Introduction
	Backgrounds
	Major Changes from pTeX
	Notations
	About the project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX

	Changing Fonts
	plain TeX and LaTeX2ε
	fontspec
	Preset
	92 CID, 92 UTF and macros in otf package

	Changing Parameters
	Editing the range of JAchars
	kanjiskip and xkanjiskip
	Insertion Setting of xkanjiskip
	Shifting Baseline

	II Reference
	Font Metric and Japanese Font
	92jfont
	Prefix psft
	Structure of JFM file
	Math Font Family
	Callbacks

	Parameters
	92 ltjsetparameter
	List of Parameters

	Other Control Sequences
	Control Sequences for Compatibility
	92 inhibitglue

	Control Sequences for LaTeX2ε
	Patch for NFSS2

	Extensions
	luatexja-fontspec.sty
	luatexja-otf.sty
	luatexja-adjust.sty

	III Implementations
	Storing Parameters
	Used Dimensions, Attributes and whatsit nodes
	Stack System of LuaTeX-ja

	Linebreak after Japanese Character
	Reference: Behavior in pTeX
	Behavior in LuaTeX-ja

	Patch for the listings package
	References
	The category code of non-kanji characters defined in JIS X 0213
	Package versions used in this document

