
The luaotfload package

Elie Roux · Khaled Hosny · Philipp Gesang
Home: https://github.com/lualatex/luaotfload

Support: lualatex-dev@tug.org

2017/01/29 v2.8

Abstract

This package is an adaptation of the ConTEXt font loading system. It allows for
loading OpenType fonts with an extended syntax and adds support for a variety of
font features.

After discussion of the font loading API, this manual gives an overview of the
core components of Luaotfload: The packaged font loader code, the names database,
configuration, and helper functions on the Lua end.

Contents
1 Introduction 2

2 Thanks 3

3 Loading Fonts 3
3.1 Prefix – the luaotfloadWay . 3
3.2 Bracketed Lookups . 4
3.3 Compatibility . 4
3.4 Examples . 5

3.4.1 Loading by File Name . 5
3.4.2 Loading by Font Name . 5
3.4.3 Modifiers . 6

4 Font features 6
4.1 Basic font features . 7
4.2 Non-standard font features . 9

5 Combining fonts 9
5.1 Fallbacks . 9
5.2 Combinations . 10

6 Font names database 10
6.1 luaotfload-tool . 11
6.2 Search Paths . 11
6.3 Querying from Outside . 12

1

https://github.com/lualatex/luaotfload
mailto:lualatex-dev@tug.org

6.4 Blacklisting Fonts . 12

7 The Fontloader 13
7.1 Overview . 13
7.2 Contents and Dependencies . 13
7.3 Packaging . 16

8 Configuration Files 16

9 Auxiliary Functions 17
9.1 Callback Functions . 18

9.1.1 Compatibility with Earlier Versions 18
9.1.2 Patches . 19

9.2 Package Author’s Interface . 19
9.2.1 Font Properties . 19
9.2.2 Database . 20

10 Troubleshooting 20
10.1 Database Generation . 20
10.2 Font Features . 20
10.3 LuaTEX Programming . 21

11 License 21

1 Introduction

Font management and installation has always been painful with TEX. A lot of files are
needed for one font (tfm, pfb, map, fd, vf), and due to the 8-Bit encoding each font is
limited to 256 characters.

But the font world has evolved since the original TEX, and new typographic systems
have appeared, most notably the so called smart font technologies like OpenType fonts
(otf).

These fonts can contain many more characters than TEX fonts, as well as additional
functionality like ligatures, old-style numbers, small capitals, etc., and support more
complex writing systems like Arabic and Indic1 scripts.

OpenType fonts are widely deployed and available for all modern operating systems.
As of 2013 they have become the de facto standard for advanced text layout.
However, until recently the only way to use them directly in the TEX world was with

the X ETEX engine.
Unlike X ETEX, LuaTEX has no built-in support for OpenType or technologies other

than the original TEX fonts.
Instead, it provides hooks for executing Lua code during the TEX run that allow

implementing extensions for loading fonts andmanipulating how input text is processed
without modifying the underlying engine.

This is where luaotfload comes into play: Based on code from ConTEXt, it extends
LuaTEX with functionality necessary for handling OpenType fonts.

1Unfortunately, luaotfload doesn‘t support many Indic scripts right now. Assistance in implementing the
prerequisites is greatly appreciated.

2

Additionally, it provides means for accessing fonts known to the operating system
conveniently by indexing the metadata.

2 Thanks

Luaotfload is part of LuaLATEX, the community-driven project to provide a foundation for
using the LATEX format with the full capabilites of the LuaTEX engine. As such, the dis-
tinction between end users, contributors, and project maintainers is intentionally kept
less strict, lest we unduly personalize the common effort.

Nevertheless, the current maintainers would like to express their gratitude to Khaled
Hosny, Akira Kakuto, Hironori Kitagawa and Dohyun Kim. Their contributions – be it
patches, advice, or systematic testing – made the switch from version 1.x to 2.2 possible.
Also, Hans Hagen, the author of the font loader, made porting the code to LATEX a breeze
due to the extra effort he invested into isolating it from the rest of ConTEXt, not to
mention his assistance in the task and willingness to respond to our suggestions.

3 Loading Fonts

luaotfload supports an extended font request syntax:

\font\foo = {⟨prefix⟩:⟨font name⟩:⟨font features⟩}⟨TEX font features⟩

The curly brackets are optional and escape the spaces in the enclosed font name. Alter-
natively, double quotes serve the same purpose. A selection of individual parts of the
syntax are discussed below; for a more formal description see figure 1.

3.1 Prefix – the luaotfload Way

In luaotfload, the canonical syntax for font requests requires a prefix:

\font\fontname = ⟨prefix⟩:⟨fontname⟩…
where ⟨prefix⟩ is either file: or name:.2 It determines whether the font loader should
interpret the request as a file name or font name, respectively, which again influences
how it will attempt to locate the font. Examples for font names are “Latin Modern Italic”,
“GFS Bodoni Rg”, and “PT Serif Caption” – they are the human readable identifiers usu-
ally listed in drop-down menus and the like.3 In order for fonts installed both in system

2Luaotfload also knows two further prefixes, kpse: and my:. A kpse lookup is restricted to files that can be
found by kpathsea and will not attempt to locate system fonts. This behavior can be of value when an extra
degree of encapsulation is needed, for instance when supplying a customized tex distribution.

The my lookup takes this a step further: it lets you define a custom resolver function and hook it into the
resolve_font callback. This ensures full control over how a file is located. For a working example see the test
repo.

3Font names may appear like a great choice at first because they offer seemingly more intuitive identifiers
in comparison to arguably cryptic file names: “PT Sans Bold” is a lot more descriptive than PTS75F.ttf. On
the other hand, font names are quite arbitrary and there is no universal method to determine their meaning.
While luaotfload provides fairly sophisticated heuristic to figure out a matching font style, weight, and optical
size, it cannot be relied upon to work satisfactorily for all font files. For an in-depth analysis of the situation
and how broken font names are, please refer to this post by Hans Hagen, the author of the font loader. If in
doubt, use filenames. luaotfload-tool can perform the matching for you with the option --find=<name>,
and you can use the file name it returns in your font definition.

3

https://bitbucket.org/phg/lua-la-tex-tests/src/5f6a535d/pln-lookup-callback-1.tex
https://bitbucket.org/phg/lua-la-tex-tests/src/5f6a535d/pln-lookup-callback-1.tex
http://www.ntg.nl/pipermail/ntg-context/2013/073889.html

locations and in your texmf to be accessible by font name, luaotfload must first collect
the metadata included in the files. Please refer to section 6 below for instructions on
how to create the database.

File names are whatever your file system allows them to be, except that that they
may not contain the characters (, :, and /. As is obvious from the last exception, the
file: lookup will not process paths to the font location – only those files found when
generating the database are addressable this way. Continue below in the X ETEX section
if you need to load your fonts by path. The file names corresponding to the example
font names above are lmroman12-italic.otf, GFSBodoni.otf, and PTZ56F.ttf.

3.2 Bracketed Lookups

Bracketed lookups allow for arbitrary character content to be used in a definition. A
simple bracketed request looks follows the scheme

\font\fontname = [⟨/path/to/file⟩]

Inside the square brackets, every character except for a closing bracket is permitted,
allowing for arbitrary paths to a font file – including Windows style paths with UNC
or drive letter prepended – to be specified. The Luaotfload syntax differs from X ETEX in
that the subfont selector goes after the closing bracket:

\font\fontname = [⟨/path/to/file⟩] (n)

Naturally, path-less file names are equally valid and processed the same way as an
ordinary file: lookup.

3.3 Compatibility

In addition to the regular prefixed requests, luaotfload accepts loading fonts the X ETEX
way. There are again two modes: bracketed and unbracketed. For the bracketed variety,
see above, 8.

Unbracketed (or, for lack of a better word: anonymous) font requests resemble the
conventional TEX syntax.

\font\fontname = ⟨font name⟩ …

However, they have a broader spectrum of possible interpretations: before anything
else, luaotfload attempts to load a traditional TEX Font Metric (tfm or ofm). If this fails, it
performs a path: lookup, which itself will fall back to a file: lookup. Lastly, if none of
the above succeeded, attempt to resolve the request as a name: lookup by searching the
font index for ⟨font name⟩. The behavior of this “anonymous” lookup is configurable,
see the configuation manpage for details.

Furthermore, luaotfload supports the slashed (shorthand) font style notation from
X ETEX.

\font\fontname = ⟨font name⟩/⟨modifier⟩ …

Currently, four style modifiers are supported: I for italic shape, B for bold weight, BI or
IB for the combination of both. Other “slashed” modifiers are too specific to the X ETEX
engine and have no meaning in LuaTEX.

4

3.4 Examples

3.4.1 Loading by File Name

For example, conventional TEX font can be loaded with a file: request like so:

\font \lmromanten = {file:ec-lmr10} at 10pt

The OpenType version of Janusz Nowacki’s font Antykwa Półtawskiego4 in its con-
densed variant can be loaded as follows:

\font \apcregular = file:antpoltltcond-regular.otf at 42pt

The next example shows how to load the Porson font digitized by the Greek Font
Society using X ETEX-style syntax and an absolute path from a non-standard directory:

\font \gfsporson = ”[/tmp/GFSPorson.otf]” at 12pt

TrueType collection files (the extension is usually .ttc) contain more than a single
font. In order to refer to these subfonts, the respective indexmay be added in parentheses
after the file name.5

\font \cambriamain = ”file:cambria.ttc(0)” at 10pt

\font \cambriamath = ”file:cambria.ttc(1)” at 10pt

and likewise, requesting subfont inside a TTC container by path:

\font \asanamain = ”[/home/typesetter/.fonts/math/asana.ttc](0):mode=node;+tlig” at 10pt

\font \asanamath = ”[/home/typesetter/.fonts/math/asana.ttc](1):mode=base” at 10pt

3.4.2 Loading by Font Name

The name: lookup does not depend on cryptic filenames:

\font \pagellaregular = {name:TeX Gyre Pagella} at 9pt

A bit more specific but essentially the same lookup would be:

\font \pagellaregular = {name:TeX Gyre Pagella Regular} at 9pt

Which fits nicely with the whole set:

\font \pagellaregular = {name:TeX Gyre Pagella Regular} at 9pt

\font \pagellaitalic = {name:TeX Gyre Pagella Italic} at 9pt

\font \pagellabold = {name:TeX Gyre Pagella Bold} at 9pt

\font \pagellabolditalic = {name:TeX Gyre Pagella Bolditalic} at 9pt

4http://jmn.pl/antykwa-poltawskiego/, also available in in TEX Live.
5Incidentally, this syntactical detail also prevents one from loading files that end in balanced parentheses.

5

http://jmn.pl/antykwa-poltawskiego/

{\pagellaregular foo bar baz\endgraf }

{\pagellaitalic foo bar baz\endgraf }

{\pagellabold foo bar baz\endgraf }

{\pagellabolditalic foo bar baz\endgraf }

...

3.4.3 Modifiers

If the entire Iwona family6 is installed in some location accessible by luaotfload, the
regular shape can be loaded as follows:

\font \iwona = Iwona at 20pt

To load the most common of the other styles, the slash notation can be employed as
shorthand:

\font \iwonaitalic = Iwona/I at 20pt

\font \iwonabold = Iwona/B at 20pt

\font \iwonabolditalic = Iwona/BI at 20pt

which is equivalent to these full names:

\font \iwonaitalic = ”Iwona Italic” at 20pt

\font \iwonabold = ”Iwona Bold” at 20pt

\font \iwonabolditalic = ”Iwona BoldItalic” at 20pt

4 Font features

Font features are the second to last component in the general scheme for font requests:

\font\foo = ”⟨prefix⟩:⟨font name⟩:⟨font features⟩⟨TEX font features⟩”

If style modifiers are present (X ETEX style), they must precede ⟨font features⟩.
The element ⟨font features⟩ is a semicolon-separated list of feature tags7 and font

options. Prepending a font feature with a + (plus sign) enables it, whereas a - (minus)
disables it. For instance, the request

\font \test = LatinModernRoman:+clig;-kern

activates contextual ligatures (clig) and disables kerning (kern). Alternatively the op-
tions true or false can be passed to the feature in a key/value expression. The following
request has the same meaning as the last one:

\font \test = LatinModernRoman:clig=true;kern=false

6http://jmn.pl/kurier-i-iwona/, also in TEX Live.
7Cf. http://www.microsoft.com/typography/otspec/featurelist.htm.

6

http://jmn.pl/kurier-i-iwona/
http://www.microsoft.com/typography/otspec/featurelist.htm

Furthermore, this second syntax is required should a font feature accept other options
besides a true/false switch. For example, stylistic alternates (salt) are variants of given
glyphs. They can be selected either explicitly by supplying the variant index (starting
from one), or randomly by setting the value to, obviously, random.

\font \librmsaltfirst = LatinModernRoman:salt=1

4.1 Basic font features

• mode
luaotfload has two OpenType processing modes: base and node.
base mode works by mapping OpenType features to traditional TEX ligature and
kerning mechanisms. Supporting only non-contextual substitutions and kerning
pairs, it is the slightly faster, albeit somewhat limited, variant. node mode works
by processing TEX’s internal node list directly at the Lua end and supports a wider
range of OpenType features. The downside is that the intricate operations required
for node mode may slow down typesetting especially with complex fonts and it
does not work in math mode.
By default luaotfload is in node mode, and base mode has to be requested where
needed, e. g. for math fonts.

• script
An OpenType script tag;8 the default value is dflt. Some fonts, including very
popular ones by foundries like Adobe, do not assign features to the dflt script, in
which case the script needs to be set explicitly.

• language
An OpenType language system identifier,9 defaulting to dflt.

• color
A font color, defined as a triplet of two-digit hexadecimal rgb values, with an
optional fourth value for transparency (where 00 is completely transparent and
FF is opaque).
For example, in order to set text in semitransparent red:

\font \test = ”Latin Modern Roman:color=FF0000BB”

• kernfactor & letterspace
Define a font with letterspacing (tracking) enabled. In luaotfload, letterspacing is
implemented by inserting additional kerning between glyphs.
This approach is derived from and still quite similar to the character kerning
(\setcharacterkerning / \definecharacterkerning & al.) functionality of Context,

8See http://www.microsoft.com/typography/otspec/scripttags.htm for a list of valid values. For
scripts derived from the Latin alphabet the value latn is good choice.

9Cf. http://www.microsoft.com/typography/otspec/languagetags.htm.

7

http://www.microsoft.com/typography/otspec/scripttags.htm
http://www.microsoft.com/typography/otspec/languagetags.htm

see the file typo-krn.lua there. The main difference is that luaotfload does not
use LuaTEX attributes to assign letterspacing to regions, but defines virtual let-
terspaced versions of a font.
The option kernfactor accepts a numeric value that determines the letterspacing
factor to be applied to the font size. E. g. a kern factor of 0.42 applied to a 10 pt
font results in 4.2 pt of additional kerning applied to each pair of glyphs. Ligatures
are split into their component glyphs unless explicitly ignored (see below).
For compatibility with X ETEX an alternative letterspace option is supplied that
interprets the supplied value as a percentage of the font size but is otherwise iden-
tical to kernfactor. Consequently, both definitions in below snippet yield the same
letterspacing width:

\font \iwonakernedA = ”file:Iwona-Regular.otf:kernfactor=0.125”

\font \iwonakernedB = ”file:Iwona-Regular.otf:letterspace=12.5”

Specific pairs of letters and ligaturesmay be exempt from letterspacing by defining
the Lua functions keeptogether and keepligature, respectively, inside the names-
pace luaotfload.letterspace. Both functions are called whenever the let-
terspacing callback encounters an appropriate node or set of nodes. If they return
a true-ish value, no extra kern is inserted at the current position. keeptogether re-
ceives a pair of consecutive glyph nodes in order of their appearance in the node
list. keepligature receives a single node which can be analyzed into components.
(For details refer to the glyph nodes section in the LuaTEX reference manual.) The
implementation of both functions is left entirely to the user.

• protrusion & expansion
These keys control microtypographic features of the font, namely character pro-
trusion and font expansion. Their arguments are names of Lua tables that contain
values for the respective features.10 For both, only the set default is predefined.
For example, to define a font with the default protrusion vector applied11:

\font \test = LatinModernRoman:protrusion=default

10For examples of the table layout please refer to the section of the file luaotfload-fonts-ext.lua where
the default values are defined. Alternatively and with loss of information, you can dump those tables into
your terminal by issuing

\directlua {inspect(fonts.protrusions.setups.default)

inspect(fonts.expansions.setups.default)}

at some point after loading luaotfload.sty.
11You also need to set pdfprotrudechars=2 and pdfadjustspacing=2 to activate protrusion and expansion,

respectively. See the pdfTEX manualfor details.

8

http://mirrors.ctan.org/systems/pdftex/manual/pdftex-a.pdf

4.2 Non-standard font features

luaotfload adds a number of features that are not defined in the original OpenType speci-
fication, most of them aiming at emulating the behavior familiar from other TEX engines.
Currently (2014) there are three of them:

• anum
Substitutes the glyphs in the ascii number range with their counterparts from
eastern Arabic or Persian, depending on the value of language.

• tlig
Applies legacy TEX ligatures12:
‘‘ ‘‘ ’’ ’’

‘ ‘ ’ ’

” ” – --

— --- !‘ !‘

?‘ ?‘

• itlc
Computes italic correction values (active by default).

5 Combining fonts

Version 2.7 and later support combining characters from multiple fonts into a single
virtualized one. This requires that the affected fonts be loaded in advance as well as a
special request syntax. Furthermore, this allows to define fallback fonts to supplement
fonts that may lack certain required glyphs.

Combinations are created by defining a font using the combo: prefix.

5.1 Fallbacks

For example, the Latin Modern family of fonts does, as indicated in the name, not pro-
vide Cyrillic glyphs. If Latin script dominates in the copy with interspersed Cyrillic,
a fallback can be created from a similiar looking font like Computer Modern Unicode,
taking advantage of the fact that it too derives from Knuth’s original Computer Modern
series:

\input luaotfload.sty

\font \lm = file:lmroman10-regular.otf:mode=base

\font \cmu = file:cmunrm.otf:mode=base

\font \lmu = ”combo: 1->\fontid \lm ; 2->\fontid \cmu ,fallback”

\lmu Eh bien, mon prince. Gênes et Lueques ne sont plus que des

apanages, des поместья, de la famille Buonaparte.

\bye

12These contain the feature set trep of earlier versions of luaotfload.
Note to X ETEX users: this is the equivalent of the assignment mapping=text-tex using X ETEX’s input remap-

ping feature.

9

As simple as this may look on the first glance, this approach is entirely inappropriate
if more than a couple letters are required from a different font. Because the combina-
tion pulls nothing except the glyph data, all of the important other information that
constitute a proper font – kerning, styles, features, and suchlike – will be missing.

5.2 Combinations

Generalizing the idea of a fallback font, it is also possible to pick definite sets of glyphs
from multiple fonts. On a bad day, for instance, it may be the sanest choice to start out
with EB Garamond italics, typeset all decimal digits in the bold italics of GNU Freefont,
and tone down the punctuation with extra thin glyphs from Source Sans:

\def \feats {-tlig;-liga;mode=base;-kern}

\def \fileone {EBGaramond12-Italic.otf}

\def \filetwo {FreeMonoBoldOblique.otf}

\def \filethree {SourceSansPro-ExtraLight.otf}

\input luaotfload.sty

\font \one = file:\fileone :\feats

\font \two = file:\filetwo :\feats

\font \three = file:\filethree :\feats

\font \onetwothree = ”combo: 1 -> \fontid \one ;

2 -> \fontid \two , 0x30-0x39;

3 -> \fontid \three , 0x21*0x3f; ”

{\onetwothree \TeX —0123456789—?!}

\bye

Despite the atrocious result, the example demonstrates well the syntax that is used to
specify ranges and fonts. Fonts are being referred to by their internal index which can
be obtained by passing the font command into the \fontid macro, e. g. \fontid\one,
after a font has been defined. The first component of the combination is the base font
which will be extended by the others. It is specified by the index alone.

All further fonts require either the literal fallback or a list of codepoint definitions
to be appended after a comma. The elements of this list again denote either single code-
points like 0x21 (referring to the exclamation point character) or ranges of codepoints
(0x30-0x39). Elements are separated by the ASCII asterisk character (*). The characters
referenced in the list will be imported from the respective font, if available.

6 Font names database

As mentioned above, luaotfload keeps track of which fonts are available to LuaTEX by
means of a database. This allows referring to fonts not only by explicit filenames but
also by the proper names contained in the metadata which is often more accessible to
humans.13

When luaotfload is asked to load a font by a font name, it will check if the database
exists and load it, or else generate a fresh one. Should it then fail to locate the font, an

13The tool otfinfo (comes with TEX Live), when invoked on a font file with the -i option, lists the variety
of name fields defined for it.

10

http://www.lcdf.org/type/

Table 1: List of paths searched for each supported operating system.

update to the database is performed in case the font has been added to the system only
recently. As soon as the database is updated, the resolver will try and look up the font
again, all without user intervention. The goal is for luaotfload to act in the background
and behave as unobtrusively as possible, while providing a convenient interface to the
fonts installed on the system.

Generating the database for the first time may take a while since it inspects every
font file on your computer. This is particularly noticeable if it occurs during a typesetting
run. In any case, subsequent updates to the database will be quite fast.

6.1 luaotfload-tool

It can still be desirable at times to do some of these steps manually, and without having
to compile a document. To this end, luaotfload comes with the utility luaotfload-tool

that offers an interface to the database functionality. Being a Lua script, there are two
ways to run it: either make it executable (chmod +x on unixoid systems) or pass it as an
argument to texlua.14 Invoked with the argument --update it will perform a database
update, scanning for fonts not indexed.

luaotfload-tool –update

Adding the --force switch will initiate a complete rebuild of the database.

luaotfload-tool –update –force

6.2 Search Paths

luaotfload scans those directories where fonts are expected to be located on a given sys-
tem. On a Linux machine it follows the paths listed in the Fontconfig configuration files;
consult man 5 fonts.conf for further information. On Windows systems, the standard
location is Windows\\Fonts, while Mac OS X requires a multitude of paths to be exam-
ined. The complete list is is given in table 1. Other paths can be specified by setting the
environment variable OSFONTDIR. If it is non-empty, then search will be extended to the
included directories.

14Tests by the maintainer show only marginal performance gain by running with Luigi Scarso’s LuajitTEX,
which is probably due to the fact that most of the time is spent on file system operations.

Note: On MS Windows systems, the script can be run either by calling the wrapper application luaotfload-

tool.exe or as texlua.exe luaotfload-tool.lua.

11

https://foundry.supelec.fr/projects/luajittex/

Windows % WINDIR%\ Fonts

Linux /usr/local/etc/fonts/fonts.conf and
/etc/fonts/fonts.conf

Mac ˜/Library/Fonts,
/Library/Fonts,
/System/Library/Fonts, and
/Network/Library/Fonts

6.3 Querying from Outside

luaotfload-tool also provides rudimentary means of accessing the information col-
lected in the font database. If the option --find=name is given, the script will try and
search the fonts indexed by luaotfload for a matching name. For instance, the invocation

luaotfload-tool –find=”Iwona Regular”

will verify if “Iwona Regular” is found in the database and can be readily requested in a
document.

If you are unsure about the actual font name, then add the -F (or --fuzzy) switch
to the command line to enable approximate matching. Suppose you cannot precisely
remember if the variant of Iwona you are looking for was “Bright” or “Light”. The query

luaotfload-tool -F –find=”Iwona Bright”

will tell you that indeed the latter name is correct.
Basic information about fonts in the database can be displayed using the -i option

(--info).

luaotfload-tool -i –find=”Iwona Light Italic”

The meaning of the printed values is described in section 4.4 of the LuaTEX reference
manual.15

For a much more detailed report about a given font try the -I option instead
(--inspect).

luaotfload-tool -I –find=”Iwona Light Italic”

luaotfload-tool --help will list the available command line switches, including
some not discussed in detail here. For a full documentation of luaotfload-tool and its
capabilities refer to the manpage (man 1 luaotfload-tool).16

6.4 Blacklisting Fonts

Some fonts are problematic in general, or just in LuaTEX. If you find that compiling
your document takes far too long or eats away all your system’s memory, you can track

15In TEX Live: texmf-dist/doc/luatex/base/luatexref-t.pdf.
16Or see luaotfload-tool.rst in the source directory.

12

down the culprit by running luaotfload-tool -v to increase verbosity. Take a note
of the filename of the font that database creation fails with and append it to the file
luaotfload-blacklist.cnf.

A blacklist file is a list of font filenames, one per line. Specifying the full path to
where the file is located is optional, the plain filename should suffice. File extensions
(.otf, .ttf, etc.) may be omitted. Anything after a percent (\%) character until the
end of the line is ignored, so use this to add comments. Place this file to some location
where the kpse library can find it, e. g. texmf-local/tex/luatex/luaotfload if you are
running TEX Live,17 or just leave it in theworking directory of your document. luaotfload
reads all files named luaotfload-blacklist.cnf it finds, so the fonts in ./luaotfload-

blacklist.cnf extend the global blacklist.
Furthermore, a filename prepended with a dash character (-) is removed from the

blacklist, causing it to be temporarily whitelisted without modifying the global file. An
example with explicit paths:

/Library/Fonts/GillSans.ttc -/Library/Fonts/Optima.ttc

7 The Fontloader

7.1 Overview

To a large extent, luaotfload relies on code originally written by Hans Hagen for the
ConTEXt format. It integrates the font loader, written entirely in Lua, as distributed in
the LuaTEX-Fonts package. The original Lua source files have been combined using the
ConTEXt packaging library into a single, self-contained blob. In this form the font loader
depends only on the lualibs package and requires only minor adaptions to integrate into
luaotfload.

The guiding principle is to let ConTEXt/LuaTEX-Fonts take care of the implementa-
tion, and update the imported code as frequently as necessary. As maintainers, we aim
at importing files from upstream essentially unmodified, except for renaming them to
prevent name clashes. This job has been greatly alleviated since the advent of LuaTEX-
Fonts, prior to which the individual dependencies had to be manually spotted and ex-
tracted from the ConTEXt source code in a complicated and error-prone fashion.

7.2 Contents and Dependencies

Below is a commented list of the files distributed with luaotfload in one way or the other.
See figure 2 on page 23 for a graphical representation of the dependencies. Through the
script mkimport a ConTEXt library is invoked to create the luaotfload fontloader as a
merged (amalgamated) source file.18 This file constitutes the “default fontloader” and is
part of the luaotfload package as fontloader-YY-MM-DD.lua, where the uppercase let-
ters are placeholders for the build date. A companion to it, luatex-basics-gen.lua
must be loaded beforehand to set up parts of the environment required by the ConTEXt

17You may have to run mktexlsr if you created a new file in your texmf tree.
18In ConTEXt, this facility can be accessed by means of a script which is integrated into mtxrun as a sub-

command. Run mtxrun --script package --help to display further information. For the actual merging
code see the file util-mrg.lua that is part of ConTEXt.

13

http://wiki.contextgarden.net
https://bitbucket.org/phg/context-mirror/src/beta/scripts/context/lua/mtx-package.lua?at=beta

libraries. During a TEX run, the fontloader initialization and injection happens in the
module luaotfload-init.lua. Additionally, the “reference fontloader” as imported
from LuaTEX-Fonts is provided as the file fontloader-reference.lua. This file is self-
contained in that it packages all the auxiliary Lua libraries too, as Luaotfload did up
to the 2.5 series; since that job has been offloaded to the Lualibs package, loading this
fontloader introduces a certain code duplication.

A number of Lua utility libraries are not part of the luaotfload fontloader, contrary
to its equivalent in LuaTEX-Fonts. These are already provided by the lualibs and have
thus been omitted from the merge.19

• l-lua.lua

• l-lpeg.lua

• l-function.lua

• l-string.lua

• l-table.lua

• l-io.lua

• l-file.lua

• l-boolean.lua

• l-math.lua

• util-str.lua

• util-fil.lua

The reference fontloader is home to several Lua files that can be grouped twofold as
below:

• The font loader itself. These files have been written for LuaTEX-Fonts and they are
distributed along with luaotfload so as to resemble the state of the code when it
was imported. Their purpose is either to give a slightly aged version of a file if
upstream considers latest developments for not yet ready for use outside Context;
or, to install placeholders or minimalist versions of APIs relied upon but usually
provided by parts of Context not included in the fontloader.

– luatex-basics-nod.lua

– luatex-basics-chr.lua

– luatex-fonts-enc.lua

– luatex-fonts-syn.lua

– luatex-fonts-ext.lua

• Code related to font handling and node processing, taken directly from ConTEXt.

– data-con.lua

– font-ini.lua

– font-con.lua

– font-cid.lua

– font-map.lua

– font-tfm.lua

– font-one.lua

– font-afk.lua

– font-oti.lua

– font-otr.lua

19Faithful listeners will remember the pre-2.6 era when the fontloader used to be integrated as-is which
caused all kinds of code duplication with the pervasive lualibs package. This conceptual glitch has since been
amended by tightening the coupling with the excellent ConTEXt toolchain.

14

– font-cff.lua

– font-ttf.lua

– font-dsp.lua

– font-oup.lua

– font-otl.lua

– font-oto.lua

– font-otj.lua

– font-ota.lua

– font-ots.lua

– font-osd.lua

– font-ocl.lua

– font-lua.lua

– font-def.lua

– font-xtx.lua

– font-gbn.lua

As an alternative to the merged file, Luaotfload may load individual unpackaged Lua
libraries that come with the source, or even use the files from Context directly. Thus
if you prefer running bleeding edge code from the ConTEXt beta, choose the context

fontloader via the configuration file (see sections 8 and 7.3 below).
Also, the merged file at some point loads the Adobe Glyph List from a Lua table that

is contained in luaotfload-glyphlist.lua, which is automatically generated by the
script mkglyphlist.20 There is a make target glyphs that will create a fresh glyph list so
we don’t need to import it from ConTEXt any longer.

In addition to these, luaotfload requires a number of files not contained in the merge.
Some of these have no equivalent in LuaTEX-Fonts or ConTEXt, somewere taken unmod-
ified from the latter.

• luaotfload-features.lua – font feature handling; incorporates some of the
code from font-otc from ConTEXt;

• luaotfload-configuration.lua – handling of luaotfload.conf(5).

• luaotfload-log.lua – overrides the ConTEXt logging functionality.

• luaotfload-loaders.lua – registers readers in the fontloader for various kinds
of font formats

• luaotfload-parsers.lua – various lpeg-based parsers.

• luaotfload-database.lua – font names database.

• luaotfload-resolvers.lua – file name resolvers.

• luaotfload-colors.lua – color handling.

• luaotfload-auxiliary.lua – access to internal functionality for package au-
thors (proposals for additions welcome).

• luaotfload-letterspace.lua – font-based letterspacing.

20See luaotfload-font-enc.lua. The hard-coded file name is why we have to replace the procedure that
loads the file in luaotfload-init.lua.

15

7.3 Packaging

The fontloader code is integrated as an isolated component that can be switched out
on demand. To specify the fontloader you wish to use, the configuration file (described
in section 8) provides the option fontloader. Its value can be one of the identifiers
default or reference (see above, section 7.2) or the name of a file somewhere in the
search path of LuaTEX. This will make Luaotfload locate the ConTEXt source by means
of kpathsea lookups and use those instead of the merged package. The parameter may
be extended with a path to the ConTEXt texmf, separated with a colon:

[run]

fontloader = context:~/context/tex/texmf-context

This setting allows accessing an installation – e. g. the standalone distribution or a
source repository – outside the current TEX distribution.

Like the Lualibs package, the fontloader is deployed as amerged package containing a
series of Lua files joined together in their expected order and stripped of non-significant
parts. The mkimport utility assists in pulling the files from a ConTEXt tree and packaging
them for use with Luaotfload.The state of the files currently in Luaotfload’s repository
can be queried:

./scripts/mkimport news

The subcommand for importing takes the prefix of the desired ConTEXt texmf as an
optional argument:

./scripts/mkimport import ~/context/tex/texmf-context

Whereas the command for packaging requires a path to the package description file
and the output name to be passed.

./scripts/mkimport package fontloader-custom.lua

From the toplevel makefile, the targets import and package provide easy ac-
cess to the commands as invoked during the Luaotfload build process.21 These will
call mkimport script with the correct parameters to generate a datestamped pack-
age. Whether files have been updated in the upstream distribution can be queried by
./scripts/mkimport news. This will compare the imported files with their counter-
parts in the ConTEXt distribution and report changes.

8 Configuration Files

Caution: For the authoritative documentation, consult the manpage for lu-
aotfload.conf(5).

21Hint for those interested in the packaging process: issue make show for a list of available build routines.

16

The runtime behavior of Luaotfload can be customized by means of a configuration
file. At startup, it attempts to locate a file called luaotfload.conf or luaotfloadrc at
a number of candidate locations:

• ./luaotfload.conf

• ./luaotfloadrc

• $XDG_CONFIG_HOME/luaotfload/luaotfload.conf

• $XDG_CONFIG_HOME/luaotfload/luaotfload.rc

• /.luaotfloadrc

Caution: The configuration potentially modifies the final document. A
project-local file belongs under version control along with the rest of the
document. This is to ensure that everybody who builds the project also re-
ceives the same customizations as the author.

The syntax is fairly close to the format used by git-config(1) which in turn was
derived from the popular .INI format: Lines of key-value pairs are grouped under dif-
ferent configuration “sections”.22 An example for customization via luaotfload.conf

might look as below:

; Example luaotfload.conf containing a rudimentary configuration

[db]

update-live = false

[run]

color-callback = pre_linebreak_filter

definer = info_patch

log-level = 5

[default-features]

global = mode=base

This specifies that for the given project, Luaotfload shall not attempt to automatically
scan for fonts if it can’t resolve a request. The font-based colorization will happen during
LuaTEX ’s pre-linebreak filter. The fontloader will output verbose information about the
fonts at definition time along with globally increased verbosity. Lastly, the fontloader
defaults to the less expensive base mode like it does in ConTEXt.

9 Auxiliary Functions

With release version 2.2, Luaotfload received additional functions for package authors to
call from outside (see the file luaotfload-auxiliary.lua for details). The purpose of
this addition twofold. Firstly, luaotfload failed to provide a stable interface to internals in
the past which resulted in an unmanageable situation of different packages abusing the

22The configuration parser in luoatfload-parsers.lua might be employed by other packages for similar
purposes.

17

raw access to font objects by means of the patch_font callback. When the structure of the
font object changed due to an update, all of these imploded and several packages had to
be fixed while simultaneously providing fallbacks for earlier versions. Now the patching
is done on the luaotfload side and can be adaptedwith futuremodifications to font objects
without touching the packages that depend on it. Second, some the capabilities of the
font loader and the names database are not immediately relevant in luaotfload itself but
might nevertheless be of great value to package authors or end users.

Note that the current interface is not yet set in stone and the development team is
open to suggestions for improvements or additions.

9.1 Callback Functions

The patch_font callback is inserted in the wrapper luaotfload provides for the font def-
inition callback. At this place it allows manipulating the font object immediately after
the font loader is done creating it. For a short demonstration of its usefulness, here is a
snippet that writes an entire font object to the file fontdump.lua:

\input luaotfload.sty

\directlua {

local dumpfile = ”fontdump.lua”

local dump_font = function (tfmdata)

local data = table.serialize(tfmdata)

io.savedata(dumpfile, data)

end

luatexbase.add_to_callback(

”luaotfload.patch_font”,

dump_font,

”my_private_callbacks.dump_font”

)

}

\font \dumpme = name:Iwona

\bye

Beware: this creates a Lua file of around 150,000 lines of code, taking up 3 mb of
disk space. By inspecting the output you can get a first impression of how a font is
structured in LuaTEX ’s memory, what elements it is composed of, and in what ways it
can be rearranged.

9.1.1 Compatibility with Earlier Versions

As has been touched on in the preface to this section, the structure of the object as
returned by the fontloader underwent rather drastic changes during different stages of
its development, and not all packages that made use of font patching have kept up with
every one of it. To ensure compatibility with these as well as older versions of some
packages, luaotfload sets up copies of or references to data in the font table where it
used to be located. For instance, important parameters like the requested point size, the
units factor, and the font name have again been made accessible from the toplevel of the
table even though they were migrated to different subtables in the meantime.

18

9.1.2 Patches

These are mostly concerned with establishing compatibility with X ETEX.

• set sscale dimens
Calculate \fontdimens 10 and 11 to emulate X ETEX.

• set capheight
Calculates \fontdimen 8 like X ETEX.

• patch cambria domh
Correct some values of the font Cambria Math.

9.2 Package Author’s Interface

As LuaTEX release 1.0 is nearing, the demand for a reliable interface for package authors
increases.

9.2.1 Font Properties

Below functions mostly concern querying the different components of a font like for
instance the glyphs it contains, or what font features are defined for which scripts.

• aux.font has glyph (id : int, index : int)
Predicate that returns true if the font id has glyph index.

• aux.slot of name(name : string)
Translates an Adobe Glyph name to the corresponding glyph slot.

• aux.name of slot(slot : int)
The inverse of slot_of_name; note that this might be incomplete as multiple
glyph names may map to the same codepoint, only one of which is returned by
name_of_slot.

• aux.provides script(id : int, script : string)
Test if a font supports script.

• aux.provides language(id : int, script : string, language : string)
Test if a font defines language for a given script.

• aux.provides feature(id : int, script : string, language : string, feature : string)
Test if a font defines feature for language for a given script.

• aux.get math dimension(id : int, dimension : string)
Get the dimension dimension of font id.

• aux.sprint math dimension(id : int, dimension : string)
Same as get_math_dimension(), but output the value in scaled points at the TEX
end.

19

9.2.2 Database

• aux.read font index (void)
Read the index file from the appropriate location (usually the bytecode file
luaotfload-names.luc somewhere in the texmf-var tree) and return the result
as a table. The file is processed with each call so it is up to the user to store the
result for later access.

• aux.font index (void)
Return a reference of the font names table used internally by luaotfload. The index
will be read if it has not been loaded up to this point. Also a font scan that over-
writes the current index file might be triggered. Since the return value points to
the actual index, any modifications to the table might influence runtime behavior
of luaotfload.

10 Troubleshooting

10.1 Database Generation

If you encounter problems with some fonts, please first update to the latest version
of this package before reporting a bug, as luaotfload is under active development and
still a moving target. The development takes place on github at https://github.com/
lualatex/luaotfloadwhere there is an issue tracker for submitting bug reports, feature
requests and the likes.

Bug reports are more likely to be addressed if they contain the output of

luaotfload-tool –diagnose=environment,files,permissions

Consult the man page for a description of these options.
Errors during database generation can be traced by increasing the verbosity level

and redirecting log output to stdout:

luaotfload-tool -fuvvv –log=stdout

or to a file in /tmp:

luaotfload-tool -fuvvv –log=file

In the latter case, invoke the tail(1) utility on the file for live monitoring of the
progress.

If database generation fails, the font last printed to the terminal or log file is likely to
be the culprit. Please specify it when reporting a bug, and blacklist it for the time being
(see above, page 12).

10.2 Font Features

A common problem is the lack of features for some OpenType fonts even when specified.
This can be related to the fact that some fonts do not provide features for the dflt script

20

https://github.com/lualatex/luaotfload
https://github.com/lualatex/luaotfload

(see above on page 7), which is the default one in this package. If this happens, assigning
a noth script when the font is defined should fix it. For example with latn:

\font \test = file:MyFont.otf:script=latn;+liga;

You can get a list of features that a font defines for scripts and languages by querying
it in luaotfload-tool:

luaotfload-tool –find=”Iwona” –inspect

10.3 LuaTEX Programming

Another strategy that helps avoiding problems is to not access raw LuaTEX internals
directly. Some of them, even though they are dangerous to access, have not been over-
ridden or disabled. Thus, whenever possible prefer the functions in the aux namespace
over direct manipulation of font objects. For example, raw access to the font.fonts table
like:

local somefont = font.fonts[2]

can render already defined fonts unusable. Instead, the function font.getfont() should be
used because it has been replaced by a safe variant.

However, font.getfont() only covers fonts handled by the font loader, e. g. OpenType
and TrueType fonts, but not tfm or ofm. Should you absolutely require access to all
fonts known to LuaTEX, including the virtual and autogenerated ones, then you need to
query both font.getfont() and font.fonts. In this case, best define you own accessor:

local unsafe_getfont = function (id)

local tfmdata = font.getfont (id)

if not tfmdata then

tfmdata = font.fonts[id]

end

return tfmdata

end

— use like getfont()

local somefont = unsafe_getfont (2)

11 License

luaotfload is licensed under the terms of the GNU General Public License version 2.0.
Following the underlying fontloader code luaotfload recognizes only that exact version
as its license. The „any later version” clause of the original license text as copyrighted
by the Free Software Foundation does not apply to either luaotfload or the code imported
from ConTEXt.

The complete text of the license is given as a separate file COPYING in the toplevel di-
rectory of the Luaotfload Git repository. Distributions probably package it as doc/lu-
atex/luaotfload/COPYING in the relevant texmf tree.

21

https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.fsf.org/
https://github.com/lualatex/luaotfload/blob/master/COPYING

⟨definition⟩ ::= ‘\font’, csname, ‘=’, ⟨font request⟩, [⟨size⟩] ;

⟨size⟩ ::= ‘at’, dimension ;

⟨font request⟩ ::= ‘”’, ⟨unquoted font request⟩ ‘”’
| ‘{’, ⟨unquoted font request⟩ ‘}’
| ⟨unquoted font request⟩ ;

⟨unquoted font request⟩ ::= ⟨specification⟩, [‘:’, ⟨feature list⟩]
| ⟨path lookup⟩, [[‘:’], ⟨feature list⟩] ;

⟨specification⟩ ::= ⟨prefixed spec⟩, [⟨subfont no⟩], { ⟨modifier⟩ }
| ⟨anon lookup⟩, { ⟨modifier⟩ } ;

⟨prefixed spec⟩ ::= ‘combo:’, ⟨combo list⟩
| ‘file:’, ⟨file lookup⟩
| ‘name:’, ⟨name lookup⟩ ;

⟨combo list⟩ ::= ⟨combo def 1⟩, { ‘;’, ⟨combo def ⟩ } ;

⟨combo def 1⟩ ::= ⟨combo id⟩, ‘->’, ⟨combo id⟩ ;

⟨combo def ⟩ ::= ⟨combo id⟩, ‘->’, ⟨combo id chars⟩ ;

⟨combo id⟩ ::= (‘(’, { digit }, ‘)’ | { digit }) ;

⟨combo id chars⟩ ::= (‘(’, { digit }, ‘,’, ⟨combo chars⟩, ‘)’
| { digit }) ;

⟨combo chars⟩ ::= ‘fallback’
| { ⟨combo range⟩, { ‘*’, ⟨combo range⟩ } } ;

⟨combo range⟩ ::= ⟨combo num⟩, [‘-’, ⟨combo num⟩] ;

⟨combo num⟩ ::= ‘0x’, { hexdigit }
| ‘U+’, { digit }
| { digit } ;

⟨file lookup⟩ ::= { ⟨name character⟩ } ;

⟨name lookup⟩ ::= { ⟨name character⟩ } ;

⟨anon lookup⟩ ::= tfmname | ⟨name lookup⟩ ;

⟨path lookup⟩ ::= ‘[’, { ⟨path content⟩ }, ‘]’, [⟨subfont no⟩] ;

⟨path content⟩ ::= ⟨path balanced⟩
| ‘\’, all characters
| all characters - ‘]’

⟨path balanced⟩ ::= ‘[’, [⟨path content⟩], ‘]’

⟨modifier⟩ ::= ‘/’, (‘I’ | ‘B’ | ‘BI’ | ‘IB’ | ‘S=’, { digit }) ;

⟨subfont no⟩ ::= ‘(’, { digit }, ‘)’ ;

⟨feature list⟩ ::= ⟨feature expr⟩, { ‘;’, ⟨feature expr⟩ } ;

⟨feature expr⟩ ::= feature id, ‘=’, feature value
| ⟨feature switch⟩, feature id ;

⟨feature switch⟩ ::= ‘+’ | ‘-’ ;

⟨name character⟩ ::= all characters - (‘(’ | ‘/’ | ‘:’) ;

Figure 1: Font request syntax. Braces or double quotes around the specification rule
will preserve whitespace in file names. In addition to the font style modifiers (slash-
notation) given above, there are others that are recognized but will be silently ignored:
aat, icu, and gr. The special terminals are: feature id for a valid font feature name
and feature value for the corresponding value. tfmname is the name of a tfm file.
digit again refers to bytes 48–57, and all characters to all byte values. csname and
dimension are the TEX concepts.

22

Figure 2: Schematic of the files in Luaotfload

Merged Libraries

Standalone scripts

Fontloader

luaotfload-tool.lua

luaotfload-names.lua.gz
luaotfload-names.luc

--update

luaotfload-diagnostics.lua

--diagnose

luaotfload-status.lua
version information

luaotfload-main.lua

 Lualibs – Lua Libraries from Context
l-lua.lua l-lpeg.lua l-function.lua

l-string.lua l-table.lua l-io.lua

l-file.lua l-boolean.lua l-math.lua

util-str.lua util-fil.lua

luaotfload-init.lua

main()

 Luaotfload Libraries
luaotfload-auxiliary.lua luaotfload-features.lua

luaotfload-loaders.lua luaotfload-colors.lua

luaotfload-resolvers.lua luaotfload-letterspace.lua

luaotfload-parsers.lua luaotfload-database.lua

luaotfload-configuration.lua

main()

fontloader-YY-MM-DD.lua

init_main()

 Font Loader (LuaTeX-Fonts)
luatex-basics-nod.lua luatex-basics-chr.lua

luatex-fonts-enc.lua luatex-fonts-syn.lua

luatex-fonts-ext.lua

unmerged

 Font and Node Libraries from Context
data-con.lua font-ini.lua font-con.lua

font-cid.lua font-map.lua font-tfm.lua

font-one.lua font-afk.lua font-oti.lua

font-otr.lua font-cff.lua font-ttf.lua

font-dsp.lua font-oup.lua font-otl.lua

font-oto.lua font-otj.lua font-ota.lua

font-ots.lua font-osd.lua font-lua.lua

font-def.lua font-xtx.lua font-gbn.lua

font-ocl.lua

unmerged

luaotfload-log.lua

init_early()

fontloader-basics-gen.lua

init_early()

luaotfload-database.lua

luaotfload-blacklist.cnf
luaotfload-database.lua

merged

merged

luaotfload-glyphlist.lua

luatex-fonts-enc.lua

luaotfload-characters.lua

luaotfload-auxiliary.lua

hash files

mkimport

merges

pulls

pulls

mkstatus

generates from distribution files

mkglyphlist

generates from glyphlist.txt

mkcharacters

generates from Context’s char-def.lua

mktest

23

	Introduction
	Thanks
	Loading Fonts
	Prefix – the luaotfload Way
	Bracketed Lookups
	Compatibility
	Examples
	Loading by File Name
	Loading by Font Name
	Modifiers

	Font features
	Basic font features
	Non-standard font features

	Combining fonts
	Fallbacks
	Combinations

	Font names database
	luaotfload-tool
	Search Paths
	Querying from Outside
	Blacklisting Fonts

	The Fontloader
	Overview
	Contents and Dependencies
	Packaging

	Configuration Files
	Auxiliary Functions
	Callback Functions
	Compatibility with Earlier Versions
	Patches

	Package Authorâ•Žs Interface
	Font Properties
	Database

	Troubleshooting
	Database Generation
	Font Features
	LuaTeX Programming

	License

