
The luaotfload package

Elie Roux · Khaled Hosny · Philipp Gesang
Home: https://github.com/lualatex/luaotfload

Support: lualatex-dev@tug.org

2013/07/23 v2.3b

Abstract

This package is an adaptation of the ConTEXt font loading system. It allows for
loading OpenType fonts with an extended syntax and adds support for a variety of
font features.

Contents
I Package Description 1
1 Introduction 1

2 Thanks 2

3 Loading Fonts 2
3.1 Prefix – the luaotfload Way . 2
3.2 Compatibility Layer . 3
3.3 Examples . 3

3.3.1 Loading by File Name . 3
3.3.2 Loading by Font Name . 4
3.3.3 Modifiers . 4

4 Font features 5

5 Font names database 7
5.1 luaotfload-tool / mkluatexfontdb.lua . 7
5.2 Search Paths . 8
5.3 Querying from Outside . 8
5.4 Blacklisting Fonts . 9

6 Files from ConTEXt and LuaTEX-Fonts 10

7 Auxiliary Functions 11
7.1 Callback Functions . 12

7.1.1 Compatibility with Earlier Versions 12
7.1.2 Patches . 13

7.2 Package Author’s Interface . 13

1

https://github.com/lualatex/luaotfload
mailto:lualatex-dev@tug.org

7.2.1 Font Properties . 13
7.2.2 Database . 14

8 Troubleshooting 14

II Implementation 14
9 luaotfload.lua 14

9.1 Module loading . 16
9.2 Preparing the Font Loader . 17
9.3 Callbacks . 20
9.4 ConTEXt override . 24

10 luaotfload.sty 25

11 The GNU GPL License v2 28

I Package Description

1 I

Font management and installation has always been painful with TEX. A lot of files are
needed for one font (, , , , ), and due to the 8-Bit encoding each font is
limited to 256 characters. But the font world has evolved since the original TEX, and new
typographic systems have appeared, most notably the so called smart font technologies
likeOpenType fonts (). These fonts can containmanymore characters than TEX fonts,
as well as additional functionality like ligatures, old-style numbers, small capitals, etc.,
and support more complex writing systems like Arabic and Indic1 scripts. OpenType
fonts are widely deployed and available for all modern operating systems. As of 2013
they have become the de facto standard for advanced text layout. However, until re-
cently the only way to use them directly in the TEX world was with the X ETEX engine.

Unlike X ETEX, LuaTEX has no built-in support for OpenType or technologies other
than the original TEX fonts. Instead, it provides hooks for executing Lua code during the
TEX run that allow implementing extensions for loading fonts and manipulating how in-
put text is processed without modifying the underlying engine. This is where luaotfload
comes into play: Based on code from ConTEXt, it extends LuaTEX with functionality
necessary for handling OpenType fonts. Additionally, it provides means for accessing
fonts known to the operating system conveniently by indexing the metadata.

2 T

Luaotfload is part of LuaLATEX, the community-driven project to provide a foundation for
using the LATEX format with the full capabilites of the LuaTEX engine. As such, the dis-
tinction between end users, contributors, and project maintainers is intentionally kept
less strict, lest we unduly personalize the common effort.

1Unfortunately, luaotfload doesn‘t support many Indic scripts right now. Assistance in implementing the
prerequisites is greatly appreciated.

2

Nevertheless, the current maintainers would like to express their gratitude to Khaled
Hosny, Akira Kakuto, Hironori Kitagawa and Dohyun Kim. Their contributions – be it
patches, advice, or systematic testing – made the switch from version 1.x to 2.2 possible.
Also, Hans Hagen, the author of the font loader, made porting the code to LATEX a breeze
due to the extra effort he invested into isolating it from the rest of ConTEXt, not to
mention his assistance in the task and willingness to respond to our suggestions.

3 L F

luaotfload supports an extended font request syntax:

\font\foo={ ⟨prefix⟩: ⟨font name⟩: ⟨font features⟩} ⟨TEX font features⟩

The curly brackets are optional and escape the spaces in the enclosed font name. Alter-
natively, double quotes serve the same purpose. A selection of individual parts of the
syntax are discussed below; for a more formal description see figure 1.

3.1 Prefix – the luaotfload Way

In luaotfload, the canonical syntax for font requests requires a prefix:

\font\fontname=⟨prefix⟩:⟨fontname⟩…
where ⟨prefix⟩ is either file: or name:.2 It determines whether the font loader should
interpret the request as a file name or font name, respectively, which again influences
how it will attempt to locate the font. Examples for font names are “Latin Modern Italic”,
“GFS Bodoni Rg”, and “PT Serif Caption” – they are the human readable identifiers usu-
ally listed in drop-down menus and the like.3 In order for fonts installed both in system
locations and in your texmf to be accessible by font name, luaotfload must first collect
the metadata included in the files. Please refer to section 5 below for instructions on
how to create the database.

File names are whatever your file system allows them to be, except that that they
may not contain the characters (, :, and /. As is obvious from the last exception, the
file: lookup will not process paths to the font location – only those files found when
generating the database are addressable this way. Continue below in the X ETEX section
if you need to load your fonts by path. The file names corresponding to the example
font names above are lmroman12-italic.otf, GFSBodoni.otf, and PTZ56F.ttf.

2The development version also knows two further prefixes, kpse: and my:. A kpse lookup is restricted to
files that can be found by kpathsea and will not attempt to locate system fonts. This behavior can be of value
when an extra degree of encapsulation is needed, for instance when supplying a customized tex distribution.

The my lookup takes this a step further: it lets you define a custom resolver function and hook it into the
resolve_font callback. This ensures full control over how a file is located. For a working example see the test
repo.

3Font names may appear like a great choice at first because they offer seemingly more intuitive identifiers
in comparison to arguably cryptic file names: “PT Sans Bold” is a lot more descriptive than PTS75F.ttf. On
the other hand, font names are quite arbitrary and there is no universal method to determine their meaning.
While luaotfload provides fairly sophisticated heuristic to figure out a matching font style, weight, and optical
size, it cannot be relied upon to work satisfactorily for all font files. For an in-depth analysis of the situation
and how broken font names are, please refer to this post by Hans Hagen, the author of the font loader. If in
doubt, use filenames. luaotfload-tool can perform the matching for you with the option --find=<name>,
and you can use the file name it returns in your font definition.

3

https://bitbucket.org/phg/lua-la-tex-tests/src/5f6a535d/pln-lookup-callback-1.tex
https://bitbucket.org/phg/lua-la-tex-tests/src/5f6a535d/pln-lookup-callback-1.tex
http://www.ntg.nl/pipermail/ntg-context/2013/073889.html

3.2 Compatibility Layer

In addition to the regular prefixed requests, luaotfload accepts loading fonts the X ETEX
way. There are again two modes: bracketed and unbracketed. A bracketed request looks
as follows.

\font\fontname=[⟨path to file⟩]

Inside the square brackets, every character except for a closing bracket is permitted,
allowing for specifying paths to a font file. Naturally, path-less file names are equally
valid and processed the same way as an ordinary file: lookup.

\font\fontname=⟨font name⟩ …

Unbracketed (or, for lack of a better word: anonymous) font requests resemble the
conventional TEX syntax. However, they have a broader spectrum of possible interpre-
tations: before anything else, luaotfload attempts to load a traditional TEX Font Metric
( or ). If this fails, it performs a name: lookup, which itself will fall back to a
file: lookup if no database entry matches ⟨font name⟩.

Furthermore, luaotfload supports the slashed (shorthand) font style notation from
X ETEX.

\font\fontname=⟨font name⟩/⟨modifier⟩…

Currently, four style modifiers are supported: I for italic shape, B for bold weight, BI or
IB for the combination of both. Other “slashed” modifiers are too specific to the X ETEX
engine and have no meaning in LuaTEX.

3.3 Examples

3.3.1 Loading by File Name

For example, conventional 1 font can be loaded with a file: request like so:

\font\lmromanten={file:ec-lmr10} at 10pt

The OpenType version of Janusz Nowacki’s font Antykwa Półtawskiego4 in its con-
densed variant can be loaded as follows:

\font\apcregular=file:antpoltltcond-regular.otf at 42pt

The next example shows how to load the Porson font digitized by the Greek Font
Society using X ETEX-style syntax and an absolute path from a non-standard directory:

\font\gfsporson=”[/tmp/GFSPorson.otf]” at 12pt

4http://jmn.pl/antykwa-poltawskiego/, also available in in TEX Live.

4

http://jmn.pl/antykwa-poltawskiego/

3.3.2 Loading by Font Name

The name: lookup does not depend on cryptic filenames:

\font\pagellaregular={name:TeX Gyre Pagella} at 9pt

A bit more specific but essentially the same lookup would be:

\font\pagellaregular={name:TeX Gyre Pagella Regular} at 9pt

Which fits nicely with the whole set:

\font\pagellaregular ={name:TeX Gyre Pagella Regular} at 9pt

\font\pagellaitalic ={name:TeX Gyre Pagella Italic} at 9pt

\font\pagellabold ={name:TeX Gyre Pagella Bold} at 9pt

\font\pagellabolditalic={name:TeX Gyre Pagella Bolditalic} at 9pt

{\pagellaregular foo bar baz\endgraf}

{\pagellaitalic foo bar baz\endgraf}

{\pagellabold foo bar baz\endgraf}

{\pagellabolditalic foo bar baz\endgraf}

...

3.3.3 Modifiers

If the entire Iwona family5 is installed in some location accessible by luaotfload, the
regular shape can be loaded as follows:

\font\iwona=Iwona at 20pt

To load the most common of the other styles, the slash notation can be employed as
shorthand:

\font\iwonaitalic =Iwona/I at 20pt

\font\iwonabold =Iwona/B at 20pt

\font\iwonabolditalic=Iwona/BI at 20pt

which is equivalent to these full names:

\font\iwonaitalic =”Iwona Italic” at 20pt

\font\iwonabold =”Iwona Bold” at 20pt

\font\iwonabolditalic=”Iwona BoldItalic” at 20pt

5http://jmn.pl/kurier-i-iwona/, also in TEX Live.

5

http://jmn.pl/kurier-i-iwona/

4 F 

Font features are the second to last component in the general scheme for font requests:

\font\foo={ ⟨prefix⟩: ⟨font name⟩: ⟨font features⟩} ⟨TEX font features⟩

If style modifiers are present (X ETEX style), they must precede ⟨font features⟩.
The element ⟨font features⟩ is a semicolon-separated list of feature tags6 and font

options. Prepending a font feature with a + (plus sign) enables it, whereas a - (minus)
disables it. For instance, the request

\font\test=LatinModernRoman:+clig;-kern

activates contextual ligatures (clig) and disables kerning (kern). Alternatively the op-
tions true or false can be passed to the feature in a key/value expression. The following
request has the same meaning as the last one:

\font\test=LatinModernRoman:clig=true;kern=false

Furthermore, this second syntax is required should a font feature accept other options
besides a true/false switch. For example, stylistic alternates (salt) are variants of given
glyphs. They can be selected either explicitly by supplying the variant index (starting
from one), or randomly by setting the value to, obviously, random.

\font\librmsaltfirst=LatinModernRoman:salt=1

Other font options include:

mode
luaotfload has two OpenType processing modes: base and node.
base mode works by mapping OpenType features to traditional TEX ligature and
kerning mechanisms. Supporting only non-contextual substitutions and kerning
pairs, it is the slightly faster, albeit somewhat limited, variant. node mode works
by processing TEX’s internal node list directly at the Lua end and supports a wider
range ofOpenType features. The downside is that the intricate operations required
for node mode may slow down typesetting especially with complex fonts and it
does not work in math mode.
By default luaotfload is in node mode, and base mode has to be requested where
needed, e. g. for math fonts.

script
An OpenType script tag;7 the default value is dlft. Some fonts, including very
popular ones by foundries like Adobe, do not assign features to the dflt script, in
which case the script needs to be set explicitly.

6Cf. http://www.microsoft.com/typography/otspec/featurelist.htm.
7See http://www.microsoft.com/typography/otspec/scripttags.htm for a list of valid values. For

scripts derived from the Latin alphabet the value latn is good choice.

6

http://www.microsoft.com/typography/otspec/featurelist.htm
http://www.microsoft.com/typography/otspec/scripttags.htm

language
An OpenType language system identifier,8 defaulting to dflt.

featurefile
A comma-separated list of feature files to be applied to the font. Feature files
contain a textual representation of OpenType tables and extend the features of a
font on fly. After they are applied to a font, features defined in a feature file can
be enabled or disabled just like any other font feature. The syntax is documented
in Adobe’s OpenType Feature File Specification.9

For a demonstration of how to set a tkrn feature consult the file tkrn.fea that is
part of luaotfload. It can be read and applied as follows:
\font\test=Latin Modern Roman:featurefile=tkrn.fea;+tkrn

color
A font color, defined as a triplet of two-digit hexadecimal  values, with an
optional fourth value for transparency (where 00 is completely transparent and
FF is opaque).
For example, in order to set text in semitransparent red:

\font\test={Latin Modern Roman}:color=FF0000BB

protrusion & expansion
These keys control microtypographic features of the font, namely character pro-
trusion and font expansion. Their arguments are names of Lua tables that contain
values for the respective features.10 For both, only the set default is predefined.
For example, to enable default protrusion11:

\font\test=LatinModernRoman:protrusion=default

Non-standard font features luaotfload adds a number of features that are not defined
in the original OpenType specification, most of them aiming at emulating the behavior
familiar from other TEX engines. Currently (2013) there are three of them:

8Cf. http://www.microsoft.com/typography/otspec/languagetags.htm.
9Cf. http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html.
10For examples of the table layout please refer to the section of the file luaotfload-fonts-ext.lua where

the default values are defined. Alternatively and with loss of information, you can dump those tables into
your terminal by issuing

\directlua{inspect(fonts.protrusions.setups.default)

inspect(fonts.expansions.setups.default)}

at some point after loading luaotfload.sty.
11You also need to set pdfprotrudechars=2 and pdfadjustspacing=2 to activate protrusion and expansion,

respectively. See the pdTEX manual for details.

7

http://www.microsoft.com/typography/otspec/languagetags.htm
http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html
http://mirrors.ctan.org/systems/pdftex/manual/pdftex-a.pdf

anum Substitutes the glyphs in the  number range with their counterparts from
eastern Arabic or Persian, depending on the value of language.

tlig Applies legacy TEX ligatures:
“ ‘‘ ” ’’

‘ ‘ ’ ’

” ” – --

— --- ¡ !‘

¿ ?‘

12

itlc Computes italic correction values (active by default).

5 F  

As mentioned above, luaotfload keeps track of which fonts are available to LuaTEX by
means of a database. This allows referring to fonts not only by explicit filenames but
also by the proper names contained in the metadata which is often more accessible to
humans.13

When luaotfload is asked to load a font by a font name, it will check if the database
exists and load it, or else generate a fresh one. Should it then fail to locate the font, an
update to the database is performed in case the font has been added to the system only
recently. As soon as the database is updated, the resolver will try and look up the font
again, all without user intervention. The goal is for luaotfload to act in the background
and behave as unobtrusively as possible, while providing a convenient interface to the
fonts installed on the system.

Generating the database for the first time may take a while since it inspects every
font file on your computer. This is particularly noticeable if it occurs during a typesetting
run. In any case, subsequent updates to the database will be quite fast.

5.1 luaotfload-tool / mkluatexfontdb.lua14

It can still be desirable at times to do some of these steps manually, and without having
to compile a document. To this end, luaotfload comes with the utility luaotfload-tool

that offers an interface to the database functionality. Being a Lua script, there are two
ways to run it: either make it executable (chmod +x on unixoid systems) or pass it as an
argument to texlua.15 Invoked with the argument --update it will perform a database
update, scanning for fonts not indexed.

12These contain the feature set trep of earlier versions of luaotfload.
Note to X ETEX users: this is the equivalent of the assignment mapping=text-tex using X ETEX’s input remap-

ping feature.
13The tool otfinfo (comes with TEX Live), when invoked on a font file with the -i option, lists the variety

of name fields defined for it.
14The script may be named just mkluatexfontdb in your distribution.
15Tests by the maintainer show only marginal performance gain by running with Luigi Scarso’s LuajitTEX,

which is probably due to the fact that most of the time is spent on file system operations.
Note: OnMS Windows systems, the script can be run either by calling the wrapper application luaotfload-

tool.exe or as texlua.exe luaotfload-tool.lua.

8

http://www.lcdf.org/type/
https://foundry.supelec.fr/projects/luajittex/

Table 1: List of paths searched for each supported operating system.

Windows %WINDIR%\Fonts

Linux /usr/local/etc/fonts/fonts.conf and
/etc/fonts/fonts.conf

Mac ~/Library/Fonts,
/Library/Fonts,
/System/Library/Fonts, and
/Network/Library/Fonts

luaotfload-tool --update

Adding the --force switch will initiate a complete rebuild of the database.

luaotfload-tool --update --force

For sake of backwards compatibility, luaotfload-tool may be renamed or sym-
linked to mkluatexfontdb. Whenever it is run under this name, it will update the
database first, mimicking the behavior of earlier versions of luaotfload.

5.2 Search Paths

luaotfload scans those directories where fonts are expected to be located on a given sys-
tem. On a Linux machine it follows the paths listed in the Fontconfig configuration files;
consult man 5 fonts.conf for further information. On Windows systems, the standard
location is Windows\Fonts, while Mac OS X requires a multitude of paths to be exam-
ined. The complete list is is given in table 1. Other paths can be specified by setting the
environment variable OSFONTDIR. If it is non-empty, then search will be extended to the
included directories.

5.3 Querying from Outside

luaotfload-tool also provides rudimentary means of accessing the information col-
lected in the font database. If the option --find=name is given, the script will try and
search the fonts indexed by luaotfload for a matching name. For instance, the invocation

luaotfload-tool --find=”Iwona Regular”

will verify if “Iwona Regular” is found in the database and can be readily requested in a
document.

If you are unsure about the actual font name, then add the -F (or --fuzzy) switch
to the command line to enable approximate matching. Suppose you cannot precisely
remember if the variant of Iwona you are looking for was “Bright” or “Light”. The query

9

luaotfload-tool -F --find=”Iwona Bright”

will tell you that indeed the latter name is correct.
Basic information about fonts in the database can be displayed using the -i option

(--info).

luaotfload-tool -i --find=”Iwona Light Italic”

The meaning of the printed values is described in section 4.4 of the LuaTEX reference
manual.16

luaotfload-tool --help will list the available command line switches, including
some not discussed in detail here. For a full documentation of luaotfload-tool and its
capabilities refer to the manpage (man 1 luaotfload-tool).17

5.4 Blacklisting Fonts

Some fonts are problematic in general, or just in LuaTEX. If you find that compiling
your document takes far too long or eats away all your system’s memory, you can track
down the culprit by running luaotfload-tool -v to increase verbosity. Take a note
of the filename of the font that database creation fails with and append it to the file
luaotfload-blacklist.cnf.

A blacklist file is a list of font filenames, one per line. Specifying the full path to
where the file is located is optional, the plain filename should suffice. File extensions
(.otf, .ttf, etc.) may be omitted. Anything after a percent (%) character until the end
of the line is ignored, so use this to add comments. Place this file to some location where
the kpse library can find it, e. g. texmf-local/tex/luatex/luaotfload if you are run-
ning TEX Live,18 or just leave it in the working directory of your document. luaotfload
reads all files named luaotfload-blacklist.cnf it finds, so the fonts in ./luaotfload-
blacklist.cnf extend the global blacklist.

Furthermore, a filename prepended with a dash character (-) is removed from the
blacklist, causing it to be temporarily whitelisted without modifying the global file. An
example with explicit paths:

% example otf-blacklist.cnf

/Library/Fonts/GillSans.ttc % Luaotfload ignores this font.

-/Library/Fonts/Optima.ttc % This one is usable again, even if

% blacklisted somewhere else.

6 F  CTEX  LTEXF

luaotfload relies on code originallywritten byHansHagen19 for and testedwith ConTEXt.
It integrates the font loader as distributed in the LuaTEX-Fonts package. The origi-

16In TEX Live: texmf-dist/doc/luatex/base/luatexref-t.pdf.
17Or see luaotfload-tool.rst in the source directory.
18You may have to run mktexlsr if you created a new file in your texmf tree.
19The creator of the ConTEXt format.

10

http://wiki.contextgarden.net

nal Lua source files have been combined using the mtx-package script into a single,
self-contained blob. In this form the font loader has no further dependencies20 and re-
quires only minor adaptions to integrate into luaotfload. The guiding principle is to let
ConTEXt/LuaTEX-Fonts take care of the implementation, and update the imported code
from time to time. As maintainers, we aim at importing files from upstream essentially
unmodified, except for renaming them to prevent name clashes. This job has been greatly
alleviated since the advent of LuaTEX-Fonts, prior to which the individual dependencies
had to bemanually spotted and extracted from the ConTEXt source code in a complicated
and error-prone fashion.

Below is a commented list of the files distributed with luaotfload in one way or
the other. See figure 2 on page 27 for a graphical representation of the dependen-
cies. From LuaTEX-Fonts, only the file luatex-fonts-merged.lua has been imported
as luaotfload-merged.lua. It is generated by mtx-package, a Lua source code merg-
ing too developed by Hans Hagen.21 It houses several Lua files that can be classed in
three categories.

• Lua utility libraries, a subset of what is provided by the lualibs package.

– l-lua.lua

– l-lpeg.lua

– l-function.lua

– l-string.lua

– l-table.lua

– l-io.lua

– l-file.lua

– l-boolean.lua

– l-math.lua

– util-str.lua

• The font loader itself. These files have been written for LuaTEX-Fonts and they are
distributed along with luaotfload.

– luatex-basics-gen.lua

– luatex-basics-nod.lua

– luatex-fonts-enc.lua

– luatex-fonts-syn.lua

– luatex-fonts-tfm.lua

– luatex-fonts-chr.lua

– luatex-fonts-lua.lua

– luatex-fonts-def.lua

– luatex-fonts-ext.lua

– luatex-fonts-cbk.lua

• Code related to font handling and node processing, taken directly from ConTEXt.

– data-con.lua

– font-ini.lua

– font-con.lua

– font-cid.lua

– font-map.lua

– font-oti.lua

– font-otf.lua

– font-otb.lua

20It covers, however, to some extent the functionality of the lualibs package.
21mtx-package is part of ConTEXt and requires mtxrun. Run mtxrun --script package --help to display

further information. For the actual merging code see the file util-mrg.lua that is part of ConTEXt.

11

http://repo.or.cz/w/context.git/blob_plain/refs/heads/origin:/scripts/context/lua/mtx-package.lua

– node-inj.lua

– font-ota.lua

– font-otn.lua

– font-def.lua

– font-otp.lua

Note that if luaotfload cannot locate the merged file, it will load the individual Lua
libraries instead. Their names remain the same as in ConTEXt (without the otfl-prefix)
since we imported the relevant section of luatex-fonts.lua unmodified into luaot-

fload.lua. Thus if you prefer running bleeding edge code from the ConTEXt beta, all
you have to do is remove luaotfload-merged.lua from the search path.

Also, the merged file at some point loads the Adobe Glyph List from a Lua table that
is contained in luaotfload-glyphlist.lua, which is automatically generated by the
script mkglyphlist.22 There is a make target glyphs that will create a fresh glyph list so
we don’t need to import it from ConTEXt any longer.

In addition to these, luaotfload requires a number of files not contained in the merge.
Some of these have no equivalent in LuaTEX-Fonts or ConTEXt, somewere taken unmod-
ified from the latter.

• luaotfload-features.lua – font feature handling; incorporates some of the
code from font-otc from ConTEXt;

• luaotfload-override.lua – overrides the ConTEXt logging functionality.

• luaotfload-loaders.lua – registers the OpenType font reader as handler for
Postscript fonts (, ).

• luaotfload-database.lua – font names database.

• luaotfload-colors.lua – color handling.

• luaotfload-auxiliary.lua – access to internal functionality for package au-
thors (proposals for additions welcome).

7 A F

With release version 2.2, luaotfload received additional functions for package authors to
call from outside (see the file luaotfload-auxiliary.lua for details). The purpose of
this addition twofold. Firstly, luaotfload failed to provide a stable interface to internals in
the past which resulted in an unmanageable situation of different packages abusing the
raw access to font objects by means of the patch_font callback. When the structure of the
font object changed due to an update, all of these imploded and several packages had to
be fixed while simultaneously providing fallbacks for earlier versions. Now the patching
is done on the luaotfload side and can be adaptedwith futuremodifications to font objects
without touching the packages that depend on it. Second, some the capabilities of the

22See luaotfload-font-enc.lua. The hard-coded file name is why we have to replace the procedure that
loads the file in luaotfload-override.lua.

12

font loader and the names database are not immediately relevant in luaotfload itself but
might nevertheless be of great value to package authors or end users.

Note that the current interface is not yet set in stone and the development team is
open to suggestions for improvements or additions.

7.1 Callback Functions

The patch_font callback is inserted in the wrapper luaotfload provides for the font defi-
nition callback (see below, page 24). At this place it allows manipulating the font object
immediately after the font loader is done creating it. For a short demonstration of its
usefulness, here is a snippet that writes an entire font object to the file fontdump.lua:

\input luaotfload.sty

\directlua{

local dumpfile = ”fontdump.lua”

local dump_font = function (tfmdata)

local data = table.serialize(tfmdata)

io.savedata(dumpfile, data)

end

luatexbase.add_to_callback(

”luaotfload.patch_font”,

dump_font,

”my_private_callbacks.dump_font”

)

}

\font\dumpme=name:Iwona

\bye

Beware: this creates a Lua file of around 150,000 lines of code, taking up 3  of
disk space. By inspecting the output you can get a first impression of how a font is
structured in LuaTEX ’s memory, what elements it is composed of, and in what ways it
can be rearranged.

7.1.1 Compatibility with Earlier Versions

As has been touched on in the preface to this section, the structure of the object as
returned by the fontloader underwent rather drastic changes during different stages of
its development, and not all packages that made use of font patching have kept up with
every one of it. To ensure compatibility with these as well as older versions of some
packages, luaotfload sets up copies of or references to data in the font table where it
used to be located. For instance, important parameters like the requested point size, the
units factor, and the font name have again been made accessible from the toplevel of the
table even though they were migrated to different subtables in the meantime.

7.1.2 Patches

These are mostly concerned with establishing compatibility with X ETEX.

13

• set_sscale_dimens
Calculate \fontdimens 10 and 11 to emulate X ETEX.

• set_capheight
Calculates \fontdimen 8 like X ETEX.

• patch_cambria_domh
Correct some values of the font Cambria Math.

7.2 Package Author’s Interface

As LuaTEX release 1.0 is nearing, the demand for a reliable interface for package authors
increases.

7.2.1 Font Properties

Below functions mostly concern querying the different components of a font like for
instance the glyphs it contains, or what font features are defined for which scripts.

• aux.font_has_glyph (id : int, index : int)
Predicate that returns true if the font id has glyph index.

• aux.slot_of_name(name : string)
Translates an Adobe Glyph name to the corresponding glyph slot.

• aux.name_of_slot(slot : int)
The inverse of slot_of_name; note that this might be incomplete as multiple
glyph names may map to the same codepoint, only one of which is returned by
name_of_slot.

• aux.provides_script(id : int, script : string)
Test if a font supports script.

• aux.provides_language(id : int, script : string, language : string)
Test if a font defines language for a given script.

• aux.provides_feature(id : int, script : string, language : string, feature : string)
Test if a font defines feature for language for a given script.

• aux.get_math_dimension(id : int, dimension : string)
Get the dimension dimension of font id.

• aux.sprint_math_dimension(id : int, dimension : string)
Same as get_math_dimension(), but output the value in scaled points at the TEX
end.

7.2.2 Database

• aux.scan_external_dir(dir : string)
Include fonts in directory dir in font lookups without adding them to the database.

14

8 T

If you encounter problems with some fonts, please first update to the latest version
of this package before reporting a bug, as luaotfload is under active development and
still a moving target. The development takes place on github at https://github.com/
lualatex/luaotfloadwhere there is an issue tracker for submitting bug reports, feature
requests and the likes requests and the likes.

Errors during database generation can be traced by increasing verbosity levels and
redirecting log output to stdout:

luaotfload-tool -fuvvv --log=stdout

If this fails, the font last printed to the terminal is likely to be the culprit. Please
specify it when reporting a bug, and blacklist it for the time being (see above, page 9).

A common problem is the lack of features for some OpenType fonts even when spec-
ified. This can be related to the fact that some fonts do not provide features for the dflt
script (see above on page 6), which is the default one in this package. If this happens,
assigning a noth script when the font is defined should fix it. For example with latn:

\font\test=file:MyFont.otf:script=latn;+liga;

Another strategy that helps avoiding problems is to not access raw LuaTEX internals
directly. Some of them, even though they are dangerous to access, have not been over-
ridden or disabled. Thus, whenever possible prefer the functions in the aux namespace
over direct manipulation of font objects. For example, raw access to the font.fonts table
like:

local somefont = font.fonts[2]

can render already defined fonts unusable. Instead, the function font.getfont() should
be used because it has been replaced by a safe variant.

II Implementation

9 luaotfload.lua

This file initializes the system and loads the font loader. To minimize potential conflicts
between other packages and the code imported from ConTEXt, several precautions are
in order. Some of the functionality that the font loader expects to be present, like raw
access to callbacks, are assumed to have been disabled by luatexbase when this file is
processed. In some cases it is possible to trick it by putting dummies into place and
restoring the behavior from luatexbase after initilization. Other cases such as attribute
allocation require that we hook the functionality from luatexbase into locations where
they normally wouldn’t be.

15

https://github.com/lualatex/luaotfload
https://github.com/lualatex/luaotfload

Anyways we can import the code base without modifications, which is due mostly
to the extra effort by Hans Hagen to make LuaTEX-Fonts self-contained and encapsulate
it, and especially due to his willingness to incorporate our suggestions.
1 luaotfload = luaotfload or {}

2 local luaotfload = luaotfload

3
4 config = config or { }

5 config.luaotfload = config.luaotfload or { }

6 ------.luaotfload.resolver = config.luaotfload.resolver or ”nor-

mal”

7 config.luaotfload.resolver = config.luaotfload.resolver or ”cached”

8 config.luaotfload.definer = config.luaotfload.definer or ”patch”

9 config.luaotfload.compatibility = config.luaotfload.compatibility or false

10 config.luaotfload.loglevel = config.luaotfload.loglevel or 1

11 config.luaotfload.color_callback = config.luaotfload.color_callback or ”pre_line-

break_filter”

12 config.luaotfload.prioritize = config.luaotfload.prioritize or ”sys”

13 config.luaotfload.names_dir = config.luaotfload.names_dir or ”names”

14 config.luaotfload.cache_dir = config.luaotfload.cache_dir or ”fonts”

15 config.luaotfload.index_file = config.luaotfload.index_file or ”luaot-

fload-names.lua”

16
17 luaotfload.module = {

18 name = ”luaotfload”,

19 version = 2.3002,

20 date = ”2013/07/23”,

21 description = ”OpenType layout system.”,

22 author = ”Elie Roux & Hans Hagen”,

23 copyright = ”Elie Roux”,

24 license = ”GPL v2.0”

25 }
26
27 local luatexbase = luatexbase

28
29 local setmetatable = setmetatable

30 local type, next = type, next

31
32 local kpsefind_file = kpse.find_file

33 local lfsisfile = lfs.isfile

34
35 local add_to_callback, create_callback =

36 luatexbase.add_to_callback, luatexbase.create_callback

37 local reset_callback, call_callback =

38 luatexbase.reset_callback, luatexbase.call_callback

39
40 local dummy_function = function () end

41
42 local error, warning, info, log =

43 luatexbase.provides_module(luaotfload.module)

16

44
45 luaotfload.error = error

46 luaotfload.warning = warning

47 luaotfload.info = info

48 luaotfload.log = log

49

We set the minimum version requirement for LuaTEX to v0.76, because the font loader
requires recent features like direct attribute indexing and node.end_of_math() that aren’t
available in earlier versions.23

50
51 local luatex_version = 76

52
53 if tex.luatexversion < luatex_version then

54 warning(”LuaTeX v%.2f is old, v%.2f is recommended.”,

55 tex.luatexversion/100,

56 luatex_version /100)

57 --- we install a fallback for older versions as a safety

58 if not node.end_of_math then

59 local math_t = node.id”math”

60 local traverse_nodes = node.traverse_id

61 node.end_of_math = function (n)

62 for n in traverse_nodes(math_t, n.next) do

63 return n

64 end

65 end

66 end

67 end
68

9.1 Module loading

We load the files imported from ConTEXt with this function. It automatically prepends
the prefix luaotfload- to its argument, so we can refer to the files with their actual
ConTEXt name.
69
70 local fl_prefix = ”luaotfload” -- “luatex” for luatex-plain

71 local loadmodule = function (name)

72 require(fl_prefix ..”-”..name)

73 end
74

Before TEXLive 2013 version, LuaTEX had a bug thatmade ofm fonts fail when calledwith
their extension. There was a side-effect making ofm totally unloadable when luaotfload
was present. The following lines are a patch for this bug. The utility of these lines is

23See Taco’s announcement of v0.76: http://comments.gmane.org/gmane.comp.tex.luatex.user/4042
and this commit by Hans that introduced those features. http://repo.or.cz/w/context.git/commitdiff/
a51f6cf6ee087046a2ae5927ed4edff0a1acec1b.

17

http://comments.gmane.org/gmane.comp.tex.luatex.user/4042
http://repo.or.cz/w/context.git/commitdiff/a51f6cf6ee087046a2ae5927ed4edff0a1acec1b
http://repo.or.cz/w/context.git/commitdiff/a51f6cf6ee087046a2ae5927ed4edff0a1acec1b

questionable as they are not necessary since TEXLive 2013. They should be removed in
the next version.
75 local Cs, P, lpegmatch = lpeg.Cs, lpeg.P, lpeg.match

76
77 local p_dot, p_slash = P”.”, P”/”

78 local p_suffix = (p_dot * (1 - p_dot - p_slash)^1 * P(-1)) / ””

79 local p_removesuffix = Cs((p_suffix + 1)^1)

80
81 local find_vf_file = function (name)

82 local fullname = kpsefind_file(name, ”ovf”)

83 if not fullname then

84 --fullname = kpsefind_file(file.removesuffix(name), ”ovf”)

85 fullname = kpsefind_file(lpegmatch(p_removesuffix, name), ”ovf”)

86 end

87 if fullname then

88 log(”loading virtual font file %s.”, fullname)

89 end

90 return fullname

91 end
92

9.2 Preparing the Font Loader

We treat the fontloader as a black box so behavior is consistent between formats. We
do no longer run the intermediate wrapper file luaotfload-fonts.lua which we used
to import from LuaTEX-Plain. Rather, we load the fontloader code directly in the same
fashion as luatex-fonts. How this is executed depends on the presence on the merged
font loader code. In luaotfload this is contained in the file luaotfload-merged.lua. If
this file cannot be found, the original libraries from ConTEXt of which the merged code
was composed are loaded instead. The imported font loader will call callback.register
once while reading font-def.lua. This is unavoidable unless we modify the imported
files, but harmless if we make it call a dummy instead. However, this problem might
vanish if we decide to do the merging ourselves, like the lualibs package does. With this
step we would obtain the freedom to load our own overrides in the process right where
they are needed, at the cost of losing encapsulation. The decision on how to progress is
currently on indefinite hold.
93
94 local starttime = os.gettimeofday()

95
96 local trapped_register = callback.register

97 callback.register = dummy_function

98

By default, the fontloader requires a number of private attributes for internal use. These
must be kept consistent with the attribute handling methods as provided by luatexbase.
Our strategy is to override the function that allocates new attributes before we initialize
the font loader, making it a wrapper around luatexbase.new_attribute.24 The attribute

24Many thanks, again, to Hans Hagen for making this part configurable!

18

http://standalone.contextgarden.net/current/context/experimental/tex/generic/context/luatex/

identifiers are prefixed “luaotfload@” to avoid name clashes.
99
100 do
101 local new_attribute = luatexbase.new_attribute

102 local the_attributes = luatexbase.attributes

103
104 attributes = attributes or { }

105
106 attributes.private = function (name)

107 local attr = ”luaotfload@” .. name --- used to be: “otfl@”

108 local number = the_attributes[attr]

109 if not number then

110 number = new_attribute(attr)

111 end

112 return number

113 end

114 end
115

These next lines replicate the behavior of luatex-fonts.lua.
116
117 local context_environment = { }

118
119 local push_namespaces = function ()

120 log(”push namespace for font loader”)

121 local normalglobal = { }

122 for k, v in next, _G do

123 normalglobal[k] = v

124 end

125 return normalglobal

126 end
127
128 local pop_namespaces = function (normalglobal, isolate)

129 if normalglobal then

130 local _G = _G

131 local mode = ”non-destructive”

132 if isolate then mode = ”destructive” end

133 log(”pop namespace from font loader -- ” .. mode)

134 for k, v in next, _G do

135 if not normalglobal[k] then

136 context_environment[k] = v

137 if isolate then

138 _G[k] = nil

139 end

140 end

141 end

142 for k, v in next, normalglobal do

143 _G[k] = v

144 end

145 -- just to be sure:

19

146 setmetatable(context_environment,_G)

147 else

148 log(”irrecoverable error during pop_namespace: no globals to restore”)

149 os.exit()

150 end

151 end
152
153 luaotfload.context_environment = context_environment

154 luaotfload.push_namespaces = push_namespaces

155 luaotfload.pop_namespaces = pop_namespaces

156
157 local our_environment = push_namespaces()

158

The font loader requires that the attribute with index zero be zero. We happily oblige.
(Cf. luatex-fonts-nod.lua.)
159
160 tex.attribute[0] = 0

161

Now that things are sorted out we can finally load the fontloader.
162
163 loadmodule”merged.lua”
164 ---loadmodule”font-odv.lua” --- <= Devanagari support from Context

165
166 if fonts then

167
168 if not fonts._merge_loaded_message_done_ then

169 log [[”I am using the merged version of ’luaotfload.lua’ here.]]

170 log [[If you run into problems or experience unexpected]]

171 log [[behaviour, and if you have ConTeXt installed you can try]]

172 log [[to delete the file ’luaotfload-merged.lua’ as I might]]

173 log [[then use the possibly updated libraries. The merged]]

174 log [[version is not supported as it is a frozen instance.]]

175 log [[Problems can be reported to the ConTeXt mailing list.”]]

176 end

177 fonts._merge_loaded_message_done_ = true

178
179 else--- the loading sequence is known to change, so this might have to

180 --- be updated with future updates!

181 --- do not modify it though unless there is a change to the merged

182 --- package!

183 loadmodule(”l-lua.lua”)

184 loadmodule(”l-lpeg.lua”)

185 loadmodule(”l-function.lua”)

186 loadmodule(”l-string.lua”)

187 loadmodule(”l-table.lua”)

188 loadmodule(”l-io.lua”)

189 loadmodule(”l-file.lua”)

190 loadmodule(”l-boolean.lua”)

20

191 loadmodule(”l-math.lua”)

192 loadmodule(”util-str.lua”)

193 loadmodule(’luatex-basics-gen.lua’)

194 loadmodule(’data-con.lua’)

195 loadmodule(’luatex-basics-nod.lua’)

196 loadmodule(’font-ini.lua’)

197 loadmodule(’font-con.lua’)

198 loadmodule(’luatex-fonts-enc.lua’)

199 loadmodule(’font-cid.lua’)

200 loadmodule(’font-map.lua’)

201 loadmodule(’luatex-fonts-syn.lua’)

202 loadmodule(’luatex-fonts-tfm.lua’)

203 loadmodule(’font-oti.lua’)

204 loadmodule(’font-otf.lua’)

205 loadmodule(’font-otb.lua’)

206 loadmodule(’node-inj.lua’)

207 loadmodule(’font-ota.lua’)

208 loadmodule(’font-otn.lua’)

209 loadmodule(’font-otp.lua’)--- since 2013-04-23

210 loadmodule(’luatex-fonts-lua.lua’)

211 loadmodule(’font-def.lua’)

212 loadmodule(’luatex-fonts-def.lua’)

213 loadmodule(’luatex-fonts-ext.lua’)

214 loadmodule(’luatex-fonts-cbk.lua’)

215 end --- non-merge fallback scope

216

Here we adjust the globals created during font loader initialization. If the second ar-
gument to pop_namespaces() is true this will restore the state of _G, eliminating every
global generated since the last call to push_namespaces(). At the moment we see no
reason to do this, and since the font loader is considered an essential part of luatex as
well as a very well organized piece of code, we happily concede it the right to add to _G
if needed.
217
218 pop_namespaces(our_environment, false)-- true)

219
220 log(”fontloader loaded in %0.3f seconds”, os.gettimeofday()-starttime)

221

9.3 Callbacks

After the fontloader is ready we can restore the callback trap from luatexbase.
222
223 callback.register = trapped_register

224

We do our own callback handling with the means provided by luatexbase. Note:
pre_linebreak_filter and hpack_filter are coupled in ConTEXt in the concept of node pro-
cessor.

21

225
226 add_to_callback(”pre_linebreak_filter”,
227 nodes.simple_font_handler,

228 ”luaotfload.node_processor”,

229 1)

230 add_to_callback(”hpack_filter”,
231 nodes.simple_font_handler,

232 ”luaotfload.node_processor”,

233 1)

234 add_to_callback(”find_vf_file”,
235 find_vf_file, ”luaotfload.find_vf_file”)

236
237 loadmodule”override.lua” --- “luat-ovr”

238
239 logs.set_loglevel(config.luaotfload.loglevel)
240

Now we load the modules written for luaotfload.
241 loadmodule”loaders.lua” --- “font-pfb” new in 2.0, added 2011

242 loadmodule”database.lua” --- “font-nms”

243 loadmodule”colors.lua” --- “font-clr”

244

Relying on the name: resolver for everything has been the source of permanent trouble
with the database. With the introduction of the new syntax parser we now have enough
granularity to distinguish between the X ETEX emulation layer and the genuine name:

and file: lookups of LuaTEX-Fonts. Another benefit is that we can now easily plug in
or replace new lookup behaviors if necessary. The name resolver remains untouched,
but it calls fonts.names.resolve() internally anyways (see luaotfload-database.lua).
245
246 local request_resolvers = fonts.definers.resolvers

247 local formats = fonts.formats -- nice table; does lowercasing ...

248 formats.ofm = ”type1”

249

luaotfload promises easy access to system fonts. Without additional precautions, this
cannot be achieved by kpathsea alone, because it searches only the texmf directories
by default. Although it is possible for kpathsea to include extra paths by adding them
to the OSFONTDIR environment variable, this is still short of the goal »it just works!«.
When building the font database luaotfload scans system font directories anyways, so
we already have all the information for looking sytem fonts. With the release version
2.2 the file names are indexed in the database as well and we are ready to resolve file:
lookups this way. Thus we no longer need to call the kpathsea library in most cases
when looking up font files, only when generating the database.
250
251 local resolvefile = fonts.names.crude_file_lookup

252 --local resolvefile = fonts.names.crude_file_lookup_verbose

253
254 request_resolvers.file = function (specification)

22

255 local name = resolvefile(specification.name)

256 local suffix = file.suffix(name)

257 if formats[suffix] then

258 specification.forced = suffix

259 specification.name = file.removesuffix(name)

260 else

261 specification.name = name

262 end

263 end
264

We classify as anon: those requests that have neither a prefix nor brackets. According
to Khaled25 they are the X ETEX equivalent of a name: request, so we will be treating them
as such.
265
266 --request_resolvers.anon = request_resolvers.name

267

There is one drawback, though. This syntax is also used for requesting fonts in Type1
(, ) format. These are essentially file: lookups and must be caught before the
name: resolver kicks in, lest they cause the database to update. Even if wewere to require
the file: prefix for all Type1 requests, tests have shown that certain fonts still include
further fonts (e. g. omlgcb.ofm will ask for omsecob.tfm) using the old syntax. For this
reason, we introduce an extra check with an early return.
268
269 local type1_formats = { ”tfm”, ”ofm”, }

270
271 request_resolvers.anon = function (specification)

272 local name = specification.name

273 for i=1, #type1_formats do

274 local format = type1_formats[i]

275 if resolvers.findfile(name, format) then

276 specification.name = file.addsuffix(name, format)

277 return

278 end

279 end

280 --- under some weird circumstances absolute paths get

281 --- passed to the definer; we have to catch them

282 --- before the name: resolver misinterprets them.

283 name = specification.specification

284 local exists, _ = lfsisfile(name)

285 if exists then --- garbage; we do this because we are nice,

286 --- not because it is correct

287 logs.names_report(”log”, 1, ”load”, ”file %q exists”, name)

288 logs.names_report(”log”, 1, ”load”,

289 ”... overriding borked anon: lookup with path: lookup”)

290 specification.name = name

291 request_resolvers.path(specification)

25https://github.com/phi-gamma/luaotfload/issues/4#issuecomment-17090553.

23

https://github.com/phi-gamma/luaotfload/issues/4#issuecomment-17090553

292 return

293 end

294 request_resolvers.name(specification)

295 end
296

Prior to version 2.2, luaotfload did not distinguish file: and path: lookups, causing
complications with the resolver. Now we test if the requested name is an absolute path
in the file system, otherwise we fall back to the file: lookup.
297
298 request_resolvers.path = function (specification)

299 local name = specification.name

300 local exists, _ = lfsisfile(name)

301 if not exists then -- resort to file: lookup

302 logs.names_report(”log”, 1, ”load”,

303 ”path lookup of %q unsuccessful, falling back to file:”,

304 name)

305 request_resolvers.file(specification)

306 else

307 local suffix = file.suffix(name)

308 if formats[suffix] then

309 specification.forced = suffix

310 specification.name = file.removesuffix(name)

311 else

312 specification.name = name

313 end

314 end

315 end
316

EXPERIMENTAL: kpse-only resolver, for those who can do without system fonts.
317
318 request_resolvers.kpse = function (specification)

319 local name = specification.name

320 local suffix = file.suffix(name)

321 if suffix and formats[suffix] then

322 name = file.removesuffix(name)

323 if resolvers.findfile(name, suffix) then

324 specification.forced = suffix

325 specification.name = name

326 return

327 end

328 end

329 for t, format in next, formats do --- brute force

330 if kpse.find_file (name, format) then

331 specification.forced = t

332 specification.name = name

333 return

334 end

335 end

24

336 end
337

Also EXPERIMENTAL: custom file resolvers via callback.
338 create_callback(”luaotfload.resolve_font”, ”simple”, dummy_function)

339
340 request_resolvers.my = function (specification)

341 call_callback(”luaotfload.resolve_font”, specification)

342 end
343

We create a callback for patching fonts on the fly, to be used by other packages. It
initially contains the empty function that we are going to override below.
344
345 create_callback(”luaotfload.patch_font”, ”simple”, dummy_function)

346

9.4 ConTEXt override

We provide a simplified version of the original font definition callback.
347
348 local read_font_file = fonts.definers.read

349
350 --- spec -> size -> id -> tmfdata

351 local patch_defined_font = function (specification, size, id)

352 local tfmdata = read_font_file(specification, size, id)

353 if type(tfmdata) == ”table” and tfmdata.shared then

354 --- We need to test for the “shared” field here

355 --- or else the fontspec capheight callback will

356 --- operate on tfm fonts.

357 call_callback(”luaotfload.patch_font”, tfmdata, specification)

358 end

359 return tfmdata

360 end
361
362 reset_callback ”define_font”

363

Finally we register the callbacks.
364
365 local font_definer = config.luaotfload.definer

366
367 if font_definer == ”generic” then

368 add_to_callback(”define_font”,

369 fonts.definers.read,

370 ”luaotfload.define_font”,

371 1)

372 elseif font_definer == ”patch” then

373 add_to_callback(”define_font”,

25

374 patch_defined_font,

375 ”luaotfload.define_font”,

376 1)

377 end
378
379 loadmodule”features.lua” --- contains what was “font-ltx” and “font-otc”

380 loadmodule”extralibs.lua” --- load additional Context libraries

381 loadmodule”auxiliary.lua” --- additionaly high-level functionality (new)

382
383 luaotfload.aux.start_rewrite_fontname () --- to be migrated to fontspec

384
385 -- vim:tw=71:sw=4:ts=4:expandtab

386

10 luaotfload.sty

Classical Plain+LATEX package initialization.
387 \csname ifluaotfloadloaded\endcsname

388 \let\ifluaotfloadloaded\endinput
389 \bgroup\expandafter\expandafter\expandafter\egroup
390 \expandafter\ifx\csname ProvidesPackage\endcsname\relax

391 \input luatexbase.sty

392 \else
393 \NeedsTeXFormat{LaTeX2e}

394 \ProvidesPackage{luaotfload}%

395 [2013/07/23 v2.3b OpenType layout system]

396 \RequirePackage{luatexbase}

397 \fi
398 \ifnum\luatexversion<76
399 %% here some deprecation warning would be in order

400 \RequireLuaModule{lualibs}

401 \RequireLuaModule{luaotfload-legacy}

402 \else
403 \RequireLuaModule{luaotfload}

404 \fi
405 \endinput

26

⟨definition⟩ ::= ‘\font’, , ‘=’, ⟨font request⟩, [⟨size⟩] ;

⟨size⟩ ::= ‘at’,  ;

⟨font request⟩ ::= ‘”’, ⟨unquoted font request⟩ ‘”’
| ‘{’, ⟨unquoted font request⟩ ‘}’
| ⟨unquoted font request⟩ ;

⟨unquoted font request⟩ ::= ⟨specification⟩, [‘:’, ⟨feature list⟩]
| ‘[’, ⟨path lookup⟩ ‘]’, [[‘:’], ⟨feature list⟩] ;

⟨specification⟩ ::= ⟨prefixed spec⟩, [⟨subfont no⟩], { ⟨modifier⟩ }
| ⟨anon lookup⟩, { ⟨modifier⟩ } ;

⟨prefixed spec⟩ ::= ‘file:’, ⟨file lookup⟩
| ‘name:’, ⟨name lookup⟩ ;

⟨file lookup⟩ ::= { ⟨name character⟩ } ;

⟨name lookup⟩ ::= { ⟨name character⟩ } ;

⟨anon lookup⟩ ::=  | ⟨name lookup⟩ ;

⟨path lookup⟩ ::= { _ - ‘]’ } ;

⟨modifier⟩ ::= ‘/’, (‘I’ | ‘B’ | ‘BI’ | ‘IB’ | ‘S=’, {  }) ;

⟨subfont no⟩ ::= ‘(’, {  }, ‘)’ ;

⟨feature list⟩ ::= ⟨feature expr⟩, { ‘;’, ⟨feature expr⟩ } ;

⟨feature expr⟩ ::= _, ‘=’, _
| ⟨feature switch⟩, _ ;

⟨feature switch⟩ ::= ‘+’ | ‘-’ ;

⟨name character⟩ ::= _ - (‘(’ | ‘/’ | ‘:’) ;

Figure 1: Font request syntax. Braces or double quotes around the specification rule
will preserve whitespace in file names. In addition to the font style modifiers (slash-
notation) given above, there are others that are recognized but will be silently ignored:
aat, icu, and gr. The special terminals are: _ for a valid font feature name
and _ for the corresponding value.  is the name of a  file.
 again refers to bytes 48–57, and _ to all byte values.  and
 are the TEX concepts.

27

Figure 2: Schematic of the files in Luaotfload

Merged Libraries

luaotfload-util
mkluatexfontdb.lua

luaotfload-names.lua
luaotfload-names.luc

--update

luaotfload.lua

luaotfload-merged.lua

merged

 Lua Libraries from Context
l-lua.lua l-lpeg.lua l-function.lua

l-string.lua l-table.lua l-io.lua

l-file.lua l-boolean.lua l-math.lua

util-str.lua

unmerged

 Font Loader (LuaTeX-Fonts)
luatex-basics-gen.lua luatex-basics-nod.lua

luatex-fonts-enc.lua luatex-fonts-syn.lua

luatex-fonts-tfm.lua luatex-fonts-chr.lua

luatex-fonts-lua.lua luatex-fonts-def.lua

luatex-fonts-ext.lua luatex-fonts-cbk.lua

unmerged
 Font and Node Libraries from Context

data-con.lua font-ini.lua font-con.lua

font-cid.lua font-map.lua font-oti.lua

font-otf.lua font-otb.lua node-inj.lua

font-ota.lua font-otn.lua font-def.lua
unmerged

 Luaotfload Libraries
luaotfload-auxiliary.lua luaotfload-features.lua

luaotfload-override.lua luaotfload-loaders.lua

luaotfload-database.lua luaotfload-color.lua

luaotfload-blacklist.cnf

merged

merged

merged

luaotfload-glyphlist.lua

luatex-fonts-enc.lua

luaotfload-database.lua

mkglyphlist

generates from glyphlist.txt

28

11 T GNU GPL L 2

TheGPL requires the complete license text to be distributed alongwith the code. I recom-
mend the canonical source, instead: http://www.gnu.org/licenses/old-licenses/

gpl-2.0.html. But if you insist on an included copy, here it is. You might want to zoom
in.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change free software—to make sure the software is free
for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using
it. (Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our Gen-
eral Public Licenses are designed to make sure that you have the freedom to dis-
tribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if you
modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these terms
so they know their rights.
We protect your rights with two steps: (1) copyright the software, and (2) offer you
this license which gives you legal permission to copy, distribute and/or modify the
software.
Also, for each author’s protection and ours, we want to make certain that every-
one understands that there is no warranty for this free software. If the software is
modified by someone else and passed on, we want its recipients to know that what
they have is not the original, so that any problems introduced by others will not
reflect on the original authors’ reputations.
Finally, any free program is threatened constantly by software patents. We wish
to avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patentmust be licensed for everyone’s free use or not licensed
at all.
The precise terms and conditions for copying, distribution and modification follow.

T  C F C, D 
M

1. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The “Program”, below, refers to any such pro-
gram or work, and a “work based on the Program” means either the Program
or any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included with-
out limitation in the term “modification”.) Each licensee is addressed as “you”.
Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its con-
tents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the
Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously and appro-
priately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a copy
of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifi-
cations or work under the terms of Section 1 above, provided that you also
meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof,
to be licensed as a whole at no charge to all third parties under the terms
of this License.

(c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redis-
tribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is inter-
active but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to themodifiedwork as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as sep-
arate works. But when you distribute the same sections as part of a whole

which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Pro-
gram.
In addition, mere aggregation of another work not based on the Programwith
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

4. You may copy and distribute the Program (or a work based on it, under Sec-
tion 2) in object code or executable form under the terms of Sections 1 and 2
above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange;
or,

(b) Accompany it with a written offer, valid for at least three years, to give
any third party, for a charge no more than your cost of physically per-
forming source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange;
or,

(c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only for
noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with Sub-
section b above.)

The source code for a work means the preferred form of the work for mak-
ing modifications to it. For an executable work, complete source code means
all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself
accompanies the executable.
If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source
code from the same place counts as distribution of the source code, even
though third parties are not compelled to copy the source along with the
object code.

5. You may not copy, modify, sublicense, or distribute the Program except as ex-
pressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it. How-
ever, nothing else grants you permission to modify or distribute the Program
or its derivative works. These actions are prohibited by law if you do not
accept this License. Therefore, by modifying or distributing the Program (or
any work based on the Program), you indicate your acceptance of this Li-
cense to do so, and all its terms and conditions for copying, distributing or
modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as
a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply and the
section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that sys-
tem; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geograph-
ical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be sim-
ilar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Program spec-
ifies a version number of this License which applies to it and “any later ver-
sion”, you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Founda-
tion. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Founda-
tion, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and
reuse of software generally.

N W

12. B       ,    
 ,       . E 
       /  
   “ ”     ,  -
  , ,    ,   
       . T  
           . S
   ,        -
,   .

13. I            
   ,        /
     ,      -
,   , ,    -
            (
            
             
    ),       
        .

E  T  C

A: H  A T T  Y N P

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the
full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it
under the terms of the GNUGeneral Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, butWITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts
in an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it under cer-
tain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts
of the General Public License. Of course, the commands you use may be called
something other than show w and show c; they could even bemouse-clicks or menu
items—whatever suits your program.
You should also get your employer (if you work as a programmer) or your school, if
any, to sign a “copyright disclaimer” for the program, if necessary. Here is a sample;
alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James
Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is
what you want to do, use the GNU Library General Public License instead of this
License.

29

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

	I Package Description
	Introduction
	Thanks
	Loading Fonts
	Prefix – the luaotfload Way
	Compatibility Layer
	Examples
	Loading by File Name
	Loading by Font Name
	Modifiers

	Font features
	Font names database
	luaotfload-tool / mkluatexfontdb.lua
	Search Paths
	Querying from Outside
	Blacklisting Fonts

	Files from ConTeXt and LuaTeX-Fonts
	Auxiliary Functions
	Callback Functions
	Compatibility with Earlier Versions
	Patches

	Package Authorâ•Žs Interface
	Font Properties
	Database

	Troubleshooting

	II Implementation
	`_=12luaotfload.lua
	Module loading
	Preparing the Font Loader
	Callbacks
	ConTeXt override

	`_=12luaotfload.sty
	The GNU GPL License v2

