
吀�e luaotfload package

Elie Roux · Khaled Hosny · Philipp Gesang
Home: https://github.com/lualatex/luaotfload

Support: lualatex-dev@tug.org

2013/05/05 v2.2

Abstract

吀�is package is an adaptation of the ConTEXt font loading system. It allows for
loading OpenType fonts with an extended syntax and adds support for a variety of
font features.

Contents
I Package Description 2
1 Introduction 2

2 Loading Fonts 2
2.1 Prefix – the luaotfload Way . 2
2.2 XƎTEX Compatibility Layer . 3
2.3 Examples . 3

2.3.1 Loading by File Name . 3
2.3.2 Loading by Font Name . 4
2.3.3 Modifiers . 4

3 Font features 5

4 Font names database 7
4.1 luaotfload-tool / mkluatexfontdb.lua . 8
4.2 Search Paths . 8
4.3 儀�erying from Outside . 9
4.4 Blacklisting Fonts . 9

5 Files from ConTEXt and LuaTEX-Fonts 10

6 Troubleshooting 12

II Implementation 12
7 luaotfload.lua 12

7.1 Module loading . 14
7.2 Preparing the Font Loader . 15
7.3 Callbacks . 18

1

https://github.com/lualatex/luaotfload
mailto:lualatex-dev@tug.org

7.4 ConTEXt override . 20

8 luaotfload.sty 21

9 吀�e GNU GPL License v2 25

I Package Description

1 Introduction

Font management and installation has always been painful with TEX. A lot of files are
needed for one font (tfm, pfb, map, fd, vf), and due to the 8-Bit encoding each font is
limited to 256 characters. But the font world has evolved since the original TEX, and
new typographic systems have appeared, most notably the so called smart font tech-
nologies like OpenType fonts (otf). 吀�ese fonts can contain many more characters than
TEX fonts, as well as additional functionality like ligatures, old-style numbers, small
capitals, etc., and support more complex writing systems like Arabic and Indic1 scripts.
OpenType fonts are widely deployed and available for all modern operating systems. As
of 2013 they have become the de facto standard for advanced text layout. However, until
recently the only way to use them directly in the TEX world was with the X ETEX engine.

Unlike X ETEX, LuaTEX has no built-in support for OpenType or technologies other
than the original TEX fonts. Instead, it provides hooks for executing Lua code during the
TEX run that allow implementing extensions for loading fonts and manipulating how in-
put text is processed without modifying the underlying engine. 吀�is is where luaotfload
comes into play: Based on code from ConTEXt, it extends LuaTEX with functionality
necessary for handling OpenType fonts. Additionally, it provides means for accessing
fonts known to the operating system conveniently by indexing the metadata.

2 Loading Fonts

luaotfload supports an extended font request syntax:

\font\foo={ ⟨prefix⟩: ⟨font name⟩: ⟨font features⟩} ⟨TEX font features⟩

吀�e curly brackets are optional and escape the spaces in the enclosed font name. Alter-
natively, double quotes serve the same purpose. A selection of individual parts of the
syntax are discussed below; for a more formal description see figure 1.

2.1 Prefix – the luaotfload Way

In luaotfload, the canonical syntax for font requests requires a prefix:

\font\fontname=⟨prefix⟩:⟨fontname⟩…

where ⟨prefix⟩ is either file: or name:. It determines whether the font loader should
interpret the request as a file name or font name, respectively, which again influences

1Unfortunately, luaotfload doesn't support Indic scripts right now. Assistance in implementing the pre-
requisites is greatly appreciated.

2

how it will a琀�empt to locate the font. Examples for font names are “Latin Modern Italic",
“GFS Bodoni Rg", and “PT Serif Caption" – they are the human readable identifiers usu-
ally listed in drop-down menus and the like. In order for fonts installed both in system
locations and in your texmf to be accessible by font name, luaotfload must first collect
the metadata included in the files. Please refer to section 4 below for instructions on
how to create the database.

File names are whatever your file system allows them to be, except that that they
may not contain the characters (, :, and /. As is obvious from the last exception, the
file: lookup will not process paths to the font location – only those files found when
generating the database are addressable this way. Continue below in the X ETEX section
if you need to load your fonts by path. 吀�e file names corresponding to the example
font names above are lmroman12-italic.otf, GFSBodoni.otf, and PTZ56F.ttf.

2.2 XƎTEX Compatibility Layer

In addition to the regular prefixed requests, luaotfload accepts loading fonts the X ETEX
way. 吀�ere are again twomodes: bracketed and unbracketed. A bracketed request looks
as follows.

\font\fontname=[⟨path to file⟩]

Inside the square brackets, every character except for a closing bracket is permi琀�ed,
allowing for specifying paths to a font file. Naturally, path-less file names are equally
valid and processed the same way as an ordinary file: lookup.

\font\fontname=⟨font name⟩ …

Unbracketed (or, for lack of a be琀�er word: anonymous) font requests resemble the
conventional TEX syntax. However, they have a broader spectrum of possible interpre-
tations: before anything else, luaotfload a琀�empts to load a traditional TEX Font Metric
(tfm or ofm). If this fails, it performs a name: lookup, which itself will fall back to a
file: lookup if no database entry matches ⟨font name⟩.

Furthermore, luaotfload supports the slashed (shorthand) font style notation from
X ETEX.

\font\fontname=⟨font name⟩/⟨modifier⟩…

Currently, four style modifiers are supported: I for italic shape, B for bold weight, BI or
IB for the combination of both. Other “slashed" modifiers are too specific to the X ETEX
engine and have no meaning in LuaTEX.

2.3 Examples

2.3.1 Loading by File Name

For example, conventional type1 font can be loaded with a file: request like so:

\font\lmromanten={file:ec-lmr10} at 10pt

3

吀�e OpenType version of Janusz Nowacki's font Antykwa Półtawskiego2 in its con-
densed variant can be loaded as follows:

\font\apcregular=file:antpoltltcond-regular.otf at 42pt

吀�e next example shows how to load the Porson font digitized by the Greek Font
Society using X ETEX-style syntax and an absolute path from a non-standard directory:

\font\gfsporson="[/tmp/GFSPorson.otf]" at 12pt

2.3.2 Loading by Font Name

吀�e name: lookup does not depend on cryptic filenames:

\font\pagellaregular={name:TeX Gyre Pagella} at 9pt

A bit more specific but essentially the same lookup would be:

\font\pagellaregular={name:TeX Gyre Pagella Regular} at 9pt

Which fits nicely with the whole set:

\font\pagellaregular ={name:TeX Gyre Pagella Regular} at 9pt

\font\pagellaitalic ={name:TeX Gyre Pagella Italic} at 9pt

\font\pagellabold ={name:TeX Gyre Pagella Bold} at 9pt

\font\pagellabolditalic={name:TeX Gyre Pagella Bolditalic} at 9pt

{\pagellaregular foo bar baz\endgraf}

{\pagellaitalic foo bar baz\endgraf}

{\pagellabold foo bar baz\endgraf}

{\pagellabolditalic foo bar baz\endgraf}

...

2.3.3 Modifiers

If the entire Iwona family3 is installed in some location accessible by luaotfload, the
regular shape can be loaded as follows:

\font\iwona=Iwona at 20pt

To load the most common of the other styles, the slash notation can be employed as
shorthand:

2http://jmn.pl/antykwa-poltawskiego/, also available in in TEX Live.
3http://jmn.pl/kurier-i-iwona/, also in TEX Live.

4

http://jmn.pl/antykwa-poltawskiego/
http://jmn.pl/kurier-i-iwona/

\font\iwonaitalic =Iwona/I at 20pt

\font\iwonabold =Iwona/B at 20pt

\font\iwonabolditalic=Iwona/BI at 20pt

which is equivalent to these full names:

\font\iwonaitalic ="Iwona Italic" at 20pt

\font\iwonabold ="Iwona Bold" at 20pt

\font\iwonabolditalic="Iwona BoldItalic" at 20pt

3 Font features

Font features are the second to last component in the general scheme for font requests:

\font\foo={ ⟨prefix⟩: ⟨font name⟩: ⟨font features⟩} ⟨TEX font features⟩

If style modifiers are present (X ETEX style), they must precede ⟨font features⟩.
吀�e element ⟨font features⟩ is a semicolon-separated list of feature tags4 and font

options. Prepending a font feature with a + (plus sign) enables it, whereas a - (minus)
disables it. For instance, the request

\font\test=LatinModernRoman:+clig;-kern

activates contextual ligatures (clig) and disables kerning (kern). Alternatively the op-
tions true or false can be passed to the feature in a key/value expression. 吀�e following
request has the same meaning as the last one:

\font\test=LatinModernRoman:clig=true;kern=false

Furthermore, this second syntax is required should a font feature accept other options
besides a true/false switch. For example, stylistic alternates (salt) are variants of given
glyphs. 吀�ey can be selected either explicitly by supplying the variant index (starting
from one), or randomly by se琀�ing the value to, obviously, random.

\font\librmsaltfirst=LatinModernRoman:salt=1

Other font options include:

mode
luaotfload has two OpenType processing modes: base and node.
base mode works by mapping OpenType features to traditional TEX ligature and
kerning mechanisms. Supporting only non-contextual substitutions and kerning

4Cf. http://www.microsoft.com/typography/otspec/featurelist.htm.

5

http://www.microsoft.com/typography/otspec/featurelist.htm

pairs, it is the slightly faster, albeit somewhat limited, variant. node mode works
by processing TEX's internal node list directly at the Lua end and supports a wider
range ofOpenType features. 吀�e downside is that the intricate operations required
for node mode may slow down typese琀�ing especially with complex fonts and it
does not work in math mode.
By default luaotfload is in node mode, and base mode has to be requested where
needed, e. g. for math fonts.

script
An OpenType script tag;5 the default value is dlft. Some fonts, including very
popular ones by foundries like Adobe, do not assign features to the dflt script, in
which case the script needs to be set explicitly.

language
An OpenType language system identifier,6 defaulting to dflt.

featurefile
A comma-separated list of feature files to be applied to the font. Feature files
contain a textual representation of OpenType tables and extend the features of a
font on fly. A昀�er they are applied to a font, features defined in a feature file can
be enabled or disabled just like any other font feature. 吀�e syntax is documented
in Adobe's OpenType Feature File Specification.7

For a demonstration of how to set a tkrn feature consult the file tkrn.fea that is
part of luaotfload. It can be read and applied as follows:
\font\test=Latin Modern Roman:featurefile=tkrn.fea;+tkrn

color
A font color, defined as a triplet of two-digit hexadecimal rgb values, with an
optional fourth value for transparency (where 00 is completely transparent and
FF is opaque).
For example, in order to set text in semitransparent red:

\font\test={Latin Modern Roman}:color=FF0000BB

protrusion & expansion
吀�ese keys control microtypographic features of the font, namely character pro-
trusion and font expansion. 吀�eir arguments are names of Lua tables that contain
values for the respective features.8 For both, only the set default is predefined.

5See http://www.microsoft.com/typography/otspec/scripttags.htm for a list of valid values. For
scripts derived from the Latin alphabet the value latn is good choice.

6Cf. http://www.microsoft.com/typography/otspec/languagetags.htm.
7Cf. http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html.
8For examples of the table layout please refer to the section of the file luaotfload-fonts-ext.lua where

the default values are defined. Alternatively and with loss of information, you can dump those tables into
your terminal by issuing

\directlua{inspect(fonts.protrusions.setups.default)

6

http://www.microsoft.com/typography/otspec/scripttags.htm
http://www.microsoft.com/typography/otspec/languagetags.htm
http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html

For example, to enable default protrusion9:

\font\test=LatinModernRoman:protrusion=default

Non-standard font features luaotfload adds a number of features that are not de-
fined in the original OpenType specification, most of them aiming at emulating the be-
havior familiar from other TEX engines. Currently (2013) there are three of them:

anum Substitutes the glyphs in the ascii number range with their counterparts from
eastern Arabic or Persian, depending on the value of language.

tlig Applies legacy TEX ligatures:
`` `` '' ''

` ` ' '

" " – --

— --- ¡ !`

¿ ?`

10

itlc Computes italic correction values (active by default).

4 Font names database

As mentioned above, luaotfload keeps track of which fonts are available to LuaTEX by
means of a database. 吀�is allows referring to fonts not only by explicit filenames but
also by the proper names contained in the metadata which is o昀�en more accessible to
humans.11

When luaotfload is asked to load a font by a font name, it will check if the database
exists and load it, or else generate a fresh one. Should it then fail to locate the font, an
update to the database is performed in case the font has been added to the system only
recently. As soon as the database is updated, the resolver will try and look up the font
again, all without user intervention. 吀�e goal is for luaotfload to act in the background
and behave as unobtrusively as possible, while providing a convenient interface to the
fonts installed on the system.

Generating the database for the first time may take a while since it inspects every
font file on your computer. 吀�is is particularly noticeable if it occurs during a typese琀�ing
run. In any case, subsequent updates to the database will be quite fast.

inspect(fonts.expansions.setups.default)}

at some point a昀�er loading luaotfload.sty.
9You also need to set pdfprotrudechars=2 and pdfadjustspacing=2 to activate protrusion and expansion,

respectively. See the pdfTEX manual for details.
10吀�ese contain the feature set trep of earlier versions of luaotfload.
Note to X ETEX users: this is the equivalent of the assignment mapping=text-tex using X ETEX's input remap-

ping feature.
11吀�e tool otfinfo (comes with TEX Live), when invoked on a font file with the -i option, lists the variety

of name fields defined for it.

7

http://mirrors.ctan.org/systems/pdftex/manual/pdftex-a.pdf
http://www.lcdf.org/type/

Table 1: List of paths searched for each supported operating system.

Windows %WINDIR%\Fonts

Linux /usr/local/etc/fonts/fonts.conf and
/etc/fonts/fonts.conf

Mac ~/Library/Fonts,
/Library/Fonts,
/System/Library/Fonts, and
/Network/Library/Fonts

4.1 luaotfload-tool / mkluatexfontdb.lua12

It can still be desirable at times to do some of these steps manually, and without having
to compile a document. To this end, luaotfload comes with the utility luaotfload-tool

that offers an interface to the database functionality. Being a Lua script, there are two
ways to run it: either make it executable (chmod +x on unixoid systems) or pass it as an
argument to texlua.13 Invoked with the argument --update it will perform a database
update, scanning for fonts not indexed.

luaotfload-tool --update

Adding the --force switch will initiate a complete rebuild of the database.

luaotfload-tool --update --force

For sake of backwards compatibility, luaotfload-tool may be renamed or sym-
linked to mkluatexfontdb. Whenever it is run under this name, it will update the
database first, mimicking the behavior of earlier versions of luaotfload.

4.2 Search Paths

luaotfload scans those directories where fonts are expected to be located on a given sys-
tem. On a Linux machine it follows the paths listed in the Fontconfig configuration files;
consult man 5 fonts.conf for further information. On Windows systems, the standard
location is Windows\Fonts, while Mac OS X requires a multitude of paths to be exam-
ined. 吀�e complete list is is given in table 1. Other paths can be specified by se琀�ing the
environment variable OSFONTDIR. If it is non-empty, then search will be extended to the
included directories.

12吀�e script may be named just mkluatexfontdb in your distribution.
13Tests by the maintainer show only marginal performance gain by running with Luigi Scarso's LuajitTEX,

which is probably due to the fact that most of the time is spent on file system operations.
Note: OnMS Windows systems, the script can be run either by calling the wrapper application luaotfload-

tool.exe or as texlua.exe luaotfload-tool.lua.

8

https://foundry.supelec.fr/projects/luajittex/

4.3 儀�erying from Outside

luaotfload-tool also provides rudimentary means of accessing the information col-
lected in the font database. If the option --find=name is given, the script will try and
search the fonts indexed by luaotfload for a matching name. For instance, the invocation

luaotfload-tool --find="Iwona Regular"

will verify if “Iwona Regular" is found in the database and can be readily requested in a
document.

If you are unsure about the actual font name, then add the -F (or --fuzzy) switch
to the command line to enable approximate matching. Suppose you cannot precisely
remember if the variant of Iwona you are looking for was “Bright" or “Light". 吀�e query

luaotfload-tool -F --find="Iwona Bright"

will tell you that indeed the la琀�er name is correct.
Basic information about fonts in the database can be displayed using the -i option

(--info).

luaotfload-tool -i --find="Iwona Light Italic"

吀�e meaning of the printed values is described in section 4.4 of the LuaTEX reference
manual.14

luaotfload-tool --help will list the available command line switches, including
some not discussed in detail here.

4.4 Blacklisting Fonts

Some fonts are problematic in general, or just in LuaTEX. If you find that compiling
your document takes far too long or eats away all your system's memory, you can track
down the culprit by running luaotfload-tool -v to increase verbosity. Take a note
of the filename of the font that database creation fails with and append it to the file
luaotfload-blacklist.cnf.

A blacklist file is a list of font filenames, one per line. Specifying the full path to
where the file is located is optional, the plain filename should suffice. File extensions
(.otf, .ttf, etc.) may be omi琀�ed. Anything a昀�er a percent (%) character until the end
of the line is ignored, so use this to add comments. Place this file to some location where
the kpse library can find it, e. g. texmf-local/tex/luatex/luaotfload if you are run-
ning TEX Live,15 or just leave it in the working directory of your document. luaotfload
reads all files named luaotfload-blacklist.cnf it finds, so the fonts in ./luaotfload-
blacklist.cnf extend the global blacklist.

14In TEX Live: texmf-dist/doc/luatex/base/luatexref-t.pdf.
15You may have to run mktexlsr if you created a new file in your texmf tree.

9

Furthermore, a filename prepended with a dash character (-) is removed from the
blacklist, causing it to be temporarily whitelisted without modifying the global file. An
example with explicit paths:

% example otf-blacklist.cnf

/Library/Fonts/GillSans.ttc % Luaotfload ignores this font.

-/Library/Fonts/Optima.ttc % This one is usable again, even if

% blacklisted somewhere else.

5 Files from ConTEXt and LuaTEX-Fonts

luaotfload relies on code originallywri琀�en byHansHagen16 for and testedwith ConTEXt.
It integrates the font loader as distributed in the LuaTEX-Fonts package. 吀�e origi-
nal Lua source files have been combined using the mtx-package script into a single,
self-contained blob. In this form the font loader has no further dependencies17 and re-
quires only minor adaptions to integrate into luaotfload. 吀�e guiding principle is to let
ConTEXt/LuaTEX-Fonts take care of the implementation, and update the imported code
from time to time. As maintainers, we aim at importing files from upstream essentially
unmodified, except for renaming them to prevent name clashes. 吀�is job has been greatly
alleviated since the advent of LuaTEX-Fonts, prior to which the individual dependencies
had to bemanually spo琀�ed and extracted from the ConTEXt source code in a complicated
and error-prone fashion.

Below is a commented list of the files distributed with luaotfload in one way or
the other. See figure 2 on page 24 for a graphical representation of the dependen-
cies. From LuaTEX-Fonts, only the file luatex-fonts-merged.lua has been imported
as luaotfload-merged.lua. It is generated by mtx-package, a Lua source code merg-
ing too developed by Hans Hagen.18 It houses several Lua files that can be classed in
three categories.

• Lua utility libraries, a subset of what is provided by the lualibs package.

– l-lua.lua

– l-lpeg.lua

– l-function.lua

– l-string.lua

– l-table.lua

– l-io.lua

– l-file.lua

– l-boolean.lua

– l-math.lua

– util-str.lua

• 吀�e font loader itself. 吀�ese files have been wri琀�en for LuaTEX-Fonts and they are
distributed along with luaotfload.

16吀�e creator of the ConTEXt format.
17It covers, however, to some extent the functionality of the lualibs package.
18mtx-package is part of ConTEXt and requires mtxrun. Run mtxrun --script package --help to display

further information. For the actual merging code see the file util-mrg.lua that is part of ConTEXt.

10

http://wiki.contextgarden.net
http://repo.or.cz/w/context.git/blob_plain/refs/heads/origin:/scripts/context/lua/mtx-package.lua

– luatex-basics-gen.lua

– luatex-basics-nod.lua

– luatex-fonts-enc.lua

– luatex-fonts-syn.lua

– luatex-fonts-tfm.lua

– luatex-fonts-chr.lua

– luatex-fonts-lua.lua

– luatex-fonts-def.lua

– luatex-fonts-ext.lua

– luatex-fonts-cbk.lua

• Code related to font handling and node processing, taken directly from ConTEXt.

– data-con.lua

– font-ini.lua

– font-con.lua

– font-cid.lua

– font-map.lua

– font-oti.lua

– font-otf.lua

– font-otb.lua

– node-inj.lua

– font-ota.lua

– font-otn.lua

– font-def.lua

– font-otp.lua

Note that if luaotfload cannot locate the merged file, it will load the individual Lua
libraries instead. 吀�eir names remain the same as in ConTEXt (without the otfl-prefix)
since we imported the relevant section of luatex-fonts.lua unmodified into luaot-

fload.lua. 吀�us if you prefer running bleeding edge code from the ConTEXt beta, all
you have to do is remove luaotfload-merged.lua from the search path.

Also, the merged file at some point loads the Adobe Glyph List from a Lua table
that is contained in font-age.lua, which is automatically generated by the script mkg-
lyphlist.19 吀�ere is a make target glyphs that will create a fresh font-age.lua so we
don't need to import it from ConTEXt any longer.

In addition to these, luaotfload requires a number of files not contained in the merge.
Some of these have no equivalent in LuaTEX-Fonts or ConTEXt, somewere taken unmod-
ified from the la琀�er.

• luaotfload-features.lua – font feature handling; incorporates some of the
code from font-otc from ConTEXt;

• luaotfload-lib-dir.lua – l-dir from ConTEXt; contains functionality re-
quired by luaotfload-font-nms.lua.

• luaotfload-override.lua – overrides the ConTEXt logging functionality.

• luaotfload-loaders.lua – registers the OpenType font reader as handler for
Postscript fonts (pfa, pfb).

• luaotfload-database.lua – font names database.

• luaotfload-colors.lua – color handling.
19See luaotfload-font-enc.lua. 吀�e hard-coded file name is why the file lacks the luaotfload- prefix.

11

• luaotfload-auxiliary.lua – access to internal functionality for package au-
thors (proposals for additions welcome).

6 Troubleshooting

If you encounter problems with some fonts, please first update to the latest version
of this package before reporting a bug, as luaotfload is under active development and
still a moving target. 吀�e development takes place on github at https://github.com/
lualatex/luaotfload where there is an issue tracker for submi琀�ing bug reports, fea-
ture requests and the likes requests and the likes.

Errors during database generation can be traced by increasing verbosity levels and
redirecting log output to stdout:

luaotfload-tool -fuvvv --log=stdout

If this fails, the font last printed to the terminal is likely to be the culprit. Please
specify it when reporting a bug, and blacklist it for the time being (see above, page 9).

A common problem is the lack of features for some OpenType fonts even when spec-
ified. 吀�is can be related to the fact that some fonts do not provide features for the dflt
script (see above on page 6), which is the default one in this package. If this happens,
assigning a noth script when the font is defined should fix it. For example with latn:

\font\test=file:MyFont.otf:script=latn;+liga;

II Implementation

7 luaotfload.lua

吀�is file initializes the system and loads the font loader. To minimize potential conflicts
between other packages and the code imported from ConTEXt, several precautions are
in order. Some of the functionality that the font loader expects to be present, like raw
access to callbacks, are assumed to have been disabled by luatexbase when this file is
processed. In some cases it is possible to trick it by pu琀�ing dummies into place and
restoring the behavior from luatexbase a昀�er initilization. Other cases such as a琀�ribute
allocation require that we hook the functionality from luatexbase into locations where
they normally wouldn't be.

Anyways we can import the code base without modifications, which is due mostly
to the extra effort by Hans Hagen to make LuaTEX-Fonts self-contained and encapsulate
it, and especially due to his willingness to incorporate our suggestions.
1 luaotfload = luaotfload or {}

2 local luaotfload = luaotfload

3
4 config = config or { }

12

https://github.com/lualatex/luaotfload
https://github.com/lualatex/luaotfload

5 config.luaotfload = config.luaotfload or { }

6 ------.luaotfload.resolver = config.luaotfload.resolver or "normal"

7 config.luaotfload.resolver = config.luaotfload.resolver or "cached"

8 config.luaotfload.definer = config.luaotfload.definer or "patch"

9 config.luaotfload.loglevel = config.luaotfload.loglevel or 1

10 config.luaotfload.color_callback = config.luaotfload.color_callback or "pre_line-

break_filter"

11 --luaotfload.prefer_merge = config.luaotfload.prefer_merge or true

12
13 luaotfload.module = {

14 name = "luaotfload",

15 version = 2.2,

16 date = "2013/04/29",

17 description = "OpenType layout system.",

18 author = "Elie Roux & Hans Hagen",

19 copyright = "Elie Roux",

20 license = "GPL v2.0"

21 }
22
23 local luatexbase = luatexbase

24
25 local type, next = type, next

26 local setmetatable = setmetatable

27 local find_file = kpse.find_file

28 local lfsisfile = lfs.isfile

29 local stringfind = string.find

30 local stringformat = string.format

31 local stringmatch = string.match

32 local stringsub = string.sub

33
34 local add_to_callback, create_callback =

35 luatexbase.add_to_callback, luatexbase.create_callback

36 local reset_callback, call_callback =

37 luatexbase.reset_callback, luatexbase.call_callback

38
39 local dummy_function = function () end

40

No final decision has been made on how to handle font definition. At the moment,
there are three candidates: 吀�e generic callback as hard-coded in the font loader, the old
wrapper, and a simplified version of the la琀�er (patch) that does nothing besides applying
font patches.
41
42 luaotfload.font_definer = "patch" --- | “generic" | “old"

43
44 local error, warning, info, log =

45 luatexbase.provides_module(luaotfload.module)

46
47 luaotfload.error = error

48 luaotfload.warning = warning

13

49 luaotfload.info = info

50 luaotfload.log = log

51

We set the minimum version requirement for LuaTEX to v0.76, because the font loader
requires recent features like direct a琀�ribute indexing and node.end_of_math() that aren't
available in earlier versions.20

52
53 local luatex_version = 76

54
55 if tex.luatexversion < luatex_version then

56 warning("LuaTeX v%.2f is old, v%.2f is recommended.",

57 tex.luatexversion/100,

58 luatex_version /100)

59 end
60

7.1 Module loading

We load the files imported from ConTEXt with this function. It automatically prepends
the prefix luaotfload- to its argument, so we can refer to the files with their actual
ConTEXt name.
61
62 local fl_prefix = "luaotfload" -- “luatex" for luatex-plain

63 local loadmodule = function (name)

64 require(fl_prefix .."-"..name)

65 end
66

Before TEXLive 2013 version, LuaTEX had a bug thatmade ofm fonts fail when calledwith
their extension. 吀�ere was a side-effect making ofm totally unloadable when luaotfload
was present. 吀�e following lines are a patch for this bug. 吀�e utility of these lines is
questionable as they are not necessary since TEXLive 2013. 吀�ey should be removed in
the next version.
67 local Cs, P, lpegmatch = lpeg.Cs, lpeg.P, lpeg.match

68
69 local p_dot, p_slash = P".", P"/"

70 local p_suffix = (p_dot * (1 - p_dot - p_slash)^1 * P(-1)) / ""

71 local p_removesuffix = Cs((p_suffix + 1)^1)

72
73 local find_vf_file = function (name)

74 local fullname = find_file(name, "ovf")

75 if not fullname then

76 --fullname = find_file(file.removesuffix(name), "ovf")

77 fullname = find_file(lpegmatch(p_removesuffix, name), "ovf")

20See Taco's announcement of v0.76: http://comments.gmane.org/gmane.comp.tex.luatex.user/4042
and this commit by Hans that introduced those features. http://repo.or.cz/w/context.git/commitdiff/
a51f6cf6ee087046a2ae5927ed4edff0a1acec1b.

14

http://comments.gmane.org/gmane.comp.tex.luatex.user/4042
http://repo.or.cz/w/context.git/commitdiff/a51f6cf6ee087046a2ae5927ed4edff0a1acec1b
http://repo.or.cz/w/context.git/commitdiff/a51f6cf6ee087046a2ae5927ed4edff0a1acec1b

78 end

79 if fullname then

80 log("loading virtual font file %s.", fullname)

81 end

82 return fullname

83 end
84

7.2 Preparing the Font Loader

We treat the fontloader as a black box so behavior is consistent between formats. We
do no longer run the intermediate wrapper file luaotfload-fonts.lua which we used
to import from LuaTEX-Plain. Rather, we load the fontloader code directly in the same
fashion as luatex-fonts. How this is executed depends on the presence on the merged
font loader code. In luaotfload this is contained in the file luaotfload-merged.lua. If
this file cannot be found, the original libraries from ConTEXt of which the merged code
was composed are loaded instead. 吀�e imported font loader will call callback.register
once while reading font-def.lua. 吀�is is unavoidable unless we modify the imported
files, but harmless if we make it call a dummy instead. However, this problem might
vanish if we decide to do the merging ourselves, like the lualibs package does. With this
step we would obtain the freedom to load our own overrides in the process right where
they are needed, at the cost of losing encapsulation. 吀�e decision on how to progress is
currently on indefinite hold.
85
86 local starttime = os.gettimeofday()

87
88 local trapped_register = callback.register

89 callback.register = dummy_function

90

By default, the fontloader requires a number of private a琀�ributes for internal use. 吀�ese
must be kept consistent with the a琀�ribute handling methods as provided by luatexbase.
Our strategy is to override the function that allocates new a琀�ributes before we initialize
the font loader, making it a wrapper around luatexbase.new_attribute.21 吀�e a琀�ribute
identifiers are prefixed “luaotfload@" to avoid name clashes.
91
92 do
93 local new_attribute = luatexbase.new_attribute

94 local the_attributes = luatexbase.attributes

95
96 attributes = attributes or { }

97
98 attributes.private = function (name)

99 local attr = "luaotfload@" .. name --- used to be: “otfl@"

100 local number = the_attributes[attr]

101 if not number then

21Many thanks, again, to Hans Hagen for making this part configurable!

15

http://standalone.contextgarden.net/current/context/experimental/tex/generic/context/luatex/

102 number = new_attribute(attr)

103 end

104 return number

105 end

106 end
107

吀�ese next lines replicate the behavior of luatex-fonts.lua.
108
109 local context_environment = { }

110
111 local push_namespaces = function ()

112 log("push namespace for font loader")

113 local normalglobal = { }

114 for k, v in next, _G do

115 normalglobal[k] = v

116 end

117 return normalglobal

118 end
119
120 local pop_namespaces = function (normalglobal, isolate)

121 if normalglobal then

122 local _G = _G

123 local mode = "non-destructive"

124 if isolate then mode = "destructive" end

125 log("pop namespace from font loader -- " .. mode)

126 for k, v in next, _G do

127 if not normalglobal[k] then

128 context_environment[k] = v

129 if isolate then

130 _G[k] = nil

131 end

132 end

133 end

134 for k, v in next, normalglobal do

135 _G[k] = v

136 end

137 -- just to be sure:

138 setmetatable(context_environment,_G)

139 else

140 log("irrecoverable error during pop_namespace: no globals to restore")

141 os.exit()

142 end

143 end
144
145 luaotfload.context_environment = context_environment

146 luaotfload.push_namespaces = push_namespaces

147 luaotfload.pop_namespaces = pop_namespaces

148
149 local our_environment = push_namespaces()

16

150

吀�e font loader requires that the a琀�ribute with index zero be zero. We happily oblige.
(Cf. luatex-fonts-nod.lua.)
151
152 tex.attribute[0] = 0

153

Now that things are sorted out we can finally load the fontloader.
154
155 loadmodule"merged.lua"
156 ---loadmodule"font-odv.lua" --- <= Devanagari support from Context

157
158 if fonts then

159
160 if not fonts._merge_loaded_message_done_ then

161 --- a program talking first person -- HH sure believes in strong AI ...

162 log[[“I am using the merged version of 'luaotfload.lua' here. If]]

163 log[[you run into problems or experience unexpected behaviour,]]

164 log[[and if you have ConTeXt installed you can try to delete the]]

165 log[[file 'luaotfload-font-merged.lua' as I might then use the]]

166 log[[possibly updated libraries. The merged version is not]]

167 log[[supported as it is a frozen instance. Problems can be]]

168 log[[reported to the ConTeXt mailing list."]]

169 end

170 fonts._merge_loaded_message_done_ = true

171
172 else--- the loading sequence is known to change, so this might have to

173 --- be updated with future updates!

174 --- do not modify it though unless there is a change to the merged

175 --- package!

176 loadmodule("l-lua.lua")

177 loadmodule("l-lpeg.lua")

178 loadmodule("l-function.lua")

179 loadmodule("l-string.lua")

180 loadmodule("l-table.lua")

181 loadmodule("l-io.lua")

182 loadmodule("l-file.lua")

183 loadmodule("l-boolean.lua")

184 loadmodule("l-math.lua")

185 loadmodule("util-str.lua")

186 loadmodule('luatex-basics-gen.lua')

187 loadmodule('data-con.lua')

188 loadmodule('luatex-basics-nod.lua')

189 loadmodule('font-ini.lua')

190 loadmodule('font-con.lua')

191 loadmodule('luatex-fonts-enc.lua')

192 loadmodule('font-cid.lua')

193 loadmodule('font-map.lua')

194 loadmodule('luatex-fonts-syn.lua')

17

195 loadmodule('luatex-fonts-tfm.lua')

196 loadmodule('font-oti.lua')

197 loadmodule('font-otf.lua')

198 loadmodule('font-otb.lua')

199 loadmodule('node-inj.lua')

200 loadmodule('font-ota.lua')

201 loadmodule('font-otn.lua')

202 loadmodule('font-otp.lua')--- since 2013-04-23

203 loadmodule('luatex-fonts-lua.lua')

204 loadmodule('font-def.lua')

205 loadmodule('luatex-fonts-def.lua')

206 loadmodule('luatex-fonts-ext.lua')

207 loadmodule('luatex-fonts-cbk.lua')

208 end --- non-merge fallback scope

209

Here we adjust the globals created during font loader initialization. If the second ar-
gument to pop_namespaces() is true this will restore the state of _G, eliminating every
global generated since the last call to push_namespaces(). At the moment we see no
reason to do this, and since the font loader is considered an essential part of luatex as
well as a very well organized piece of code, we happily concede it the right to add to _G
if needed.
210
211 pop_namespaces(our_environment, false)-- true)

212
213 log("fontloader loaded in %0.3f seconds", os.gettimeofday()-starttime)

214

7.3 Callbacks

A昀�er the fontloader is ready we can restore the callback trap from luatexbase.
215
216 callback.register = trapped_register

217

We do our own callback handling with the means provided by luatexbase. Note:
pre_linebreak_filter and hpack_filter are coupled in ConTEXt in the concept of node pro-
cessor.
218
219 add_to_callback("pre_linebreak_filter",
220 nodes.simple_font_handler,

221 "luaotfload.node_processor",

222 1)

223 add_to_callback("hpack_filter",
224 nodes.simple_font_handler,

225 "luaotfload.node_processor",

226 1)

227 add_to_callback("find_vf_file",
228 find_vf_file, "luaotfload.find_vf_file")

18

229
230 loadmodule"lib-dir.lua" --- required by luaofload-database.lua

231 loadmodule"override.lua" --- “luat-ovr"

232
233 logs.set_loglevel(config.luaotfload.loglevel)
234

Now we load the modules wri琀�en for luaotfload.
235 loadmodule"loaders.lua" --- “font-pfb" new in 2.0, added 2011

236 loadmodule"database.lua" --- “font-nms"

237 loadmodule"colors.lua" --- “font-clr"

238

Relying on the name: resolver for everything has been the source of permanent trouble
with the database. With the introduction of the new syntax parser we now have enough
granularity to distinguish between the X ETEX emulation layer and the genuine name: and
file: lookups of LuaTEX-Fonts. Another benefit is that we can now easily plug in or
replace new lookup behaviors if necessary. 吀�e name resolver remains untouched, but
it calls fonts.names.resolve() internally anyways (see luaotfload-database.lua).
239
240 local request_resolvers = fonts.definers.resolvers

241 local formats = fonts.formats

242 formats.ofm = "type1"

243

luaotfload promises easy access to system fonts. Without additional precautions, this
cannot be achieved by kpathsea alone, because it searches only the texmf directories
by default. Although it is possible for kpathsea to include extra paths by adding them
to the OSFONTDIR environment variable, this is still short of the goal »it just works!«.
When building the font database luaotfload scans system font directories anyways, so
we already have all the information for looking sytem fonts. With the release version
2.2 the file names are indexed in the database as well and we are ready to resolve file:
lookups this way. 吀�us we no longer need to call the kpathsea library in most cases
when looking up font files, only when generating the database.
244 request_resolvers.file = function (specification)

245 local found = fonts.names.crude_file_lookup(specification.name)

246 --local found = fonts.names.crude_file_lookup_verbose(specification.name)

247 specification.name = found[1]

248 --if format then specification.forced = format end

249 end
250

We classify as anon: those requests that have neither a prefix nor brackets. According
to Khaled22 they are the X ETEX equivalent of a name: request, so we will be treating them
as such.
251
252 --request_resolvers.anon = request_resolvers.name

253

22https://github.com/phi-gamma/luaotfload/issues/4#issuecomment-17090553.

19

https://github.com/phi-gamma/luaotfload/issues/4#issuecomment-17090553

吀�ere is one drawback, though. 吀�is syntax is also used for requesting fonts in Type1
(tfm, ofm) format. 吀�ese are essentially file: lookups and must be caught before the
name: resolver kicks in, lest they cause the database to update. Even if wewere to require
the file: prefix for all Type1 requests, tests have shown that certain fonts still include
further fonts (e. g. omlgcb.ofm will ask for omsecob.tfm) using the old syntax. For this
reason, we introduce an extra check with an early return.
254 local type1_formats = { "tfm", "ofm", }

255
256 request_resolvers.anon = function (specification)

257 local name = specification.name

258 for i=1, #type1_formats do

259 local format = type1_formats[i]

260 if resolvers.findfile(name, format) then

261 specification.name = file.addsuffix(name, format)

262 return

263 end

264 end

265 request_resolvers.name(specification)

266 end
267

Prior to version 2.2, luaotfload did not distinguish file: and path: lookups, causing
complications with the resolver. Now we test if the requested name is an absolute path
in the file system, otherwise we fall back to the file: lookup.
268 request_resolvers.path = function (specification)

269 local exists, _ = lfsisfile(specification.name)

270 if not exists then -- resort to file: lookup

271 request_resolvers.file(specification)

272 end

273 end
274

We create a callback for patching fonts on the fly, to be used by other packages. It
initially contains the empty function that we are going to override below.
275
276 create_callback("luaotfload.patch_font", "simple", dummy_function)

277

7.4 ConTEXt override

We provide a simplified version of the original font definition callback.
278
279 local read_font_file = fonts.definers.read

280
281 --- spec -> size -> id -> tmfdata

282 local patch_defined_font = function (specification, size, id)

283 local tfmdata = read_font_file(specification, size, id)

284 if type(tfmdata) == "table" and tfmdata.shared then

20

285 --- We need to test for the “shared" field here

286 --- or else the fontspec capheight callback will

287 --- operate on tfm fonts.

288 call_callback("luaotfload.patch_font", tfmdata)

289 end

290 return tfmdata

291 end
292
293 caches.compilemethod = "both"

294
295 reset_callback("define_font")
296

Finally we register the callbacks.
297
298 local font_definer = config.luaotfload.definer

299
300 if font_definer == "generic" then

301 add_to_callback("define_font",

302 fonts.definers.read,

303 "luaotfload.define_font",

304 1)

305 elseif font_definer == "patch" then

306 add_to_callback("define_font",

307 patch_defined_font,

308 "luaotfload.define_font",

309 1)

310 end
311
312 loadmodule"features.lua" --- contains what was “font-ltx" and “font-otc"

313 loadmodule"auxiliary.lua" --- additionaly high-level functionality (new)

314
315 -- vim:tw=71:sw=4:ts=4:expandtab

316
317

8 luaotfload.sty

Classical Plain+LATEX package initialization.
318 \csname ifluaotfloadloaded\endcsname

319 \let\ifluaotfloadloaded\endinput
320 \bgroup\expandafter\expandafter\expandafter\egroup
321 \expandafter\ifx\csname ProvidesPackage\endcsname\relax

322 \input luatexbase.sty

323 \else
324 \NeedsTeXFormat{LaTeX2e}

325 \ProvidesPackage{luaotfload}%

326 [2013/04/16 v2.2 OpenType layout system]

327 \RequirePackage{luatexbase}

21

328 \fi
329 \RequireLuaModule{luaotfload}
330 \endinput

22

⟨definition⟩ ::= `\font', csname, `=', ⟨font request⟩, [⟨size⟩] ;

⟨size⟩ ::= `at', dimension ;

⟨font request⟩ ::= `"', ⟨unquoted font request⟩ `"'
| `{', ⟨unquoted font request⟩ `}'
| ⟨unquoted font request⟩ ;

⟨unquoted font request⟩ ::= ⟨specification⟩, [`:', ⟨feature list⟩]
| `[', ⟨path lookup⟩ `]', [[`:'], ⟨feature list⟩] ;

⟨specification⟩ ::= ⟨prefixed spec⟩, [⟨subfont no⟩], { ⟨modifier⟩ }
| ⟨anon lookup⟩, { ⟨modifier⟩ } ;

⟨prefixed spec⟩ ::= `file:', ⟨file lookup⟩
| `name:', ⟨name lookup⟩ ;

⟨file lookup⟩ ::= { ⟨name character⟩ } ;

⟨name lookup⟩ ::= { ⟨name character⟩ } ;

⟨anon lookup⟩ ::= tfmname | ⟨name lookup⟩ ;

⟨path lookup⟩ ::= { all_characters - `]' } ;

⟨modifier⟩ ::= `/', (`I' | `B' | `BI' | `IB' | `S=', { digit }) ;

⟨subfont no⟩ ::= `(', { digit }, `)' ;

⟨feature list⟩ ::= ⟨feature expr⟩, { `;', ⟨feature expr⟩ } ;

⟨feature expr⟩ ::= feature_id, `=', feature_value
| ⟨feature switch⟩, feature_id ;

⟨feature switch⟩ ::= `+' | `-' ;

⟨name character⟩ ::= all_characters - (`(' | `/' | `:') ;

Figure 1: Font request syntax. Braces or double quotes around the specification rule
will preserve whitespace in file names. In addition to the font style modifiers (slash-
notation) given above, there are others that are recognized but will be silently ignored:
aat, icu, and gr. 吀�e special terminals are: feature_id for a valid font feature name
and feature_value for the corresponding value. tfmname is the name of a tfm file.
digit again refers to bytes 48–57, and all_characters to all byte values. csname and
dimension are the TEX concepts.

23

Figure 2: Schematic of the files in Luaotfload

Merged Libraries

luaotfload-util
mkluatexfontdb.lua

luaotfload-names.lua
luaotfload-names.luc

--update

luaotfload.lua

luaotfload-merged.lua

merged

 Lua Libraries from Context
l-lua.lua l-lpeg.lua l-function.lua

l-string.lua l-table.lua l-io.lua

l-file.lua l-boolean.lua l-math.lua

util-str.lua

unmerged

 Font Loader (LuaTeX-Fonts)
luatex-basics-gen.lua luatex-basics-nod.lua

luatex-fonts-enc.lua luatex-fonts-syn.lua

luatex-fonts-tfm.lua luatex-fonts-chr.lua

luatex-fonts-lua.lua luatex-fonts-def.lua

luatex-fonts-ext.lua luatex-fonts-cbk.lua

unmerged
 Font and Node Libraries from Context

data-con.lua font-ini.lua font-con.lua

font-cid.lua font-map.lua font-oti.lua

font-otf.lua font-otb.lua node-inj.lua

font-ota.lua font-otn.lua font-def.lua
unmerged

 Luaotfload Libraries
luaotfload-lib-dir.lua luaotfload-features.lua

luaotfload-override.lua luaotfload-loaders.lua

luaotfload-database.lua luaotfload-color.lua

luaotfload-auxiliary.lua

luaotfload-blacklist.cnf

merged

merged

merged

font-age.lua

luatex-fonts-enc.lua

luaotfload-database.lua

mkglyphlist

generates from glyphlist.txt

24

9 吀�e GNU GPL License v2

吀�eGPL requires the complete license text to be distributed alongwith the code. I recom-
mend the canonical source, instead: http://www.gnu.org/licenses/old-licenses/

gpl-2.0.html. But if you insist on an included copy, here it is. You might want to
zoom in.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright © 1989, 1991 Free So昀�ware Foundation, Inc.

51 Franklin Street, Fi昀�h Floor, Boston, MA 02110-1301, USA

Everyone is permi琀�ed to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

吀�e licenses for most so昀�ware are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change free so昀�ware—to make sure the so昀�ware is free
for all its users. 吀�is General Public License applies to most of the Free So昀�ware
Foundation's so昀�ware and to any other program whose authors commit to using
it. (Some other Free So昀�ware Foundation so昀�ware is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.
When we speak of free so昀�ware, we are referring to freedom, not price. Our Gen-
eral Public Licenses are designed to make sure that you have the freedom to dis-
tribute copies of free so昀�ware (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the so昀�ware or
use pieces of it in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. 吀�ese restrictions translate
to certain responsibilities for you if you distribute copies of the so昀�ware, or if you
modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these terms
so they know their rights.
We protect your rights with two steps: (1) copyright the so昀�ware, and (2) offer you
this license which gives you legal permission to copy, distribute and/or modify the
so昀�ware.
Also, for each author's protection and ours, we want to make certain that every-
one understands that there is no warranty for this free so昀�ware. If the so昀�ware is
modified by someone else and passed on, we want its recipients to know that what
they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.
Finally, any free program is threatened constantly by so昀�ware patents. We wish
to avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patentmust be licensed for everyone's free use or not licensed
at all.
吀�e precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions For Copying, Distribution and
Modification

1. 吀�is License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. 吀�e ``Program'', below, refers to any such
program or work, and a ``work based on the Program'' means either the Pro-
gram or any derivative work under copyright law: that is to say, a work con-
taining the Program or a portion of it, either verbatim or with modifications
and/or translated into another language. (Hereina昀�er, translation is included
without limitation in the term ``modification''.) Each licensee is addressed as
``you''.
Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. 吀�e act of running the Program
is not restricted, and the output from the Program is covered only if its con-
tents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the
Program does.

2. You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and appro-
priately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a copy
of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

3. You maymodify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifi-
cations or work under the terms of Section 1 above, provided that you also
meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof,
to be licensed as a whole at no charge to all third parties under the terms
of this License.

(c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redis-
tribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is inter-
active but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

吀�ese requirements apply to themodifiedwork as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as sep-
arate works. But when you distribute the same sections as part of a whole

which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.
吀�us, it is not the intent of this section to claim rights or contest your rights
to work wri琀�en entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Pro-
gram.
In addition, mere aggregation of another work not based on the Programwith
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

4. You may copy and distribute the Program (or a work based on it, under Sec-
tion 2) in object code or executable form under the terms of Sections 1 and 2
above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1
and 2 above on a medium customarily used for so昀�ware interchange;
or,

(b) Accompany it with a wri琀�en offer, valid for at least three years, to give
any third party, for a charge no more than your cost of physically per-
forming source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Sections
1 and 2 above on a medium customarily used for so昀�ware interchange;
or,

(c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (吀�is alternative is allowed only for
noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with Sub-
section b above.)

吀�e source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface def-
inition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself
accompanies the executable.
If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source
code from the same place counts as distribution of the source code, even
though third parties are not compelled to copy the source along with the
object code.

5. Youmay not copy, modify, sublicense, or distribute the Program except as ex-
pressly provided under this License. Any a琀�empt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Pro-
gram or its derivative works. 吀�ese actions are prohibited by law if you do
not accept this License. 吀�erefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing or
modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and conditions.
Youmay not impose any further restrictions on the recipients' exercise of the
rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as
a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply and the
section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free so昀�ware
distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of so昀�ware dis-
tributed through that system in reliance on consistent application of that sys-
tem; it is up to the author/donor to decide if he or she is willing to distribute
so昀�ware through any other system and a licensee cannot impose that choice.
吀�is section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geograph-
ical distribution limitation excluding those countries, so that distribution is
permi琀�ed only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if wri琀�en in the body of this License.

10. 吀�e Free So昀�ware Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be sim-
ilar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Program spec-
ifies a version number of this License which applies to it and ``any later ver-
sion'', you have the option of following the terms and conditions either of
that version or of any later version published by the Free So昀�ware Founda-
tion. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free So昀�ware Foundation.

11. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For so昀�ware which is copyrighted by the Free So昀�ware Founda-
tion, write to the Free So昀�ware Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free so昀�ware and of promoting the sharing
and reuse of so昀�ware generally.

No Warranty

12. Because the program is licensed free of charge, there is nowarranty for
the program, to the extent permitted by applicable law. Except when
otherwise stated in writing the copyright holders and/or other par-
ties provide the program ``as is'' without warranty of any kind, either
expressed or implied, including, but not limited to, the implied war-
ranties of merchantability and fitness for a particular purpose. 吀�e
entire risk as to the quality and performance of the program is with
you. Should the program prove defective, you assume the cost of all
necessary servicing, repair or correction.

13. In no event unless required by applicable law or agreed to in writing
will any copyright holder, or any other party who may modify and/or
redistribute the program as permitted above, be liable to you for dam-
ages, including any general, special, incidental or consequential dam-
ages arising out of the use or inability to use the program (including
but not limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the program to
operate with any other programs), even if such holder or other party
has been advised of the possibility of such damages.

End of Terms and Conditions

Appendix: How to Apply 吀�ese Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free so昀�ware which everyone
can redistribute and change under these terms.
To do so, a琀�ach the following notices to the program. It is safest to a琀�ach them to
the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the ``copyright'' line and a pointer to where the
full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) yyyy name of author

吀�is program is free so昀�ware; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free So昀�ware Foundation; either version 2 of the License, or (at your
option) any later version.

吀�is program is distributed in the hope that it will be useful, butWITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free So昀�ware Foundation,
Inc., 51 Franklin Street, Fi昀�h Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts
in an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'.
吀�is is free so昀�ware, and you are welcome to redistribute it under cer-
tain conditions; type `show c' for details.

吀�e hypothetical commands show w and show c should show the appropriate parts
of the General Public License. Of course, the commands you use may be called
something other than show w and show c; they could even bemouse-clicks ormenu
items—whatever suits your program.
You should also get your employer (if you work as a programmer) or your school,
if any, to sign a ``copyright disclaimer'' for the program, if necessary. Here is a
sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) wri琀�en by James
Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

吀�is General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is
what you want to do, use the GNU Library General Public License instead of this
License.

25

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

	I Package Description
	Introduction
	Loading Fonts
	Prefix – the luaotfload Way
	XeTeX Compatibility Layer
	Examples
	Loading by File Name
	Loading by Font Name
	Modifiers

	Font features
	Font names database
	luaotfload-tool / mkluatexfontdb.lua
	Search Paths
	Querying from Outside
	Blacklisting Fonts

	Files from ConTeXt and LuaTeX-Fonts
	Troubleshooting

	II Implementation
	`_=12luaotfload.lua
	Module loading
	Preparing the Font Loader
	Callbacks
	ConTeXt override

	`_=12luaotfload.sty
	The GNU GPL License v2

