
The luamplib package

Hans Hagen, Taco Hoekwater, Elie Roux, Philipp Gesang and Kim Dohyun
Maintainer: LuaLaTeX Maintainers — Support: <lualatex-dev@tug.org>

// v.

Abstract

Package to have metapost code typeset directly in a document with LuaTEX.

 Documentation
This packages aims at providing a simple way to typeset directly metapost code in a
document with LuaTEX. LuaTEX is built with the lua mplib library, that runs metapost
code. This package is basically a wrapper (in Lua) for the Lua mplib functions and some
TEX functions to have the output of the mplib functions in the pdf.

The package needs to be in PDF mode in order to output something, as PDF specials
are not supported by the DVI format and tools.

Themetapost figures are put in a TEX hboxwith dimensions adjusted to the metapost
code.

The code is from the luatex-mplib.lua and luatex-mplib.tex files from ConTEXt,
they have been adapted to LATEX and Plain by Elie Roux and Philipp Gesang, new func-
tionalities have been added by Kim Dohyun. The changes are:

• a LATEX environment

• all TEX macros start by mplib

• use of luatexbase for errors, warnings and declaration

• possibility to use btex ... etex to typeset TEX code. textext() is a more versa-
tile macro equivalent to TEX() fromTEX.mp. TEX() is also allowed unless TEX.mp
is loaded, which should be always avoided.

Using this package is easy: in Plain, type your metapost code between the macros
mplibcode and endmplibcode, and in LATEX in the mplibcode environment.

There are (basically) two formats for metapost: plain and metafun. By default, the
plain format is used, but you can set the format to be used by future figures at any time
using \mplibsetformat{⟨format name⟩}.

mailto:lualatex-dev@tug.org

 Implementation

. Lua module
Use the luamplib namespace, since mplib is for the metapost library itself. ConTEXt
uses metapost.

 luamplib = luamplib or { }

Identification.

 local luamplib = luamplib

 luamplib.showlog = luamplib.showlog or false

 luamplib.lastlog = ””

 local err, warn, info, log = luatexbase.provides_module({

 name = ”luamplib”,

 version = 2.1,

 date = ”2013/12/19”,

 description = ”Lua package to typeset Metapost with LuaTeX’s MPLib.”,

 })

This module is a stripped down version of libraries that are used by ConTEXt. Provide a
few “shortcuts” expected by the imported code.

 local format, abs = string.format, math.abs

 local stringgsub = string.gsub

 local stringfind = string.find

 local stringmatch = string.match

 local stringgmatch = string.gmatch

 local tableconcat = table.concat

 local texsprint = tex.sprint

 local mplib = require (’mplib’)

 local kpse = require (’kpse’)

 local file = file

 if not file then

This is a small trick for LATEX. In LATEXwe read the metapost code line by line, but it needs
to be passed entirely to process(), so we simply add the lines in data and at the end
we call process(data).

A few helpers, taken from l-file.lua.

 file = { }

 function file.replacesuffix(filename, suffix)

 return (stringgsub(filename,”%.[%a%d]+$”,””)) .. ”.” .. suffix

 end

 function file.stripsuffix(filename)

 return (stringgsub(filename,”%.[%a%d]+$”,””))

 end

 end

As the finder function for mplib, use the kpse library and make it behave like as if
MetaPost was used (or almost, since the engine name is not set this way—not sure if this
is a problem).

 local mpkpse = kpse.new(”luatex”, ”mpost”)

 local function finder(name, mode, ftype)

 if mode == ”w” then

 return name

 else

 return mpkpse:find_file(name,ftype)

 end

 end
 luamplib.finder = finder

The rest of thismodule is not documented. More info can be found in the LuaTEXmanual,
articles in user group journals and the files that ship with ConTEXt.

 function luamplib.resetlastlog()

 luamplib.lastlog = ””

 end

Below included is section that defines fallbacks for older versions of mplib.
 local mplibone = tonumber(mplib.version()) <= 1.50

 if mplibone then

 luamplib.make = luamplib.make or function(name,mem_name,dump)

 local t = os.clock()

 local mpx = mplib.new {

 ini_version = true,

 find_file = luamplib.finder,

 job_name = file.stripsuffix(name)

 }

 mpx:execute(format(”input %s ;”,name))

 if dump then

 mpx:execute(”dump ;”)

 info(”format %s made and dumped for %s in %0.3f seconds”,mem_name,name,os.clock()-t)

 else

 info(”%s read in %0.3f seconds”,name,os.clock()-t)

 end

 return mpx

 end

 function luamplib.load(name)

 local mem_name = file.replacesuffix(name,”mem”)

 local mpx = mplib.new {

 ini_version = false,

 mem_name = mem_name,

 find_file = luamplib.finder

 }

 if not mpx and type(luamplib.make) == ”function” then

 -- when i have time i’ll locate the format and dump

 mpx = luamplib.make(name,mem_name)

 end

 if mpx then

 info(”using format %s”,mem_name,false)

 return mpx, nil

 else

 return nil, { status = 99, error = ”out of memory or invalid format” }

 end

 end

 else

These are the versions called with sufficiently recent mplib.

 local preamble = [[

 boolean mplib ; mplib := true ;

 let dump = endinput ;

 input %s ;

]]

 luamplib.make = luamplib.make or function()

 end

 function luamplib.load(name)

 local mpx = mplib.new {

 ini_version = true,

 find_file = luamplib.finder,

 }

 local result

 if not mpx then

 result = { status = 99, error = ”out of memory”}

 else

 result = mpx:execute(format(preamble, file.replacesuffix(name,”mp”)))

 end

 luamplib.reporterror(result)

 return mpx, result

 end

 end

 local currentformat = ”plain”

 local function setformat (name) --- used in .sty

 currentformat = name

 end
 luamplib.setformat = setformat

 luamplib.reporterror = function (result)

 if not result then

 err(”no result object returned”)

 elseif result.status > 0 then

 local t, e, l = result.term, result.error, result.log

 if t then

 info(t)

 end

 if e then

 err(e)

 end

 if not t and not e and l then

 luamplib.lastlog = luamplib.lastlog .. ”\n ” .. l

 log(l)

 else

 err(”unknown, no error, terminal or log messages”)

 end

 else

 return false

 end

 return true

 end

 local function process_indeed (mpx, data)

 local converted, result = false, {}

 local mpx = luamplib.load(mpx)

 if mpx and data then

 local result = mpx:execute(data)

 if not result then

 err(”no result object returned”)

 elseif result.status > 0 then

 err(”%s”,(result.term or ”no-term”) .. ”\n” .. (result.error or ”no-error”))

 elseif luamplib.showlog then

 luamplib.lastlog = luamplib.lastlog .. ”\n” .. result.term

 info(”%s”,result.term or ”no-term”)

 elseif result.fig then

 converted = luamplib.convert(result)

 else

 err(”unknown error, maybe no beginfig/endfig”)

 end

 else

 err(”Mem file unloadable. Maybe generated with a different version of mplib?”)

 end

 return converted, result

 end
 local process = function (data)

 return process_indeed(currentformat, data)

 end
 luamplib.process = process

 local function getobjects(result,figure,f)

 return figure:objects()

 end

 local function convert(result, flusher)

 luamplib.flush(result, flusher)

 return true -- done

 end
 luamplib.convert = convert

 local function pdf_startfigure(n,llx,lly,urx,ury)

The following line has been slightly modified by Kim.
 texsprint(format(”\\mplibstarttoPDF{%f}{%f}{%f}{%f}”,llx,lly,urx,ury))

 end

 local function pdf_stopfigure()

 texsprint(”\\mplibstoptoPDF”)

 end

 local function pdf_literalcode(fmt,...) -- table

 texsprint(format(”\\mplibtoPDF{%s}”,format(fmt,...)))

 end
 luamplib.pdf_literalcode = pdf_literalcode

 local function pdf_textfigure(font,size,text,width,height,depth)

 text = text:gsub(”.”,”\\hbox{%1}”) -- kerning happens in metapost

The following line has been slightly modified by Kim.
 texsprint(format(”\\mplibtextext{%s}{%f}{%s}{%s}{%f}”,font,size,text,0,-(7200/ 7227)/65536*depth))

 end
 luamplib.pdf_textfigure = pdf_textfigure

 local bend_tolerance = 131/65536

 local rx, sx, sy, ry, tx, ty, divider = 1, 0, 0, 1, 0, 0, 1

 local function pen_characteristics(object)

 local t = mplib.pen_info(object)

 rx, ry, sx, sy, tx, ty = t.rx, t.ry, t.sx, t.sy, t.tx, t.ty

 divider = sx*sy - rx*ry

 return not (sx==1 and rx==0 and ry==0 and sy==1 and tx==0 and ty==0), t.width

 end

 local function concat(px, py) -- no tx, ty here

 return (sy*px-ry*py)/divider,(sx*py-rx*px)/divider

 end

 local function curved(ith,pth)

 local d = pth.left_x - ith.right_x

 if abs(ith.right_x - ith.x_coord - d) <= bend_tolerance and abs(pth.x_coord - pth.left_x - d) <= bend_tol-

erance then

 d = pth.left_y - ith.right_y

 if abs(ith.right_y - ith.y_coord - d) <= bend_tolerance and abs(pth.y_co-

ord - pth.left_y - d) <= bend_tolerance then

 return false

 end

 end

 return true

 end

 local function flushnormalpath(path,open)

 local pth, ith

 for i=1,#path do

 pth = path[i]

 if not ith then

 pdf_literalcode(”%f %f m”,pth.x_coord,pth.y_coord)

 elseif curved(ith,pth) then

 pdf_literalcode(”%f %f %f %f %f %f c”,ith.right_x,ith.right_y,pth.left_x,pth.left_y,pth.x_coord,pth.y_coord)

 else

 pdf_literalcode(”%f %f l”,pth.x_coord,pth.y_coord)

 end

 ith = pth

 end

 if not open then

 local one = path[1]

 if curved(pth,one) then

 pdf_literalcode(”%f %f %f %f %f %f c”,pth.right_x,pth.right_y,one.left_x,one.left_y,one.x_coord,one.y_coord)

 else

 pdf_literalcode(”%f %f l”,one.x_coord,one.y_coord)

 end

 elseif #path == 1 then

 -- special case .. draw point

 local one = path[1]

 pdf_literalcode(”%f %f l”,one.x_coord,one.y_coord)

 end

 return t

 end

 local function flushconcatpath(path,open)

 pdf_literalcode(”%f %f %f %f %f %f cm”, sx, rx, ry, sy, tx ,ty)

 local pth, ith

 for i=1,#path do

 pth = path[i]

 if not ith then

 pdf_literalcode(”%f %f m”,concat(pth.x_coord,pth.y_coord))

 elseif curved(ith,pth) then

 local a, b = concat(ith.right_x,ith.right_y)

 local c, d = concat(pth.left_x,pth.left_y)

 pdf_literalcode(”%f %f %f %f %f %f c”,a,b,c,d,concat(pth.x_coord, pth.y_co-

ord))

 else

 pdf_literalcode(”%f %f l”,concat(pth.x_coord, pth.y_coord))

 end

 ith = pth

 end

 if not open then

 local one = path[1]

 if curved(pth,one) then

 local a, b = concat(pth.right_x,pth.right_y)

 local c, d = concat(one.left_x,one.left_y)

 pdf_literalcode(”%f %f %f %f %f %f c”,a,b,c,d,concat(one.x_coord, one.y_co-

ord))

 else

 pdf_literalcode(”%f %f l”,concat(one.x_coord,one.y_coord))

 end

 elseif #path == 1 then

 -- special case .. draw point

 local one = path[1]

 pdf_literalcode(”%f %f l”,concat(one.x_coord,one.y_coord))

 end

 return t

 end

Below code has been contributed by Dohyun Kim. It implements btex / etex functions.
v.: textext() is now available, which is equivalent to TEX()macro from TEX.mp.

TEX() is synonym of textext() unless TEX.mp is loaded.

 local mplibcodepreamblefirst = [[

 def textext (expr t) =

 image(special ”%%mkTEXbox:”&t;)

 enddef;
 let TEX = textext;

 def VerbatimTeX (text t) = enddef;

]]

 local mplibcodepreamblesecond = [[

 vardef textext (text t) =

 TEXBOX_ := TEXBOX_ + 1;

 image (

 addto currentpicture doublepath unitsquare

 xscaled TEXBOX_wd[TEXBOX_]

 yscaled (TEXBOX_ht[TEXBOX_] + TEXBOX_dp[TEXBOX_])

 shifted (0, -TEXBOX_dp[TEXBOX_])

 withprescript ”%%TEXtxtbox:” &

 decimal TEXBOX_ & ”:” &

 decimal TEXBOX_wd[TEXBOX_] & ”:” &

 decimal(TEXBOX_ht[TEXBOX_]+TEXBOX_dp[TEXBOX_]);

)

 enddef;
 def TEX (text t) = textext (t) enddef;

 def VerbatimTeX (text t) =

 message ”verbatimtex ’”& t &”’ is ignored”;

 enddef;
]]

 local factor = 65536*(7227/7200)

 local function putTEXboxes (object)

 local n,tw,th = stringmatch(object.prescript,

 ”%%%%TEXtxtbox:(%d+):([%d%.%+%-]+):([%d%.%+%-]+)”)

 if n and tw and th then

 local op = object.path

 local first, second, fourth = op[1], op[2], op[4]

 local tx, ty = first.x_coord, first.y_coord

 local sx, sy = (second.x_coord - tx)/tw, (fourth.y_coord - ty)/th

 local rx, ry = (second.y_coord - ty)/tw, (fourth.x_coord - tx)/th

 if sx == 0 then sx = 0.00001 end

 if sy == 0 then sy = 0.00001 end

 local cs = object.color

 if cs then cs = luamplib.colorconverter(cs) end

 pdf_literalcode(”q %f %f %f %f %f %f cm”,sx,rx,ry,sy,tx,ty)

 if cs then pdf_literalcode(cs) end

 texsprint(format(”\\mplibputtextbox{%i}”,n))

 pdf_literalcode(”Q”)

 end

 end

 local function domakeTEXboxes (data)

 local num = tex.count[14] -- newbox register

 if data and data.fig then

 local figures = data.fig

 for f=1, #figures do

 local figure = figures[f]

 local objects = getobjects(data,figure,f)

 if objects then

 for o=1,#objects do

 local object = objects[o]

 local prescript = object.prescript

 local str = prescript and stringmatch(prescript, ”%%%%mkTEXbox:(.*)”)

 if str then

 num = num + 1

 texsprint(format(”\\setbox%i\\hbox{%s}”,num,str))

 end

 end

 end

 end

 end

 end

 local function makeTEXboxes (data)

 data = stringgsub(data, ”([^A-Z_a-z])btex([^A-Z_a-z])”,

 function(pre,post)

 post = stringgsub(post,”%s”,””)

 return pre .. ’textext(”’ .. post

 end)

 data = stringgsub(data, ”([^A-Z_a-z])verbatimtex([^A-Z_a-z])”,

 function(pre,post)

 post = stringgsub(post,”%s”,””)

 return pre .. ’VerbatimTeX(”’ .. post

 end)

 data = stringgsub(data, ”([^A-Z_a-z])etex([^A-Z_a-z])”,

 function(pre,post)

 pre = stringgsub(pre,”%s”,””)

 return pre .. ’”)’ .. post

 end)

 local mpx = luamplib.load(currentformat)

 if mpx and data then

 local result = mpx:execute(mplibcodepreamblefirst .. data)

 domakeTEXboxes(result)

 end

 return data

 end

 luamplib.makeTEXboxes = makeTEXboxes

 local function processwithTEXboxes (data)

 local num = tex.count[14] -- the same newbox register

 local prepreamble = ”TEXBOX_ := ”..num..”;\n”

 while true do

 num = num + 1

 local box = tex.box[num]

 if not box then break end

 prepreamble = prepreamble ..

 ”TEXBOX_wd[”..num..”] := ”..box.width /factor..”;\n”..

 ”TEXBOX_ht[”..num..”] := ”..box.height/factor..”;\n”..

 ”TEXBOX_dp[”..num..”] := ”..box.depth /factor..”;\n”

 end

 process(prepreamble .. mplibcodepreamblesecond .. data)

 end

 luamplib.processwithTEXboxes = processwithTEXboxes

End of btex – etex patch.

 local function flush(result,flusher)

 if result then

 local figures = result.fig

 if figures then

 for f=1, #figures do

 info(”flushing figure %s”,f)

 local figure = figures[f]

 local objects = getobjects(result,figure,f)

 local fignum = tonumber(stringmatch(figure:filename(),”([%d]+)$”) or fig-

ure:charcode() or 0)

 local miterlimit, linecap, linejoin, dashed = -1, -1, -1, false

 local bbox = figure:boundingbox()

 local llx, lly, urx, ury = bbox[1], bbox[2], bbox[3], bbox[4] -- faster than un-

pack

 if urx < llx then

 -- invalid

 pdf_startfigure(fignum,0,0,0,0)

 pdf_stopfigure()

 else

 pdf_startfigure(fignum,llx,lly,urx,ury)

 pdf_literalcode(”q”)

 if objects then

 for o=1,#objects do

 local object = objects[o]

 local objecttype = object.type

Change from ConTEXt code: the following lines are part of the btex...etex patch.
 local prescript = object.prescript --- [be]tex patch

 if prescript and stringfind(prescript,”%%%%TEXtxtbox:”) then

 putTEXboxes(object)

 elseif objecttype == ”start_bounds” or objecttype == ”stop_bounds” then

 -- skip

 elseif objecttype == ”start_clip” then

 pdf_literalcode(”q”)

 flushnormalpath(object.path,t,false)

 pdf_literalcode(”W n”)

 elseif objecttype == ”stop_clip” then

 pdf_literalcode(”Q”)

 miterlimit, linecap, linejoin, dashed = -1, -1, -1, false

 elseif objecttype == ”special” then

 -- not supported

 elseif objecttype == ”text” then

 local ot = object.transform -- 3,4,5,6,1,2

Change from ConTEXt code: the ‘cs’ stuffs are for supporting ‘withcolor’ option
 local cs = object.color

 if cs then cs = luamplib.colorconverter(cs) end

 pdf_literalcode(”q %f %f %f %f %f %f cm”,ot[3],ot[4],ot[5],ot[6],ot[1],ot[2])

 if cs then pdf_literalcode(cs) end

 pdf_textfigure(object.font,object.dsize,object.text,object.width,object.height,object.depth)

 pdf_literalcode(”Q”)

 else

Change from ConTEXt code: the following lines are for properly supporting ‘with-
color’ option
 local cs, cr = object.color, nil

 if cs then

 cs, cr = luamplib.colorconverter(cs)

 if cs then pdf_literalcode(cs) end

 end

 local ml = object.miterlimit

 if ml and ml ~= miterlimit then

 miterlimit = ml

 pdf_literalcode(”%f M”,ml)

 end

 local lj = object.linejoin

 if lj and lj ~= linejoin then

 linejoin = lj

 pdf_literalcode(”%i j”,lj)

 end

 local lc = object.linecap

 if lc and lc ~= linecap then

 linecap = lc

 pdf_literalcode(”%i J”,lc)

 end

 local dl = object.dash

 if dl then

 local d = format(”[%s] %i d”,tableconcat(dl.dashes or {},” ”),dl.offset)

 if d ~= dashed then

 dashed = d

 pdf_literalcode(dashed)

 end

 elseif dashed then

 pdf_literalcode(”[] 0 d”)

 dashed = false

 end

 local path = object.path

 local transformed, penwidth = false, 1

 local open = path and path[1].left_type and path[#path].right_type

 local pen = object.pen

 if pen then

 if pen.type == ’elliptical’ then

 transformed, penwidth = pen_characteris-

tics(object) -- boolean, value

 pdf_literalcode(”%f w”,penwidth)

 if objecttype == ’fill’ then

 objecttype = ’both’

 end

 else -- calculated by mplib itself

 objecttype = ’fill’

 end

 end

 if transformed then

 pdf_literalcode(”q”)

 end

 if path then

 if transformed then

 flushconcatpath(path,open)

 else

 flushnormalpath(path,open)

 end

 if objecttype == ”fill” then

 pdf_literalcode(”h f”)

 elseif objecttype == ”outline” then

 pdf_literalcode((open and ”S”) or ”h S”)

 elseif objecttype == ”both” then

 pdf_literalcode(”h B”)

 end

 end

 if transformed then

 pdf_literalcode(”Q”)

 end

 local path = object.htap

 if path then

 if transformed then

 pdf_literalcode(”q”)

 end

 if transformed then

 flushconcatpath(path,open)

 else

 flushnormalpath(path,open)

 end

 if objecttype == ”fill” then

 pdf_literalcode(”h f”)

 elseif objecttype == ”outline” then

 pdf_literalcode((open and ”S”) or ”h S”)

 elseif objecttype == ”both” then

 pdf_literalcode(”h B”)

 end

 if transformed then

 pdf_literalcode(”Q”)

 end

 end

 if cr then

 pdf_literalcode(cr)

 end

 end

 end

 end

 pdf_literalcode(”Q”)

 pdf_stopfigure()

 end

 end

 end

 end

 end
 luamplib.flush = flush

 local function colorconverter(cr)

 local n = #cr

 if n == 4 then

 local c, m, y, k = cr[1], cr[2], cr[3], cr[4]

 return format(”%.3f %.3f %.3f %.3f k %.3f %.3f %.3f %.3f K”,c,m,y,k,c,m,y,k), ”0 g 0 G”

 elseif n == 3 then

 local r, g, b = cr[1], cr[2], cr[3]

 return format(”%.3f %.3f %.3f rg %.3f %.3f %.3f RG”,r,g,b,r,g,b), ”0 g 0 G”

 elseif n == 1 then

 local s = cr[1]

 return format(”%.3f g %.3f G”,s,s), ”0 g 0 G”

 end

 end
 luamplib.colorconverter = colorconverter

. TEX package
 ⟨∗𝗉𝖺𝖼𝗄𝖺𝗀𝖾⟩

First we need to load some packages.
 \bgroup\expandafter\expandafter\expandafter\egroup
 \expandafter\ifx\csname ProvidesPackage\endcsname\relax

 \input luatexbase-modutils.sty

 \else
 \NeedsTeXFormat{LaTeX2e}

 \ProvidesPackage{luamplib}

 [2013/12/19 v2.1 mplib package for LuaTeX]

 \RequirePackage{luatexbase-modutils}

 \RequirePackage{pdftexcmds}

 \fi

Loading of lua code.
 \RequireLuaModule{luamplib}

Set the format for metapost.
 \def\mplibsetformat#1{%
 \directlua{luamplib.setformat(”\luatexluaescapestring{#1}”)}}

MPLib only works in PDF mode, we don’t do anything if we are in DVI mode, and
we output a warning.
 \ifnum\pdfoutput>0
 \let\mplibtoPDF\pdfliteral

 \else
 %\def\MPLIBtoPDF#1{\special{pdf:literal direct #1}} % not ok yet

 \def\mplibtoPDF#1{}

 \expandafter\ifx\csname PackageWarning\endcsname\relax

 \write16{}

 \write16{Warning: MPLib only works in PDF mode, no figure will be output.}

 \write16{}

 \else

 \PackageWarning{mplib}{MPLib only works in PDF mode, no figure will be out-

put.}

 \fi

 \fi
 \def\mplibsetupcatcodes{%
 \catcode‘\{=12 \catcode‘\}=12 \catcode‘\#=12

 \catcode‘\^=12 \catcode‘\~=12 \catcode‘_=12

 %catcode‘\%=12 %% don’t in Plain!

 \catcode‘\&=12 \catcode‘\$=12

 }

Make btex...etex box zero-metric.
 \def\mplibputtextbox#1{\vbox to 0pt{\vss\hbox to 0pt{\raise\dp#1\copy#1\hss}}}

The Plain-specific stuff.
 \bgroup\expandafter\expandafter\expandafter\egroup
 \expandafter\ifx\csname ProvidesPackage\endcsname\relax

 \def\mplibcode{%
 \begingroup

 \bgroup

 \mplibsetupcatcodes

 \mplibdocode %

 }
 \long\def\mplibdocode#1\endmplibcode{%
 \egroup

 \directlua{

 luamplib.tempdata = luamplib.makeTEXboxes([===[\unexpanded{#1}]===])

 }%

 \directlua{

 luamplib.processwithTEXboxes(luamplib.tempdata)

 }%

 \endgroup

 }

 \else

The LATEX-specific parts: a new environment.
 \newenvironment{mplibcode}{\toks@{}\ltxdomplibcode}{}
 \def\ltxdomplibcode{%
 \bgroup

 \mplibsetupcatcodes

 \ltxdomplibcodeindeed %

 }
 %
 \long\def\ltxdomplibcodeindeed#1\end{%
 \egroup

 \toks@\expandafter{\the\toks@#1}\ltxdomplibcodefinally%

 }%
 %
 \def\ltxdomplibcodefinally#1{%
 \ifnum\pdf@strcmp{#1}{mplibcode}=\z@

 \directlua{

 luamplib.tempdata = luamplib.makeTEXboxes([===[\the\toks@]===])

 }%

 \directlua{

 luamplib.processwithTEXboxes(luamplib.tempdata)

 }%

 \end{mplibcode}%

 \else

 \toks@\expandafter{\the\toks@\end{#1}}\expandafter\ltxdomplibcode

 \fi%

 }
 \fi

We use a dedicated scratchbox.
 \ifx\mplibscratchbox\undefined \newbox\mplibscratchbox \fi

We encapsulate the litterals.
 \def\mplibstarttoPDF#1#2#3#4{%
 \hbox\bgroup

 \xdef\MPllx{#1}\xdef\MPlly{#2}%

 \xdef\MPurx{#3}\xdef\MPury{#4}%

 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%

 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%

 \parskip0pt%

 \leftskip0pt%

 \parindent0pt%

 \everypar{}%

 \setbox\mplibscratchbox\vbox\bgroup

 \noindent

 }

 \def\mplibstoptoPDF{%
 \egroup %

 \setbox\mplibscratchbox\hbox %

 {\hskip-\MPllx bp%

 \raise-\MPlly bp%

 \box\mplibscratchbox}%

 \setbox\mplibscratchbox\vbox to \MPheight

 {\vfill

 \hsize\MPwidth

 \wd\mplibscratchbox0pt%

 \ht\mplibscratchbox0pt%

 \dp\mplibscratchbox0pt%

 \box\mplibscratchbox}%

 \wd\mplibscratchbox\MPwidth

 \ht\mplibscratchbox\MPheight

 \box\mplibscratchbox

 \egroup

 }

Text items have a special handler.
 \def\mplibtextext#1#2#3#4#5{%
 \begingroup

 \setbox\mplibscratchbox\hbox

 {\font\temp=#1 at #2bp%

 \temp

 #3}%

 \setbox\mplibscratchbox\hbox

 {\hskip#4 bp%

 \raise#5 bp%

 \box\mplibscratchbox}%

 \wd\mplibscratchbox0pt%

 \ht\mplibscratchbox0pt%

 \dp\mplibscratchbox0pt%

 \box\mplibscratchbox

 \endgroup

 }

That’s all folks!
 ⟨/𝗉𝖺𝖼𝗄𝖺𝗀𝖾⟩

 The GNU GPL License v
TheGPL requires the complete license text to be distributed alongwith the code. I recom-
mend the canonical source, instead: http://www.gnu.org/licenses/old-licenses/

gpl-2.0.html. But if you insist on an included copy, here it is. You might want to zoom
in.

GNU GENERAL PUBLIC LICENSE

Version , June

Copyright © , Free Software Foundation, Inc.

 Franklin Street, Fifth Floor, Boston, MA -, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change free software—to make sure the software is free
for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using
it. (Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our Gen-
eral Public Licenses are designed to make sure that you have the freedom to dis-
tribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if you
modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these terms
so they know their rights.
We protect your rights with two steps: () copyright the software, and () offer you
this license which gives you legal permission to copy, distribute and/or modify the
software.
Also, for each author’s protection and ours, we want to make certain that every-
one understands that there is no warranty for this free software. If the software is
modified by someone else and passed on, we want its recipients to know that what
they have is not the original, so that any problems introduced by others will not
reflect on the original authors’ reputations.
Finally, any free program is threatened constantly by software patents. We wish
to avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patentmust be licensed for everyone’s free use or not licensed
at all.
The precise terms and conditions for copying, distribution and modification follow.

T C F C, D
M

. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The “Program”, below, refers to any such pro-
gram or work, and a “work based on the Program” means either the Program
or any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included with-
out limitation in the term “modification”.) Each licensee is addressed as “you”.
Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its con-
tents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the
Program does.

. You may copy and distribute verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously and appro-
priately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a copy
of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifi-
cations or work under the terms of Section above, provided that you also
meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof,
to be licensed as a whole at no charge to all third parties under the terms
of this License.

(c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redis-
tribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is inter-
active but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to themodifiedwork as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as sep-
arate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be

on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Pro-
gram.

In addition, mere aggregation of another work not based on the Programwith
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

. You may copy and distribute the Program (or a work based on it, under Sec-
tion) in object code or executable form under the terms of Sections and
above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
and above on a medium customarily used for software interchange;
or,

(b) Accompany it with a written offer, valid for at least three years, to give
any third party, for a charge no more than your cost of physically per-
forming source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Sections
 and above on a medium customarily used for software interchange;
or,

(c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only for
noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with Sub-
section b above.)

The source code for a work means the preferred form of the work for mak-
ing modifications to it. For an executable work, complete source code means
all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source
code from the same place counts as distribution of the source code, even
though third parties are not compelled to copy the source along with the
object code.

. You may not copy, modify, sublicense, or distribute the Program except as ex-
pressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. How-
ever, nothing else grants you permission to modify or distribute the Program
or its derivative works. These actions are prohibited by law if you do not
accept this License. Therefore, by modifying or distributing the Program (or
any work based on the Program), you indicate your acceptance of this Li-
cense to do so, and all its terms and conditions for copying, distributing or
modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as
a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply and the
section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that sys-
tem; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geograph-
ical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be sim-
ilar in spirit to the present version, but may differ in detail to address new
problems or concerns.
Each version is given a distinguishing version number. If the Program spec-
ifies a version number of this License which applies to it and “any later ver-
sion”, you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Founda-
tion. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Founda-
tion, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and
reuse of software generally.

N W

. B ,
 , . E
 /
 “ ” , -
 , , ,
 . T
 . S
 , -
, .

. I
 , /
 , -
, , , -
 (

),
 .

E T C

Appendix: How to Apply These Terms to Your New
Programs
If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the
full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it
under the terms of the GNUGeneral Public License as published by the
Free Software Foundation; either version of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, butWITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., Franklin Street, Fifth Floor, Boston, MA -, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts
in an interactive mode:

Gnomovision version , Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it under cer-
tain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts
of the General Public License. Of course, the commands you use may be called
something other than show w and show c; they could even bemouse-clicks or menu
items—whatever suits your program.
You should also get your employer (if you work as a programmer) or your school, if
any, to sign a “copyright disclaimer” for the program, if necessary. Here is a sample;
alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James
Hacker.

signature of Ty Coon, April
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is
what you want to do, use the GNU Library General Public License instead of this
License.

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

	Documentation
	Implementation
	Lua module
	TeX package

	The GNU GPL License v2

