
1

l u a - w i d o w - c o n t r o l
Max Chernoff

v 2.0.0

ctan.org/pkg/lua-widow-control
github.com/gucci-on-fleek/lua-widow-control

Lua-widow-control is a Plain TEX/LATEX/ConTEXt/OpTEX package that removes wid
ows and orphans without any user intervention. Using the power of LuaTEX, it does
so without stretching any glue or shortening any pages or columns. Instead, lua-
widow-control automatically lengthens a paragraph on a page or column where a
widow or orphan would otherwise occur.

q u i c k s t a r t
Ensure that your TEX Live/MikTEX distribution is up-to-date. Then, LATEX users
just need to place \usepackage{lua-widow-control} in the preamble of your
document. For more details, see the Usage sections.

c o n t e n t s
Quick Start 1

Motivation 2

Widows and Orphans 3
Widows · Orphans

TEX’s Pagination 3
Algorithm · Behavior

Other Solutions 4

Demonstration 6
Ignore · Shorten · Stretch · lua-widow-control

Installation 7
TEX Live · MikTEX · ConTEXt mkiv Standalone

Manual · Steps

https://www.ctan.org/pkg/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control

2

Dependencies 7
Plain TEX · LATEX · ConTEXt · OpTEX

Loading the Package 8

Options 8
Overview · Enabling · Disabling · Strict Mode

\emergencystretch · Selectively Disabling

Widow and Orphan Penalties

\nobreak Behaviour · Maximum Cost

Debug Mode

Columns 12

Known Issues 12

The Algorithm 13
Paragraph Breaking · Page Breaking

Contributions 14

License 14

References 14

Implementation 15
lua-widow-control.lua · lua-widow-control.tex

lua-widow-control.sty

t-lua-widow-control.mkxl/mkiv

lua-widow-control.opm · Demo from Table 1

m o t i v a t i o n
TEX provides top-notch typesetting: even 40 years after its first release, no other pro
gram produces higher quality mathematical typesetting, and its paragraph-breaking
algorithm is still state-of-the-art. However, its page breaking is not quite as sophisti
cated as its paragraph breaking and thus suffers from some minor issues.

Unmodified TEX typically has only 2 ways of dealing with widows and or
phans: it can either shorten a page by 1 line, or it can stretch out some vertical
whitespace. TEX was designed for mathematical and scientific typesetting, where a
typical page has multiple section headings, tables, figures, and equations. For this
style of document, TEX’s default behavior works quite well; however, for prose or

3

any other document composed almost entirely of text, there is no vertical whitespace
to stretch.

Since there were no ready-made and fully-automated solutions to remove
widows and orphans from all types of documents, I decided to create lua-widow-
control.

w i d o w s a n d o r p h a n s
Widows Widows occur when when the majority of a paragraph is on one page or column,

but the last line is on the following page or column. Widows are undesirable for
both aesthetics and readability. Aesthetically, it looks quite odd for a lone line to be
at the start of the page. Functionally, the separation of a paragraph and its last line
disconnects the two, causing the reader to lose context for the widowed line.

Orphans Orphans are when the first line of a paragraph occurs on the page or column before
the remainder of they paragraph. They are not nearly as distracting for the reader, but
they are still not ideal. Visually, widows and orphans are about equally disruptive;
however, orphans tend not to decrease the legibility of a text as much as widows do,
so they tend to be ignored more often.

Widow Orphan

Figure 1 A visual comparison of widows and orphans.

tex ’ s p a g i n a t i o n
Algorithm It is tricky to understand how lua-widow-control works if you aren’t familiar with

how TEX breaks pages and columns. Chapter 15 of The TEXBook1 (“How TEX Makes
Lines into Pages”) is the best reference for this; however, it goes into much more
detail than most users require. As a supplemental resource, I can also recommend
Section 27 of TEXby Topic2, available online for free. Below follows a very simplified
(and likely error-ridden) summary of TEX’s page breaking algorithm:

https://texdoc.org/serve/texbytopic/0##page=227

4

TEX fills the page with lines and other objects until the next object will no
longer fit. Once no more objects will fit, TEX, will align the bottom of the last line
with the bottom of the page by stretching any vertical spaces.

However, some objects have penalties attached. These penalties make TEX
treat the object as if it is longer or shorter for the sake of page breaking. By default,
TEX assigns a penalties to the first and last lines of a paragraph (widows and or
phans). This makes TEX treat them as if they are larger or smaller than their actual
size such that TEX tends not to break them up.

One important note: once TEX begins breaking a page, it never goes back and
modifies any content on the page. Page breaking is a localized algorithm, without
any backtracking.

Behavior Of course, this algorithm doesn’t allow us to intuitively understand how TEX deals
with widows and orphans.

Due to the penalties attached to widows and orphans, TEX treats them as if
they are longer than they actually are. Widows and orphans with small penalties
attached—like LATEX’s default values of 150—are only treated as slightly taller than
1 line, while widows and orphans with large penalties—values near 10 000—are
treated as if they are 2 lines tall. Because potential widow and orphan lines are
broken as if they are taller than they actually are, TEX will tend to group them
together on the same pages.

However, when these lines are moved as a group, TEX will have to make a page
or column with less lines. “Demonstration” goes into further detail about how TEX
deals with these too-short pages or columns. The main takeaway is that for a page
exclusively filled with text, all of TEX’s builtin solutions come with compromises.

o t h e r s o l u t i o n s
There have been a few previous attempts to improve upon TEX’s previously-dis
cussed widow and orphan-handling abilities; however, none of these have been
able to automatically remove widows and orphans without stretching any glue or
shortening any pages.

Strategies against widows3 and Managing forlorn paragraph lines in LATEX4 both
begin with comprehensive discussions of the methods of preventing widows and
orphans. They both agree that widows and orphans are bad and ought to be avoided;
however, they each differ in solutions. Strategies3 proposes an output routine that
reduces the length of facing pages by 1 line when necessary to remove widows and

5

orphans while Managing4 proposes that the author manually rewrites or adjusts the
\looseness when needed.

Paragraph callback to help with widows/orphans hand tuning5 contains a file
widow-assist.lua that automatically detects which paragraphs can be safely short
ened or lengthened by 1 line. The widows-and-orphans package6 alerts the author
to the pages that contain widows or orphans. Combined, these packages make it
very simple for the author to quickly remove widows and orphans by adjusting
the \looseness values; however, it still requires the author to make manual source
changes after each revision.

Lua-widow-control is essentially just a combination of widow-assist.lua5

and widows-and-orphans:6 when the \outputpenalty shows that a widow or or
phan occurred, Lua is used to find a stretchable paragraph. What lua-widow-control
adds on top of these packages is automation: lua-widow-control eliminates the
requirement for any manual adjustments.

Ignore Shorten Stretch Lua-widow-control

Lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX's
paragraph is output to the page, but lua-
widow-control's paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX's paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.
This removes the widow or the orphan with

Lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX's
paragraph is output to the page, but lua-
widow-control's paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX's paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

Lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX's
paragraph is output to the page, but lua-
widow-control's paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX's paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

Lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX's
paragraph is output to the page, but lua-
widow-control's paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX's paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

out creating any additional work. This removes the widow or the orphan with
out creating any additional work.

This removes the widow or the orphan with
out creating any additional work.

This removes the widow or the orphan with
out creating any additional work.

\parskip=0pt

\clubpenalty=0
\widowpenalty=0

\parskip=0pt

\clubpenalty=10000
\widowpenalty=10000

\parskip=0pt plus 1fill

\clubpenalty=10000
\widowpenalty=10000

\usepackage{lua-widow-control}

Table 1 A visual comparison of various automated widow handling techniques.

6

d e m o n s t r a t i o n
Although TEX’s page breaking algorithm is quite simple, it can lead to some fairly
complex behaviors when widows and orphans are involved. The usual choices are
to either ignore them, stretch some glue, or shorten the page. Table 1 has a visual
demonstration of some of these behaviors and how lua-widow-control differs from
the defaults.

Ignore As you can see, the last line of the page is on a separate page from the rest of its
paragraph, creating a widow. This is usually pretty distracting for the reader, so it
is best avoided wherever possible.

Shorten This page did not leave any widows, but it did shorten the previous page by 1 line.
Sometimes this is acceptable, but usually it looks bad because each page will have
different text-block heights. This can make the pages look quite uneven, especially
when typesetting with columns or in a book with facing pages.

Stretch This page also has no widows and it has a flushed bottom margin. However, the
space between each paragraph had to be stretched.

If this page had many equations, headings, and other elements with natural
space between them, the stretched out space would be much less noticeable. TEX
was designed for mathematical typesetting, so it makes sense that this is its default
behavior. However, in a page with mostly text, these paragraph gaps can look
unsightly.

In addition, this method is incompatible with typesetting on a grid since all
glue stretch must be quantized to the height of a line.

lua-widow-
control

Lua-widow-control has none of these issues: it eliminates the widows in a document
while keeping a flushed bottom margin and constant paragraph spacing.

To do so, lua-widow-control lengthened the second paragraph by one line. If
you look closely, you can see that this stretched the interword spaces. This stretch
ing is noticeable when typesetting in a narrow text block, but it becomes nearly
imperceptible with larger widths.

Lua-widow-control automatically finds the “best” paragraph to stretch, so
the increase in interword spaces should almost always be minimal.

7

i n s t a l l a t i o n
Most up-to-date TEX Live and MikTEX systems should already have lua-widow-
control installed. However, a manual installation may occasionally be required.

TEX Live Run tlmgr install lua-widow-control in a terminal, or install using the “TEX Live
Manager” gui.

MikTEX Run mpm --install=lua-widow-control in a terminal, or install using the “MikTEX
Maintenance” gui.

ConTEXt MKIV
Standalone

Run first-setup.sh --modules="lua-widow-control" in a terminal or install
manually.

Manual Currently, ConTEXt mkxl (luametaTEX) users must manually install the package.
Most other users will be better served by using the lua-widow-control supplied by
TEX Live and MikTEX; however, all users may manually install the package if desired.
The procedure should be fairly similar regardless of your os, TEX distribution, or
format.

Steps 1. Download lua-widow-control.tds.zip from ctan or GitHub.
2. Unzip the release into your TEXMFLOCAL/ directory. (You can find its location by

running kpsewhich --var-value TEXMFHOME in a terminal)
3. Refresh the filename database:

• ConTEXt: mtxrun --generate
• TEX Live: mktexlsr
• MikTEX: initexmf --update-fndb

d e p e n d e n c i e s
Lua-widow-control does have a few dependencies; however, these will almost cer
tainly be met by all but the most minimal of TEX installations.

Plain TEX Lua-widow-control requires LuaTEX (≥ 0.85) and the most recent version of lua
texbase (2015/10/04). Any version of TEX Live ≥ 2016 will meet these requirements.

https://www.ctan.org/pkg/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control/releases/latest

8

LATEX Lua-widow-control requires LuaTEX (≥ 0.85), LATEX (≥ 2020/10/01), and microtype
(any version). Any version of TEX Live ≥ 2021 will meet these requirements.

Lua-widow-control also supports a “legacy” mode for older LATEX kernels.
This uses an older version of the LATEX code while still using the most recent Lua
code. This mode requires LuaTEX (≥ 0.85), LATEX (≥ 2015/01/01), microtype (any
version), and etoolbox (any version). Any version of TEX Live ≥ 2016 will meet
these requirements.

Please note that when running in legacy mode, you cannot use the key–value
interface. Instead, you should follow the “Plain TEX” interface.

ConTEXt Lua-widow-control supports both ConTEXt mkxl (luametaTEX) and ConTEXt mkiv
(LuaTEX).

OpTEX Lua-widow-control works with any version of OpTEX and has no dependencies.

l o a d i n g t h e p a c k a g e
Plain TEX \inputlua-widow-control

LATEX \usepackage{lua-widow-control}

ConTEXt \usemodule[lua-widow-control]

OpTEX \load[lua-widow-control]

o p t i o n s
Lua-widow-control is automatically enabled with the default settings as soon as you
load it. Most users should not need to configure lua-widow-control; however, the
packages provides a few commands.

Overview LATEX users can set the options either when loading the package (\usepackage[⟨op
tions⟩]{lua-widow-control}) or at any point using \lwcsetup{⟨options⟩}.

ConTEXt users should always use the \setuplwc[⟨options⟩] command.
Plain TEX and OpTEX are a little different. Some options have commands pro

vided (i.e., \lwcemergencystretch=⟨dimension⟩), while others must be set manu
ally (i.e., \directlua{lwc.debug = true}).

Also, please note that not all commands are provided for all formats.

9

Enabling Lua-widow-control is enabled by default as soon as you load it. Nevertheless, you
may need to explicitly reenable it if you have previously disabled it.
Plain TEX/OpTEX \lwcenable

LATEX \lwcsetup{enable}

ConTEXt \setuplwc[state = start]

Disabling Plain TEX/OpTEX \lwcdisable

LATEX \lwcsetup{disable}

ConTEXt \setuplwc[state = stop]

Strict Mode By default, lua-widow-control takes all possible measures to remove widows and
orphans. This normally works out pretty well; however, sometimes these measures
may be a little more aggressive than certain users want.

Lua-widow-control offers a “strict” mode that will only make mod
ification to the page that are near-imperceptible to remove widows and
orphans.
LATEX \lwcsetup{strict}

Internally, this sets emergencystretch = 0pt, max-cost = 2500, and no
break = warn.

\emergency
stretch

You can configure the \emergencystretch used when stretching a paragraph. The
default value is 3 em.

Lua-widow-control will only use the \emergencystretch when it cannot
lengthen a paragraph in any other way, so it is fairly safe to set this to a large value.
TEX still accumulates badness when \emergencystretch is used, so it’s pretty rare
that a paragraph that requires any \emergencystretch will actually be used on the
page.
Plain TEX/OpTEX \lwcemergencystretch=⟨dimension⟩
LATEX \lwcsetup{emergencystretch = ⟨dimension⟩}
ConTEXt \setuplwc[emergencystretch = ⟨dimension⟩]

Selectively
Disabling

Sometimes, you may want to disable lua-widow-control for certain commands where
stretching is undesirable. For example, you typically wouldn’t want section headings
to be stretched.

You could just disable then reenable lua-widow-control every time that you

10

use the command; however, lua-widow-control provides a convenience macro that
will do this automatically for you.

Lua-widow-control automatically patches the default LATEX, ConTEXt, and
Plain TEX section commands, so you shouldn’t need to patch these yourself; however,
lua-widow-control does not patch the non-standard section commands provided by
memoir, koma-script, titlesec, OpTEX, and others. You’ll need to add these yourself.
Plain TEX \lwcdisablecmd{⟨\macro⟩}
LATEX \lwcsetup{disablecmds = {⟨\macroone⟩, ⟨\macrotwo⟩}}
ConTEXt \prependtoks\lwc@patch@pre\to\everybefore⟨hook⟩

\prependtoks\lwc@patch@post\to\everyafter⟨hook⟩

Widow and
Orphan

Penalties

You can also manually adjust the penalties that TEX assigns to widows and orphans.
Usually, the defaults are fine, but advanced users may want to change them.
Plain TEX/OpTEX \widowpenalty=⟨integer⟩

\clubpenalty=⟨integer⟩
LATEX \lwcsetup{widowpenalty = ⟨integer⟩}

\lwcsetup{orphanpenalty = ⟨integer⟩}
ConTEXt \setuplwc[widowpenalty = ⟨integer⟩]

\setuplwc[orphanpenalty = ⟨integer⟩]

Some suitable integers:
Ignore widows/orphans 0
Default 1
Disable lua-widow-control 10 000

\nobreak
Behaviour

When lua-widow-control encounters an orphan, it removes it by removing the or
phaned line to the next page. However, sometimes, an orphan is immediately
preceded by a section heading or a \nobreak command. By moving the orphan to
the next page, you would naïvely separate a section (or other such material) from
the line that follows. This really ought to be avoided, so lua-widow-control provides
some options to avoid this.

11

Plain TEX/OpTEX \directlua{lwc.nobreak_behaviour = "⟨value⟩"}
LATEX \lwcsetup{nobreak = ⟨value⟩}
ConTEXt \setuplwc[nobreak = ⟨value⟩]

The default value, keep, keeps the section heading with the orphan by moving
both to the next page.

The value split splits up the section heading and the orphan by moving the
orphan to the next page while leaving the heading behind. This is usually a bad
idea.

The value warn causes lua-widow-control to give up on the page and do
nothing, leaving an orphaned line. Lua-widow-control warns the user so that they
can manually remove the orphan.

Maximum
Cost

When TEX breaks a paragraph, it scores it by the number of “demerits”. The demerits
for a paragraph is the sum of the squared badnesses for each line, plus any “addi
tional demerits” added for any other reason. The badness for a line is proportional
the cube of the glue stretch ratio, so demerits grow with the sixth power of glue
stretch.

To choose the “best” paragraph on the page, lua-widow-control uses a “cost
function” 𝐶 that is initially defined as

𝐶 =
𝑑

2√𝑙

where 𝑑 is the total demerits of the paragraph, and 𝑙 is the number of lines in the
paragraph.

By default, lua-widow-control just selects the paragraph on the page with the
lowest cost; however, you can configure it to only select paragraphs below a selected
cost. If there aren’t any paragraphs below the set threshold, then lua-widow-control
won’t remove the widow or orphan and will instead issue a warning.
Plain TEX/OpTEX \lwcmaxcost=⟨integer⟩
LATEX \lwcsetup{max-cost = ⟨integer⟩}
ConTEXt \setuplwc[maxcost = ⟨integer⟩]

Very advanced users may also set a custom cost function by redefining the
lwc.paragraph_cost(demerits, lines) function.

12

Debug Mode Lua-widow-control offers a “debug” mode that prints extra information in the log
files. This may be helpful to understand how lua-widow-control is processing para
graphs and pages.
Plain TEX/OpTEX \directlua{lwc.debug = true}

\directlua{lwc.debug = false}

LATEX \lwcsetup{debug = true}

\lwcsetup{debug = false}

ConTEXt \setuplwc[state = start]

\setuplwc[state = stop]

c o l u m n s
Since TEX implements column breaking and page breaking through the same inter
nal mechanisms, lua-widow-control should remove widows and orphans between
columns just as well as it does with widows and orphans between pages. This has
been tested with the standard LATEX class option twocolumn and the two-column
output routine from Chapter 23 of The TEXBook.1 Lua-widow-control should pre
sumably work with any other multi-column implementation; however, due to the
diversity and complexity of output routines, this cannot be guaranteed.

k n o w n i s s u e s
• Lua-widow-control will rarely fail to correctly move the last line on an expanded

page to the next page in documents with very small paper sizes.
• When a 3-line paragraph is at the end of a page forming a widow, lua-widow-

control will remove the widow; however, it will leave an orphan. This issue
is inherent to any process that removes widows through paragraph expansion
and is thus unavoidable. Orphans are better than widows, so this is still an
improvement.

• Sometimes a widow or orphan cannot be eliminated because no paragraph has
enough “stretch”. This can sometimes be remediated by increasing lua-widow-
control’s \emergencystretch; however, some pages just don’t have enough
“stretchy” paragraphs. Long paragraphs with short words tend to be “stretchier”
than short paragraphs with long words since these long paragraphs will have

13

more interword glue. Narrow columns also stretch easier than wide columns
since you need to expand a paragraph by less to make a new line.

• When running under luametaTEX, the log may be filled with lines like “luatex
warning > tex: left parfill skip is gone”. This is harmless and can be
ignored.

• Lua-widow-control will rarely raise a “Circular node list detected!” warn
ing. This occurs when the replacement paragraph node list loops back on itself.
This is usually harmless, but can rarely cause the entire compile to completely
fail.

• TEX may warn you about over or underfull vboxes on pages where lua-widow-
control removed a widow or orphan. This is a false alarm and can be ignored.

t h e a l g o r i t h m
Lua-widow-control uses a fairly simple algorithm to eliminate widows and orphans.
It is pretty basic, but there are a few subtleties. Please see “Implementation” for a
full listing of the source code.

Paragraph
Breaking

First, lua-widow-control hooks into the paragraph breaking process.
Before a paragraph is broken by TEX, lua-widow-control grabs the unbro

ken paragraph. Lua-widow-control then breaks the paragraph 1 line longer than
its natural length and stores it for later, without interfering with how TEX breaks
paragraphs into their natural length.

After TEX has broken its paragraph into its natural length, lua-widow-control
appears once again. Before the broken paragraph is added to the main vertical list,
lua-widow-control tags the first and last nodes of the paragraph. These tags create a
relationship between the previously-saved lengthened paragraph and the start/end
of the naturally-typeset paragraph on the page.

Page Breaking Lua-widow-control intercepts \box255 immediately before the output routine.
First, lua-widow-control analyzes the \outputpenalty of the page or column.

If the page was broken at a widow or orphan, the \outputpenalty will equal either
\widowpenalty or \orphanpenalty. If the \outputpenalty is not indicative of a
widow or orphan, lua-widow-control will stop and return \box255 unmodified.

At this point, we know that we have a widow or orphan on the page, so we
must lengthen the page by 1 line. We iterate through the list of saved paragraphs to
find the lengthened paragraph with the least cost. Once we’ve selected a paragraph

14

to replace, we can now traverse through the page to find the original version of this
paragraph that TEX originally typeset. Once we find the original paragraph, we
“splice” the lengthened paragraph in the place of the original.

Since the page is now 1 line longer than it was before, we pull the last line off
of the page to bring it back to its original length. We place the line onto the top of
the recent contributions list so that it is added to the start of the next page. Now, we
can return the new, widow-free page to the output routine.

c o n t r i b u t i o n s
If you have any issues with lua-widow-control, please create an issue at the project’s
GitHub page. Or, if you think that you can solve any of the “Known Issues” or add
any new features, submit a pr. Thanks!

l i c e n s e
Lua-widow-control is licensed under the Mozilla Public License, version 2.0 or
greater. The documentation is licensed under cc-by-sa, version 4.0 or greater as
well as the mpl.

Please note that a compiled document is not considered to be an “Executable
Form” as defined by the mpl. The mpl and cc-by-sa licenses only apply to you if
you distribute the lua-widow-control source code or documentation.

r e f e r e n c e s
1. Knuth, DE (2020). The TEXBook. Addison–Wesley. ctan.org/pkg/texbook
2. Eijkhout, V (2007). TEXby Topic. Author. texdoc.org/serve/texbytopic/0
3. Isambert, P (2010). Strategies against widows. TUGboat, 31(1), 12–17. tug.org

/TUGboat/tb31-1/tb97isambert.pdf

4. Mittelbach, F (2018). Managing forlorn paragraph lines in LATEX. TUGboat,
39(3), 246–251. tug.org/TUGboat/tb39-3/tb123mitt-widows.pdf

5. jeremie (2017, August). Paragraph callback to help with widows/orphans hand tun
ing. tex.stackexchange.com/q/372062

6. Mittelbach, F (2021, March). The widows-and-orphans package. Author. ctan
.org/pkg/widows-and-orphans

https://github.com/gucci-on-fleek/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control
https://www.mozilla.org/en-US/MPL/2.0/
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://ctan.org/pkg/texbook
https://texdoc.org/serve/texbytopic/0
https://www.tug.org/TUGboat/tb31-1/tb97isambert.pdf
https://www.tug.org/TUGboat/tb31-1/tb97isambert.pdf
https://www.tug.org/TUGboat/tb39-3/tb123mitt-widows.pdf
https://tex.stackexchange.com/q/372062
https://www.ctan.org/pkg/widows-and-orphans
https://www.ctan.org/pkg/widows-and-orphans

15

i m p l e m e n t a t i o n
lua-widow-control.lua
--[[
 lua-widow-control
 https://github.com/gucci-on-fleek/lua-widow-control
 SPDX-License-Identifier: MPL-2.0+
 SPDX-FileCopyrightText: 2022 Max Chernoff
]]

lwc = lwc or {}
lwc.name = "lua-widow-control"
lwc.nobreak_behaviour = "keep"

local write_nl = texio.write_nl
local string_rep = string.rep
local function debug_print(title, text)
 if not lwc.debug then return end

 local filler = 15 - #title

 if text then
 write_nl("log", "LWC (" .. title .. string_rep(" ", filler) .. "): " .. text)
 else
 write_nl("log", "LWC: " .. string_rep(" ", 18) .. title)
 end
end

--[[
 lua-widow-control is intended to be format-agonistic. It only runs on LuaTEX,
 but there are still some slight differences between formats. Here, we
 detect the format name then set some flags for later processing.
]]
local format = tex.formatname
local context, latex, plain, optex, lmtx

if format:find('cont') then -- cont-en, cont-fr, cont-nl, ...
 context = true
 if status.luatex_engine == "luametatex" then
 lmtx = true
 end
elseif format:find('latex') then -- lualatex, lualatex-dev, ...

16

 latex = true
elseif format == 'luatex' then -- Plain
 plain = true
elseif format == 'optex' then -- OpTeX
 optex = true
end

--[[
 Save some local copies of the node library to reduce table lookups.
 This is probably a useless micro-optimization, but it can't hurt.
]]
local last = node.slide
local copy = node.copy_list
local par_id = node.id("par") or node.id("local_par")
local glue_id = node.id("glue")
local glyph_id = node.id("glyph")
local penalty_id = node.id("penalty")
local hlist_id = node.id("hlist")
local traverse = node.traverse
local set_attribute = node.set_attribute or node.setattribute
local find_attribute = node.find_attribute or node.findattribute
local flush_list = node.flush_list or node.flushlist
local free = node.free
local min_col_width = tex.sp("250pt")

--[[
 Package/module initialization
]]
local warning,
 info,
 attribute,
 contrib_head,
 stretch_order,
 pagenum,
 emergencystretch,
 max_cost

if lmtx then
 debug_print("LMTX")
 contrib_head = 'contributehead'
 stretch_order = "stretchorder"
else
 contrib_head = 'contrib_head'
 stretch_order = "stretch_order"

17

end

if context then
 debug_print("ConTeXt")
 warning = logs.reporter("module", lwc.name)
 info = logs.reporter("module", lwc.name)
 attribute = attributes.public(lwc.name)
 pagenum = function() return tex.count["realpageno"] end
 emergencystretch = "lwc_emergency_stretch"
 max_cost = "lwc_max_cost"
elseif plain or latex or optex then
 pagenum = function() return tex.count[0] end

 if tex.isdimen("g__lwc_emergencystretch_dim") then
 emergencystretch = "g__lwc_emergencystretch_dim"
 max_cost = "g__lwc_maxcost_int"
 else
 emergencystretch = "lwcemergencystretch"
 max_cost = "lwcmaxcost"
 end

 if plain or latex then
 debug_print("Plain/LaTeX")
 luatexbase.provides_module {
 name = lwc.name,
 date = "2022/03/07", --%%slashdate
 version = "2.0.0", --%%version
 description = [[

This module provides a LuaTeX-based solution to prevent
widows and orphans from appearing in a document. It does
so by increasing or decreasing the lengths of previous
paragraphs.]],
 }
 warning = function(str) luatexbase.module_warning(lwc.name, str) end
 info = function(str) luatexbase.module_info(lwc.name, str) end
 attribute = luatexbase.new_attribute(lwc.name)
 elseif optex then
 debug_print("OpTeX")
 warning = function(str) write_nl(lwc.name .. " Warning: " .. str) end
 info = function(str) write_nl("log", lwc.name .. " Info: " .. str) end
 attribute = alloc.new_attribute(lwc.name)
 end
else -- uh oh

18

 error [[Unsupported format.

Please use LaTeX, Plain TeX, ConTeXt or OpTeX.]]
end

local paragraphs = {} -- List to hold the alternate paragraph versions

local function get_location()
 return "At " .. pagenum() .. "/" .. #paragraphs
end

--[[
 Function definitions
]]

--- Create a table of functions to enable or disable a given callback
--- @param t table Parameters of the callback to create
--- callback: str = The LuaTEX callback name
--- func: function = The function to call
--- name: str = The name/ID of the callback
--- category: str = The category for a ConTEXt "Action"
--- position: str = The "position" for a ConTEXt "Action"
--- lowlevel: bool = If we should use a lowlevel LuaTEX callback instead of a
--- ConTEXt "Action"
--- @return table t Enablers/Disablers for the callback
--- enable: function = Enable the callback
--- disable: function = Disable the callback
local function register_callback(t)
 if plain or latex then -- Both use LuaTEXBase for callbacks
 return {
 enable = function()
 luatexbase.add_to_callback(t.callback, t.func, t.name)
 end,
 disable = function()
 luatexbase.remove_from_callback(t.callback, t.name)
 end,
 }
 elseif context and not t.lowlevel then
 return {
 -- Register the callback when the table is created,
 -- but activate it when `enable()` is called.
 enable = nodes.tasks.appendaction(t.category, t.position, "lwc." .. t.name)
 or function()

19

 nodes.tasks.enableaction(t.category, "lwc." .. t.name)
 end,
 disable = function()
 nodes.tasks.disableaction(t.category, "lwc." .. t.name)
 end,
 }
 elseif context and t.lowlevel then
 --[[
 Some of the callbacks in ConTEXt have no associated "actions". Unlike
 with LuaTEXbase, ConTEXt leaves some LuaTEX callbacks unregistered
 and unfrozen. Because of this, we need to register some callbacks at the
 engine level. This is fragile though, because a future ConTEXt update
 may decide to register one of these functions, in which case
 lua-widow-control will crash with a cryptic error message.
]]
 return {
 enable = function() callback.register(t.callback, t.func) end,
 disable = function() callback.register(t.callback, nil) end,
 }
 elseif optex then
 return {
 enable = function()
 callback.add_to_callback(t.callback, t.func, t.name)
 end,
 disable = function()
 callback.remove_from_callback(t.callback, t.name)
 end,
 }
 end
end

local function get_chars(head)
 if not lwc.debug then return end

 local chars = ""
 for n in traverse(head) do
 if n.id == glyph_id then
 if n.char < 127 then
 chars = chars .. string.char(n.char)
 else
 chars = chars .. "#"
 end
 elseif n.id == glue_id then
 chars = chars .. " "

20

 end
 if #chars > 25 then
 break
 end
 end

 debug_print(get_location(), chars)
end

function lwc.paragraph_cost(demerits, lines)
 return demerits / (2 * math.sqrt(lines))
end

--- Saves each paragraph, but lengthened by 1 line
function lwc.save_paragraphs(head)
 -- Prevent the "underfull hbox" warnings when we store a potential paragraph
 local renable_box_warnings
 if (context or optex) or
 #luatexbase.callback_descriptions("hpack_quality") == 0
 then -- See #18 and michal-h21/linebreaker#3
 renable_box_warnings = true
 lwc.callbacks.disable_box_warnings.enable()
 end

 -- Ensure that we were actually given a par (only under ConTEXt for some reason)
 if head.id ~= par_id and context then
 return head
 end

 -- We need to return the unmodified head at the end, so we make a copy here
 local new_head = copy(head)

 -- Prevent ultra-short last lines (TEXBook p. 104), except with narrow columns
 local parfillskip = last(new_head)
 if parfillskip.id == glue_id and tex.hsize > min_col_width then
 parfillskip[stretch_order] = 0
 parfillskip.stretch = 0.8 * tex.hsize -- Last line must be at least 20% long
 end

 -- Break the paragraph 1 line longer than natural
 local long_node, long_info = tex.linebreak(new_head, {
 looseness = 1,

21

 emergencystretch = tex.getdimen(emergencystretch),
 })

 -- Break the natural paragraph so we know how long it was
 local natural_node, natural_info = tex.linebreak(copy(head))
 flush_list(natural_node)

 if renable_box_warnings then
 lwc.callbacks.disable_box_warnings.disable()
 end

 -- Offset the accumulated \prevdepth
 local prevdepth = node.new("glue")
 prevdepth.width = natural_info.prevdepth - long_info.prevdepth
 last(long_node).next = prevdepth

 if long_info.prevgraf == natural_info.prevgraf + 1 then
 table.insert(paragraphs, {
 cost = lwc.paragraph_cost(long_info.demerits, long_info.prevgraf),
 node = long_node
 })
 end

 get_chars(head)
 debug_print(get_location(), "nat lines " .. natural_info.prevgraf)
 debug_print(
 get_location(),
 "nat cost " ..
 lwc.paragraph_cost(natural_info.demerits, natural_info.prevgraf)
)
 debug_print(get_location(), "long lines " .. long_info.prevgraf)
 debug_print(
 get_location(),
 "long cost " ..
 lwc.paragraph_cost(long_info.demerits, long_info.prevgraf)
)

 -- luametaTEX crashes if we return `true`
 return head
end

--- Tags the beginning and the end of each paragraph as it is added to the page.

--- We add an attribute to the first and last node of each paragraph. The ID is

22

--- some arbitrary number for lua-widow-control, and the value corresponds to the
--- paragraphs index, which is negated for the end of the paragraph.
function lwc.mark_paragraphs(head)
 set_attribute(head, attribute, #paragraphs)
 set_attribute(last(head), attribute, -1 * #paragraphs)

 return head
end

--- A "safe" version of the last/slide function.

--- Sometimes the node list can form a loop. Since there is no last element
--- of a looped linked-list, the `last()` function will never terminate. This
--- function provides a "safe" version of the `last()` function that will break
--- the loop at the end if the list is circular.
local function safe_last(head)
 local ids = {}
 local prev

 while head.next do
 local id = node.is_node(head) -- Returns the internal node id

 if ids[id] then
 warning [[Circular node list detected!
This should never happen. I'll try and
recover, but your output may be corrupted.
(Internal Error)]]
 prev.next = nil
 debug_print("safe_last", node.type(head.id) .. " " .. node.type(prev.id))

 return prev
 end

 ids[id] = true
 head.prev = prev
 prev = head
 head = head.next
 end

 return head
end

--- Remove the widows and orphans from the page, just after the output routine.

23

--- This function holds the "meat" of the module. It is called just after the
--- end of the output routine, before the page is shipped out. If the output
--- penalty indicates that the page was broken at a widow or an orphan, we
--- replace one paragraph with the same paragraph, but lengthened by one line.
--- Then, we can push the bottom line of the page to the next page.
function lwc.remove_widows(head)
 local head_save = head -- Save the start of the `head` linked-list

 local penalty = tex.outputpenalty - tex.interlinepenalty
 local widowpenalty = tex.widowpenalty
 local clubpenalty = tex.clubpenalty
 local displaywidowpenalty = tex.displaywidowpenalty
 local brokenpenalty = tex.brokenpenalty

 debug_print("outputpenalty", tex.outputpenalty .. " " .. #paragraphs)

 --[[
 We only need to process pages that have orphans or widows. If `paragraphs`
 is empty, then there is nothing that we can do.

 The list of penalties is from:
 https://tug.org/TUGboat/tb39-3/tb123mitt-widows-code.pdf#subsection.0.2.1
]]
 if penalty ~= 0 and
 penalty < 10000 and
 (penalty == widowpenalty or
 penalty == displaywidowpenalty or
 penalty == clubpenalty or
 penalty == clubpenalty + widowpenalty or
 penalty == clubpenalty + displaywidowpenalty or
 penalty == brokenpenalty or
 penalty == brokenpenalty + widowpenalty or
 penalty == brokenpenalty + displaywidowpenalty or
 penalty == brokenpenalty + clubpenalty or
 penalty == brokenpenalty + clubpenalty + widowpenalty or
 penalty == brokenpenalty + clubpenalty + displaywidowpenalty) and
 #paragraphs >= 1 then
 else
 paragraphs = {}
 return head
 end

 info("Widow/orphan detected. Attempting to remove.")

24

 --[[
 Find the paragraph on the page with the least cost.
]]
 local paragraph_index = 1
 local best_cost = paragraphs[paragraph_index].cost

 -- We find the current "best" replacement, then free the unused ones
 for i, paragraph in pairs(paragraphs) do
 if paragraph.cost < best_cost and i <= #paragraphs - 1 then
 -- Clear the old best paragraph
 flush_list(paragraphs[paragraph_index].node)
 paragraphs[paragraph_index].node = nil
 -- Set the new best paragraph
 paragraph_index, best_cost = i, paragraph.cost
 elseif i > 1 then
 -- Not sure why `i > 1` is required?
 flush_list(paragraph.node)
 paragraph.node = nil
 end
 end

 debug_print(
 "selected para",
 pagenum() ..
 "/" ..
 paragraph_index ..
 " (" ..
 best_cost ..
 ")"
)

 if best_cost > tex.getcount(max_cost) then
 -- If the best replacement is too bad, we can't do anything
 warning("Widow/Orphan NOT removed on page " .. pagenum())
 paragraphs = {}
 return head_save
 end

 local target_node = paragraphs[paragraph_index].node

 -- Start of final paragraph
 debug_print("remove_widows", "moving last line")

 head = last(head_save).prev

25

 local big_penalty_found, last_line, hlist_head
 while head do
 if head.id == glue_id then
 -- Ignore any glue nodes
 elseif head.id == penalty_id and head.penalty >= 10000 then
 -- Infinite break penalty
 big_penalty_found = true
 elseif big_penalty_found and head.id == hlist_id then
 -- Line before the penalty
 if lwc.nobreak_behaviour == "keep" then
 hlist_head = head
 big_penalty_found = false
 elseif lwc.nobreak_behaviour == "split" then
 head = last(head_save)
 break
 elseif lwc.nobreak_behaviour == "warn" then
 warning("Widow/Orphan NOT removed on page " .. pagenum())
 paragraphs = {}
 return head_save
 end
 else
 -- Not found
 if hlist_head then
 head = hlist_head
 else
 head = last(head_save)
 end
 break
 end
 head = head.prev
 end

 last_line = copy(head)
 last(last_line).next = copy(tex.lists[contrib_head])

 head.prev.prev.next = nil
 -- Move the last line to the next page
 tex.lists[contrib_head] = last_line

 local free_next_nodes = false

 -- Loop through all of the nodes on the page with the lwc attribute
 head = head_save
 while head do

26

 local value
 value, head = find_attribute(head, attribute)

 if not head then
 break
 end

 debug_print("remove_widows", "found " .. value)

 -- Insert the start of the replacement paragraph
 if value == paragraph_index then
 debug_print("remove_widows", "replacement start")
 safe_last(target_node) -- Remove any loops

 head.prev.next = target_node
 free_next_nodes = true
 end

 -- Insert the end of the replacement paragraph
 if value == -1 * paragraph_index then
 debug_print("remove_widows", "replacement end")
 safe_last(target_node).next = head.next
 break
 end

 if free_next_nodes then
 head = free(head)
 else
 head = head.next
 end
 end

 info(
 "Widow/orphan successfully removed at paragraph "
 .. paragraph_index
 .. " on page "
 .. pagenum()
 .. "."
)

 paragraphs = {} -- Clear paragraphs array at the end of the page

 return head_save
end

27

-- Add all of the callbacks
lwc.callbacks = {
 disable_box_warnings = register_callback({
 callback = "hpack_quality",
 func = function() end,
 name = "disable_box_warnings",
 lowlevel = true,
 }),
 remove_widows = register_callback({
 callback = "pre_output_filter",
 func = lwc.remove_widows,
 name = "remove_widows",
 lowlevel = true,
 }),
 save_paragraphs = register_callback({
 callback = "pre_linebreak_filter",
 func = lwc.save_paragraphs,
 name = "save_paragraphs",
 category = "processors",
 position = "after",
 }),
 mark_paragraphs = register_callback({
 callback = "post_linebreak_filter",
 func = lwc.mark_paragraphs,
 name = "mark_paragraphs",
 category = "finalizers",
 position = "after",
 }),
}

local enabled = false
function lwc.enable_callbacks()
 debug_print("callbacks", "enabling")
 if not enabled then
 lwc.callbacks.save_paragraphs.enable()
 lwc.callbacks.mark_paragraphs.enable()

 enabled = true
 else
 info("Already enabled")
 end
end

28

function lwc.disable_callbacks()
 debug_print("callbacks", "disabling")
 if enabled then
 lwc.callbacks.save_paragraphs.disable()
 lwc.callbacks.mark_paragraphs.disable()
 --[[
 We do not disable `remove_widows` callback, since we still want
 to expand any of the previously-saved paragraphs if we hit an orphan
 or a widow.
]]

 enabled = false
 else
 info("Already disabled")
 end
end

function lwc.if_lwc_enabled()
 debug_print("iflwc")
 if enabled then
 tex.sprint("\\iftrue")
 else
 tex.sprint("\\iffalse")
 end
end

--- Silence the luatexbase "Enabling/Removing <callback>" info messages

--- Every time that a paragraph is typeset, lua-widow-control hooks in
--- and typesets the paragraph 1 line longer. Some of these longer paragraphs
--- will have pretty bad badness values, so TeX will issue an over/underfull
--- hbox warning. To block these warnings, we hook into the `hpack_quality`
--- callback and disable it so that no warning is generated.

--- However, each time that we enable/disable the null `hpack_quality` callback,
--- luatexbase puts an info message in the log. This completely fills the log file
--- with useless error messages, so we disable it here.

--- This uses the Lua `debug` library to internally modify the log upvalue in the
--- `add_to_callback` function. This is almost certainly a terrible idea, but I don't
--- know of a better way.
local function silence_luatexbase()
 local nups = debug.getinfo(luatexbase.add_to_callback).nups

29

 for x = 1, nups do
 local name, func = debug.getupvalue(luatexbase.add_to_callback, x)
 if name == "luatexbase_log" then
 debug.setupvalue(
 luatexbase.add_to_callback,
 x,
 function(text)
 if text:match("^Inserting") or text:match("^Removing") then
 return
 else
 func(text)
 end
 end
)
 return
 end
 end
end

-- Activate lua-widow-control
if plain or latex then
 silence_luatexbase()
end

lwc.callbacks.remove_widows.enable()

return lwc

lua-widow-control.tex
% lua-widow-control
% https://github.com/gucci-on-fleek/lua-widow-control
% SPDX-License-Identifier: MPL-2.0+
% SPDX-FileCopyrightText: 2022 Max Chernoff

\wlog{lua-widow-control v2.0.0} %%version

\ifx\directlua\undefined
 \errmessage{%
 LuaTeX is required for this package.
 Make sure to compile with `luatex'%
 }
\fi

30

\input ltluatex % LuaTEXBase

\clubpenalty=1
\widowpenalty=1
\displaywidowpenalty=1

\newdimen\lwcemergencystretch
\lwcemergencystretch=3em

\newcount\lwcmaxcost
\lwcmaxcost=2147483647

\directlua{require "lua-widow-control"}

% Here, we enable font expansion/contraction. It isn't strictly necessary for
% lua-widow-control's functionality; however, it is required for the
% lengthened paragraphs to not have terrible spacing.
\expandglyphsinfont\the\font 20 20 5
\adjustspacing=2

% Define TEX wrappers for Lua functions
\def\lwcenable{\directlua{lwc.enable_callbacks()}}
\def\lwcdisable{\directlua{lwc.disable_callbacks()}}
\def\iflwc{\directlua{lwc.if_lwc_enabled()}}

% Enable lua-widow-control by default when the package is loaded.
\lwcenable

% Expansion of some parts of the document, such as section headings, is quite
% undesirable, so we'll disable lua-widow-control for certain commands.
\catcode`@=11

% We should only reenable lua-widow-control at the end if it was already enabled.
\newif\iflwc@should@reenable

\def\lwc@patch@pre{%
 \iflwc%
 \lwc@should@reenabletrue%
 \lwcdisable%
 \else%
 \lwc@should@reenablefalse%
 \fi%
}

31

\def\lwc@patch@post{\iflwc@should@reenable%
 \lwcenable%
\fi}

\def\lwcdisablecmd#1{%
 \ifdefined#1
 \expandafter\def\expandafter#1\expandafter{\lwc@patch@pre #1\lwc@patch@post}
 \fi
}
\catcode`@=12

\begingroup
 \suppressoutererror=1
 \lwcdisablecmd{\beginsection} % Sectioning
\endgroup

\endinput

lua-widow-control.sty
% lua-widow-control
% https://github.com/gucci-on-fleek/lua-widow-control
% SPDX-License-Identifier: MPL-2.0+
% SPDX-FileCopyrightText: 2022 Max Chernoff

% Formats built after 2015 include LuaTEXBase, so this is the absolute
% minimum version that we will run under.
\NeedsTeXFormat{LaTeX2e}[2015/01/01]

% For _really_ old formats
\providecommand\DeclareRelease[3]{}
\providecommand\DeclareCurrentRelease[2]{}

\DeclareRelease{}{0000-00-00}{lua-widow-control-2022-02-22.sty}
\DeclareRelease{v1.1.6}{2022-02-22}{lua-widow-control-2022-02-22.sty}
\DeclareCurrentRelease{v2.0.0}{2022-03-07} %%version %%dashdate

% If this version of LaTeX doesn't support command hooks, then we load
% the last v1.1.X version of the package.
\providecommand\IfFormatAtLeastTF{\@ifl@t@r\fmtversion}
\IfFormatAtLeastTF{2020/10/01}{}{\input{lua-widow-control-2022-02-22.sty}}
\IfFormatAtLeastTF{2020/10/01}{}{\endinput}

\ProvidesExplPackage

32

 {lua-widow-control}
 {2022/03/07} %%slashdate
 {v2.0.0} %%version
 {Use Lua to remove widows and orphans}

% Unconditional Package Loads
\RequirePackage { l3keys2e }

% Message and String Constants
\str_const:Nn \c__lwc_name_str { lua-widow-control }

\msg_new:nnn
 { \c__lwc_name_str }
 { no-luatex }
 {
 LuaTeX~ is~ REQUIRED! \\
 Make~ sure~ to~ compile~ your~ document~ with~ `lualatex'.
 }

\msg_new:nnn
 { \c__lwc_name_str }
 { patch-failed }
 {
 Patching~ \c_backslash_str #1~ failed. \\
 Please~ ensure~ that~ \c_backslash_str #1~ exists.
 }

\msg_new:nnn
 { \c__lwc_name_str }
 { old-format-patch }
 {
 Patching~ not~ supported~ with~ old~ LaTeX. \\
 Please~ use~ a~ LaTeX~ format~ >=~ 2021/06/01.
 }

\msg_new:nnn
 { \c__lwc_name_str }
 { old-command }
 {
 \c_backslash_str #1~ has~ been~ REMOVED! \\
 Please~ use~ \c_backslash_str setuplwc \c_left_brace_str #2
 \c_right_brace_str\ instead.
 }

33

% Don't let the user proceed unless they are using LuaTEX.
\sys_if_engine_luatex:F {
 \msg_critical:nn { \c__lwc_name_str } { no-luatex }
}

% Define (most of) the keys
\keys_define:nn { \c__lwc_name_str } {
 emergencystretch .dim_gset:N = \g__lwc_emergencystretch_dim,
 emergencystretch .value_required:n = true,
 emergencystretch .initial:x = \dim_max:nn { 3em } { 30pt },

 max-cost .int_gset:N = \g__lwc_maxcost_int,
 max-cost .value_required:n = true,
 max-cost .initial:x = \c_max_int,

 widowpenalty .code:n = \int_gset:Nn \tex_widowpenalty:D { #1 }
 \int_gset:Nn \tex_displaywidowpenalty:D { #1 },
 widowpenalty .value_required:n = true,
 widowpenalty .initial:n = 1,

 orphanpenalty .code:n = \int_gset:Nn \tex_clubpenalty:D { #1 }
 \int_gset:Nn \@clubpenalty { #1 },
 orphanpenalty .value_required:n = true,
 orphanpenalty .initial:n = 1,

 microtype .bool_gset:N = \g__lwc_use_microtype_bool,
 microtype .value_required:n = true,
 microtype .initial:n = true,
 microtype .usage:n = preamble,

 disablecmds .clist_gset:N = \g__lwc_disablecmds_cl,
 disablecmds .value_required:n = false,
 disablecmds .initial:n = { \@sect },
 disablecmds .usage:n = preamble,

 nobreak .choice:,
 nobreak / keep .code:n = \lua_now:n { lwc.nobreak_behaviour = "keep" },
 nobreak / split .code:n = \lua_now:n { lwc.nobreak_behaviour = "split" },
 nobreak / warn .code:n = \lua_now:n { lwc.nobreak_behaviour = "warn" },
}

% Load the Lua code
\lua_now:n { require "lua-widow-control" }

34

% Here, we enable font expansion/contraction. It isn't strictly necessary for
% lua-widow-control's functionality; however, it is required for the
% lengthened paragraphs to not have terrible spacing.
\bool_if:NT \g__lwc_use_microtype_bool {
 \hook_gput_code:nnn { begindocument / before } { \c__lwc_name_str } {
 \@ifpackageloaded { microtype } {} {
 \RequirePackage[
 final,
 activate = { true, nocompatibility }
]
 { microtype }
 }
 }
}

% Core Function Definitions
\cs_new:Npn __lwc_enable: {
 \lua_now:n { lwc.enable_callbacks() }
}

\cs_new:Npn __lwc_disable: {
 \lua_now:n { lwc.disable_callbacks() }
}

\prg_set_conditional:Nnn __lwc_if_enabled: { T, F, TF } {
 \lua_now:n { lwc.if_lwc_enabled() }
 \prg_return_true:
 \else
 \prg_return_false:
 \fi
}

% Expansion of some parts of the document, such as section headings, is quite
% undesirable, so we'll disable lua-widow-control for certain commands.
\bool_new:N \g__lwc_should_reenable_bool

\cs_new:Npn __lwc_patch_cmd:c #1 {
 \IfFormatAtLeastTF {2021/06/01 } {
 \hook_gput_code:nnn { cmd / #1 / before } { \c__lwc_name_str } {
 % We should only reenable lua-widow-control at the end if it was already
enabled.
 __lwc_if_enabled:TF {
 \bool_gset_true:N \g__lwc_should_reenable_bool
 __lwc_disable:

35

 } {
 \bool_gset_false:N \g__lwc_should_reenable_bool
 }
 }
 \hook_gput_code:nnn { cmd / #1 / after } { \c__lwc_name_str } {
 \bool_if:NT { \g__lwc_should_reenable_bool } {
 __lwc_enable:
 }
 }
 } {
 \msg_warning:nn
 { \c__lwc_name_str }
 { old-format-patch }
 }
}

\cs_new:Npn __lwc_patch_cmd:N #1 {
 __lwc_patch_cmd:c { \cs_to_str:N #1 }
}

\hook_gput_code:nnn { begindocument / before } { \c__lwc_name_str } {
 \clist_map_function:NN \g__lwc_disablecmds_cl __lwc_patch_cmd:N
}

% Define some final keys
\keys_define:nn { \c__lwc_name_str } {
 enable .choice:,
 enable / true .code:n = __lwc_enable:,
 enable / false .code:n = __lwc_disable:,
 enable .initial:n = true,
 enable .default:n = true,
 enable .value_required:n = false,

 disable .code:n = __lwc_disable:,
 disable .value_forbidden:n = true,

 debug .choice:,
 debug / true .code:n = \lua_now:n { lwc.debug = true },
 debug / false .code:n = \lua_now:n { lwc.debug = false },

 strict .meta:n = { emergencystretch = 0pt,
 max-cost = 2500,
 nobreak = warn,
 },

36

 strict .value_forbidden:n = true,

 default .meta:n = { emergencystretch = 3em,
 max-cost = \c_max_int,
 nobreak = keep,
 },
 default .value_forbidden:n = true,
}

% Add the user interface for the keys
\ProcessKeysPackageOptions{ \c__lwc_name_str }

\NewDocumentCommand \lwcsetup {m} { \keys_set:nn{\c__lwc_name_str}{#1} }

% Legacy Commands
\NewDocumentCommand \lwcemergencystretch { } {
 \msg_error:nnnnn
 { \c__lwc_name_str }
 { old-command }
 { lwcemergencystretch }
 { emergencystretch=XXXpt }
}

\NewDocumentCommand \lwcdisablecmd { m } {
 \msg_error:nnxx
 { \c__lwc_name_str }
 { old-command }
 { lwcdisablecmd }
 { disablecmds={\c_backslash_str aaa,~ \c_backslash_str bbb} }
}

\cs_new_eq:NN \lwcenable __lwc_enable:
\cs_new_eq:NN \lwcdisable __lwc_disable:

\endinput

t-lua-widow-control.mkxl/mkiv
%D \module
%D [file=t-lua-widow-control,
%D version=2.0.0, %%version
%D title=lua-widow-control,
%D subtitle=ConTEXt module for lua-widow-control,
%D author=Max Chernoff,
%D date=2022-03-07, %%dashdate

37

%D copyright=Max Chernoff,
%D license=MPL-2.0+,
%D url=https://github.com/gucci-on-fleek/lua-widow-control]
\startmodule[lua-widow-control]
\unprotect

\installnamespace{lwc}

\installcommandhandler \????lwc {lwc} \????lwc

\newdimen\lwc_emergency_stretch
\appendtoks
 \lwc_emergency_stretch=\lwcparameter{emergencystretch}
\to\everysetuplwc

\appendtoks
 \doifelse{\lwcparameter{\c!state}}\v!start{
 \ctxlua{lwc.enable_callbacks()}
 }{
 \ctxlua{lwc.disable_callbacks()}
 }
\to\everysetuplwc

\appendtoks
 \doifelse{\lwcparameter{debug}}\v!start{
 \ctxlua{lwc.debug = true}
 }{
 \ctxlua{lwc.debug = false}
 }
\to\everysetuplwc

\appendtoks
 \ctxlua{lwc.nobreak_behaviour = "\lwcparameter{nobreak}"}
\to\everysetuplwc

\newcount\lwc_max_cost
\appendtoks
 \lwc_max_cost=\lwcparameter{maxcost}
\to\everysetuplwc

\appendtoks
 % We can't just set the penalties because they will be reset automatically
 % at \starttext.
 \startsetups[*default]

38

 \clubpenalty=\lwcparameter{orphanpenalty}
 \widowpenalty=\lwcparameter{widowpenalty}
 \displaywidowpenalty=\lwcparameter{widowpenalty}
 \stopsetups

 \setups[*default]
\to\everysetuplwc

\define\iflwc{\ctxlua{lwc.if_lwc_enabled()}}

\ctxloadluafile{lua-widow-control}

\setuplwc[
 emergencystretch=3em,
 \c!state=\v!start,
 debug=\v!stop,
 orphanpenalty=1,
 widowpenalty=1,
 nobreak=keep,
 maxcost=2147483647,
]

% Here, we enable font expansion/contraction. It isn't strictly necessary for
% lua-widow-control's functionality; however, it is required for the
% lengthened paragraphs to not have terrible spacing.
\definefontfeature[default][default][expansion=quality]
\setupalign[hz]

% Expansion of some parts of the document, such as section headings, is quite
% undesirable, so we'll disable lua-widow-control for certain commands.
% We should only reenable lua-widow-control at the end if it was already enabled.
\newif\iflwc_should_reenable

\define\lwc_patch_pre{%
 \iflwc%
 \lwc_should_reenabletrue%
 \setuplwc[state=stop]%
 \else%
 \lwc_should_reenablefalse
 \fi%
}

\define\lwc_patch_post{\iflwc_should_reenable%

39

 \setuplwc[state=start]%
\fi}

\prependtoks\lwc_patch_pre\to\everybeforesectionheadhandle % Sectioning
\prependtoks\lwc_patch_post\to\everyaftersectionheadhandle

\protect
\stopmodule

lua-widow-control.opm
% lua-widow-control
% https://github.com/gucci-on-fleek/lua-widow-control
% SPDX-License-Identifier: MPL-2.0+
% SPDX-FileCopyrightText: 2022 Max Chernoff

_codedecl\lwcenable{lua-widow-control <v2.0.0>} %%version

_clubpenalty=1
_widowpenalty=1
_displaywidowpenalty=1

_newdimen\lwcemergencystretch
\lwcemergencystretch=3em

_newcount\lwcmaxcost
\lwcmaxcost=2147483647

_directlua{require "lua-widow-control"}

% Define TEX wrappers for Lua functions
_def\lwcenable{_directlua{lwc.enable_callbacks()}}
_def\lwcdisable{_directlua{lwc.disable_callbacks()}}
_def\iflwc{_directlua{lwc.if_lwc_enabled()}}

% Enable lua-widow-control by default when the package is loaded.
\lwcenable

_endcode

40

Demo from Table 1
\definepapersize[smallpaper][
 width=6cm,
 height=8.3cm
]\setuppapersize[smallpaper]

\setuplayout[
 topspace=0.1cm,
 backspace=0.1cm,
 width=middle,
 height=middle,
 header=0pt,
 footer=0pt,
]

\def\lwc/{\sans{lua-\allowbreak widow-\allowbreak control}}
\def\Lwc/{\sans{Lua-\allowbreak widow-\allowbreak control}}

\setupbodyfont[9pt]
\setupindenting[yes, 2em]

\definepalet[layout][grid=middlegray]
\showgrid[nonumber, none, lines]

\definefontfeature[default][default][expansion=quality,protrusion=quality]

\usetypescript[modern-base]
\setupbodyfont[reset,modern]

\setupalign[hz,hanging,tolerant]

\setuplanguage[en][spacing=packed]

\starttext
 \Lwc/ can remove most widows and orphans from a document, \emph{without} stretching
any glue or shortening any pages.

 It does so by automatically lengthening a paragraph on a page where a widow or
orphan would otherwise occur. While \TeX{} breaks paragraphs into their natural
length, \lwc/ is breaking the paragraph 1~line longer than its natural length. \TeX{}'s
paragraph is output to the page, but \lwc/'s paragraph is just stored for later. When a
widow or orphan occurs, \lwc/ can take over. It selects the previously-saved paragraph
with the least badness; then, it replaces \TeX{}'s paragraph with its saved paragraph.
This increases the text block height of the page by 1~line.

41

 Now, the last line of the current page can be pushed to the top of the next page.
This removes the widow or the orphan without creating any additional work.
\stoptext

	Quick Start
	Motivation
	Widows and Orphans
	Widows
	Orphans

	TEX’s Pagination
	Algorithm
	Behavior

	Other Solutions
	Demonstration
	Ignore
	Shorten
	Stretch
	lua-widow-control

	Installation
	TEX Live
	MikTEX
	ConTEXt mkiv Standalone
	Manual
	Steps

	Dependencies
	Plain TEX
	LATEX
	ConTEXt
	OpTEX

	Loading the Package
	Options
	Overview
	Enabling
	Disabling
	Strict Mode
	\emergencystretch
	Selectively Disabling
	Widow and Orphan Penalties
	\nobreak Behaviour
	Maximum Cost
	Debug Mode

	Columns
	Known Issues
	The Algorithm
	Paragraph Breaking
	Page Breaking

	Contributions
	License
	References
	Implementation
	lua-widow-control.lua
	lua-widow-control.tex
	lua-widow-control.sty
	t-lua-widow-control.mkxl/mkiv
	lua-widow-control.opm
	Demo from Table 1

