
1

l u a - w i d o w - c o n t r o l
Max Chernoff

v 2.1.2

ctan.org/pkg/lua-widow-control
github.com/gucci-on-fleek/lua-widow-control

Lua-widow-control is a Plain TEX/LATEX/ConTEXt/OpTEX package that removes wid­
ows and orphans without any user intervention. Using the power of LuaTEX, it does
so without stretching any glue or shortening any pages or columns. Instead, lua-
widow-control automatically lengthens a paragraph on a page or column where a
widow or orphan would otherwise occur.

q u i c k s t a r t
Ensure that your TEX Live/MikTEX distribution is up-to-date. Then, LATEX users
just need to place \usepackage{lua-widow-control} in the preamble of their doc­
ument. For more details, see the Usage sections.

c o n t e n t s
Quick Start 1

Preliminaries 2

Motivation 3

Widows and Orphans 3
Widows · Orphans · Broken Hyphens

TEX’s Pagination 4
Algorithm · Behaviour

Demonstration 6
“Ignore” · “Shorten” · “Stretch”

“lua-widow-control”

Installation 7
TEX Live · MikTEX · Manual · Steps

https://www.ctan.org/pkg/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control

2

Dependencies 7
Plain TEX · LATEX · ConTEXt · OpTEX

Loading the Package 8

Options 8
Overview · Disabling · Enabling

Automatically disabling · \emergencystretch

Penalties · \nobreak Behaviour

Maximum Cost · Debug Mode

Presets 12
default · strict · balanced

Compatibility 13
Columns · Performance · 𝜀-TEX penalties

Grids · Footnotes

Stability 15

Short last lines 15

Known Issues 16

Contributions 17

License 17

References 17

Implementation 18
lua-widow-control.lua · lua-widow-control.tex

lua-widow-control.sty

lua-widow-control-2022-02-22.sty

t-lua-widow-control.mkxl

lua-widow-control.opm · Demo from Table 1

p r e l i m i n a r i e s
This manual begins with a brief introduction to widows, orphans, and lua-widow-
control. For an extended introduction and discussion of these topics, please see the
TUGboat article1 distributed with this manual (Links: local, ctan, GitHub). You
can also skip ahead to the installation instructions on page 7 or the usage section
starting at page 8.

http://mirrors.ctan.org/macros/luatex/generic/lua-widow-control/tb133chernoff-widows.pdf
https://github.com/gucci-on-fleek/lua-widow-control/releases/latest/download/tb133chernoff-widows.pdf

3

m o t i v a t i o n
Unmodified TEX has only two familiar ways of dealing with widows and orphans:
it can either shorten a page by one line, or it can stretch vertical whitespace. TEX
was designed for mathematical and scientific typesetting, where a typical page has
multiple section headings, tables, figures, and equations. For this style of document,
TEX’s default behaviour works quite well, since the slight stretching of whitespace
between the various document elements is nearly imperceptible; however, for prose
or other documents composed almost entirely of paragraphs, there is little vertical
whitespace to stretch.

Lua-widow-control offers an alternative method of removing widows and
orphans: instead of shortening a page or stretching vertical whitespace, lua-widow-
control simply chooses a paragraph to lengthen by one line such that the widow or
orphan is eliminated.

w i d o w s a n d o r p h a n s
Widows A “widow” occurs when the majority of a paragraph is on one page or column, but

the last line is on the following page or column. It not only looks quite odd for a lone
line to be at the start of the page, but it makes a paragraph harder to read since the
separation of a paragraph and its last line disconnects the two, causing the reader
to lose context for the widowed line.

Orphans An “orphan” occurs when the first line of a paragraph is at the end of the page
or column preceding the remainder of the paragraph. They are not as distracting
for the reader, but they are still not ideal. Visually, widows and orphans are about
equally disruptive; however, orphans tend not to decrease the legibility of a text as
much as widows, so some authors choose to ignore them.

Broken
Hyphens

“Broken” hyphens occur whenever a page break occurs in a hyphenated word. These
are not related to widows and orphans; however, breaking a word across two pages
is at least as disruptive for the reader as widows and orphans. TEX identifies broken
hyphens in the same ways as widows and orphans, so lua-widow-control treats
broken hyphens in the same way.

4

Widow Orphan

Figure 1 A visual comparison of widows and orphans.

tex ’ s p a g i n a t i o n
Algorithm It is tricky to understand how lua-widow-control works if you aren’t familiar with

how TEX breaks pages and columns. For a full description, you should consult
Chapter 15 of The TEXBook2 (“How TEX Makes Lines into Pages”); however, this goes
into much more detail than most users require, so here is a very simplified summary
of TEX’s page breaking algorithm:

TEX fills the page with lines and other objects until the next object will no
longer fit. Once no more objects will fit, TEX will align the bottom of the last
line with the bottom of the page by stretching any available vertical spaces if (in
LATEX) \flushbottom is set; otherwise, it will break the page and leave the bot­
tom empty.

However, some objects have “penalties” attached. Penalties encourage or
discourage page breaks from occurring at specific places. For example, LATEX sets a
negative penalty before section headings to encourage a page break there; conversely,
it sets a positive penalty after section headings to discourage breaking.

To reduce widows and orphans, TEX sets weakly-positive penalties between
the first and second lines of a paragraph to prevent orphans, and between the
penultimate and final lines to prevent widows.

Behaviour Due to these “penalties” attached to widows and orphans, TEX tries to avoid creating
them. Widows and orphans with small penalties attached—like LATEX’s default val­
ues of 150—are only lightly coupled to the rest of the paragraph, while widows and
orphans with large penalties—values of 10 000 or more—are treated as infinitely
bad and are thus unbreakable. Intermediate values behave just as you would expect,
discouraging page breaks proportional to their value.

However, when these lines are moved as a group, TEX will have to make a

Ignore Shorten Stretch Lua-widow-control

Lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen-
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX’s
paragraph is output to the page, but lua-
widow-control’s paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX’s paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.
This removes the widow or the orphan with-

Lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen-
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX’s
paragraph is output to the page, but lua-
widow-control’s paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX’s paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

Lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen-
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX’s
paragraph is output to the page, but lua-
widow-control’s paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX’s paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

Lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen-
ing a paragraph on a page where a widow
or orphan would otherwise occur. While
TEX breaks paragraphs into their natural
length, lua-widow-control is breaking the
paragraph 1 line longer than its natural
length. TEX’s paragraph is output to the
page, but lua-widow-control’s paragraph is
just stored for later. When a widow or
orphan occurs, lua-widow-control can take
over. It selects the previously-saved para-
graph with the least badness; then, it re-
places TEX’s paragraph with its saved para-
graph. This increases the text block height
of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

out creating any additional work. This removes the widow or the orphan with-
out creating any additional work.

This removes the widow or the orphan with-
out creating any additional work.

This removes the widow or the orphan with-
out creating any additional work.

\parskip=0pt

\clubpenalty=0
\widowpenalty=0

\parskip=0pt

\clubpenalty=10000
\widowpenalty=10000

\parskip=0pt plus 1fill

\clubpenalty=10000
\widowpenalty=10000

\usepackage{lua-widow-control}

Table 1 A visual comparison of various automated widow handling techniques.

6

page or column with less lines. “Demonstration” goes into further detail about how
TEX deals with these too-short pages or columns.

d e m o n s t r a t i o n
Although TEX’s page breaking algorithm is reasonably straightforward, it can lead
to complex behaviour when widows and orphans are involved. The usual choices,
when rewriting is not possible, are to ignore them, stretch some glue, or shorten the
page. Table 1 has a visual comparison of these options, which we’ll discuss in the
following:

“Ignore” As you can see, the last line of the page is on a separate page from the rest of its
paragraph, creating a widow. This is usually highly distracting for the reader, so it
is best avoided for the reasons previously discussed.

“Shorten” This page did not leave any widows, but it did shorten the previous page by one line.
Sometimes this is acceptable, but usually it looks bad because pages will then have
different text-block heights. This can make the pages look quite uneven, especially
when typesetting with columns or in a book with facing pages.

“Stretch” This page also has no widows and it has a flush bottom margin. However, the space
between each pair of paragraphs had to be stretched.

If this page had many equations, headings, and other elements with natural
space between them, the stretched out space would be much less noticeable. TEX
was designed for mathematical typesetting, so it makes sense that this is its default
behaviour. However, in a page with mostly text, these paragraph gaps look unsightly.

Also, this method is incompatible with grid typesetting, where all glue stretch­
ing must be quantised to the height of a line.

“lua-widow-
control”

Lua-widow-control has none of these issues: it eliminates the widows in a document
while keeping a flush bottom margin and constant paragraph spacing.

To do so, lua-widow-control lengthened the second paragraph by one line. If
you look closely, you can see that this stretched the interword spaces. This stretching
is noticeable when typesetting in a narrow text block, but is mostly imperceptible
with larger widths.

Lua-widow-control automatically finds the “best” paragraph to stretch, so
the increase in interword spaces should almost always be minimal.

7

i n s t a l l a t i o n
Most up-to-date TEX Live and MikTEX systems should already have lua-widow-
control installed. However, a manual installation may occasionally be required.

TEX Live Run tlmgr install lua-widow-control in a terminal, or install using the “TEX Live
Manager” gui.

MikTEX Run mpm --install=lua-widow-control in a terminal, or install using the “MikTEX
Maintenance” gui.

Manual Currently, ConTEXt Mkxl (LuaMetaTEX) users must manually install the package.
Most other users will be better served by using the lua-widow-control supplied by
TEX Live and MikTEX; however, all users may manually install the package if desired.
The procedure should be fairly similar regardless of your os, TEX distribution, or
format.

Steps 1. Download lua-widow-control.tds.zip from ctan, GitHub or the ConTEXt Gar­
den.

2. Unzip the release into your TEXMFLOCAL/ directory. (You can find its location by
running kpsewhich --var-value TEXMFHOME in a terminal)

3. Refresh the filename database:
• ConTEXt: mtxrun --generate
• TEX Live: mktexlsr
• MikTEX: initexmf --update-fndb

d e p e n d e n c i e s
Lua-widow-control does have a few dependencies; however, these will almost cer­
tainly be met by all but the most minimal of TEX installations.

Plain TEX Lua-widow-control requires LuaTEX (≥ 0.85) and the most recent version of lua­
texbase (2015/10/04). Any version of TEX Live ≥ 2016 will meet these requirements.

https://www.ctan.org/pkg/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control/releases/latest
https://modules.contextgarden.net/cgi-bin/module.cgi/action=view/id=127
https://modules.contextgarden.net/cgi-bin/module.cgi/action=view/id=127

8

LATEX Lua-widow-control requires LuaTEX (≥ 0.85), LATEX (≥ 2020/10/01), and microtype
(any version). Any version of TEX Live ≥ 2021 will meet these requirements.

Lua-widow-control also supports a “legacy” mode for older LATEX kernels.
This uses an older version of the LATEX code while still using the most recent Lua
code. This mode requires LuaTEX (≥ 0.85), LATEX (≥ 2015/01/01), microtype (any
version), and etoolbox (any version). Any version of TEX Live ≥ 2016 will meet
these requirements.

Please note that when running in legacy mode, you cannot use the key–
value interface. This legacy interface is undocumented, but mostly the same as the
“Plain TEX” interface.

ConTEXt Lua-widow-control supports both ConTEXt Mkxl (LuaMetaTEX) and ConTEXt Mkiv
(LuaTEX).

OpTEX Lua-widow-control works with any version of OpTEX and has no dependencies.

l o a d i n g t h e p a c k a g e
Plain TEX \input lua-widow-control

LATEX \usepackage{lua-widow-control}

ConTEXt \usemodule[lua-widow-control]

OpTEX \load[lua-widow-control]

o p t i o n s
Lua-widow-control is automatically enabled with the default settings as soon as you
load it. Most users should not need to configure lua-widow-control; however, the
packages provides a few commands.

Overview LATEX users can set the options either when loading the package (\usepackage[⟨op­
tions⟩]{lua-widow-control}) or at any point using \lwcsetup{⟨options⟩}.

ConTEXt users should use the \setuplwc[⟨options⟩] command for setting
options at any point.

Plain TEX and OpTEX are a little different. Some options require you to set
a register (i.e., \lwcemergencystretch = ⟨dimension⟩), while others use macro
arguments (i.e., \lwcnobreak{⟨option⟩}).

9

Disabling You may want to disable lua-widow-control for certain portions of your document.
You can do so with the following commands:
Plain TEX/OpTEX \lwcdisable

LATEX \lwcsetup{disable}

ConTEXt \setuplwc[state = stop]

This prevents lua-widow-control from stretching any paragraphs that follow.
If a page has earlier paragraphs where lua-widow-control was still enabled and a
widow or orphan is detected, lua-widow-control will still attempt to remove the
widow or orphan.

Enabling Lua-widow-control is enabled as soon as the package is loaded. If you have previ­
ously disabled it, you will need to re-enable it to save new paragraphs.
Plain TEX/OpTEX \lwcenable

LATEX \lwcsetup{enable}

ConTEXt \setuplwc[state = start]

Automati­
cally disabling

You may want to disable lua-widow-control for certain commands where stretch­
ing is undesirable such as section headings. Of course, manually disabling and
then enabling lua-widow-control multiple times throughout a document would
quickly become tedious, so lua-widow-control provides some options to do this
automatically for you.

Lua-widow-control automatically patches the default LATEX, ConTEXt, Plain TEX,
OpTEX, memoir, koma-Script, and titlesec section commands, so you don’t need
to patch these. Any others, though, you’ll need to patch yourself.
Plain TEX/OpTEX \lwcdisablecmd ⟨\macro⟩
LATEX \lwcsetup{disablecmds = {⟨macronameone⟩,

⟨macronametwo⟩}}
ConTEXt \prependtoks\lwc @patch@pre\to\everybefore ⟨hook⟩

\prependtoks\lwc @patch@pre\to\everyafter ⟨hook⟩

The Plain TEX, OpTEX, and ConTEXtcommands append to the list of patched
commands: they simply patch the provided commands while leaving the original
patches in place. The LATEX option sets the list of patched commands: it replaces the
default list with the provided list.

10

\emergency
stretch

Lua-widow-control defaults to an \emergencystretch value of 3 em for stretched
paragraphs, but you can configure this.

Lua-widow-control will only use the \emergencystretch when it cannot
lengthen a paragraph in any other way, so it is fairly safe to set this to a large value.
TEX accumulates badness when \emergencystretch is used, so it’s pretty rare that a
paragraph that requires any \emergencystretch will actually be used on the page.
Plain TEX/OpTEX \lwcemergencystretch = ⟨dimension⟩
LATEX \lwcsetup{emergencystretch = ⟨dimension⟩}
ConTEXt \setuplwc[emergencystretch = ⟨dimension⟩]

Penalties You can also manually adjust the penalties that TEX assigns to widows and orphans.
Usually, the defaults are fine, but there are a few circumstances where you may want
to change them.
Plain TEX/OpTEX \widowpenalty = ⟨integer⟩

\clubpenalty = ⟨integer⟩
\brokenpenalty = ⟨integer⟩

LATEX \lwcsetup{widowpenalty = ⟨integer⟩}
\lwcsetup{orphanpenalty = ⟨integer⟩}
\lwcsetup{brokenpenalty = ⟨integer⟩}

ConTEXt \setuplwc[widowpenalty = ⟨integer⟩]
\setuplwc[orphanpenalty = ⟨integer⟩]
\setuplwc[brokenpenalty = ⟨integer⟩]

The value of these penalties determines how much TEX should attempt to
stretch glue before passing the widow or orphan to lua-widow-control. If you set the
values to 1 (default), TEX will stretch nothing and immediately trigger lua-widow-
control; if you set the values to 10 000, TEX will stretch infinitely and lua-widow-
control will never be triggered. If you set the value to some intermediate number,
TEX will first attempt to stretch some glue to remove the widow or orphan; only if it
fails will lua-widow-control come in and lengthen a paragraph. As a special case, if
you set the values to 0, both TEX and lua-widow-control will completely ignore the
widow or orphan.

11

\nobreak
Behaviour

When lua-widow-control encounters an orphan, it removes it by moving the or­
phaned line to the next page. The majority of the time, this is an appropriate so­
lution. However, if the orphan is immediately preceded by a section heading (or
\nobreak⁄\penalty 10000), lua-widow-control would naïvely separate a section
heading from the paragraph that follows. This is almost always undesirable, so lua-
widow-control provides some options to configure this.
Plain TEX/OpTEX \lwcnobreak{⟨value⟩}
LATEX \lwcsetup{nobreak = ⟨value⟩}
ConTEXt \setuplwc[nobreak = ⟨value⟩]

The default value, keep, keeps the section heading with the orphan by moving
both to the next page. The advantage to this option is that it removes the orphan
and retains any \nobreaks; the disadvantage is that moving the section heading can
create a large blank space at the end of the page.

The value split splits up the section heading and the orphan by moving the
orphan to the next page while leaving the heading behind. This is usually a bad
idea, but exists for the sake of flexibility.

The value warn causes lua-widow-control to give up on the page and do
nothing, leaving an orphaned line. Lua-widow-control warns the user so that they
can manually remove the orphan.

keep split warn

Heading
Heading

Heading

Figure 2 A visual comparison of the various nobreak options, where each box
represents a different page.

Maximum
Cost

Lua-widow-control ranks each paragraph on the page by how much it would “cost”
to lengthen that paragraph. By default, lua-widow-control selects the paragraph on
the page with the lowest cost; however, you can configure it to only select paragraphs
below a selected cost.

If there aren’t any paragraphs below the set threshold, then lua-widow-control
won’t remove the widow or orphan and will instead issue a warning.

12

Plain TEX/OpTEX \lwcmaxcost = ⟨integer⟩
LATEX \lwcsetup{max-cost = ⟨integer⟩}
ConTEXt \setuplwc[maxcost = ⟨integer⟩]

Based on my testing, max-cost values less than 1 000 cause completely im­
perceptible changes in interword spacing; values less than 5 000 are only noticeable
if you are specifically trying to pick out the expanded paragraph on the page; values
less than 15 000 are typically acceptable; and larger values may become distract­
ing. Lua-widow-control defaults to an infinite max-cost, although the “strict” and
“balanced” modes sets the values to 5 000 and 10 000 respectively.

Lua-widow-control uses a “cost function” 𝐶 that is initially defined as

𝐶 =
𝑑
√𝑙

where 𝑑 is the total demerits of the paragraph, and 𝑙 is the number of lines in the para­
graph; however, advanced users may also set a custom cost function by redefining
the lwc.paragraph_cost(demerits, lines) function.

Debug Mode Lua-widow-control offers a “debug” mode that prints extra information in the log
files. This may be helpful to understand how lua-widow-control is processing para­
graphs and pages. If you are reporting an issue with lua-widow-control make sure
to compile your document with debug mode enabled!
Plain TEX/OpTEX \lwcdebug 1

\lwcdebug 0

LATEX \lwcsetup{debug = true}

\lwcsetup{debug = false}

ConTEXt \setuplwc[debug = start]

\setuplwc[debug = stop]

p r e s e t s
As you can see, lua-widow-control provides quite a few options. Luckily, there are
a few presets that you can use to set multiple options at once. These presets are
a good starting point for most documents, and you can always manually override
individual options.

13

Currently, these presets are LATEX-only.
LATEX \lwcsetup{⟨preset⟩}

default If you use lua-widow-control without any options, it defaults to this preset. In
default mode, lua-widow-control takes all possible measures to remove widows
and orphans and will not attempt to stretch any vertical glue. This usually
removes >95% of all possible widows and orphans. The catch here is that
this mode is quite aggressive, so it often leaves behind some fairly “spacey”
paragraphs.

This mode is good if you want to remove (nearly) all widows and orphans
from your document, without fine-tuning the results.

strict Lua-widow-control also offers a strict mode. This greatly restricts lua-widow-control’s
tolerance and makes it so that it will only lengthen paragraphs where the change
will be imperceptible.

The caveat with strict mode is that—depending on the document— lua-
widow-control will be able to remove less than a third of the widows and orphans.
For the widows and orphans that can’t be automatically removed, a warning will be
printed to your terminal and log file so that a human can manually fix the situation.

This mode is good if you want the best possible typesetting and are willing
to do some manual editing.

balanced Balanced mode sits somewhere between default mode and strict mode. This mode
first lets TEX stretch a little glue to remove the widow or orphan; only if that fails
will it then trigger lua-widow-control. Even then, the maximum paragraph cost is
capped. Here, lua-widow-control can usually remove 90% of a document’s potential
widows and orphans, and it does so while making a minimal visual impact.

This mode is recommended for most users who care about their document’s
typography. This mode is not the default since it doesn’t remove all widows and
orphans: it still requires a little manual intervention.

c o m p a t i b i l i t y
The lua-widow-control implementation is almost entirely in Lua, with only a minimal
TEX footprint. It doesn’t modify the output routine, inserts⁄floats, \everypar, and
it doesn’t insert any whatsits. This means that it should be compatible with nearly
any TEX package, class, and format. Most changes that lua-widow-control makes
are not observable on the TEX side.

14

Option default balanced strict

max-cost ∞ 10000 5000

emergencystretch 3em 1em 0pt

nobreak keep keep warn

widowpenalty 1 500 1

orphanpenalty 1 500 1

brokenpenalty 1 500 1

Table 2 Lua-widow-control
options set by each mode.

However, on the Lua side, lua-widow-control modifies much of a page’s
internal structure. This should not affect any TEX code; however, it may surprise
Lua code that modifies or depends on the page’s low-level structure. This does not
matter for Plain TEX or LATEX, where even most Lua-based packages don’t depend
on the node list structure; nevertheless, there are a few issues with ConTEXt.

Simple ConTEXt documents tend to be fine, but many advanced ConTEXt
features rely heavily on Lua and can thus be disturbed by lua-widow-control. This
is not a huge issue—the lua-widow-control manual is written in ConTEXt—but
lua-widow-control is inevitably more reliable with Plain TEX and LATEX than with
ConTEXt.

Finally, keep in mind that adding lua-widow-control to a document will
almost certainly change its page break locations.

Columns Since TEX and the formats implement column breaking and page breaking through
the same internal mechanisms, lua-widow-control removes widows and orphans
between columns just as it does with widows and orphans between pages.

Lua-widow-control is known to work with the LATEX class option twocolumn
and the two-column output routine from Chapter 23 of The TEXBook2.

Performance Lua-widow-control runs entirely in a single pass, without depending on any .aux
files or the like. Thus, it shouldn’t meaningfully increase compile times. Although
lua-widow-control internally breaks each paragraph twice, modern computers break
paragraphs near-instantaneously, so you are not likely to notice any slowdown.

15

𝜀-TEX penalties Knuth’s original TEX has three basic line penalties: \interlinepenalty, which
is inserted between all lines; \clubpenalty, which is inserted after the first line;
and \widowpenalty, which is inserted before the last line. The 𝜀-TEX extensions
generalize these commands with a syntax similar to \parshape: with \widow­
penalties you can set the penalty between the last, second last, and 𝑛th last lines
of a paragraph; \interlinepenalties and \clubpenalties behave similarly.

Lua-widow-control makes no explicit attempts to support these new
-penalties commands. Specifically, if you give a line a penalty that matches
either \widowpenalty or \clubpenalty, lua-widow-control will treat the lines
exactly as it would a widow or orphan. So while these commands won’t
break lua-widow-control, they are likely to lead to some unexpected behav­
iour.

Grids Lua-widow-control is fully compatible with the grid snapping features of ConTEXt
ConTEXt Mkiv and ConTEXt Mkxl.

Footnotes If there are footnotes (or any other type of inline \insert) present in the moved line,
lua-widow-control will move both the “footnote mark” and the “footnote text” such
that both are on the same page. However, this may lead to an odd blank space at
the bottom of the page since lua-widow-control needs to move both the line and its
footnotes. Footnotes cause the same page-breaking issues in unmodified Plain TEX
and LATEX, so this is mostly unavoidable.

s t a b i l i t y
The documented interfaces of lua-widow-control can be considered stable: I’m not
planning on removing or modifying any existing options or commands in any way
that would break documents.

However, lua-widow-control’s page breaking is subject to change. I will at­
tempt to keep page breaks the same whenever reasonable; however, I will rarely
make modifications to the algorithm when I can improve the output quality. Any
such changes will be clearly noted in the release notes.

s h o r t l a s t l i n e s
When lengthening a paragraph with \looseness, it is common advice to insert ties
(~) between the last few words of the paragraph to avoid overly-short last lines2. Lua-
widow-control does this automatically, but instead of using ties or \hboxes, it uses the

16

\parfillskip parameter. When lengthening a paragraph (and only when lengthen­
ing a paragraph—remember, lua-widow-control doesn’t interfere with TEX’s output
unless it detects a widow or orphan), lua-widow-control sets \parfillskip to 0pt
plus 0.8\hsize. This normally makes the last line of a paragraph be at least 20%
of the overall paragraph’s width, thus preventing ultra-short lines.

k n o w n i s s u e s
• When a three-line paragraph is at the end of a page forming a widow, lua-widow-

control will remove the widow; however, it will leave an orphan. This issue is
inherent to any process that removes widows through paragraph expansion and
is thus unavoidable. Orphans are considered to be better than widows3, so this
is still an improvement.

• Lua-widow-control only attempts to expand paragraphs; it never attempts to
shrink them. See the TUGboat article1 §15.3 for further discussion. (Issue #33)

• Lua-widow-control can only expand paragraphs that fit completely on a page.
This is unavoidable due to the one-page-at-a-time model: you can’t modify the
bottom half of a paragraph since its top half has already shipped out, and you
can’t expand the top half of a paragraph since that can’t remove orphans. This
only causes issues if your document has paragraphs so long that a page only has
two half-paragraphs and zero whole paragraphs.

• Sometimes a widow or orphan cannot be eliminated because no paragraph has
enough stretch. Sometimes this can be remediated by increasing lua-widow-
control’s \emergencystretch; however, some pages just don’t have any suitable
paragraph.

Long paragraphs with short words tend to be stretchier than short para­
graphs with long words since these long paragraphs have more interword glue.
Narrow columns also stretch more easily than wide columns since you need to
expand a paragraph by less to make a new line.

• When running under LuaMetaTEX (ConTEXt), the log may contain many lines
like “luatex warning > tex: left parfill skip is gone”. These messages
are completely harmless (although admittedly quite annoying). (Issue #7)

• Lua-widow-control only attempts to expand paragraphs on a page with a widow
or orphan. A global system like in A general framework for globally optimized
pagination4 would solve this; however, this is both np-complete5 and impossible

https://github.com/gucci-on-fleek/lua-widow-control/issues/33
https://github.com/gucci-on-fleek/lua-widow-control/issues/7

17

to solve in a single pass. Very rarely would such a system remove widows or
orphans that lua-widow-control cannot.

• Lua-widow-control does not move footnotes in ConTEXt Mkxl due to limitations
with the LuaMetaTEX engine.

c o n t r i b u t i o n s
If you have any issues with lua-widow-control, please create an issue at the project’s
GitHub page. Or, if you think that you can solve any of the “Known Issues” or add
any new features, submit a pr. Thanks!

l i c e n s e
Lua-widow-control is licensed under the Mozilla Public License, version 2.0 or
greater. The documentation is licensed under cc-by-sa, version 4.0 or greater as
well as the mpl.

Please note that a compiled document is not considered to be an “Executable
Form” as defined by the mpl. The mpl and cc-by-sa licenses only apply to you if
you distribute the lua-widow-control source code or documentation.

r e f e r e n c e s
1. Chernoff, M (2022). Automatically removing widows and orphans with

lua-widow-control. TUGboat, 43(1), 28–39. doi: 10.47397/tb/43-1
/tb133chernoff-widows

2. Knuth, DE (2020). The TEXBook. Addison–Wesley. ctan.org/pkg/texbook
3. Bringhurst, R (2004). The Elements of Typographic Style. (3rd ed.). Hartley &

Marks.
4. Mittelbach, F (2018). A general framework for globally optimized pagination.

Computational Intelligence, 35(2), 242–284. doi: 10.1111/coin.12165
5. Plass, MF (1981). Optimal pagination techniques for automatic typesetting systems.

(PhD thesis). Stanford University. tug.org/docs/plass/plass-thesis.pdf

https://github.com/gucci-on-fleek/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control
https://www.mozilla.org/en-US/MPL/2.0/
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://dx.doi.org/10.47397/tb/43-1/tb133chernoff-widows
https://dx.doi.org/10.47397/tb/43-1/tb133chernoff-widows
https://ctan.org/pkg/texbook
https://dx.doi.org/10.1111/coin.12165
https://tug.org/docs/plass/plass-thesis.pdf

18

i m p l e m e n t a t i o n
From here and until the end of this manual is the raw source code of lua-widow-control. This is
primarily of interest to developers; most users need not read further.

This code vaguely resembles the typical LATEX literate programming style, although I use
extensive inline comments instead of arcane docstrip macros. Hopefully this is useful as a reference
for advanced lua-widow-control users as well as anyone doing extensive node manipulation in
LuaTEX.

If want to offer any improvements to the code below, please open an issue or a pr on GitHub.

lua-widow-control.lua

--[[
lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control
SPDX-License-Identifier: MPL-2.0+
SPDX-FileCopyrightText: 2022 Max Chernoff

]]

--- Tell the linter about node attributes
--- @class node
--- @field depth integer
--- @field height integer
--- @field id integer
--- @field list node
--- @field next node
--- @field penalty integer
--- @field prev node
--- @field subtype integer

-- Initial setup
lwc = lwc or {}
lwc.name = "lua-widow-control"

-- Locals for `debug_print`
local debug_lib = debug
local string_rep = string.rep
local write_nl = texio.write_nl

local write_log
if status.luatex_engine == "luametatex" then

write_log = "logfile"
else

write_log = "log"

https://github.com/gucci-on-fleek/lua-widow-control

19

end

--- Prints debugging messages to the log, only if `debug` is set to `true`.

--- @param title string The "title" to use
--- @param text string? The "content" to print
--- @return nil
local function debug(title, text)

if not lwc.debug then return end

-- The number of spaces we need
local filler = 15 - #title

if text then
write_nl(write_log, "LWC (" .. title .. string_rep(" ", filler) .. "): " .. text
)

else
write_nl(write_log, "LWC: " .. string_rep(" ", 18) .. title)

end
end

--[[
\lwc/ is intended to be format-agonistic. It only runs on Lua\TeX{},
but there are still some slight differences between formats. Here, we
detect the format name then set some flags for later processing.

]]
local format = tex.formatname
local context, latex, plain, optex, lmtx

if format:find("cont") then -- cont-en, cont-fr, cont-nl, ...
context = true
if status.luatex_engine == "luametatex" then

lmtx = true
end

elseif format:find("latex") then -- lualatex, lualatex-dev, ...
latex = true

elseif format == "luatex" or format == "luahbtex" then -- Plain
plain = true

elseif format:find("optex") then -- OpTeX
optex = true

end

--[[
Save some local copies of the node library to reduce table lookups.
This is probably a useless micro-optimization, but it is done in all of the

20

ConTeXt and expl3 Lua code, so I should probably do it here too.
]]

-- Node ID's
-- (We need to hardcode the subid's sadly)
local id_from_name = node.id
local baselineskip_subid = 2
local glue_id = id_from_name("glue")
local glyph_id = id_from_name("glyph")
local hlist_id = id_from_name("hlist")
local insert_id = id_from_name("insert") or id_from_name("ins")
local line_subid = 1
local linebreakpenalty_subid = 1
local par_id = id_from_name("par") or id_from_name("local_par")
local penalty_id = id_from_name("penalty")

-- Local versions of globals
local abs = math.abs
local copy = node.copy
local copy_list = node.copy_list or node.copylist
local find_attribute = node.find_attribute or node.findattribute
local free = node.free
local free_list = node.flush_list or node.flushlist
local get_attribute = node.get_attribute or node.getattribute
local insert_token = token.put_next or token.putnext
local last = node.slide
local linebreak = tex.linebreak
local new_node = node.new
local set_attribute = node.set_attribute or node.setattribute
local string_char = string.char
local tex_box = tex.box
local tex_count = tex.count
local tex_dimen = tex.dimen
local tex_lists = tex.lists
local traverse = node.traverse
local traverse_id = node.traverse_id or node.traverseid
local vpack = node.vpack

-- Misc. Constants
local iffalse = token.create("iffalse")
local iftrue = token.create("iftrue")
local INFINITY = 10000
local INSERT_CLASS_MULTIPLE = 1000 * 1000
local INSERT_FIRST_MULTIPLE = 1000
local min_col_width = tex.sp("250pt")

21

local PAGE_MULTIPLE = 100
local SINGLE_LINE = 50

--[[Package/module initialization.

Here, we replace any format/engine-specific variables/functions with some
generic equivalents. This way, we can write the rest of the module without
worrying about any format/engine differences.

]]
local contrib_head,

emergencystretch,
info,
insert_attribute,
max_cost,
pagenum,
paragraph_attribute,
stretch_order,
warning

if lmtx then
-- LMTX has removed underscores from most of the Lua parts
debug("LMTX")
contrib_head = "contributehead"
stretch_order = "stretchorder"

else
contrib_head = "contrib_head"
stretch_order = "stretch_order"

end

if context then
debug("ConTeXt")

warning = logs.reporter(lwc.name, "warning")
local _info = logs.reporter(lwc.name, "info")
--[[We don't want the info messages on the terminal, but ConTeXt doesn't

provide any logfile-only reporters, so we need this hack.
]]

info = function (text)
logs.pushtarget("logfile")
_info(text)
logs.poptarget()

end
paragraph_attribute = attributes.public(lwc.name .. "_paragraph")
insert_attribute = attributes.public(lwc.name .. "_insert")

22

pagenum = function() return tex_count["realpageno"] end

-- Dimen names
emergencystretch = "lwc_emergency_stretch"
max_cost = "lwc_max_cost"

elseif plain or latex or optex then
pagenum = function() return tex_count[0] end

-- Dimen names
if tex.isdimen("g__lwc_emergencystretch_dim") then

emergencystretch = "g__lwc_emergencystretch_dim"
max_cost = "g__lwc_maxcost_int"

else
emergencystretch = "lwcemergencystretch"
max_cost = "lwcmaxcost"

end

if plain or latex then
debug("Plain/LaTeX")
luatexbase.provides_module {

name = lwc.name,
date = "2022/05/26", --%%slashdate
version = "2.1.2", --%%version
description = [[

This module provides a LuaTeX-based solution to prevent
widows and orphans from appearing in a document. It does
so by increasing or decreasing the lengths of previous
paragraphs.]],

}
warning = function(str) luatexbase.module_warning(lwc.name, str) end
info = function(str) luatexbase.module_info(lwc.name, str) end
paragraph_attribute = luatexbase.new_attribute(lwc.name .. "_paragraph")
insert_attribute = luatexbase.new_attribute(lwc.name .. "_insert")

elseif optex then
debug("OpTeX")

warning = function(str) write_nl(lwc.name .. " Warning: " .. str) end
info = function(str) write_nl("log", lwc.name .. " Info: " .. str) end
paragraph_attribute = alloc.new_attribute(lwc.name .. "_paragraph")
insert_attribute = alloc.new_attribute(lwc.name .. "_insert")

end
else -- This shouldn't ever happen

error [[Unsupported format.

23

Please use LaTeX, Plain TeX, ConTeXt or OpTeX.]]
end

--[[Table to hold the alternate paragraph versions.

This is global(ish) mutable state, which isn't ideal, but any other way of
passing this data around would be even worse.

]]
local paragraphs = {}
local inserts = {}

--[[
Function definitions

]]

--- Gets the current paragraph and page locations
--- @return string
local function get_location()

return "At " .. pagenum() .. "/" .. #paragraphs
end

--- Prints the starting glyphs and glue of an `hlist`

--- @param head node
--- @return nil
local function get_chars(head)

if not lwc.debug then return end

local chars = ""
for n in traverse(head) do

if n.id == glyph_id then
if n.char < 127 then -- Only ASCII

chars = chars .. string_char(n.char)
else

chars = chars .. "#" -- Replacement for an unknown glyph
end

elseif n.id == glue_id then
chars = chars .. " " -- Any glue goes to a space

end
if #chars > 25 then

break
end

end

debug(get_location(), chars)

24

end

--- The "cost function" to use. Users can redefine this if they wish.

--- @param demerits number The demerits of the broken paragraph
--- @param lines number The number of lines in the broken paragraph
--- @return number The cost of the broken paragraph
function lwc.paragraph_cost(demerits, lines)

return demerits / math.sqrt(lines)
end

--- Checks if the ConTeXt "grid snapping" is active
--- @return boolean
local function grid_mode_enabled()

-- Compare the token "mode" to see if `\\ifgridsnapping` is `\\iftrue`
return token.create("ifgridsnapping").mode == iftrue.mode

end

--- Gets the next node of a specified type/subtype in a node list

--- @param head node The head of the node list
--- @param id number The node type
--- @param args table?
--- subtype: number = The node subtype
--- reverse: bool = Whether we should iterate backwards
--- @return node
local function next_of_type(head, id, args)

args = args or {}

if lmtx or not args.reverse then
for n, subtype in traverse_id(id, head, args.reverse) do

if (subtype == args.subtype) or (args.subtype == nil) then
return n

end
end

else
--[[Only LMTX has the built-in backwards traverser, so we need to do it

ourselves here.
]]

while head do
if head.id == id and

(head.subtype == args.subtype or args.subtype == nil)
then

return head

25

end
head = head.prev

end
end

end

--- Breaks a paragraph one line longer than natural

--- @param head node The unbroken paragraph
--- @return node long_node The broken paragraph
--- @return table long_info An info table about the broken paragraph
local function long_paragraph(head)

-- We can't modify the original paragraph
head = copy_list(head)

-- Prevent ultra-short last lines (\TeX{}Book p. 104), except with narrow columns
-- Equivalent to \\parfillskip=0pt plus 0.8\\hsize
local parfillskip
if lmtx or last(head).id ~= glue_id then

-- LMTX does not automatically add the \\parfillskip glue
parfillskip = new_node("glue", "parfillskip")

else
parfillskip = last(head)

end

if tex.hsize > min_col_width then
parfillskip[stretch_order] = 0
parfillskip.stretch = 0.8 * tex.hsize -- Last line must be at least 20% long

end

if lmtx or last(head).id ~= glue_id then
last(head).next = parfillskip

end

-- Break the paragraph 1 line longer than natural
return linebreak(head, {

looseness = 1,
emergencystretch = tex_dimen[emergencystretch],

})
end

--- Breaks a paragraph at its natural length

--- @param head node The unbroken paragraph
--- @return table natural_info An info table about the broken paragraph

26

local function natural_paragraph(head)
-- We can't modify the original paragraph
head = copy_list(head)

--[[Contrary to the documentation, LMTX does not automatically add
the \\parfillskip glue before `pre_linebreak_filter`, so we need
to add it here so that our \\prevgraf comparisons are correct.

]]
if lmtx then

parfillskip = new_node("glue", "parfillskip")
parfillskip[stretch_order] = 1
parfillskip.stretch = 1 -- 0pt plus 1fil
last(head).next = parfillskip

end

-- Break the paragraph naturally to get \\prevgraf
local natural_node, natural_info = linebreak(head)
free_list(natural_node)

return natural_info
end

--- Saves each paragraph, but lengthened by 1 line

--- Called by the `pre_linebreak_filter` callback

--- @param head node
--- @return node
function lwc.save_paragraphs(head)

if (head.id ~= par_id and context) or -- Ensure that we were actually given a par
status.output_active or -- Don't run during the output routine
tex.nest.ptr > 1 -- Don't run inside boxes

then
return head

end

-- Prevent the "underfull hbox" warnings when we store a potential paragraph
local renable_box_warnings
if (context or optex) or

#luatexbase.callback_descriptions("hpack_quality") == 0
then -- See #18 and michal-h21/linebreaker#3

renable_box_warnings = true
lwc.callbacks.disable_box_warnings.enable()

end

27

long_node, long_info = long_paragraph(head)

natural_info = natural_paragraph(head)

if renable_box_warnings then
lwc.callbacks.disable_box_warnings.disable()

end

if not grid_mode_enabled() then
-- Offset the \\prevdepth differences between natural and long
local prevdepth = new_node("glue")
prevdepth.width = natural_info.prevdepth - long_info.prevdepth
last(long_node).next = prevdepth

end

local long_cost = lwc.paragraph_cost(long_info.demerits, long_info.prevgraf)

if long_info.prevgraf == natural_info.prevgraf + 1 and
long_cost > 10 -- Any paragraph that is "free" to expand is suspicious

then
table.insert(paragraphs, {

cost = long_cost,
node = next_of_type(long_node, hlist_id, { subtype = line_subid })

})
end

-- Print some debugging information
get_chars(head)
debug(get_location(), "nat lines " .. natural_info.prevgraf)
debug(

get_location(),
"nat cost " ..
lwc.paragraph_cost(natural_info.demerits, natural_info.prevgraf)

)
debug(get_location(), "long lines " .. long_info.prevgraf)
debug(

get_location(),
"long cost " ..
lwc.paragraph_cost(long_info.demerits, long_info.prevgraf)

)

-- \ConTeXt{} crashes if we return `true`
return head

end

28

--- Tags the beginning and the end of each paragraph as it is added to the page.

--- We add an attribute to the first and last node of each paragraph. The ID is
--- some arbitrary number for \lwc/, and the value corresponds to the
--- paragraphs index, which is negated for the end of the paragraph.

--- @param head node
--- @return nil
local function mark_paragraphs(head)

-- Tag the paragraphs
if not status.output_active then -- Don't run during the output routine

-- Get the start and end of the paragraph
local top_para = next_of_type(head, hlist_id, { subtype = line_subid })
local bottom_para = last(head)

while bottom_para.id == insert_id do
bottom_para = bottom_para.prev

end

if top_para ~= bottom_para then
set_attribute(

top_para,
paragraph_attribute,
#paragraphs + (PAGE_MULTIPLE * pagenum())

)
set_attribute(

bottom_para,
paragraph_attribute,
-1 * (#paragraphs + (PAGE_MULTIPLE * pagenum()))

)
else

-- We need a special tag for a 1-line paragraph since the node can only
-- have a single attribute value
set_attribute(

top_para,
paragraph_attribute,
#paragraphs + (PAGE_MULTIPLE * pagenum()) + SINGLE_LINE

)
end

end
end

--- Tags the each line with the indices of any corresponding inserts.

29

--- We need to tag the first element of the hlist before the any insert nodes
--- since the insert nodes are removed before `pre_output_filter` gets called.

--- @param head node
--- @return nil
local function mark_inserts(head)

local insert_indices = {}
for insert in traverse_id(insert_id, head) do

-- Save the found insert nodes for later
inserts[#inserts+1] = copy(insert)

-- Tag the insert's content so that we can find it later
set_attribute(insert.list, insert_attribute, #inserts)

for n in traverse(insert.list.next) do
set_attribute(n, insert_attribute, -1 * #inserts)

end

--[[Each hlist/line can have multiple inserts, but so we can't just tag
the hlist as we go. Instead, we need save up all of their indices,
then tag the hlist with the first and last indices.

]]
insert_indices[#insert_indices+1] = #inserts

if not insert.next or
insert.next.id ~= insert_id

then
local hlist_before = next_of_type(insert, hlist_id, { reverse = true})

--[[We tag the first element of the hlist/line with an integer
that holds the insert class and the first and last indices
of the inserts contained in the line. This won't work if
the line has multiple classes of inserts, but I don't think
that happens in real-world documents.

]]
set_attribute(

hlist_before.list,
insert_attribute,
insert.subtype * INSERT_CLASS_MULTIPLE +
insert_indices[1] * INSERT_FIRST_MULTIPLE +
insert_indices[#insert_indices]

)

-- Clear the indices to prepare for the next line
insert_indices = {}

30

end
end

end

--- Saves the inserts and tags a typeset paragraph. Called by the
--- `post_linebreak_filter` callback.

--- @param head node
--- @return node
function lwc.mark_paragraphs(head)

mark_paragraphs(head)
mark_inserts(head)

return head
end

--- Checks to see if a penalty matches the widow/orphan/broken penalties

--- @param penalty number
--- @return boolean
function is_matching_penalty(penalty)

local widowpenalty = tex.widowpenalty
local clubpenalty = tex.clubpenalty
local displaywidowpenalty = tex.displaywidowpenalty
local brokenpenalty = tex.brokenpenalty

penalty = penalty - tex.interlinepenalty

-- https://tug.org/TUGboat/tb39-3/tb123mitt-widows-code.pdf#subsection.0.2.1
return penalty ~= 0 and

penalty < INFINITY and (
penalty == widowpenalty or
penalty == displaywidowpenalty or
penalty == clubpenalty or
penalty == clubpenalty + widowpenalty or
penalty == clubpenalty + displaywidowpenalty or
penalty == brokenpenalty or
penalty == brokenpenalty + widowpenalty or
penalty == brokenpenalty + displaywidowpenalty or
penalty == brokenpenalty + clubpenalty or
penalty == brokenpenalty + clubpenalty + widowpenalty or
penalty == brokenpenalty + clubpenalty + displaywidowpenalty

)
end

31

--- Reset any state saved between pages

--- @return nil
local function reset_state()

paragraphs = {}

for _, insert in ipairs(inserts) do
free(insert)

end

inserts = {}
end

--- When we are unable to remove a widow/orphan, print a warning

--- @return nil
local function remove_widows_fail()

warning("Widow/Orphan/broken hyphen NOT removed on page " .. pagenum())
reset_state()

end

--- Finds the first and last paragraphs present on a page

--- @param head node The node representing the start of the page
--- @return number first_index The index of the first paragraph on the page in
--- the `paragraphs` table
--- @return number last_index The index of the last paragraph on the page in the
--- `paragraphs` table
local function first_last_paragraphs(head)

local first_index, last_index

-- Find the last paragraph on the page, starting at the end, heading in reverse
local n = last(head)
while n do

local value = get_attribute(n, paragraph_attribute)
if value then

last_index = value % PAGE_MULTIPLE
break

end

n = n.prev
end

-- Find the first paragraph on the page, from the top
local first_val, first_head = find_attribute(head, paragraph_attribute)

32

if first_val // PAGE_MULTIPLE == pagenum() - 1 then
--[[If the first complete paragraph on the page was initially broken on the

previous page, then we can't expand it here so we need to skip it.
]]

first_index = find_attribute(
first_head.next,
paragraph_attribute

) % PAGE_MULTIPLE
else

first_index = first_val % PAGE_MULTIPLE
end

return first_index, last_index
end

--- Selects the "best" paragraph on the page to expand

--- @param head node The node representing the start of the page
--- @return number? best_index The index of the paragraph to expand in the
--- `paragraphs` table
local function best_paragraph(head)

local first_paragraph_index, last_paragraph_index = first_last_paragraphs(head)

-- Find the paragraph on the page with the least cost.
local best_index = 1
local best_cost = paragraphs[best_index].cost

-- We find the current "best" replacement, then free the unused ones
for index, paragraph in pairs(paragraphs) do

if paragraph.cost < best_cost and
index < last_paragraph_index and
index >= first_paragraph_index

then
-- Free the old best paragraph
free_list(paragraphs[best_index].node)
paragraphs[best_index].node = nil
-- Set the new best paragraph
best_index, best_cost = index, paragraph.cost

elseif index > 1 then
-- Not sure why `i > 1` is required?
free_list(paragraph.node)
paragraph.node = nil

end
end

33

debug(
"selected para",
pagenum() .. "/" .. best_index .. " (" .. best_cost .. ")"

)

if best_cost > tex_count[max_cost] or
best_index == last_paragraph_index

then
return nil

else
return best_index

end
end

--- Gets any inserts present in the moved line

--- @param last_line node The moved last line
--- @return table<node> inserts A list of the present inserts
local function get_inserts(last_line)

local selected_inserts = {}

local n = last_line.list
while n do -- Iterate through the last line

local line_value
line_value, n = find_attribute(n, insert_attribute)

if not n then
break

end

--[[With LuaMetaTeX, the subtype of `insert` nodes is always zero,
so we cannot detect their class therefore we can't fix any moved
footnotes.

]]
if lmtx then

warning("!!!Incorrect footnotes on page " .. pagenum() .. "!!!")
return {}

end

-- Demux the insert values
local class = line_value // INSERT_CLASS_MULTIPLE
local first_index = (line_value % INSERT_CLASS_MULTIPLE) // INSERT_FIRST_MULTIPLE

local last_index = line_value % INSERT_FIRST_MULTIPLE

34

-- Get the output box containing the insert boxes
local insert_box = tex_box[class]

local m = insert_box.list
while m do -- Iterate through the insert box

local box_value
box_value, m = find_attribute(m, insert_attribute)

if not m then
break

end

if abs(box_value) >= first_index and
abs(box_value) <= last_index

then
-- Remove the respective contents from the insert box
insert_box.list = node.remove(insert_box.list, m)

if box_value > 0 then
selected_inserts[#selected_inserts + 1] = copy(inserts[box_value])

end
end

m = m.next
end

if not insert_box.list then
tex_box[class] = nil

end

n = n.next
end

if #selected_inserts ~= 0 then
info("Moving footnotes on page " .. pagenum())

end

return selected_inserts
end

lwc.nobreak_behaviour = "keep"
--- Moves the last line of the page onto the following page.

--- This is the most complicated function of the module since it needs to
--- look back to see if there is a heading preceding the last line, then it does
--- some low-level node shuffling.

35

--- @param head node The node representing the start of the page
--- @return boolean success
local function move_last_line(head)

-- Start of final paragraph
debug("remove_widows", "moving last line")

-- Here we check to see if the widow/orphan was preceded by a large penalty
local big_penalty_found, last_line, hlist_head
local n = last(head).prev
while n do

if n.id == glue_id then
-- Ignore any glue nodes

elseif n.id == penalty_id and n.penalty >= INFINITY then
-- Infinite break penalty
big_penalty_found = true

elseif big_penalty_found and n.id == hlist_id then
-- Line before the penalty
if lwc.nobreak_behaviour == "keep" then

hlist_head = n
big_penalty_found = false

elseif lwc.nobreak_behaviour == "split" then
n = last(head)
break

elseif lwc.nobreak_behaviour == "warn" then
debug("last line", "heading found")
return false

end
else

-- Not found
if hlist_head then

n = hlist_head
else

n = last(head)
end
break

end
n = n.prev

end

local potential_penalty = n.prev.prev

if potential_penalty and
potential_penalty.id == penalty_id and

36

potential_penalty.subtype == linebreakpenalty_subid and
is_matching_penalty(potential_penalty.penalty)

then
warning("Making a new widow/orphan/broken hyphen on page " .. pagenum())

end

last_line = copy_list(n)

-- Reinsert any inserts originally present in this moved line
local selected_inserts = get_inserts(last_line)
for _, insert in ipairs(selected_inserts) do

last(last_line).next = insert
end

-- Add back in the content from the next page
last(last_line).next = copy_list(tex_lists[contrib_head])

n.prev.prev.next = nil

-- Set the content of the next page
last(last_line)
tex_lists[contrib_head] = last_line

return true
end

--- Replace the chosen paragraph with its expanded version.

--- This is the "core function" of the module since it is what ultimately causes
--- the expansion to occur.

--- @param head node
--- @param paragraph_index number
local function replace_paragraph(head, paragraph_index)

local target_node = paragraphs[paragraph_index].node
local free_next_nodes = false

local start_found = false
local end_found = false

-- Loop through all of the nodes on the page with the lwc attribute
local n = head
while n do

local value
value, n = find_attribute(n, paragraph_attribute)

37

if not n then
break

end

debug("remove_widows", "found " .. value)

-- Insert the start of the replacement paragraph
if value == paragraph_index + (PAGE_MULTIPLE * pagenum()) or

value == paragraph_index + (PAGE_MULTIPLE * pagenum()) + SINGLE_LINE
then

debug("remove_widows", "replacement start")
start_found = true

-- Fix the `\\baselineskip` glue between paragraphs
height_difference = (

next_of_type(n, hlist_id, { subtype = line_subid }).height -
next_of_type(target_node, hlist_id, { subtype = line_subid }).height

)

local prev_bls = next_of_type(
n,
glue_id,
{ subtype = baselineskip_subid, reverse = true }

)

if prev_bls then
prev_bls.width = prev_bls.width + height_difference

end

n.prev.next = target_node
free_next_nodes = true

end

-- Insert the end of the replacement paragraph
if value == -1 * (paragraph_index + (PAGE_MULTIPLE * pagenum())) or

value == paragraph_index + (PAGE_MULTIPLE * pagenum()) + SINGLE_LINE
then

debug("remove_widows", "replacement end")
end_found = true

local target_node_last = last(target_node)

if grid_mode_enabled() then
-- Account for the difference in depth
local after_glue = new_node("glue")
after_glue.width = n.depth - target_node_last.depth

38

target_node_last.next = after_glue

after_glue.next = n.next
else

target_node_last.next = n.next
end

break
end

if free_next_nodes then
n = free(n)

else
n = n.next

end
end

if not (start_found and end_found) then
warning("Paragraph NOT expanded on page " .. pagenum())

end
end

--- Remove the widows and orphans from the page, just after the output routine.

--- This is called just after the end of the output routine, before the page is
--- shipped out. If the output penalty indicates that the page was broken at a
--- widow or an orphan, we replace one paragraph with the same paragraph, but
--- lengthened by one line. Then, we can push the bottom line of the page to the
--- next page.

--- @param head node
--- @return node
function lwc.remove_widows(head)

debug("outputpenalty", tex.outputpenalty .. " " .. #paragraphs)

-- See if there is a widow/orphan for us to remove
if not is_matching_penalty(tex.outputpenalty) then

reset_state()
return head

end

info("Widow/orphan/broken hyphen detected. Attempting to remove")

-- Nothing that we can do if there aren't any paragraphs available to expand
if #paragraphs == 0 then

39

remove_widows_fail()
return head

end

-- Check the original height of \\box255
local vsize = tex_dimen.vsize
local orig_height_diff = vpack(head).height - vsize

-- Find the paragraph to expand
local paragraph_index = best_paragraph(head)

if not paragraph_index then
remove_widows_fail()
return head

end

-- Move the last line of the page to the next page
if not move_last_line(head) then

remove_widows_fail()
return head

end

-- Replace the chosen paragraph with its expanded version
replace_paragraph(head, paragraph_index)

--[[The final \\box255 needs to be exactly \\vsize tall to avoid
over/underfull box warnings, so we correct any discrepancies
here.

]]
local new_height_diff = vpack(head).height - vsize
-- We need the original height discrepancy in case there are \\vfill's
local net_height_diff = orig_height_diff - new_height_diff

if abs(net_height_diff) > 0 and
-- A difference larger than 0.25\\baselineskip is probably not from \lwc/
abs(net_height_diff) < tex.skip.baselineskip.width / 4

then
local bottom_glue = new_node("glue")
bottom_glue.width = net_height_diff
last(head).next = bottom_glue

end

info(
"Widow/orphan/broken hyphen successfully removed at paragraph "
.. paragraph_index

40

.. " on page "

.. pagenum()
)

reset_state()

return head
end

--- Create a table of functions to enable or disable a given callback

--- @param t table Parameters of the callback to create
--- callback: string = The \LuaTeX{} callback name
--- func: function = The function to call
--- name: string = The name/ID of the callback
--- category: string = The category for a \ConTeXt{} "Action"
--- position: string = The "position" for a \ConTeXt{} "Action"
--- lowlevel: boolean = If we should use a lowlevel \LuaTeX{} callback instead of a
--- \ConTeXt{} "Action"
--- @return table t Enablers/Disablers for the callback
--- enable: function = Enable the callback
--- disable: function = Disable the callback
local function register_callback(t)

if plain or latex then -- Both use \LuaTeX{}Base for callbacks
return {

enable = function()
luatexbase.add_to_callback(t.callback, t.func, t.name)

end,
disable = function()

luatexbase.remove_from_callback(t.callback, t.name)
end,

}
elseif context and not t.lowlevel then

return {
--[[Register the callback when the table is created,

but activate it when `enable()` is called.
]]

enable = nodes.tasks.appendaction(t.category, t.position, "lwc." .. t.name)
or function()

nodes.tasks.enableaction(t.category, "lwc." .. t.name)
end,

disable = function()
nodes.tasks.disableaction(t.category, "lwc." .. t.name)

end,

41

}
elseif context and t.lowlevel then

--[[Some of the callbacks in \ConTeXt{} have no associated "actions". Unlike
with \LuaTeX{}base, \ConTeXt{} leaves some \LuaTeX{} callbacks unregistered
and unfrozen. Because of this, we need to register some callbacks at the
engine level. This is fragile though, because a future \ConTeXt{} update
may decide to register one of these functions, in which case
\lwc/ will crash with a cryptic error message.

]]
return {

enable = function() callback.register(t.callback, t.func) end,
disable = function() callback.register(t.callback, nil) end,

}
elseif optex then -- Op\TeX{} is very similar to luatexbase

return {
enable = function()

callback.add_to_callback(t.callback, t.func, t.name)
end,
disable = function()

callback.remove_from_callback(t.callback, t.name)
end,

}
end

end

-- Add all of the callbacks
lwc.callbacks = {

disable_box_warnings = register_callback({
callback = "hpack_quality",
func = function() end,
name = "disable_box_warnings",
lowlevel = true,

}),
remove_widows = register_callback({

callback = "pre_output_filter",
func = lwc.remove_widows,
name = "remove_widows",
lowlevel = true,

}),
save_paragraphs = register_callback({

callback = "pre_linebreak_filter",
func = lwc.save_paragraphs,
name = "save_paragraphs",

42

category = "processors",
position = "after",

}),
mark_paragraphs = register_callback({

callback = "post_linebreak_filter",
func = lwc.mark_paragraphs,
name = "mark_paragraphs",
category = "finalizers",
position = "after",

}),
}

local lwc_enabled = false
--- Enables the paragraph callbacks
function lwc.enable_callbacks()

debug("callbacks", "enabling")
if not lwc_enabled then

lwc.callbacks.save_paragraphs.enable()
lwc.callbacks.mark_paragraphs.enable()

lwc_enabled = true
else

info("Already enabled")
end

end

--- Disables the paragraph callbacks
function lwc.disable_callbacks()

debug("callbacks", "disabling")
if lwc_enabled then

lwc.callbacks.save_paragraphs.disable()
lwc.callbacks.mark_paragraphs.disable()
--[[We do \emph{not} disable `remove_widows` callback, since we still want

to expand any of the previously-saved paragraphs if we hit an orphan
or a widow.

]]

lwc_enabled = false
else

info("Already disabled")
end

end

function lwc.if_lwc_enabled()

43

debug("iflwc")
if lwc_enabled then

insert_token(iftrue)
else

insert_token(iffalse)
end

end

--- Mangles a macro name so that it's suitable for a specific format

--- @param name string The plain name
--- @param args table<string> The TeX types of the function arguments
--- @return string name The mangled name
local function mangle_name(name, args)

if plain then
return "lwc@" .. name:gsub("_", "@")

elseif optex then
return "_lwc_" .. name

elseif context then
return "lwc_" .. name

elseif latex then
return "__lwc_" .. name .. ":" .. string_rep("n", #args)

end
end

--- Creates a TeX command that evaluates a Lua function

--- @param name string The name of the csname to define
--- @param func function
--- @param args table<string> The TeX types of the function arguments
--- @return nil
local function register_tex_cmd(name, func, args)

local scanning_func
name = mangle_name(name, args)

if not context then
local scanners = {}
for _, arg in ipairs(args) do

scanners[#scanners+1] = token['scan_' .. arg]
end

scanning_func = function()
local values = {}
for _, scanner in ipairs(scanners) do

44

values[#values+1] = scanner()
end

func(table.unpack(values))
end

end

if optex then
define_lua_command(name, scanning_func)
return

elseif plain or latex then
local index = luatexbase.new_luafunction(name)
lua.get_functions_table()[index] = scanning_func
token.set_lua(name, index)

elseif context then
interfaces.implement {

name = name,
public = true,
arguments = args,
actions = func

}
end

end

register_tex_cmd("if_enabled", lwc.if_lwc_enabled, {})
register_tex_cmd("enable", lwc.enable_callbacks, {})
register_tex_cmd("disable", lwc.disable_callbacks, {})
register_tex_cmd(

"nobreak",
function(str)

lwc.nobreak_behaviour = str
end,
{ "string" }

)
register_tex_cmd(

"debug",
function(str)

lwc.debug = str ~= "0" and str ~= "false" and str ~= "stop"
end,
{ "string" }

)

--- Silence the luatexbase "Enabling/Removing <callback>" info messages

45

--- Every time that a paragraph is typeset, \lwc/ hooks in
--- and typesets the paragraph 1 line longer. Some of these longer paragraphs
--- will have pretty bad badness values, so TeX will issue an over/underfull
--- hbox warning. To block these warnings, we hook into the `hpack_quality`
--- callback and disable it so that no warning is generated.

--- However, each time that we enable/disable the null `hpack_quality` callback,
--- luatexbase puts an info message in the log. This completely fills the log file
--- with useless error messages, so we disable it here.

--- This uses the Lua `debug` library to internally modify the log upvalue in the
--- `add_to_callback` function. This is almost certainly a terrible idea, but I don't
--- know of a better way.

--- @return nil
local function silence_luatexbase()

local nups = debug_lib.getinfo(luatexbase.add_to_callback).nups

for i = 1, nups do
local name, func = debug_lib.getupvalue(luatexbase.add_to_callback, i)
if name == "luatexbase_log" then

debug_lib.setupvalue(
luatexbase.add_to_callback,
i,
function(text)

if text:match("^Inserting") or text:match("^Removing") then
return

else
func(text)

end
end

)
return

end
end

end

--[[Call `silence_luatexbase` in Plain and LaTeX, unless the undocmented global
`LWC_NO_DEBUG` is set. We provide this opt-out in case something goes awry
with the `debug` library calls.

]]
if (plain or latex) and

not LWC_NO_DEBUG --- @diagnostic disable-line
then

46

silence_luatexbase()
end

-- Activate \lwc/
lwc.callbacks.remove_widows.enable()

return lwc

47

lua-widow-control.tex

% lua-widow-control
% https://github.com/gucci-on-fleek/lua-widow-control
% SPDX-License-Identifier: MPL-2.0+
% SPDX-FileCopyrightText: 2022 Max Chernoff

\wlog{lua-widow-control v2.1.2} %%version

\ifx\directlua\undefined
\errmessage{%

LuaTeX is required for this package.
Make sure to compile with `luatex'%

}
\fi

\catcode`@=11

\input ltluatex % \LuaTeX{}Base

\clubpenalty=1
\widowpenalty=1
\displaywidowpenalty=1
\brokenpenalty=1

\newdimen\lwcemergencystretch
\lwcemergencystretch=3em

\newcount\lwcmaxcost
\lwcmaxcost=2147483647

\directlua{require "lua-widow-control"}

% Here, we enable font expansion/contraction. It isn't strictly necessary for
% \lwc/'s functionality; however, it is required for the
% lengthened paragraphs to not have terrible spacing.
\expandglyphsinfont\the\font 20 20 5
\adjustspacing=2

% Enable \lwc/ by default when the package is loaded.
\lwc@enable

% Expansion of some parts of the document, such as section headings, is quite
% undesirable, so we'll disable \lwc/ for certain commands.

% We should only reenable \lwc/ at the end if it was already enabled.
\newcount\lwc@disable@count

48

\def\lwc@patch@pre{%
\lwc@if@enabled%

\advance\lwc@disable@count by 1%
\lwc@disable%

\fi%
}

\def\lwc@patch@post{
\ifnum\lwc@disable@count>0%

\lwc@enable%
\advance\lwc@disable@count by -1%

\fi
}

\def\lwc@extractcomponents #1:#2->#3\STOP{%
\def\lwc@params{#2}%
\def\lwc@body{#3}%

}

\def\lwcdisablecmd#1{%
\ifdefined#1%

\expandafter\lwc@extractcomponents\meaning#1\STOP%
\begingroup%

\catcode`@=11%
\expanded{%

\noexpand\scantokens{%
\gdef\noexpand#1\lwc@params{%

\noexpand\lwc@patch@pre\lwc@body\noexpand\lwc@patch@post%
}%

}%
}%

\endgroup%
\fi%

}

\begingroup
\suppressoutererror=1
\lwcdisablecmd{\beginsection} % Sectioning

\endgroup

% Make the commands public
\let\lwcenable=\lwc@enable
\let\lwcdisable=\lwc@disable
\let\lwcdebug=\lwc@debug

49

\let\iflwc=\lwc@if@enabled
\let\lwcnobreak=\lwc@nobreak

\catcode`@=12
\endinput

50

lua-widow-control.sty

% lua-widow-control
% https://github.com/gucci-on-fleek/lua-widow-control
% SPDX-License-Identifier: MPL-2.0+
% SPDX-FileCopyrightText: 2022 Max Chernoff

% Formats built after 2015 include \LuaTeX{}Base, so this is the absolute
% minimum version that we will run under.
\NeedsTeXFormat{LaTeX2e}[2015/01/01]

% For _really_ old formats
\providecommand\DeclareRelease[3]{}
\providecommand\DeclareCurrentRelease[2]{}

\DeclareRelease{}{0000-00-00}{lua-widow-control-2022-02-22.sty}
\DeclareRelease{v1.1.6}{2022-02-22}{lua-widow-control-2022-02-22.sty}
\DeclareCurrentRelease{v2.1.2}{2022-05-26} %%version %%dashdate

% If this version of LaTeX doesn't support command hooks, then we load
% the last v1.1.X version of the package.
\providecommand\IfFormatAtLeastTF{\@ifl@t@r\fmtversion}
\IfFormatAtLeastTF{2020/10/01}{}{\input{lua-widow-control-2022-02-22.sty}}
\IfFormatAtLeastTF{2020/10/01}{}{\endinput}

\ProvidesExplPackage
{lua-widow-control}
{2022/05/26} %%slashdate
{v2.1.2} %%version
{Use Lua to remove widows and orphans}

% Unconditional Package Loads
\RequirePackage { l3keys2e }

% Message and String Constants
\str_const:Nn \c__lwc_name_str { lua-widow-control }

\msg_new:nnn
{ \c__lwc_name_str }
{ no-luatex }
{

LuaTeX~ is~ REQUIRED! \\
Make~ sure~ to~ compile~ your~ document~ with~ `lualatex'.

}

\msg_new:nnn

51

{ \c__lwc_name_str }
{ patch-failed }
{

Patching~ \c_backslash_str #1~ failed. \\
Please~ ensure~ that~ \c_backslash_str #1~ exists.

}

\msg_new:nnn
{ \c__lwc_name_str }
{ old-format-patch }
{

Patching~ not~ supported~ with~ old~ LaTeX. \\
Please~ use~ a~ LaTeX~ format~ >=~ 2021/06/01.

}

\msg_new:nnn
{ \c__lwc_name_str }
{ old-command }
{

\c_backslash_str #1~ has~ been~ REMOVED! \\
Please~ use~ \c_backslash_str setuplwc \c_left_brace_str #2
\c_right_brace_str\ instead.

}

% Don't let the user proceed unless they are using \LuaTeX{}.
\sys_if_engine_luatex:F {

\msg_critical:nn { \c__lwc_name_str } { no-luatex }
}

% Define (most of) the keys
\cs_generate_variant:Nn \keys_define:nn { Vn }

\keys_define:Vn { \c__lwc_name_str } {
emergencystretch .dim_gset:N = \g__lwc_emergencystretch_dim,
emergencystretch .value_required:n = true,
emergencystretch .initial:x = \dim_max:nn { 3em } { 30pt },

max-cost .int_gset:N = \g__lwc_maxcost_int,
max-cost .value_required:n = true,
max-cost .initial:x = \c_max_int,

widowpenalty .code:n = \int_gset:Nn \tex_widowpenalty:D { #1 }
\int_gset:Nn \tex_displaywidowpenalty:D { #1 },

widowpenalty .value_required:n = true,
widowpenalty .initial:n = 1,

52

orphanpenalty .code:n = \int_gset:Nn \tex_clubpenalty:D { #1 }
\int_gset:Nn \@clubpenalty { #1 },

orphanpenalty .value_required:n = true,
orphanpenalty .initial:n = 1,

brokenpenalty .int_gset:N = \tex_brokenpenalty:D,
brokenpenalty .value_required:n = true,
brokenpenalty .initial:n = 1,

microtype .bool_gset:N = \g__lwc_use_microtype_bool,
microtype .value_required:n = true,
microtype .initial:n = true,
microtype .usage:n = preamble,

disablecmds .clist_gset:N = \g__lwc_disablecmds_cl,
disablecmds .value_required:n = false,
disablecmds .initial:n = { \@sect, % LaTeX default

\@ssect, % LaTeX starred
\M@sect, % Memoir
\@mem@old@ssect, % Memoir Starred
\ttl@straight@ii, % titlesec normal
\ttl@top@ii, % titlesec top
\ttl@part@ii, % titlesec part

},
disablecmds .usage:n = preamble,

}

% Load the Lua code
\lua_now:n { require "lua-widow-control" }

% Here, we enable font expansion/contraction. It isn't strictly necessary for
% \lwc/'s functionality; however, it is required for the
% lengthened paragraphs to not have terrible spacing.
\hook_gput_code:nnn { begindocument / before } { \c__lwc_name_str } {

\bool_if:NT \g__lwc_use_microtype_bool {
\@ifpackageloaded { microtype } {} {

\RequirePackage[
final,
activate = { true, nocompatibility }

]
{ microtype }

}
}

}

53

% Core Function Definitions
\cs_new_eq:NN \iflwc __lwc_iflwc:

\prg_new_conditional:Nnn __lwc_if_enabled: { T, F, TF } {
__lwc_if_enabled:

\prg_return_true:
\else

\prg_return_false:
\fi

}

% Expansion of some parts of the document, such as section headings, is quite
% undesirable, so we'll disable \lwc/ for certain commands.
\int_new:N \g__lwc_disable_int

\cs_new:Npn __lwc_patch_pre: {
% We should only reenable \lwc/ at the end if it was already enabled.
__lwc_if_enabled:T {

\int_gincr:N \g__lwc_disable_int
__lwc_disable:

}
}

\cs_new:Npn __lwc_patch_post: {
\int_compare:nT { \g__lwc_disable_int > 0 } {

__lwc_enable:
\int_gdecr:N \g__lwc_disable_int

}
}

\cs_new:Npn __lwc_patch_cmd:c #1 {
\IfFormatAtLeastTF { 2021/06/01 } {

\hook_gput_code:nnn { cmd / #1 / before } { \c__lwc_name_str } {
__lwc_patch_pre:

}
\hook_gput_code:nnn { cmd / #1 / after } { \c__lwc_name_str } {

__lwc_patch_post:
}

} {
\msg_warning:nn

{ \c__lwc_name_str }
{ old-format-patch }

}
}

54

\cs_new:Npn __lwc_patch_cmd:N #1 {
__lwc_patch_cmd:c { \cs_to_str:N #1 }

}

\cs_new:Npn __lwc_patch_cmd:n #1 {
% If the item provided is a single token, we'll assume that it's a \macro.
% If it is multiple tokens, we'll assume that it's a `csname`.
\tl_if_single:nTF { #1 } {

__lwc_patch_cmd:c { \cs_to_str:N #1 }
} {

__lwc_patch_cmd:c { #1 }
}

}

\hook_gput_code:nnn { begindocument / before } { \c__lwc_name_str } {
\clist_map_function:NN \g__lwc_disablecmds_cl __lwc_patch_cmd:n

}

%%% Class and package-specifc patches

% KOMA-Script
\cs_if_exist:NT \AddtoDoHook {

\AddtoDoHook { heading / begingroup } { __lwc_patch_pre: \use_none:n }
\AddtoDoHook { heading / endgroup } { __lwc_patch_post: \use_none:n }

}

% Memoir
\cs_gset_nopar:Npn \pen@ltyabovepfbreak { 23 } % Issue #32

% Define some final keys
\keys_define:Vn { \c__lwc_name_str } {

enable .choice:,
enable / true .code:n = __lwc_enable:,
enable / false .code:n = __lwc_disable:,
enable .initial:n = true,
enable .default:n = true,
enable .value_required:n = false,

disable .code:n = __lwc_disable:,
disable .value_forbidden:n = true,

debug .choice:,
debug / true .code:n = __lwc_debug:n { true },
debug / false .code:n = __lwc_debug:n { false },

nobreak .code:n = __lwc_nobreak:n { #1 },

55

nobreak .value_required:n = true,
nobreak .initial:n = keep,

strict .meta:n = { emergencystretch = 0pt,
max-cost = 5000,
nobreak = warn,
widowpenalty = 1,
orphanpenalty = 1,
brokenpenalty = 1,

},
strict .value_forbidden:n = true,

default .meta:n = { emergencystretch = 3em,
max-cost = \c_max_int,
nobreak = keep,
widowpenalty = 1,
orphanpenalty = 1,
brokenpenalty = 1,

},
default .value_forbidden:n = true,

balanced .meta:n = { emergencystretch = 1em,
max-cost = 10000,
nobreak = keep,
widowpenalty = 500,
orphanpenalty = 500,
brokenpenalty = 500,

},
balanced .value_forbidden:n = true,

}

% Add the user interface for the keys
\exp_args:NV \ProcessKeysPackageOptions { \c__lwc_name_str }

\cs_generate_variant:Nn \keys_set:nn { Vn }
\NewDocumentCommand \lwcsetup {m} {

\keys_set:Vn { \c__lwc_name_str }{ #1 }
}

% Legacy Commands
\NewDocumentCommand \lwcemergencystretch { } {

\msg_error:nnnnn
{ \c__lwc_name_str }
{ old-command }
{ lwcemergencystretch }

56

{ emergencystretch=XXXpt }
}

\NewDocumentCommand \lwcdisablecmd { m } {
\msg_error:nnxx

{ \c__lwc_name_str }
{ old-command }
{ lwcdisablecmd }
{ disablecmds={\c_backslash_str aaa,~ \c_backslash_str bbb} }

}

\cs_new_eq:NN \lwcenable __lwc_enable:
\cs_new_eq:NN \lwcdisable __lwc_disable:

\endinput

57

lua-widow-control-2022-02-22.sty

% lua-widow-control
% https://github.com/gucci-on-fleek/lua-widow-control
% SPDX-License-Identifier: MPL-2.0+
% SPDX-FileCopyrightText: 2022 Max Chernoff

\NeedsTeXFormat{LaTeX2e}[2015/01/01] % Formats built after 2015 include \LuaTeX{}Base
\ProvidesPackage{lua-widow-control}%

[2022/02/22 v1.1.6]

% The version number above is somewhat-misleading: I will make bugfixes to this file
% from time to time, but the core of the file will not change. Therefore, we should
% report a real version number here for debugging.
\PackageInfo{lua-widow-control}{%

Real version:
2022/05/26 %%slashdate
v2.1.2 %%version

}

\PackageWarning{lua-widow-control}{%
Old LaTeX format detected!\MessageBreak\MessageBreak
Lua-widow-control prefers a LaTeX format\MessageBreak
newer than November 2020. I'll still run\MessageBreak
the latest Lua code, but I'm using an older\MessageBreak
version of the LaTeX code. This means that\MessageBreak
the key-value interface is *UNSUPPORTED*.\MessageBreak

}

\ifdefined\directlua\else
\PackageError{lua-widow-control}{%

LuaTeX is required for this package.\MessageBreak
Make sure to compile with `lualatex'%

}{}
\fi

\clubpenalty=1
\widowpenalty=1
\displaywidowpenalty=1

% We can't use \\newlength since that makes a \TeX{} "skip", not a "dimen"
\newdimen\lwcemergencystretch
\lwcemergencystretch=3em

\newcount\lwcmaxcost

58

\lwcmaxcost=2147483647

\directlua{require "lua-widow-control"}

% Here, we enable font expansion/contraction. It isn't strictly necessary for
% \lwc/'s functionality; however, it is required for the
% lengthened paragraphs to not have terrible spacing.
\RequirePackage{etoolbox}
\AtEndPreamble{

\@ifpackageloaded{microtype}{}{ % Only load if not already loaded
\RequirePackage[

final,
activate={true,nocompatibility}

]{microtype}
}

}

% Define \TeX{} wrappers for Lua functions
\newcommand{\lwcenable}{\directlua{lwc.enable_callbacks()}}
\newcommand{\lwcdisable}{\directlua{lwc.disable_callbacks()}}
\newcommand{\iflwc}{\directlua{lwc.if_lwc_enabled()}}

% Enable \lwc/ by default when the package is loaded.
\lwcenable

% Expansion of some parts of the document, such as section headings, is quite
% undesirable, so we'll disable \lwc/ for certain commands.
\newcommand{\lwc@patch@warning}[1]{\PackageWarning{lua-widow-control}{%

Patching the \protect#1 command failed%
}}

% We should only reenable \lwc/ at the end if it was already enabled.
\newif\iflwc@should@reenable

\newcommand{\lwc@patch@pre}{%
\iflwc%

\lwc@should@reenabletrue%
\lwcdisable%

\else%
\lwc@should@reenablefalse%

\fi%
}

\newcommand{\lwc@patch@post}{%
\iflwc@should@reenable%

59

\lwcenable%
\fi%

}

\newcommand{\lwcdisablecmd}[1]{%
\ifdefined#1

\pretocmd{#1}{\lwc@patch@pre}{}{\lwc@patch@warning{#1}}%
\apptocmd{#1}{\lwc@patch@post}{}{\lwc@patch@warning{#1}}%

\fi
}

\lwcdisablecmd{\@sect} % Sectioning

\endinput

60

t-lua-widow-control.mkxl

%D \module
%D [file=t-lua-widow-control,
%D version=2.1.2, %%version
%D title=lua-widow-control,
%D subtitle=\ConTeXt module for lua-widow-control,
%D author=Max Chernoff,
%D date=2022-05-26, %%dashdate
%D copyright=Max Chernoff,
%D license=MPL-2.0+,
%D url=https://github.com/gucci-on-fleek/lua-widow-control]
\startmodule[lua-widow-control]
\unprotect

\installnamespace{lwc}

\installcommandhandler \????lwc {lwc} \????lwc

\newdimen\lwc_emergency_stretch
\newcount\lwc_max_cost
\appendtoks

\lwc_emergency_stretch=\lwcparameter{emergencystretch}

\doifelse{\lwcparameter{\c!state}}\v!start{
\lwc_enable

}{
\lwc_disable

}

\lwc_debug{\lwcparameter{debug}}

\lwc_nobreak{\lwcparameter{nobreak}}

\lwc_max_cost=\lwcparameter{maxcost}

% We can't just set the penalties because they will be reset automatically
% at \\starttext.
\startsetups[*default]

\directsetup{*reset}

\clubpenalty=\lwcparameter{orphanpenalty}
\widowpenalty=\lwcparameter{widowpenalty}
\displaywidowpenalty=\lwcparameter{widowpenalty}
\brokenpenalty=\lwcparameter{brokenpenalty}

\stopsetups

61

\startsetups[grid][*default]
\directsetup{*reset}

\clubpenalty=\lwcparameter{orphanpenalty}
\widowpenalty=\lwcparameter{widowpenalty}
\displaywidowpenalty=\lwcparameter{widowpenalty}
\brokenpenalty=\lwcparameter{brokenpenalty}

\stopsetups

\setups[*default]
\to\everysetuplwc

\ctxloadluafile{lua-widow-control}

\setuplwc[
emergencystretch=3em,
\c!state=\v!start,
debug=\v!stop,
orphanpenalty=1,
widowpenalty=1,
brokenpenalty=1,
nobreak=keep,
maxcost=2147483647,

]

% Here, we enable font expansion/contraction. It isn't strictly necessary for
% \lwc/'s functionality; however, it is required for the
% lengthened paragraphs to not have terrible spacing.
\definefontfeature[default][default][expansion=quality]
\setupalign[hz]

% Expansion of some parts of the document, such as section headings, is quite
% undesirable, so we'll disable \lwc/ for certain commands.
% We should only reenable \lwc/ at the end if it was already enabled.
\newcount\lwc_disable_count

\define\lwc_patch_pre{%
\lwc_if_enabled%

\advance\lwc_disable_count by 1%
\setuplwc[\c!state=\v!stop]%

\fi%
}

\define\lwc_patch_post{
\ifnum\lwc_disable_count>0\relax%

62

\setuplwc[\c!state=\v!start]%
\advance\lwc_disable_count by -1%

\fi%
}

\prependtoks\lwc_patch_pre\to\everybeforesectionheadhandle % Sectioning
\prependtoks\lwc_patch_post\to\everyaftersectionheadhandle

% Make the commands public
\let\iflwc=\lwc_if_enabled

\protect
\stopmodule

63

lua-widow-control.opm

% lua-widow-control
% https://github.com/gucci-on-fleek/lua-widow-control
% SPDX-License-Identifier: MPL-2.0+
% SPDX-FileCopyrightText: 2022 Max Chernoff

_codedecl\lwcenable{lua-widow-control <v2.1.2>} %%version
_namespace{lwc}

_clubpenalty=1
_widowpenalty=1
_displaywidowpenalty=1
_brokenpenalty=1

_newdimen\lwcemergencystretch
\lwcemergencystretch=3em

_newcount\lwcmaxcost
\lwcmaxcost=2147483647

_directlua{require "lua-widow-control"}

% Enable \lwc/ by default when the package is loaded.
\.enable

% Expansion of some parts of the document, such as section headings, is quite
% undesirable, so we'll disable \lwc/ for certain commands.

% We should only reenable \lwc/ at the end if it was already enabled.
_newcount\.disable_count

_def\.patch_pre{%
\.if_enabled%

_advance\.disable_count by 1%
\.disable%

_fi%
}

_def\.patch_post{
_ifnum\.disable_count>0%

\.enable%
_advance\.disable_count by -1%

_fi
}

64

_def\.extractcomponents #1:#2->#3\STOP{%
_def\.params{#2}%
_def\.body{#3}%

}

\def\.disable_cmd#1{%
_ifdefined#1%

_ea\.extractcomponents_meaning#1\STOP%
_begingroup%

catcode`=11%
_expanded{%

_noexpand_scantokens{%
_gdef_noexpand#1\.params{%

_noexpand\.patch_pre\.body_noexpand\.patch_post%
}%

}%
}%

_endgroup%
_fi%

}

\.disable_cmd{_printchap}
\.disable_cmd{_printsec}
\.disable_cmd{_printsecc}

% Make the commands public
_let\lwcenable=\.enable
_let\lwcdisable=\.disable
_let\lwcdisablecmd=\.disable_cmd
_let\lwcdebug=\.debug
_let\iflwc=\.if_enabled
_let\lwcnobreak=\.nobreak

_endnamespace
_endcode

65

Demo from Table 1

\definepapersize[smallpaper][
width=6cm,
height=8.3cm

]\setuppapersize[smallpaper]

\setuplayout[
topspace=0.1cm,
backspace=0.1cm,
width=middle,
height=middle,
header=0pt,
footer=0pt,

]

\def\lwc/{\sans{lua-\allowbreak widow-\allowbreak control}}
\def\Lwc/{\sans{Lua-\allowbreak widow-\allowbreak control}}

\setupbodyfont[9pt]
\setupindenting[yes, 2em]

\definepalet[layout][grid=middlegray]
\showgrid[nonumber, none, lines]

\definefontfeature[default][default][expansion=quality,protrusion=quality]

\usetypescript[modern-base]
\setupbodyfont[reset,modern]

\setupalign[hz,hanging,tolerant]

\setuplanguage[en][spacing=packed]

\starttext
\Lwc/ can remove most widows and orphans from a document, \emph{without} stretching
any glue or shortening any pages.

It does so by automatically lengthening a paragraph on a page where a widow or
orphan would otherwise occur. While \TeX{} breaks paragraphs into their natural
length, \lwc/ is breaking the paragraph 1~line longer than its natural length.
\TeX{}'s paragraph is output to the page, but \lwc/'s paragraph is just stored
for later. When a widow or orphan occurs, \lwc/ can take over. It selects the
previously-saved paragraph with the least badness; then, it replaces \TeX{}'s
paragraph with its saved paragraph. This increases the text block height of the
page by 1~line.

66

Now, the last line of the current page can be pushed to the top of the next page.
This removes the widow or the orphan without creating any additional work.

\stoptext

	Quick Start
	Preliminaries
	Motivation
	Widows and Orphans
	Widows
	Orphans
	Broken Hyphens

	TEX’s Pagination
	Algorithm
	Behaviour

	Demonstration
	“Ignore”
	“Shorten”
	“Stretch”
	“lua-widow-control”

	Installation
	TEX Live
	MikTEX
	Manual
	Steps

	Dependencies
	Plain TEX
	LATEX
	ConTEXt
	OpTEX

	Loading the Package
	Options
	Overview
	Disabling
	Enabling
	Automatically disabling
	\emergencystretch
	Penalties
	\nobreak Behaviour
	Maximum Cost
	Debug Mode

	Presets
	default
	strict
	balanced

	Compatibility
	Columns
	Performance
	𝜀-TEX penalties
	Grids
	Footnotes

	Stability
	Short last lines
	Known Issues
	Contributions
	License
	References
	Implementation
	lua-widow-control.lua
	lua-widow-control.tex
	lua-widow-control.sty
	lua-widow-control-2022-02-22.sty
	t-lua-widow-control.mkxl
	lua-widow-control.opm
	Demo from Table 1

