
Interpreter Paul Isambert
v.1.0, July 2011 zappathustra AT free DOT fr

Introduction
Interpreter preprocesses input files before their contents
is fed to TEX. It is meant to write document with what-
ever markup one wishes to define while using normal TEX
macros in the background. As a simple example, suppose
you have a macro \bold to put text in boldface ; then Inter-
preter lets you map *text*, or text, or
simply !text, or anything else, to \bold{text}. Interpreter
doesn't perform any trickery with active characters ; instead,
it manipulates the strings representing the lines of a file
and search for patterns.

ere are two main advantages : first, TEX documents
can be typeset with a completely non-TEX syntax ; second, if
one uses some lightweightmarkup language, the source file is
much easier to read and might even be more useful than the
typeset PDF file, e.g. for some technical documentation you
want to read directly in your text editor while writing code
(powerful editors generally have their own documentation
in such a format, for a good reason). A third advantage,
not explored in this documentation, is that while feeding
modified lines to TEX you can also translate the original
lines into, say, HTML, and write them to an external file,
thus creating both PDF and HTML output at once.

Input files
Once Interpreter is loaded with

\input interpreter

in plain TEX or

\usepackage{interpreter}

in LaTEX, files to be processed are input as follows :

\interpretfile{<language>}{<file>}

ere should exist a file i-<language>.lua containing the
language used in ‹file›. For instance, the source of this doc-
umentation is interpreter-doc.txt, input in the master
file interpreter-doc.tex with

\interpretfile{doc}{interpreter-doc.txt}

and the interpretation to be used is defined in i-doc.lua.
e contents of such an interpretation file is the object of
the rest of this documentation.

Paragraphs
Interpreter doesn't process lines one by one. Instead, it
gathers an entire paragraph and then processes the lines. It
is important because you canmanipulate an entire paragraph
when a given pattern is detected, and modify several lines
according to what happens in only one. A paragraph in
Interpreter has nothing to do with what TEX considers a
paragraph ; instead, it is defined by the following string.

interpreter.paragraph

(Default : blank line with spaces ignored)
A string to be interpreted as a paragraph boundary when
Interpreter collects lines before processing them. e string
actually represents a pattern, somagic characters are obeyed.
e default is %s*, i.e. a blank line is considered a paragraph
boundary, spaces notwithstanding. Of course, the end of
the file itself is a paragraph boundary.

Declaring patterns
Once the lines of a paragraph have been collected, Interpreter
searches them trying to match declared patterns, but it
doesn't do so indiscriminately : patterns are searched in a
given order, as explained below.

Patterns are searched for in each line only, i.e. nomatch
can occur across lines. However, since you can manipulate
entire paragraphs based on amatch in one line, the limitation
easily vanishes.

interpreter.add_pattern(‹table›)

is is the basic function used to defined patterns. e
‹table› may contain the following entries, along other
entries Interpreter won't use but which can be useful to you,
especially with call below. e function returns a table.

class (Default : intepreter.default_class)
e class of the pattern. See the section on classes.

pattern

epattern tomatch. Lua's magic characters are in force and

should be escaped with % if necessary, unless nomagic is true
(or the pattern itself is the result of interpreter.nomagic).

nomagic (Default : false)
A boolean deciding whether the pattern should be trans-
formed with interpreter.nomagic.

replace

e replacement for the pattern, applied only if there is no
call entry. is may be a string, a table or a function. Inter-
preter simply executes something similar to string.gsub(),
hence the replacement follows this function's ordinary syn-
tax. More precisely, if replace is a string, the pattern is
replaced with it ; in this string, %n may be used to denote
the nth capture in the pattern. If replace is a table, the
first capture or the entire match (if there is no capture)
is used as the key, and the associated value is used as the
replacement. If replace is a function, it is called with the
captures passed as arguments, or the entire match if there is
no capture. For instance, the following pattern will replace
all *text* with \bold{text} :

interpreter.add_pattern{

pattern = "%*(.-)%*",

replace = [[\bold{%1}]]

}

offset (Default : 0)
e number of positions Interpreter should shift to the right
after a match has occurred. Normally, Interpreter starts
searching for another occurrence of the current pattern at
the same position where it found the last one. However,
loops might easily occur : the replacement for a pattern may
very well contain another match for the same pattern, so
Interpreter will get stuck. Suppose for instance you want
to replace TeX with \TeX. e first match will do that, but
then Interpreter will start searching again at the backslash,
producing \\TeX, then \\\TeX, etc. In this case, if you set
offset to 2 in the pattern, then search will start again at
the e and no new match will occur.

call

is entry shall contain a function to be called if there is
a match (if this entry exists, replace isn't applied). It is

meant to perform complex tasks that aren't amenable to
simple string replacement. e function will be executed as
follows :

function (paragraph, line, index, pattern)

paragraph is a table representing the current paragraph ;
lines are stored at successive indices. e last line of this
paragraph is always the paragraph boundary (see inter-

preter.paragraph), unless the paragraph stopped at the
end of the file. e second argument, line, is a number
representing the index in paragraph containing the line
where the pattern was found ; index is the position in
this line where the match occurred. Finally, pattern is the
entire table declared with interpreter.add_pattern and
containing all the entries discussed here.

e function may return zero, one, or two numbers.
If it returns none, the search for the next occurrence of
the pattern will start again on the same line (rather, on
the line with the same position in the paragraph), at index.
If it returns one number, the search will resume at the
same line but at position n, with n the returned number.
Finally, if two numbers are returned, the search will resume
at line m at position n, m and n being the returned values.
Specifying which line should be examined when the search
resumes might be necessary if the function adds new lines
in the paragraph before the current line, since Interpreter
only keeps count of line numbers.

e entire paragraph can thus be modified if necessary.
For instance, suppose you want to declare comments in
your source file with only !Comment in the first line, i.e. TEX
should ignore a paragraph such as :

!Comment

This should be ignored

by TeX

en the following pattern will do (where the function
requires only the first argument) :

local function comment (paragraph)

for n, l in ipairs(paragraph) do

paragraph[n] = "%" .. l

end

end

interpreter.add_pattern{

pattern = "^!Comment",

call = comment

}

interpreter.nomagic (string)

A function which reverses the usual Lua magic for patterns :
ordinarymagic characters are normal characters here, unless
they are prefixed with %, in which case they are magic again.
For instance, a pattern like .+ is normally interpreted as
“one or more characters”. If passed to this function, a pat-
tern is returned meaning “a dot followed by a plus sign”. On
the contrary, %.%+ normally has the second interpretation,
while with interpreter.nomagic it has the first one. e
function makes another transformation : ... is used to de-
note a capture (.-). us interpreter.nomagic('*...*')
returns a pattern matching any number of characters sur-
rounded by stars and capturing those characters ; this would
be expressed in ordinary Lua magic as %*(.-)%*.

Classes
As already alluded to, the search for patterns isn't done at
random. Instead, patterns are organized in classes, which
are applied one after the other. More precisely, the process
is as follows : Interpreter searches the entire paragraph for
the first pattern in class 1, then for the second pattern in
the same class, then for the third, etc., then when there
is no pattern left in class 1 it does the same with class 2,
up to class n, where n is the hightest class number such
that there exists a class n - 1 (in other words, classes should
be numbered consecutively). Finally, the same goes for the
patterns in class 0 (which always exists, even if it contains
no pattern).

Inside a class, patterns are ordered by length from long
to short, or alphabetically if two patterns have the same
length. is means that if you use e.g. /text/ for italics and
//text// for bold, you don't need to put the second pattern
in a class before the first to avoid //text// being interpreted
as two empty arguments in italics surrounding a text in
roman. Since the way the bold-pattern will be declared, e.g.
//(.-)//, is probably longer than for the italic-pattern, e.g.
/(.-)/, it will always match first.

at said, the sorting isn't very clever and simply relies
on the number of symbols, no matter what they mean ; in

the patterns above, the parentheses denote a capture but
they still count in the pattern's length as understood by
Interpreter. Alternatively, while .* denotes “zero or more
character” and %+ means “a plus sign” (+ being magic, you
have to escape it to refer to it), in Interpreter's eye the two
patterns have the same length : two. Finally, one should be
aware that patterns declared with a nomagic entry set to
true are sorted after they've been transformed (so that their
real lengthmight not be obvious). So classes are neededwhen
patterns need a proper ordering no matter their lengths.
For instance, some patterns should always be declared first,
as they protect input from Interpreter (see next section),
while others might need to be declared last, as they rely on
what previous patterns might have done. Besides, classes
are metatables for the patterns they contain.

interpreter.default_class (Default : 1)
All patterns belong to a class, even though you may omit the
class entry when declaring one. In this case, the pattern is
assigned to the class denoted by this number.

interpreter.set_class(number, table)

Defines class number as table. Classes don't need to be
defined beforehand for patterns to be added to them (rather,
Interpreter defines them implicitly when needed). However,
classes are also metatables for the patterns, so that if there
lacks an entry in a pattern's table, the class's entry is used if
it exists. e function returns a table.

Protecting input
Sometimes youwant Interpreter to refrain from interpreting ;
that is most useful for verbatim code, for instance. ere
are various ways to do that.

interpreter.active (Default : true)
A boolean switching Interpreter on and off. Beware, the
switching applies only starting at the next paragraph.

interpreter.protect([line])

A function protecting all or part of the current paragraph.
If line is given, it should be a number n, and line n in the
current paragraphwill be protected ; without line, the entire
paragraph is protected. Protecting means that the patterns
not yet searched for will be ignored. For instance, if you
want material to be read verbatim when surrounded with

<code> and </code>, you can declare a pattern as follows :

local function verbatim (buffer)

buffer[1] = "\\verbatim"

buffer[#buffer - 1] = "\\endverbatim"

intepreter.protect()

end

interpreter.add_pattern{

pattern = "^%s*<code>%*s$",

call = verbatim,

class = 1

}

is code is extremely simplified : it assumes that <code> and
</code> starts and ends the paragraph and that </code>
isn't the last line of the file (otherwise it'd also be the
last line in the paragraph, whereas here the last one is
the paragraph boundary). An important point is that the
pattern belongs to the first class, so it is called before all
other patterns (provided there is no shorter pattern in
class 1) and prevents them from doing anything, since the
entire paragraph is protected. (Typesetting the material
as verbatim material obviously depends on the \verbatim
macro, not on Interpreter.)

interpreter.escape

A character which prevents patterns from being replaced
if immediately preceded by it. As an example, if inter-
preter.escape = '_', and *text* denotes italic, then
text will produce text while _*text* will produce *text*.
Once a paragraph has been processed, Interpreter removes
all escape characters. Only one character can be an escape
character.

interpreter.protector(left[, right])

(right defaults to left)
Defines two characters to protect what they surround. In
other words, Interpreter replaces patterns only if the match
isn't found between left and right. Unlike the escape
character, you can define as many protectors as you wish ;
and unlike the escape character again, Interpreter doesn't
remove them once the paragraph has been processed, so
you must take care of them. For instance :

intepreter.protector('"')

interpreter.add_pattern{

pattern = '"(.-)"',

replace = '\\verb`%1`',

class = 0

}

Anything between double quotes will be left untouched ;
then, when the paragraph has been processed for all other
classes, a pattern in class 0 calls the \verb command to
take care of the argument. Note that the protectors should
enclose what they protect without coinciding with it ; this
is not the case here, which is why the pattern is applied.

interpreter.direct

(Default : two percent signs then I and at least one space)
A string, actually a pattern, signalling that the line which
it begins should be processed as Lua code. e default is
%%%%I%s+, i.e. %%I followed by at least one space.e pattern
shouldn't declare itself as attached to the beginning of the
line (as in ^%%%%I%s+) because they will be matched at the
beginning of the line only anyway. e line is processed with
the loadstring function, and then turned into an empty
line. For instance :

%%I interpreter.active = false

This won't be interpreted...

%%I interpreter.active = true

As this example shows, lines flagged with interpreter.di-

rect don't obey interpreter.active and are always pro-
cessed as described above.

Technical stuff
You don't have to bother with this section if you don't mind
how Interpreter does its job ; actually you won't learn much
anyway.

interpreter.reset()

A function which resets everything to default and deletes
classes. It is used when calling \interpretefile so that
new interpretetions start from zero.

interpreter.register(function)

A function called to put Interpreter's main function into
the post_linebreak_filter callback ; you can redefine it at

will. If it is undefined, callback.register() is used, unless
luatexbase.add_to_callback() is detected. (e detection
takes place at the first call to \interpretfile, so there is
no need to load Interpreter after luatexbase.)

interpreter.unregister(function)

A function called to remove Interpreter's main function from
the post_linebreak_filter callback. It works similarly to
the previous one.

An example : i-doc.lua
Here's a description of i-doc.lua, the file containing the
interpretation used for Interpreter's documentation. Re-
member that none of the TEX macros used here is defined by
Interpreter ; instead, they are my own and should be adapted
if necessary. Also several options taken here are far from
optimal but are convenient examples.

Shorthands for often used functions.

local gsub, match = string.gsub, string.match

local add_pattern = interpreter.add_pattern

local nomagic = interpreter.nomagic

Class 1 and 2 will be used for verbatim (thus protecting)
and “normal” patterns go into class 3 or higher.

interpreter.default_class = 3

e reader might have observed that interpreter-
doc.txt begins with a table of contents. is table is useful
for the source file only, and isn't typeset by TEX, because the
following pattern suppresses it : the entire paragraph con-
taining TABLE OF CONTENTS on a line of its own is deleted.
Protecting the paragraph is useless, but it makes things a
little bit faster because the paragraph won't be pointlessly
searched for other patterns.

local function contents (buffer)

for n in ipairs(buffer) do

buffer[n] = ""

end

interpreter.protect()

end

add_pattern{

pattern = "^%s*TABLE OF CONTENTS%s*$",

call = contents,

class = 1

}

Sections headers are typeset as

====================================== section_tag

=== Section title ====================

======================================

efirst and third line are decorations and they are removed.
e section_tag is meant for the source only again (linking
the section to the table of contents). I could have used it
to create PDF destinations, but that seemed unnecessary
in such a small file. e associated pattern is : at least four
equals signs.

add_pattern{

pattern = "^====+.*",

replace = ""

}

e middle line is spotted with the tree equals sign at
the beginning of the line (the previous pattern being longer,
the decoration lines have been already removed and they
won't be taken for section titles). e signs are removed
and replaced with \section{ and }.

local function section (buffer, num)

local l = buffer[num]

l = gsub(l, "^===%s*", "\\section{")

l = gsub(l, "%s*=+%s*", "}")

buffer[num] = l

end

add_pattern{

pattern = "^===",

call = section

}

e following pattern simply turns Interpreter into
\ital{Interpreter}.emeaningof the\ital command is
obvious, I suppose. Note the offset : starting at the backslash,
this leads to the n in Interpreter, thus avoiding matching the
pattern again. e Lua notation with double square brackets
is used for strings with no escape character (hence \ital

and not \\ital as would be necessary with a simple string).

add_pattern{

pattern = "Interpreter",

replace = [[\ital{Interpreter}]],

offset = 7

}

Turning TeX into TEX. is illustrates the use of a
function as replace ; the point is that \TeX should be suffixed
with a space if initially followed by anything but a space or
end of line (so as not to form a control sequence with the
following letters), and it should be suffixed with a control
space if initially followed by a space or end of line (so as
to avoid gobbling the space). So the function checks the
second capture. Note that simply replacing TeX with \TeX{}

would be much simpler, but less instructive !

local function maketex (tex, next)

if next == " " or next == "" then

return [[\TeX\]]

else

return [[\TeX]] .. next

end

end

add_pattern{

pattern = "(TeX)(.?)",

replace = maketex,

offset = 2

}

efollowing turns <text> into ‹text› and _text_ into
text. Setting a class just so the patterns inherit the nomagic
feature is of course an overkill, but that's an example.

interpreter.set_class(4, {nomagic = true})

add_pattern{

pattern = "<...>",

replace = [[\arg{%1}]],

class = 4

}

add_pattern{

pattern = "_..._",

replace = [[\ital{%1}]],

class = 4 }

I use double quotes as protectors ; they are replaced
with a \verb command at the very end of the processing
(with class 0).

interpreter.protector('"')

add_pattern{

pattern = nomagic'"..."',

replace = [[\verb`%1`]],

class = 0

}

e description of functions (in red in the PDF file)
are handled with the \describe macro, which takes the
function as its first argument and additional information
as its second one (typeset in italics in the PDF file). In the
source, it is simply marked as

> function (arguments) [Additional information]

with [Additional information] sometimes missing (i.e.
there is no empty pairs of square brackets). Descriptions of
entries in pattern tables follows the same syntax, except the
line begins with >>. So the pattern first spots lines beginning
with >[>] followed by at least one space, adds an empty pair
of brackets at the end if there isn't any, and turn the whole
into \describe. e number of > symbols sets \describe's
third argument, which specifies the level of the bookmark.

local function describe (buffer, num)

local l = buffer[num]

if not match (l, "%[.-%]%s*$") then

l = l .. " []"

end

local le = match(l, ">>") and 4 or 3

buffer[num] = gsub(l, ">+%s+(.-)%s+%[(.-)%]",

[[\describe{%1}{%2}{]] .. le .. "}")

end

add_pattern{

pattern = "^>+%s+",

call = describe

}

Here's howmultiline verbatim is handled ; in the source
it is simply marked by indenting the line with ten spaces ;
thus code is easily spotted when reading the source without

useless and annoying <code>/</code> or anything similar
to mark it. To be properly processed by TEX, the code should
be surrounded by \verbatim and \verbatim/ (my way of
signalling blocks). ose must be on their own lines, so we
insert a line at the beginning and at the end of the paragraph :
for the closing \verbatim/, we can simply replace the last
line of the paragraph, which is the boundary line, unless
we're at the end of the file. But for the opening \verbatim

a line must be added at the beginning of the paragraph ;
thus line numbers in the original source file and in its
processed version don't match anymore, and this might be
annoying when TEX reports erros. Besides, blank verbatim
lines aren't handled correctly and create a new verbatim
block instead. So this way of marking verbatim material is
good for small documents, but explicit marking is cleaner
and more powerful (albeit not so good-looking in the source
file).

Note that the verbatim pattern belongs to class 2 and
the entire paragraph is protected, so Interpreter leaves it
alone afterward (remember the default class is 3). Of course,
the first ten space characters are removed.

local function verbatim (buffer)

for n, l in ipairs(buffer) do

buffer[n] = gsub(l, "%s%s%s%s%s%s%s%s%s%s","")

end

table.insert(buffer, 1, [[\verbatim]])

if gsub(buffer[#buffer],

interpreter.paragraph, "") == "" then

buffer[#buffer] = [[\verbatim/]]

else

table.insert(buffer, [[\verbatim/]])

end

interpreter.protect()

end

add_pattern{

pattern = "^%s%s%s%s%s%s%s%s%s%s",

call = verbatim,

class = 2

}

And now comes the fun part. I wanted i-doc.lua to be
self-describing. e source of what you're reading right now
isn't interpreter-doc.txt, but i-doc.lua itself input in
the latter file with

\intepreterfile{doc}{i-doc.lua}

How should code and comment be organized in i-doc.lua ?
Well, there is little choice, since the file is a normal Lua file :
comment lines should be prefixed with -- or surrounded
with --[[and --]]. I chose the latter option, which is
simpler. But normal code should also be typeset as verbatim
material ; I could have begun all lines with ten spaces, but
that would have seemed strange. Instead, --]] is turned into
\source and \source/ is added at the end of the paragraph
(\source is just \verbatim with a different layout). Which
means all paragraphs have the same structure : comments
between --[[and --]] and code immediately following
(--[[is simply removed). e pattern is in class 1 and
the paragraph is protected, so that lines indented with ten
spaces or more aren't touched by the previous verbatim
pattern (in class 2).

local function autoverbatim (buffer, line)

buffer[line] = [[\source]]

for n = line + 1, #buffer do

interpreter.protect(n)

end

if gsub(buffer[#buffer],

interpreter.paragraph, "") == "" then

buffer[#buffer] = [[\source/]]

else

table.insert(buffer, [[\source/]])

end

end

add_pattern{

pattern = nomagic"%^--]]",

call = autoverbatim,

class = 1

}

local function test ()

return ""

end

add_pattern{

pattern = nomagic"%^--[[",

replace = test,

}

Typeset with LuaTEX 0.71 in Chaparral Pro and Lucida Console

	Introduction
	Input files
	Paragraphs
	interpreter.paragraph

	Declaring patterns
	interpreter.add_pattern
	class
	pattern
	nomagic
	replace
	offset
	call

	interpreter.nomagic

	Classes
	interpreter.default_class
	interpreter.set_class

	Protecting input
	interpreter.active
	interpreter.protect
	interpreter.escape
	interpreter.protector
	interpreter.direct

	Technical stuff
	interpreter.reset
	interpreter.register
	interpreter.unregister

	An example: i-doc.lua

