
» The Monty Pythons, were they TEX users,
could have written the chickenize macro.«

Paul Isambert

chickenize
v0.2
Arno Trautmann

arno.trautmann@gmx.de

This is the documentation of the package chickenize. It allows manipulations of any LuaTEX
document1 exploiting the possibilities offered by the callbacks that influence line breaking (and
some other stuff). Most of this package's content is just for fun and educational use, but there are
also some functions that can be useful in a normal document.

The table on the next page shortly informs you about some of your possibilities and provides
links to the (documented) Lua functions. The TEX interface is presented below.

The documentation of this package is far from being well-readable, consistent or even complete.
This is caused either by lack of time or priority. If you miss anything that should be documented or
if you have suggestions on how to increase the readability of the descriptions, please let me know.

For a better understanding of what's going on in the code of this package, there is a small
tutorial below that explains shortly the most important features used here.

Attention: This package is under development and everything presented here might be subject
to incompatible changes. If, by any reason, you decide to use this package for an important
document, please make a local copy of the source code and use that. This package will not be
considered stable until it reaches at least v0.5.

If you have any suggestions or comments, just drop me a mail, I’ll be happy to get any response!
The latet source code is hosted on github: https://github.com/alt/chickenize. Feel free to
comment or report bugs there, to fork, pull, etc.

This package is copyright © 2012 Arno L. Trautmann. It may be distributed and/or modified under the
conditions of the LaTeX Project Public License, either version 1.3c of this license or (at your option) any
later version. This work has the LPPL maintenance status ‘maintained’.

1The code is based on pure LuaTEX features, so don't even try to use it with any other TEX flavour. The package is
tested under plain LuaTEX and LuaLATEX. If you tried using it with ConTEXt, please share your experience, I will gladly
try to make it compatible!

chicken 1

mailto:arno.trautmann@gmx.de
https://github.com/alt/chickenize

For the Impatient:
A small and incomplete overview of the functionalities offered by this package. I try to keep this list as
complete as possible.2 Of course, the label “complete nonsense” depends on what you are doing …

maybeuseful functions

colorstretch shows grey boxes that visualise the badness and font expansion of each line
letterspaceadjust improves the greyness by using a small amount of letterspacing
substitutewords replaces words by other words (chosen by the user)
variantjustification Justification by using glyph variants

less useful functions

boustrophedon invert every second line in the style of archaic greek texts
countglyphs counts the number of glyphs in the whole document
leetspeak translates the (latin-based) input into 1337 5p34k
randomuclc alternates randomly between uppercase and lowercase
rainbowcolor changes the color of letters slowly according to a rainbow
randomcolor prints every letter in a random color
tabularasa removes every glyph from the output and leaves an empty document
uppercasecolor makes every uppercase letter colored

complete nonsense

chickenize replaces every word with “chicken” (or user-adjustable words)
guttenbergenize deletes every quote and footnotes
hammertime U can't touch this!
kernmanipulate manipulates the kerning (tbi)
matrixize replaces every glyph by its ASCII value in binary code
randomerror just throws random (La)TEX errors at random times
randomfonts changes the font randomly between every letter
randomchars randomizes the (letters of the) whole input

2If you notice that something is missing, please help me improving the documentation!

chicken 2

Contents

I User Documentation 5

1 How It Works 5

2 Commands – How You Can Use It 5
2.1 TEX Commands – Document Wide . 5
2.2 How to Deactivate It . 7
2.3 \text-Versions . 7
2.4 Lua functions . 7

3 Options – How to Adjust It 8

II Tutorial 10

4 Lua code 10

5 callbacks 10
5.1 How to use a callback . 11

6 Nodes 11

7 Other things 12

III Implementation 13

8 TEX file 13

9 LATEX package 20
9.1 Definition of User-Level Macros . 20

10 Lua Module 21
10.1 chickenize . 21
10.2 boustrophedon . 24
10.3 countglyphs . 25
10.4 guttenbergenize . 26

10.4.1 guttenbergenize – preliminaries . 26
10.4.2 guttenbergenize – the function . 26

10.5 hammertime . 27
10.6 itsame . 27
10.7 kernmanipulate . 28
10.8 leetspeak . 29
10.9 letterspaceadjust . 29

10.9.1 setup of variables . 30

chicken 3

10.9.2 function implementation . 30
10.9.3 textletterspaceadjust . 30

10.10 matrixize . 30
10.11 pancakenize . 31
10.12 randomerror . 31
10.13 randomfonts . 31
10.14 randomuclc . 32
10.15 randomchars . 32
10.16 randomcolor and rainbowcolor . 33

10.16.1 randomcolor – preliminaries . 33
10.16.2 randomcolor – the function . 34

10.17 randomerror . 34
10.18 rickroll . 34
10.19 substitutewords . 34
10.20 tabularasa . 35
10.21 uppercasecolor . 35
10.22 colorstretch . 36

10.22.1 colorstretch – preliminaries . 36
10.23 variantjustification . 39
10.24 zebranize . 40

10.24.1 zebranize – preliminaries . 40
10.24.2 zebranize – the function . 40

11 Drawing 42

12 Known Bugs 44

13 To Do's 44

14 Literature 44

15 Thanks 44

chicken 4

Part I

User Documentation
1 How It Works
Wemake use of LuaTEXs callbacks, especially the pre_linebreak_filter and the post_linebreak_filter.
Hooking a function into these, we can nearly arbitrarily change the content of the document. If
the changes should be on the input-side (e. g. replacing words with chicken), one can use the
pre_linebreak_filter. However, changes like inserting color are best made after the linebreak is
finalized, so post_linebreak_filter is to be preferred for such things.

All functions traverse the node list of a paragraph and manipulate the nodes' properties (like .font or
.char) or insert nodes (like color push/pop nodes) and return this changed node list.

2 Commands – How You Can Use It
There are several ways to make use of the chickenize package – you can either stay on the TEX side or use
the Lua functions directly. In fact, the TEX macros are simple wrappers around the functions.

2.1 TEX Commands – Document Wide
You have a number of commands at your hand, each of which does some manipulation of the input or
output. In fact, the code is simple and straightforward, but be careful, especially when combining things.
Apply features step by step so your brain won't be damaged …

The effect of the commands can be influenced, not with arguments, but only via the \chickenizesetup
described below.

\boustrophedon Reverts every second line. This immitates archaic greek writings where one line was
right-to-left, the next one left-to-right etc.3 Interestingly, also every glyph was adaptet to the writing
direction, so all glyphs are inverted in the right-to-left lines. Actually, there are two versions of
this command that differ in their implementation: \boustrophedon rotates the whole line, while
\boustrophedonglyphs changes the writing direction and reverses glyph-wise. The second one
takes much more compilation time, but may be more reliable. A Rongorongo4 similar style boustro-
phedon is available with \boustrophedoninverse or \rongorongonize, where subsequent lines
are rotated by 180° instead of mirrored.

\countglyphs Counts every printed character that appeared in anything that is a paragraph. Which is
quite everything, in fact, exept math mode! The total number will be printed at the end of the log
file/console output.

\chickenize Replaces every word of the input with the word “chicken”. Maybe sometime the replacement
will be made configurable, but up to now, it's only chicken. To be a bit less static, about every 10th
chicken is uppercase. However, the beginning of a sentence is not recognized automatically.5

3en.wikipedia.org/wiki/Boustrophedon
4en.wikipedia.org/wiki/Rongorongo
5If you have a nice implementation idea, I'd love to include this!

chicken 5

en.wikipedia.org/wiki/Boustrophedon
en.wikipedia.org/wiki/Rongorongo

\colorstretch Inspired by Paul Isambert's code, this command prints boxes instead of lines. The greyness
of the first (left-hand) box corresponds to the badness of the line, i. e. it is a measure for how much
the space between words has been extended to get proper paragraph justification. The second box on
the right-hand side shows the amount of stretching/shrinking when font expansion is used. Together,
the greyness of both boxes indicate how well the greyness is distributed over the typeset page.

\dubstepize wubwubwubwubwub BROOOOOARWOBBBWOBBWOBBBZZZRRRRRRROOOOOOAAAAA
… (inspired by http://www.youtube.com/watch?v=ZFQ5EpO7iHk and http://www.youtube.
com/watch?v=nGxpSsbodnw)

\dubstepenize synomym for \dubstepize as I am not sure what is the better name. Both macros are
just a special case of chickenize with a very special “zoo” … there is no \undubstepize – once
you go dubstep, you cannot go back …

\hammertime STOP! —— Hammertime!

\leetspeak Translates the input into 1337 speak. If you don't understand that, lern it, n00b.

\matrixize Replaces every glyph by a binary representation of its ASCII value.

\nyanize A synonym for rainbowcolor.

\randomerror Just throws a random TEX or LATEX error at a random time during the compilation. I have
quite no idea what this could be used for.

\randomuclc Changes every character of the input into its uppercase or lowercase variant. Well, guess
what the “random” means …

\randomfonts Changes the font randomly for every character. If no parameters are given, all fonts that
have been loaded are used, especially including math fonts.

\randomcolor Does what its name says.

\rainbowcolor Instead of random colors, this command causes the text color to change gradually ac-
cording to the colors of a rainbow. Do not mix this with randomcolor, as that doesn't make any
sense.

\pancakenize This is a dummy command that does nothing. However, every time you use it, you owe a
pancake to the package author. You can either send it via mail or bring it to some (local) TEX user's
group meeting.

\substitutewords You have to specify pairs of words by using \addtosubstitutions{word1}{word2}.
Then call \substitutewords (or the other way round, doesn't matter) and each occurance
of word1 will be replaced by word2. You can add replacement pairs by repeated calls to
\addtosubstitutions. Take care! This function warks with the input directly, therefore it does
not work on text that is inserted by macros, but it will work on macro names itself! This way, you
may use it to change macros (or environments) at will. Bug or feature? I'm not sure right now …

\tabularasa Takes every glyph out of the document and replaces it by empty space of the same width.
That could be useful if you want to hide some part of a text or similar. The \text-version is most
likely more useful.

\uppercasecolor Makes every uppercase character in the input colored. At the moment, the color is
randomized over the full rgb scale, but that will be adjustable once options are well implemented.

chicken 6

http://www.youtube.com/watch?v=ZFQ5EpO7iHk
http://www.youtube.com/watch?v=nGxpSsbodnw
http://www.youtube.com/watch?v=nGxpSsbodnw

\variantjustification For special document types, it might be mandatory to have a fixed interword
space. If you still want to have a justified type area, there must be another kind of stretchable material
– one version realized by this command is using wide variants of glyphs to fill the remaining space.
As the glyph substitution takes place randomly, this does not provide the optimum justification, as
this would take up much computation power.

2.2 How to Deactivate It
Every command has a \un-version that deactivates it's functionality. So once you used \chickenize, it will
chickenize the whole document up to \unchickenize. However, the paragraph in which \unchickenize
appears, will not be chickenized. The same is true for all other manipulations. Take care that you don't
\un-anything bevor activating it, as this will result in an error.6

If you want to manipulate only a part of a paragraph, you will have to use the corresponding
\text-version of the function, see below. However, feel free to set and unset every function at will
at any place in your document.

2.3 \text-Versions
The functions provided by this package might be much more useful if applied only to a short sequence of
words or single words instead of the whole document or paragraph. Therefore, most of the above-mentioned
commands have7 a \text-version that takes an argument. \textrandomcolor{foo} results in a colored
foo while the rest of the document remains unaffected. However, to achieve this effect, still the whole
node list has to be traversed. Thus, it may slow down the compilation of your document, even if you use
\textrandomcolor only once. Fortunately, the effect is very small and mostly negligible.8

Please don't fool around by mixing a \text-version with the non-\text-version. If you feel like it and
are not pleased with the result, it is up to you to provide a stable and working solution.

2.4 Lua functions
As all features are implemented on the Lua side, you can use these functions independently. If you do so,
please consult the corresponding subsections in the implementation part, because there are some variables
that can be adapted to your need.

You can use the following code inside a \directlua statement or in a luacode environment (or the
corresponding thing in your format):

luatexbase.add_to_callback("pre_linebreak_filter",chickenize,"chickenize")

Replace pre by post to register into the post linebreak filter. The second argument (here: chickenize)
specifies the function name; the available functions are listed below. You can supply a label as you like in
the third argument. The fourth and last argument, which is omitted in the example, determines the order in
which the functions in the callback are used. If you have no fancy stuff going on, you can safely use 1.

6Which is so far not catchable due to missing functionality in luatexbase.
7If they don't have, I did miss that, sorry. Please inform me about such cases.
8On a 500 pages text-only LATEX document the dilation is on the order of 10% with textrandomcolor, but other ma-

nipulations can take much more time. However, you are not supposed to make such long documents with chickenize!

chicken 7

3 Options – How to Adjust It
There are several ways to change the behaviour of chickenize and its macros. Most of the options are Lua
variables and can be set using \chickenizesetup. But be careful! The argument of \chickenizesetup
is passed directly to Lua, therefore you are not using a comma-separated key-value list, but uncorrelated
Lua commands. The argument must have the syntax {randomfontslower = 1 randomfontsupper = 0}
instead of {randomfontslower = 1, randomfontsupper = 0}. Alright?

However, \chickenizesetup is a macro on the TEX side meaning that you can use only % as comment
string. If you use --, all of the argument will be ignored as TEX does not pass an eol to \directlua. If you
don't understand that, just ignore it and go on as usual.

The following list tries to kind of keep track of the options and variables. There is no guarantee for
completeness, and if you find something that is missing or doesn't work as described here, please inform
me!

randomfontslower, randomfontsupper = <int> These two integer variables determine the span of
fonts used for the font randomization. Just play around with them a bit to find out what they are
doing.

chickenstring = <table> The string that is printed when using \chickenize. In fact, chickenstring
is a table which allows for some more random action. To specify the default string, say
chickenstring[1] = 'chicken'. Formore than one animal, just step the index: chickenstring[2] = 'rabbit'.
All existing table entries will be used randomly. Remember that we are dealing with Lua strings here,
so use ' ' to mark them. (" " can cause problems with babel.)

chickenizefraction = <float> 1 Gives the fraction of words that get replaced by the chickenstring.
The default means that every word is substituted. However, with a value of, say, 0.0001, only
one word in ten thousand will be chickenstring. chickenizefraction must be specified after
\begin{document}. No idea, why …

chickencount = <true> Activates the counting of substituted words and prints the number at the end of
the terminal output.

colorstretchnumbers = <true> 0 If true, the amount of stretching or shrinking of each line is printed
into the margin as a green, red or black number.

chickenkernamount = <int> The amount the kerning is set to when using \kernmanipulate.

chickenkerninvert = <bool> If set to true, the kerning is inverted (to be used with \kernmanipulate.

leettable = <table> From this table, the substitution for 1337 is taken. If you want to add or change
an entry, you have to provide the unicode numbers of the characters, e. g. leettable[101] = 50
replaces every e (101) with the number 3 (50).

uclcratio = <float> 0.5 Gives the fraction of uppercases to lowercases in the \randomuclc mode. A
higher number (up to 1) gives more uppercase letters. Guess what a lower number does.

randomcolor_grey = <bool> false For a printer-friendly version, this offers a grey scale instead of an
rgb value for \randomcolor.

rainbow_step = <float> 0.005 This indicates the relative change of color using the rainbow function-
ality. A value of 1 changes the color in one step from red to yellow, while a value of 0.005 takes
200 letters for the transition to be completed. Useful values are below 0.05, but it depends on the
amount of text. The longer the text and the lower the step, the nicer your rainbow will be.

chicken 8

Rgb_lower, rGb_upper = <int> To specify the color space that is used for \randomcolor, you can
specify six values, the upper and lower value for each color. The uppercase letter in the variable
denotes the color, so rGb_upper gives the upper value for green etc. Possible values are between 1
and 254. If you enter anything outside this range, your PDF will become invalid and break. For grey
scale, use grey_lower and grey_upper, with values between 0 (black) and 1000 (white), included.
Default is 0 to 900 to prevent white letters.

keeptext = <bool> false This is for the \colorstretch command. If set to true, the text of your
document will be kept. This way, it is easier to identify bad lines and the reason for the badness.

colorexpansion = <bool> true If true, two bars are shown of which the second one denotes the font
expansion. Only useful if font expansion is used. (You do use font expansion, don’t you?)

chicken 9

Part II

Tutorial
I thought it might be helpful to add a small tutorial to this package as it is mainly written with instructional
purposes in mind. However, the following is not intended as a comprehensive guide to LuaTEXİt's just to get
an idea how things work here. For a deeper understanding of LuaTEX you should consult both the LuaTEX
manual and some introduction into Lua proper like “Programming in Lua“. (See the section Literature at
the end of the manual.)

4 Lua code
The crucial novelty in LuaTEX is the first part of its name: The programming language Lua. One can use
nearly any Lua code inside the commands \directlua{} or \latelua{}. This alleviates simple tasks like
calculating a number and printing it, just as if it was entered by hand:

\directlua{
a = 5*2
tex.print(a)

}

A number of additions to the Lua language renders it particularly suitable for TEXing, especially the tex.
library that offers access to TEX internals. In the simple example above, the function tex.print() inserts
its argument into the TEX input stream, so the result of the calcuation (10) is printed in the document.

Larger parts of Lua code should not be embedded in your TEX code, but rather in a separate file. It can
then be loaded using

\directlua{dofile("filename")}

If you use LuaLATEX, you can also use the luacode environment from the eponymous package.

5 callbacks
While Lua code can be inserted using \directlua at any point in the input, a very powerful concept allows
to change the way TEX behaves: The callbacks. A callback is a point where you can hook into TEX's working
and do anything to it that may make sense – or not. (Thus maybe breaking your document completely …)

Callbacks are employed at several stages of TEX's work – e. g. for font loading, paragraph breaking,
shipping out etc. In this package, we make heavy use of mostly two callbacks: The pre_linebreak_filter
and the post_linebreak filter. These callbacks are called just before (or after, resp.) TEX breaks a paragraph
into lines. Normally, these callbacks are empty, so they are a great playground. In between these callbacks,
the linebreak_filter takes care of TEX's line breaking mechanism. We won't touch this as I have no
idea of what's going on there ;)

chicken 10

5.1 How to use a callback
The normal way to use a callback is to “register” a function in it. This way, the function is called each
time the callback is executed. Typically, the function takes a node list (see below) as an argument, does
something with it, and returns it. So a basic use of the post_linebreak_filter would look like:

function my_new_filter(head)
return head

end

callback.register("post_linebreak_filter",my_new_filter)

The function callback.register takes the name of the callback and your new function. However, there
are some reasons why we avoid this syntax here. Instead, we rely on the package luatexbase by Manuel
Pégourié-Gonnard and Élie Roux that offers the function luatexbase.add_to_callback which has a
somewhat extended syntax:

luatexbase.add_to_callback("post_linebreak_filter",my_new_filter,"a fancy new filter")

The third argument is a name you can (have to) give to your function in the callback. That is necessary
because the package also allows for removing functions from callbacks, and then you need a unique identifier
for the function:

luatexbase.remove_from_callback("post_linebreak_filter","a fancy new filter")

You have to consult the LuaTEX manual to see what functionality a callback has when executed, what
arguments it expects and what return values have to be given.

Everything I have written here is not the complete truth – please consult the LuaTEX manual and the
luatexbase documentation for details!

6 Nodes
Essentially everything that LuaTEX deals with are nodes – letters, spaces, colors, rules etc. In this package,
we make heavy use of different types of nodes, so an understanding of the concept is crucial for the
functionality.

A node is an object that has different properties, depending on its type which is stored in its .id field.
For example, a node of type glyph has id 37, has a number .char that represents its unicode codepoint, a
.font entry that determines the font used for this glyph, a .height, .depth and .width etc.

Also, a node typically has a non-empty field .next and .prev. In a list, these point to the – guess it –
next or previous node. Using this, one can walk over a list of nodes step by step and manipulate the list.

A more convenient way to adress each node of a list is the function node.traverse(head) which
takes as first argument the first node of the list. However, often one wants to adress only a certain type of
nodes in a list – e. g. all glyphs in a vertical list that also contains glue, rules etc. This is achieved by calling
the function node.traverse_id(37,head), with the first argument giving the respective id of the nodes.

The following example removes all characters “e” from the input just before paragraph breaking. This
might not make any sense, but it is a good example anyways:

function remove_e(head)

chicken 11

for n in node.traverse_id(37,head) do
if n.char == 101 then
node.remove(head,n)

end
end
return head

end

luatexbase.add_to_callback("pre_linebreak_filter",remove_e,"remove all letters e")

Now, don't read on, but try out this code by yourself! Change the number of the character to be
removed, try to play around a bit. Also, try to remove the spaces between words. Those are glue nodes –
look up their id in the LuaTEX manual! Then, you have to remove the if n.char condition on the third
line of the listing, because glue nodes lack a .char field. If everything works, you should have an input
consisting of only one long word. Congratulations!

The pre_linebreak_filter is especially easy because its argument (here called head) is just one
horizontal list. For the post_linebreak_filter, one has to traverse a whole vertical stack of horizontal
lists, vertical glue and other material. See some of the functions below to understand what is necessary in
this more complicated case.

7 Other things
Lua is a very intuitive and simple language, but nonetheless powerful. Just two tips: use local
variables if possible – your code will be much faster. For this reason we prefer synonyms like
nodetraverseid = node.traverse_id instead of the original names.

Also, Lua is kind of built around tables. Everything is best done with tables!
The namespace of the chickenize package is not consistent. Please don't take anything here as an

example for good Lua coding, for good TEXing or even for good LuaTEXing. It's not. For high quality code
check out the code written by Hans Hagen or other professionals. Once you understand the package at
hand, you should be ready to go on and improve your knowledge. After that, you might come back and
help me improve this package – I'm always happy for any help ☺

chicken 12

Part III

Implementation
8 TEX file
This file is more-or-less a dummy file to offer a nice interface for the functions. Basically, every macro
registers a function of the same name in the corresponding callback. The un-macros later remove these
functions. Where it makes sense, there are text-variants that activate the function only in a certain area of
the text, by means of LuaTEX's attributes.

For (un)registering, we use the luatexbase package. Then, the .lua file is loaded which does the
actual work. Finally, the TEX macros are defined as simple \directlua calls.

The Lua file is not found by using a simple dofile("chickenize.lua") call, but we have to use
kpse's find_file.
1 \input{luatexbase.sty}
2 \directlua{dofile(kpse.find_file("chickenize.lua"))}
3
4 \def\BEClerize{
5 \chickenize
6 \directlua{
7 chickenstring[1] = "noise noise"
8 chickenstring[2] = "atom noise"
9 chickenstring[3] = "shot noise"

10 chickenstring[4] = "photon noise"
11 chickenstring[5] = "camera noise"
12 chickenstring[6] = "noising noise"
13 chickenstring[7] = "thermal noise"
14 chickenstring[8] = "electronic noise"
15 chickenstring[9] = "spin noise"
16 chickenstring[10] = "electron noise"
17 chickenstring[11] = "Bogoliubov noise"
18 chickenstring[12] = "white noise"
19 chickenstring[13] = "brown noise"
20 chickenstring[14] = "pink noise"
21 chickenstring[15] = "bloch sphere"
22 chickenstring[16] = "atom shot noise"
23 chickenstring[17] = "nature physics"
24 }
25 }
26
27 \def\boustrophedon{
28 \directlua{luatexbase.add_to_callback("post_linebreak_filter",boustrophedon,"boustrophedon")}}
29 \def\unboustrophedon{
30 \directlua{luatexbase.remove_from_callback("post_linebreak_filter","boustrophedon")}}
31

chicken 13

32 \def\boustrophedonglyphs{
33 \directlua{luatexbase.add_to_callback("post_linebreak_filter",boustrophedon_glyphs,"boustrophedon_glyphs")}}
34 \def\unboustrophedonglyphs{
35 \directlua{luatexbase.remove_from_callback("post_linebreak_filter","boustrophedon_glyphs")}}
36
37 \def\boustrophedoninverse{
38 \directlua{luatexbase.add_to_callback("post_linebreak_filter",boustrophedon_inverse,"boustrophedon_inverse")}}
39 \def\unboustrophedoninverse{
40 \directlua{luatexbase.remove_from_callback("post_linebreak_filter","boustrophedon_inverse")}}
41
42 \def\chickenize{
43 \directlua{luatexbase.add_to_callback("pre_linebreak_filter",chickenize,"chickenize")
44 luatexbase.add_to_callback("start_page_number",
45 function() texio.write("["..status.total_pages) end ,"cstartpage")
46 luatexbase.add_to_callback("stop_page_number",
47 function() texio.write(" chickens]") end,"cstoppage")
48 %
49 luatexbase.add_to_callback("stop_run",nicetext,"a nice text")
50 }
51 }
52 \def\unchickenize{
53 \directlua{luatexbase.remove_from_callback("pre_linebreak_filter","chickenize")
54 luatexbase.remove_from_callback("start_page_number","cstartpage")
55 luatexbase.remove_from_callback("stop_page_number","cstoppage")}}
56
57 \def\coffeestainize{ %% to be implemented.
58 \directlua{}}
59 \def\uncoffeestainize{
60 \directlua{}}
61
62 \def\colorstretch{
63 \directlua{luatexbase.add_to_callback("post_linebreak_filter",colorstretch,"stretch_expansion")}}
64 \def\uncolorstretch{
65 \directlua{luatexbase.remove_from_callback("post_linebreak_filter","stretch_expansion")}}
66
67 \def\countglyphs{
68 \directlua{glyphnumber = 0
69 luatexbase.add_to_callback("post_linebreak_filter",countglyphs,"countglyphs")
70 luatexbase.add_to_callback("stop_run",printglyphnumber,"printglyphnumber")
71 }
72 }
73
74 \def\dosomethingfunny{
75 %% should execute one of the “funny” commands, but randomly. So every compilation is completely different. Maybe a list of commands could be specified to exclude total nonesense-functions. Maybe also on a per-paragraph-basis?
76 }
77

chicken 14

78 \def\dubstepenize{
79 \chickenize
80 \directlua{
81 chickenstring[1] = "WOB"
82 chickenstring[2] = "WOB"
83 chickenstring[3] = "WOB"
84 chickenstring[4] = "BROOOAR"
85 chickenstring[5] = "WHEE"
86 chickenstring[6] = "WOB WOB WOB"
87 chickenstring[7] = "WAAAAAAAAH"
88 chickenstring[8] = "duhduh duhduh duh"
89 chickenstring[9] = "BEEEEEEEEEW"
90 chickenstring[10] = "DDEEEEEEEW"
91 chickenstring[11] = "EEEEEW"
92 chickenstring[12] = "boop"
93 chickenstring[13] = "buhdee"
94 chickenstring[14] = "bee bee"
95 chickenstring[15] = "BZZZRRRRRRROOOOOOAAAAA"
96
97 chickenizefraction = 1
98 }
99 }

100 \let\dubstepize\dubstepenize
101
102 \def\guttenbergenize{ %% makes only sense when using LaTeX
103 \AtBeginDocument{
104 \let\grqq\relax\let\glqq\relax
105 \let\frqq\relax\let\flqq\relax
106 \let\grq\relax\let\glq\relax
107 \let\frq\relax\let\flq\relax
108 %
109 \gdef\footnote##1{}
110 \gdef\cite##1{}\gdef\parencite##1{}
111 \gdef\Cite##1{}\gdef\Parencite##1{}
112 \gdef\cites##1{}\gdef\parencites##1{}
113 \gdef\Cites##1{}\gdef\Parencites##1{}
114 \gdef\footcite##1{}\gdef\footcitetext##1{}
115 \gdef\footcites##1{}\gdef\footcitetexts##1{}
116 \gdef\textcite##1{}\gdef\Textcite##1{}
117 \gdef\textcites##1{}\gdef\Textcites##1{}
118 \gdef\smartcites##1{}\gdef\Smartcites##1{}
119 \gdef\supercite##1{}\gdef\supercites##1{}
120 \gdef\autocite##1{}\gdef\Autocite##1{}
121 \gdef\autocites##1{}\gdef\Autocites##1{}
122 %% many, many missing … maybe we need to tackle the underlying mechanism?
123 }

chicken 15

124 \directlua{luatexbase.add_to_callback("pre_linebreak_filter",guttenbergenize_rq,"guttenbergenize_rq")}
125 }
126
127 \def\hammertime{
128 \global\let\n\relax
129 \directlua{hammerfirst = true
130 luatexbase.add_to_callback("pre_linebreak_filter",hammertime,"hammertime")}}
131 \def\unhammertime{
132 \directlua{luatexbase.remove_from_callback("pre_linebreak_filter","hammertime")}}
133
134 % \def\itsame{
135 % \directlua{drawmario}} %%% does not exist
136
137 \def\kernmanipulate{
138 \directlua{luatexbase.add_to_callback("pre_linebreak_filter",kernmanipulate,"kernmanipulate")}}
139 \def\unkernmanipulate{
140 \directlua{lutaexbase.remove_from_callback("pre_linebreak_filter",kernmanipulate)}}
141
142 \def\leetspeak{
143 \directlua{luatexbase.add_to_callback("post_linebreak_filter",leet,"1337")}}
144 \def\unleetspeak{
145 \directlua{luatexbase.remove_from_callback("post_linebreak_filter","1337")}}
146
147 \def\letterspaceadjust{
148 \directlua{luatexbase.add_to_callback("pre_linebreak_filter",letterspaceadjust,"letterspaceadjust")}}
149 \def\unletterspaceadjust{
150 \directlua{luatexbase.remove_from_callback("pre_linebreak_filter","letterspaceadjust")}}
151
152 \def\listallcommands{
153 \directlua{
154 for name in pairs(tex.hashtokens()) do
155 print(name)
156 end}
157 }
158
159 \let\stealsheep\letterspaceadjust %% synonym in honor of Paul
160 \let\unstealsheep\unletterspaceadjust
161 \let\returnsheep\unletterspaceadjust
162
163 \def\matrixize{
164 \directlua{luatexbase.add_to_callback("pre_linebreak_filter",matrixize,"matrixize")}}
165 \def\unmatrixize{
166 \directlua{luatexbase.remove_from_callback("pre_linebreak_filter",matrixize)}}
167
168 \def\milkcow{ %% FIXME %% to be implemented
169 \directlua{}}

chicken 16

170 \def\unmilkcow{
171 \directlua{}}
172
173 \def\pancakenize{
174 \directlua{luatexbase.add_to_callback("stop_run",pancaketext,"pancaketext")}}
175
176 \def\rainbowcolor{
177 \directlua{luatexbase.add_to_callback("post_linebreak_filter",randomcolor,"rainbowcolor")
178 rainbowcolor = true}}
179 \def\unrainbowcolor{
180 \directlua{luatexbase.remove_from_callback("post_linebreak_filter","rainbowcolor")
181 rainbowcolor = false}}
182 \let\nyanize\rainbowcolor
183 \let\unnyanize\unrainbowcolor
184
185 \def\randomcolor{
186 \directlua{luatexbase.add_to_callback("post_linebreak_filter",randomcolor,"randomcolor")}}
187 \def\unrandomcolor{
188 \directlua{luatexbase.remove_from_callback("post_linebreak_filter","randomcolor")}}
189
190 \def\randomerror{ %% FIXME
191 \directlua{luatexbase.add_to_callback("post_linebreak_filter",randomerror,"randomerror")}}
192 \def\unrandomerror{ %% FIXME
193 \directlua{luatexbase.remove_from_callback("post_linebreak_filter","randomerror")}}
194
195 \def\randomfonts{
196 \directlua{luatexbase.add_to_callback("post_linebreak_filter",randomfonts,"randomfonts")}}
197 \def\unrandomfonts{
198 \directlua{luatexbase.remove_from_callback("post_linebreak_filter","randomfonts")}}
199
200 \def\randomuclc{
201 \directlua{luatexbase.add_to_callback("pre_linebreak_filter",randomuclc,"randomuclc")}}
202 \def\unrandomuclc{
203 \directlua{luatexbase.remove_from_callback("pre_linebreak_filter","randomuclc")}}
204
205 \let\rongorongonize\boustrophedoninverse
206 \let\unrongorongonize\unboustrophedoninverse
207
208 \def\scorpionize{
209 \directlua{luatexbase.add_to_callback("pre_linebreak_filter",scorpionize_color,"scorpionize_color")}}
210 \def\unscorpionize{
211 \directlua{luatexbase.remove_from_callback("pre_linebreak_filter","scorpionize_color")}}
212
213 \def\spankmonkey{ %% to be implemented
214 \directlua{}}
215 \def\unspankmonkey{

chicken 17

216 \directlua{}}
217
218 \def\substitutewords{
219 \directlua{luatexbase.add_to_callback("process_input_buffer",substitutewords,"substitutewords")}}
220 \def\unsubstitutewords{
221 \directlua{luatexbase.remove_from_callback("process_input_buffer","substitutewords")}}
222
223 \def\addtosubstitutions#1#2{
224 \directlua{addtosubstitutions("#1","#2")}
225 }
226
227 \def\tabularasa{
228 \directlua{luatexbase.add_to_callback("post_linebreak_filter",tabularasa,"tabularasa")}}
229 \def\untabularasa{
230 \directlua{luatexbase.remove_from_callback("post_linebreak_filter","tabularasa")}}
231
232 \def\uppercasecolor{
233 \directlua{luatexbase.add_to_callback("post_linebreak_filter",uppercasecolor,"uppercasecolor")}}
234 \def\unuppercasecolor{
235 \directlua{luatexbase.remove_from_callback("post_linebreak_filter","uppercasecolor")}}
236
237 \def\variantjustification{
238 \directlua{luatexbase.add_to_callback("post_linebreak_filter",variantjustification,"variantjustification")}}
239 \def\unvariantjustification{
240 \directlua{luatexbase.remove_from_callback("post_linebreak_filter","variantjustification")}}
241
242 \def\zebranize{
243 \directlua{luatexbase.add_to_callback("post_linebreak_filter",zebranize,"zebranize")}}
244 \def\unzebranize{
245 \directlua{luatexbase.remove_from_callback("post_linebreak_filter","zebranize")}}
Now the setup for the \text-versions. We utilize LuaTEXs attributes to mark all nodes that should be
manipulated. The macros should be \long to allow arbitrary input.
246 \newluatexattribute\leetattr
247 \newluatexattribute\letterspaceadjustattr
248 \newluatexattribute\randcolorattr
249 \newluatexattribute\randfontsattr
250 \newluatexattribute\randuclcattr
251 \newluatexattribute\tabularasaattr
252 \newluatexattribute\uppercasecolorattr
253
254 \long\def\textleetspeak#1%
255 {\setluatexattribute\leetattr{42}#1\unsetluatexattribute\leetattr}
256
257 \long\def\textletterspaceadjust#1{
258 \setluatexattribute\letterspaceadjustattr{42}#1\unsetluatexattribute\letterspaceadjustattr
259 \directlua{

chicken 18

260 if (textletterspaceadjustactive) then else % -- if already active, do nothing
261 luatexbase.add_to_callback("pre_linebreak_filter",textletterspaceadjust,"textletterspaceadjust")
262 end
263 textletterspaceadjustactive = true % -- set to active
264 }
265 }
266 \let\textlsa\textletterspaceadjust
267
268 \long\def\textrandomcolor#1%
269 {\setluatexattribute\randcolorattr{42}#1\unsetluatexattribute\randcolorattr}
270 \long\def\textrandomfonts#1%
271 {\setluatexattribute\randfontsattr{42}#1\unsetluatexattribute\randfontsattr}
272 \long\def\textrandomfonts#1%
273 {\setluatexattribute\randfontsattr{42}#1\unsetluatexattribute\randfontsattr}
274 \long\def\textrandomuclc#1%
275 {\setluatexattribute\randuclcattr{42}#1\unsetluatexattribute\randuclcattr}
276 \long\def\texttabularasa#1%
277 {\setluatexattribute\tabularasaattr{42}#1\unsetluatexattribute\tabularasaattr}
278 \long\def\textuppercasecolor#1%
279 {\setluatexattribute\uppercasecolorattr{42}#1\unsetluatexattribute\uppercasecolorattr}
Finally, a macro to control the setup. So far, it's only a wrapper that allows TEX-style comments to make the
user feel more at home.
280 \def\chickenizesetup#1{\directlua{#1}}
The following is the very first try of implementing a small drawing language in Lua. It draws a beautiful
chicken.
281 \long\def\luadraw#1#2{%
282 \vbox to #1bp{%
283 \vfil
284 \luatexlatelua{pdf_print("q") #2 pdf_print("Q")}%
285 }%
286 }
287 \long\def\drawchicken{
288 \luadraw{90}{
289 kopf = {200,50} % Kopfmitte
290 kopf_rad = 20
291
292 d = {215,35} % Halsansatz
293 e = {230,10} %
294
295 korper = {260,-10}
296 korper_rad = 40
297
298 bein11 = {260,-50}
299 bein12 = {250,-70}
300 bein13 = {235,-70}

chicken 19

301
302 bein21 = {270,-50}
303 bein22 = {260,-75}
304 bein23 = {245,-75}
305
306 schnabel_oben = {185,55}
307 schnabel_vorne = {165,45}
308 schnabel_unten = {185,35}
309
310 flugel_vorne = {260,-10}
311 flugel_unten = {280,-40}
312 flugel_hinten = {275,-15}
313
314 sloppycircle(kopf,kopf_rad)
315 sloppyline(d,e)
316 sloppycircle(korper,korper_rad)
317 sloppyline(bein11,bein12) sloppyline(bein12,bein13)
318 sloppyline(bein21,bein22) sloppyline(bein22,bein23)
319 sloppyline(schnabel_vorne,schnabel_oben) sloppyline(schnabel_vorne,schnabel_unten)
320 sloppyline(flugel_vorne,flugel_unten) sloppyline(flugel_hinten,flugel_unten)
321 }
322 }

9 LATEX package
I have decided to keep the LATEX-part of this package as small as possible. So far, it does … noth-
ing useful, but it provides a chickenize.sty that loads chickenize.tex so the user can still say
\usepackage{chickenize}. This file will never support package options!

Some code might be implemented to manipulate figures for full chickenization. However, I will not
load any packages at this place, as loading of expl3 or TikZ or whatever takes too much time for such a tiny
package like this one. If you require any of the features presented here, you have to load the packages on
your own. Maybe this will change.
323 \ProvidesPackage{chickenize}%
324 [2013/02/24 v0.2 chickenize package]
325 \input{chickenize}

9.1 Definition of User-Level Macros
Nothing done so far, just some minor ideas. If you want to implement some cool things, contact me! :)
326 \iffalse
327 \DeclareDocumentCommand\includegraphics{O{}m}{
328 \fbox{Chicken} %% actually, I'd love to draw an MP graph showing a chicken …
329 }
330 %%%% specials: the balmerpeak. A tribute to http://xkcd.com/323/.
331 %% So far, you have to load pgfplots yourself.

chicken 20

332 %% As it is a mighty package, I don't want the user to force loading it.
333 \NewDocumentCommand\balmerpeak{G{}O{-4cm}}{
334 %% to be done using Lua drawing.
335 }
336 \fi

10 Lua Module
This file contains all the necessary functions and is the actual work horse of this package. The functions are
sorted strictly alphabetically (or, they should be …) and not by sense, functionality or anything.

First, we set up some constants that are used by many of the following functions. These are made global
so the code can be manipulated at the document level, too.
337
338 local nodenew = node.new
339 local nodecopy = node.copy
340 local nodeinsertbefore = node.insert_before
341 local nodeinsertafter = node.insert_after
342 local noderemove = node.remove
343 local nodeid = node.id
344 local nodetraverseid = node.traverse_id
345 local nodeslide = node.slide
346
347 Hhead = nodeid("hhead")
348 RULE = nodeid("rule")
349 GLUE = nodeid("glue")
350 WHAT = nodeid("whatsit")
351 COL = node.subtype("pdf_colorstack")
352 GLYPH = nodeid("glyph")
Now we set up the nodes used for all color things. The nodes are whatsits of subtype pdf_colorstack.
353 color_push = nodenew(WHAT,COL)
354 color_pop = nodenew(WHAT,COL)
355 color_push.stack = 0
356 color_pop.stack = 0
357 color_push.cmd = 1
358 color_pop.cmd = 2

10.1 chickenize
The infamous \chickenize macro. Substitutes every word of the input with the given string. This can be
elaborated arbitrarily, and whenever I feel like, I might add functionality. So far, only the string replaces the
word, and even hyphenation is not possible.
359 chicken_pagenumbers = true
360
361 chickenstring = {}
362 chickenstring[1] = "chicken" -- chickenstring is a table, please remeber this!

chicken 21

363
364 chickenizefraction = 0.5
365 -- set this to a small value to fool somebody, or to see if your text has been read carefully. This is also a great way to lay easter eggs for your own class / package …
366 chicken_substitutions = 0 -- value to count the substituted chickens. Makes sense for testing your proofreaders.
367
368 local tbl = font.getfont(font.current())
369 local space = tbl.parameters.space
370 local shrink = tbl.parameters.space_shrink
371 local stretch = tbl.parameters.space_stretch
372 local match = unicode.utf8.match
373 chickenize_ignore_word = false
The function chickenize_real_stuff is started once the beginning of a to-be-substituted word is found.
374 chickenize_real_stuff = function(i,head)
375 while ((i.next.id == 37) or (i.next.id == 11) or (i.next.id == 7) or (i.next.id == 0)) do --find end of a word
376 i.next = i.next.next
377 end
378
379 chicken = {} -- constructing the node list.
380
381 -- Should this be done only once? No, otherwise we lose the freedom to change the string in-document.
382 -- But it could be done only once each paragraph as in-paragraph changes are not possible!
383
384 chickenstring_tmp = chickenstring[math.random(1,#chickenstring)]
385 chicken[0] = nodenew(37,1) -- only a dummy for the loop
386 for i = 1,string.len(chickenstring_tmp) do
387 chicken[i] = nodenew(37,1)
388 chicken[i].font = font.current()
389 chicken[i-1].next = chicken[i]
390 end
391
392 j = 1
393 for s in string.utfvalues(chickenstring_tmp) do
394 local char = unicode.utf8.char(s)
395 chicken[j].char = s
396 if match(char,"%s") then
397 chicken[j] = nodenew(10)
398 chicken[j].spec = nodenew(47)
399 chicken[j].spec.width = space
400 chicken[j].spec.shrink = shrink
401 chicken[j].spec.stretch = stretch
402 end
403 j = j+1
404 end
405
406 nodeslide(chicken[1])
407 lang.hyphenate(chicken[1])

chicken 22

408 chicken[1] = node.kerning(chicken[1]) -- FIXME: does not work
409 chicken[1] = node.ligaturing(chicken[1]) -- dito
410
411 nodeinsertbefore(head,i,chicken[1])
412 chicken[1].next = chicken[2] -- seems to be necessary … to be fixed
413 chicken[string.len(chickenstring_tmp)].next = i.next
414
415 -- shift lowercase latin letter to uppercase if the original input was an uppercase
416 if (chickenize_capital and (chicken[1].char > 96 and chicken[1].char < 123)) then
417 chicken[1].char = chicken[1].char - 32
418 end
419
420 return head
421 end
422
423 chickenize = function(head)
424 for i in nodetraverseid(37,head) do --find start of a word
425 if (chickenize_ignore_word == false) then -- normal case: at the beginning of a word, we jump into chickenization
426 if (i.char > 64 and i.char < 91) then chickenize_capital = true else chickenize_capital = false end
427 head = chickenize_real_stuff(i,head)
428 end
429
430 -- At the end of the word, the ignoring is reset. New chance for everyone.
431 if not((i.next.id == 37) or (i.next.id == 7) or (i.next.id == 22) or (i.next.id == 11)) then
432 chickenize_ignore_word = false
433 end
434
435 -- And the random determination of the chickenization of the next word:
436 if math.random() > chickenizefraction then
437 chickenize_ignore_word = true
438 elseif chickencount then
439 chicken_substitutions = chicken_substitutions + 1
440 end
441 end
442 return head
443 end
444

A small additional feature: Some nice text to cheer up the user. Mainly to show that and how we can access
the stop_run callback. (see above)
445 local separator = string.rep("=", 28)
446 local texiowrite_nl = texio.write_nl
447 nicetext = function()
448 texiowrite_nl("Output written on "..tex.jobname..".pdf ("..status.total_pages.." chicken,".." eggs).")
449 texiowrite_nl(" ")
450 texiowrite_nl(separator)
451 texiowrite_nl("Hello my dear user,")

chicken 23

452 texiowrite_nl("good job, now go outside and enjoy the world!")
453 texiowrite_nl(" ")
454 texiowrite_nl("And don't forget to feed your chicken!")
455 texiowrite_nl(separator .. "\n")
456 if chickencount then
457 texiowrite_nl("There were "..chicken_substitutions.." substitutions made.")
458 texiowrite_nl(separator)
459 end
460 end

10.2 boustrophedon
There are two implementations of the boustrophedon: One reverses every line as a whole, the other one
changes the writing direction and reverses glyphs one by one. The latter one might be more reliable, but
takes considerably more time.

Linewise rotation:
461 boustrophedon = function(head)
462 rot = node.new(8,8)
463 rot2 = node.new(8,8)
464 odd = true
465 for line in node.traverse_id(0,head) do
466 if odd == false then
467 w = line.width/65536*0.99625 -- empirical correction factor (?)
468 rot.data = "-1 0 0 1 "..w.." 0 cm"
469 rot2.data = "-1 0 0 1 "..-w.." 0 cm"
470 line.head = node.insert_before(line.head,line.head,node.copy(rot))
471 node.insert_after(line.head,node.tail(line.head),node.copy(rot2))
472 odd = true
473 else
474 odd = false
475 end
476 end
477 return head
478 end
Glyphwise rotation:
479 boustrophedon_glyphs = function(head)
480 odd = false
481 rot = nodenew(8,8)
482 rot2 = nodenew(8,8)
483 for line in nodetraverseid(0,head) do
484 if odd==true then
485 line.dir = "TRT"
486 for g in nodetraverseid(37,line.head) do
487 w = -g.width/65536*0.99625
488 rot.data = "-1 0 0 1 " .. w .." 0 cm"
489 rot2.data = "-1 0 0 1 " .. -w .." 0 cm"

chicken 24

490 line.head = node.insert_before(line.head,g,node.copy(rot))
491 node.insert_after(line.head,g,node.copy(rot2))
492 end
493 odd = false
494 else
495 line.dir = "TLT"
496 odd = true
497 end
498 end
499 return head
500 end
Inverse boustrophedon. At least I think, this is the way Rongorongo is written. However, the top-to-bottom
direction has to be inverted, too.
501 boustrophedon_inverse = function(head)
502 rot = node.new(8,8)
503 rot2 = node.new(8,8)
504 odd = true
505 for line in node.traverse_id(0,head) do
506 if odd == false then
507 texio.write_nl(line.height)
508 w = line.width/65536*0.99625 -- empirical correction factor (?)
509 h = line.height/65536*0.99625
510 rot.data = "-1 0 0 -1 "..w.." "..h.." cm"
511 rot2.data = "-1 0 0 -1 "..-w.." "..0.5*h.." cm"
512 line.head = node.insert_before(line.head,line.head,node.copy(rot))
513 node.insert_after(line.head,node.tail(line.head),node.copy(rot2))
514 odd = true
515 else
516 odd = false
517 end
518 end
519 return head
520 end

10.3 countglyphs
Counts the glyphs in your documnt. Where “glyph” means every printed character in everything that is a
paragraph – formulas do not work! However, hyphenations do work and the hyphen sign is counted! And
that is the sole reason for this function – every simple script could read the letters in a doucment, but only
after the hyphenation it is possible to count the real number of printed characters – where the hyphen does
count.

This function will be extended to allow counting of whatever you want.
521 countglyphs = function(head)
522 for line in nodetraverseid(0,head) do
523 for glyph in nodetraverseid(37,line.head) do
524 glyphnumber = glyphnumber + 1

chicken 25

525 end
526 end
527 return head
528 end
To print out the number at the end of the document, the following function is registered in the stop_run
callback. This will prevent the normal message from being printed, informing the user about page and
memory stats etc. But I guess when counting characters, everything else does not matter at all? …
529 printglyphnumber = function()
530 texiowrite_nl("\n Number of glyphs in this document: "..glyphnumber.."\n")
531 end

10.4 guttenbergenize
A function in honor of the German politician Guttenberg.9 Please do not confuse him with the grand master
Gutenberg!

Calling \guttenbergenize will not only execute or manipulate Lua code, but also redefine some TEX
or LATEX commands. The aim is to remove all quotations, footnotes and anything that will give information
about the real sources of your work.

The following Lua functionwill remove all quotationmarks from the input. Again, the pre_linebreak_filter
is used for this, although it should be rather removed in the input filter or so.

10.4.1 guttenbergenize – preliminaries

This is a nice solution Lua offers for our needs. Learn it, this might be helpful for you sometime, too.
532 local quotestrings = {
533 [171] = true, [172] = true,
534 [8216] = true, [8217] = true, [8218] = true,
535 [8219] = true, [8220] = true, [8221] = true,
536 [8222] = true, [8223] = true,
537 [8248] = true, [8249] = true, [8250] = true,
538 }

10.4.2 guttenbergenize – the function

539 guttenbergenize_rq = function(head)
540 for n in nodetraverseid(nodeid"glyph",head) do
541 local i = n.char
542 if quotestrings[i] then
543 noderemove(head,n)
544 end
545 end
546 return head
547 end

9Thanks to Jasper for bringing me to this idea!

chicken 26

10.5 hammertime
This is a completely useless function. It just prints STOP! – HAMMERTIME at the beginnig of the first
paragraph after \hammertime, and “U can't touch this” for every following one. As the function writes to
the terminal, you have to be sure that your terminal is line-buffered and not block-buffered. Compare the
explanation by Taco on the LuaTEX mailing list.10

548 hammertimedelay = 1.2
549 local htime_separator = string.rep("=", 30) .. "\n" -- slightly inconsistent with the “nicetext”
550 hammertime = function(head)
551 if hammerfirst then
552 texiowrite_nl(htime_separator)
553 texiowrite_nl("============STOP!=============\n")
554 texiowrite_nl(htime_separator .. "\n\n\n")
555 os.sleep (hammertimedelay*1.5)
556 texiowrite_nl(htime_separator .. "\n")
557 texiowrite_nl("==========HAMMERTIME==========\n")
558 texiowrite_nl(htime_separator .. "\n\n")
559 os.sleep (hammertimedelay)
560 hammerfirst = false
561 else
562 os.sleep (hammertimedelay)
563 texiowrite_nl(htime_separator)
564 texiowrite_nl("======U can't touch this!=====\n")
565 texiowrite_nl(htime_separator .. "\n\n")
566 os.sleep (hammertimedelay*0.5)
567 end
568 return head
569 end

10.6 itsame
The (very first, very basic, very stupid) code to draw a small mario. You need to input luadraw.tex or do
luadraw.lua for the rectangle function.
570 itsame = function()
571 local mr = function(a,b) rectangle({a*10,b*-10},10,10) end
572 color = "1 .6 0"
573 for i = 6,9 do mr(i,3) end
574 for i = 3,11 do mr(i,4) end
575 for i = 3,12 do mr(i,5) end
576 for i = 4,8 do mr(i,6) end
577 for i = 4,10 do mr(i,7) end
578 for i = 1,12 do mr(i,11) end
579 for i = 1,12 do mr(i,12) end
580 for i = 1,12 do mr(i,13) end
581

10http://tug.org/pipermail/luatex/2011-November/003355.html

chicken 27

http://tug.org/pipermail/luatex/2011-November/003355.html

582 color = ".3 .5 .2"
583 for i = 3,5 do mr(i,3) end mr(8,3)
584 mr(2,4) mr(4,4) mr(8,4)
585 mr(2,5) mr(4,5) mr(5,5) mr(9,5)
586 mr(2,6) mr(3,6) for i = 8,11 do mr(i,6) end
587 for i = 3,8 do mr(i,8) end
588 for i = 2,11 do mr(i,9) end
589 for i = 1,12 do mr(i,10) end
590 mr(3,11) mr(10,11)
591 for i = 2,4 do mr(i,15) end for i = 9,11 do mr(i,15) end
592 for i = 1,4 do mr(i,16) end for i = 9,12 do mr(i,16) end
593
594 color = "1 0 0"
595 for i = 4,9 do mr(i,1) end
596 for i = 3,12 do mr(i,2) end
597 for i = 8,10 do mr(5,i) end
598 for i = 5,8 do mr(i,10) end
599 mr(8,9) mr(4,11) mr(6,11) mr(7,11) mr(9,11)
600 for i = 4,9 do mr(i,12) end
601 for i = 3,10 do mr(i,13) end
602 for i = 3,5 do mr(i,14) end
603 for i = 7,10 do mr(i,14) end
604 end

10.7 kernmanipulate
This function either eliminates all the kerning, inverts the sign of the kerning or changes it to a user-given
value.

If the boolean chickeninvertkerning is true, the kerning amount is negative, if it is false, the kerning
will be set to th e value of chickenkernvalue. A large value (> 100 000) can be used to show explicitely
where kerns are inserted. Good for educational use.
605 chickenkernamount = 0
606 chickeninvertkerning = false
607
608 function kernmanipulate (head)
609 if chickeninvertkerning then -- invert the kerning
610 for n in nodetraverseid(11,head) do
611 n.kern = -n.kern
612 end
613 else -- if not, set it to the given value
614 for n in nodetraverseid(11,head) do
615 n.kern = chickenkernamount
616 end
617 end
618 return head
619 end

chicken 28

10.8 leetspeak
The leettable is the substitution scheme. Just add items if you feel to. Maybe we will differ between a
light-weight version and a hardcore 1337.
620 leetspeak_onlytext = false
621 leettable = {
622 [101] = 51, -- E
623 [105] = 49, -- I
624 [108] = 49, -- L
625 [111] = 48, -- O
626 [115] = 53, -- S
627 [116] = 55, -- T
628
629 [101-32] = 51, -- e
630 [105-32] = 49, -- i
631 [108-32] = 49, -- l
632 [111-32] = 48, -- o
633 [115-32] = 53, -- s
634 [116-32] = 55, -- t
635 }
And here the function itself. So simple that I will not write any
636 leet = function(head)
637 for line in nodetraverseid(Hhead,head) do
638 for i in nodetraverseid(GLYPH,line.head) do
639 if not leetspeak_onlytext or
640 node.has_attribute(i,luatexbase.attributes.leetattr)
641 then
642 if leettable[i.char] then
643 i.char = leettable[i.char]
644 end
645 end
646 end
647 end
648 return head
649 end

10.9 letterspaceadjust
Yet another piece of code by Paul. This is primarily inteded for very narrow columns, but may also increase
the overall quality of typesetting. Basically, it does nothing else than adding expandable space between
letters. This way, the amount of stretching between words can be reduced which will, hopefully, result in
the greyness to be more equally distributed over the page.

Why the synonym stealsheep? Because of a comment of Paul on the texhax mailing list: http:
//tug.org/pipermail/texhax/2011-October/018374.html

chicken 29

http://tug.org/pipermail/texhax/2011-October/018374.html
http://tug.org/pipermail/texhax/2011-October/018374.html

10.9.1 setup of variables

650 local letterspace_glue = nodenew(nodeid"glue")
651 local letterspace_spec = nodenew(nodeid"glue_spec")
652 local letterspace_pen = nodenew(nodeid"penalty")
653
654 letterspace_spec.width = tex.sp"0pt"
655 letterspace_spec.stretch = tex.sp"2pt"
656 letterspace_glue.spec = letterspace_spec
657 letterspace_pen.penalty = 10000

10.9.2 function implementation

658 letterspaceadjust = function(head)
659 for glyph in nodetraverseid(nodeid"glyph", head) do
660 if glyph.prev and (glyph.prev.id == nodeid"glyph" or glyph.prev.id == nodeid"disc") then
661 local g = nodecopy(letterspace_glue)
662 nodeinsertbefore(head, glyph, g)
663 nodeinsertbefore(head, g, nodecopy(letterspace_pen))
664 end
665 end
666 return head
667 end

10.9.3 textletterspaceadjust

The \text...-version of letterspaceadjust. Just works, without the need to call \letterspaceadjust
globally or anything else. Just put the \textletterspaceadjust around the part of text you want the
function to work on. Might have problems with surrounding spacing, take care!
668 textletterspaceadjust = function(head)
669 for glyph in node.traverse_id(node.id"glyph", head) do
670 if node.has_attribute(glyph,luatexbase.attributes.letterspaceadjustattr) then
671 if glyph.prev and (glyph.prev.id == node.id"glyph" or glyph.prev.id == node.id"disc") then
672 local g = node.copy(letterspace_glue)
673 node.insert_before(head, glyph, g)
674 node.insert_before(head, g, node.copy(letterspace_pen))
675 end
676 end
677 end
678 luatexbase.remove_from_callback("pre_linebreak_filter","textletterspaceadjust")
679 return head
680 end

10.10 matrixize
Substitutes every glyph by a representation of its ASCII value. Migth be extended to cover the entire unicode
range, but so far only 8bit is supported. The code is quite straight-forward and works OK. The line ends are
not necessarily adjusted correctly. However, with microtype, i. e. font expansion, everything looks fine.

chicken 30

681 matrixize = function(head)
682 x = {}
683 s = nodenew(nodeid"disc")
684 for n in nodetraverseid(nodeid"glyph",head) do
685 j = n.char
686 for m = 0,7 do -- stay ASCII for now
687 x[7-m] = nodecopy(n) -- to get the same font etc.
688
689 if (j / (2^(7-m)) < 1) then
690 x[7-m].char = 48
691 else
692 x[7-m].char = 49
693 j = j-(2^(7-m))
694 end
695 nodeinsertbefore(head,n,x[7-m])
696 nodeinsertafter(head,x[7-m],nodecopy(s))
697 end
698 noderemove(head,n)
699 end
700 return head
701 end

10.11 pancakenize
702 local separator = string.rep("=", 28)
703 local texiowrite_nl = texio.write_nl
704 pancaketext = function()
705 texiowrite_nl("Output written on "..tex.jobname..".pdf ("..status.total_pages.." chicken,".." eggs).")
706 texiowrite_nl(" ")
707 texiowrite_nl(separator)
708 texiowrite_nl("Soo ... you decided to use \\pancakenize.")
709 texiowrite_nl("That means you owe me a pancake!")
710 texiowrite_nl(" ")
711 texiowrite_nl("(This goes by document, not compilation.)")
712 texiowrite_nl(separator.."\n\n")
713 texiowrite_nl("Looking forward for my pancake! :)")
714 texiowrite_nl("\n\n")
715 end

10.12 randomerror

10.13 randomfonts
Traverses the output and substitutes fonts randomly. A check is done so that the font number is existing.
One day, the fonts should be easily given explicitly in terms of \bf etc.
716 randomfontslower = 1
717 randomfontsupper = 0

chicken 31

718 %
719 randomfonts = function(head)
720 local rfub
721 if randomfontsupper > 0 then -- fixme: this should be done only once, no? Or at every paragraph?
722 rfub = randomfontsupper -- user-specified value
723 else
724 rfub = font.max() -- or just take all fonts
725 end
726 for line in nodetraverseid(Hhead,head) do
727 for i in nodetraverseid(GLYPH,line.head) do
728 if not(randomfonts_onlytext) or node.has_attribute(i,luatexbase.attributes.randfontsattr) then
729 i.font = math.random(randomfontslower,rfub)
730 end
731 end
732 end
733 return head
734 end

10.14 randomuclc
Traverses the input list and changes lowercase/uppercase codes.
735 uclcratio = 0.5 -- ratio between uppercase and lower case
736 randomuclc = function(head)
737 for i in nodetraverseid(37,head) do
738 if not(randomuclc_onlytext) or node.has_attribute(i,luatexbase.attributes.randuclcattr) then
739 if math.random() < uclcratio then
740 i.char = tex.uccode[i.char]
741 else
742 i.char = tex.lccode[i.char]
743 end
744 end
745 end
746 return head
747 end

10.15 randomchars
748 randomchars = function(head)
749 for line in nodetraverseid(Hhead,head) do
750 for i in nodetraverseid(GLYPH,line.head) do
751 i.char = math.floor(math.random()*512)
752 end
753 end
754 return head
755 end

chicken 32

10.16 randomcolor and rainbowcolor

10.16.1 randomcolor – preliminaries

Setup of the boolean for grey/color or rainbowcolor, and boundaries for the colors. RGB space is fully used,
but greyscale is only used in a visible range, i. e. to 90% instead of 100% white.
756 randomcolor_grey = false
757 randomcolor_onlytext = false --switch between local and global colorization
758 rainbowcolor = false
759
760 grey_lower = 0
761 grey_upper = 900
762
763 Rgb_lower = 1
764 rGb_lower = 1
765 rgB_lower = 1
766 Rgb_upper = 254
767 rGb_upper = 254
768 rgB_upper = 254
Variables for the rainbow. 1/rainbow_step*5 is the number of letters used for one cycle, the color changes
from red to yellow to green to blue to purple.
769 rainbow_step = 0.005
770 rainbow_Rgb = 1-rainbow_step -- we start in the red phase
771 rainbow_rGb = rainbow_step -- values x must always be 0 < x < 1
772 rainbow_rgB = rainbow_step
773 rainind = 1 -- 1:red,2:yellow,3:green,4:blue,5:purple
This function produces the string needed for the pdf color stack. We need values 0]..[1 for the colors.
774 randomcolorstring = function()
775 if randomcolor_grey then
776 return (0.001*math.random(grey_lower,grey_upper)).." g"
777 elseif rainbowcolor then
778 if rainind == 1 then -- red
779 rainbow_rGb = rainbow_rGb + rainbow_step
780 if rainbow_rGb >= 1-rainbow_step then rainind = 2 end
781 elseif rainind == 2 then -- yellow
782 rainbow_Rgb = rainbow_Rgb - rainbow_step
783 if rainbow_Rgb <= rainbow_step then rainind = 3 end
784 elseif rainind == 3 then -- green
785 rainbow_rgB = rainbow_rgB + rainbow_step
786 rainbow_rGb = rainbow_rGb - rainbow_step
787 if rainbow_rGb <= rainbow_step then rainind = 4 end
788 elseif rainind == 4 then -- blue
789 rainbow_Rgb = rainbow_Rgb + rainbow_step
790 if rainbow_Rgb >= 1-rainbow_step then rainind = 5 end
791 else -- purple
792 rainbow_rgB = rainbow_rgB - rainbow_step

chicken 33

793 if rainbow_rgB <= rainbow_step then rainind = 1 end
794 end
795 return rainbow_Rgb.." "..rainbow_rGb.." "..rainbow_rgB.." rg"
796 else
797 Rgb = math.random(Rgb_lower,Rgb_upper)/255
798 rGb = math.random(rGb_lower,rGb_upper)/255
799 rgB = math.random(rgB_lower,rgB_upper)/255
800 return Rgb.." "..rGb.." "..rgB.." ".." rg"
801 end
802 end

10.16.2 randomcolor – the function

The function that does all the colorizing action. It goes through the whole paragraph and looks at every
glyph. If the boolean randomcolor_onlytext is set, only glyphs with the set attribute will be colored.
Elsewise, all glyphs are taken.
803 randomcolor = function(head)
804 for line in nodetraverseid(0,head) do
805 for i in nodetraverseid(37,line.head) do
806 if not(randomcolor_onlytext) or
807 (node.has_attribute(i,luatexbase.attributes.randcolorattr))
808 then
809 color_push.data = randomcolorstring() -- color or grey string
810 line.head = nodeinsertbefore(line.head,i,nodecopy(color_push))
811 nodeinsertafter(line.head,i,nodecopy(color_pop))
812 end
813 end
814 end
815 return head
816 end

10.17 randomerror
817 %

10.18 rickroll
Another tribute to pop culture. Either: substitute word-by-word as in pancake. OR: substitute each link to a
youtube-rickroll …

10.19 substitutewords
This function is one of the rather usefull ones of this package. It replaces each occurance of one word
by another word, which both are specified by the user. So nothing random or funny, but a real serious
function! There are three levels for this function: At user-level, the user just specifies two strings that are
passed to the function addtosubstitutions. This is needed as the # has a special meaning both in TEXs
definitions and in Lua. In this second step, the list of substitutions is just extended, and the real work is

chicken 34

done by the function substiuteword which is registered in the process_input_buffer callback. Once
the substitution list is built, the rest is very simple: We just use gsub to substitute, do this for every item in
the list, and that's it.
818 substitutewords_strings = {}
819
820 addtosubstitutions = function(input,output)
821 substitutewords_strings[#substitutewords_strings + 1] = {}
822 substitutewords_strings[#substitutewords_strings][1] = input
823 substitutewords_strings[#substitutewords_strings][2] = output
824 end
825
826 substitutewords = function(head)
827 for i = 1,#substitutewords_strings do
828 head = string.gsub(head,substitutewords_strings[i][1],substitutewords_strings[i][2])
829 end
830 return head
831 end

10.20 tabularasa
Removes every glyph from the output and replaces it by empty space. In the end, next to nothing will be
visible. Should be extended to also remove rules or just anything visible.
832 tabularasa_onlytext = false
833
834 tabularasa = function(head)
835 local s = nodenew(nodeid"kern")
836 for line in nodetraverseid(nodeid"hlist",head) do
837 for n in nodetraverseid(nodeid"glyph",line.head) do
838 if not(tabularasa_onlytext) or node.has_attribute(n,luatexbase.attributes.tabularasaattr) then
839 s.kern = n.width
840 nodeinsertafter(line.list,n,nodecopy(s))
841 line.head = noderemove(line.list,n)
842 end
843 end
844 end
845 return head
846 end

10.21 uppercasecolor
Loop through all the nodes and checking whether it is uppercase. If so (and also for small caps), color it.
847 uppercasecolor_onlytext = false
848
849 uppercasecolor = function (head)
850 for line in nodetraverseid(Hhead,head) do
851 for upper in nodetraverseid(GLYPH,line.head) do

chicken 35

852 if not(uppercasecolor_onlytext) or node.has_attribute(upper,luatexbase.attributes.uppercasecolorattr) then
853 if (((upper.char > 64) and (upper.char < 91)) or
854 ((upper.char > 57424) and (upper.char < 57451))) then -- for small caps! nice
855 color_push.data = randomcolorstring() -- color or grey string
856 line.head = nodeinsertbefore(line.head,upper,nodecopy(color_push))
857 nodeinsertafter(line.head,upper,nodecopy(color_pop))
858 end
859 end
860 end
861 end
862 return head
863 end

10.22 colorstretch
This function displays the amount of stretching that has been done for each line of an arbitrary document.
A well-typeset document should be equally grey over all lines, which is not always possible.

In fact, two boxes are drawn: The first (left) box shows the badness, i. e. the amount of stretching the
spaces between words. Too much space results in ligth grey, whereas a too dense line is indicated by a dark
grey box.

The second box is only useful if microtypographic extensions are used, e. g. with the microtype
package under LATEX. The box color then corresponds to the amount of font expansion in the line. This
works great for demonstrating the positive effect of font expansion on the badness of a line!

The base structure of the following code was provided by Paul Isambert. Thanks for the code and
support, Paul!

10.22.1 colorstretch – preliminaries

Two booleans, keeptext, and colorexpansion, are used to control the behaviour of the function.
864 keeptext = true
865 colorexpansion = true
866
867 colorstretch_coloroffset = 0.5
868 colorstretch_colorrange = 0.5
869 chickenize_rule_bad_height = 4/5 -- height and depth of the rules
870 chickenize_rule_bad_depth = 1/5
871
872
873 colorstretchnumbers = true
874 drawstretchthreshold = 0.1
875 drawexpansionthreshold = 0.9
After these constants have been set, the function starts. It receives the vertical list of the typeset paragraph
as head, and loops through all horizontal lists.

If font expansion should be shown (colorexpansion == true), then the first glyph node is determined
and its width compared with the width of the unexpanded glyph. This gives a measure for the expansion
factor and is translated into a grey scale.

chicken 36

876 colorstretch = function (head)
877 local f = font.getfont(font.current()).characters
878 for line in nodetraverseid(Hhead,head) do
879 local rule_bad = nodenew(RULE)
880
881 if colorexpansion then -- if also the font expansion should be shown
882 local g = line.head
883 while not(g.id == 37) and (g.next) do g = g.next end -- find first glyph on line. If line is empty, no glyph:
884 if (g.id == 37) then -- read width only if g is a glyph!
885 exp_factor = g.width / f[g.char].width
886 exp_color = colorstretch_coloroffset + (1-exp_factor)*10 .. " g"
887 rule_bad.width = 0.5*line.width -- we need two rules on each line!
888 end
889 else
890 rule_bad.width = line.width -- only the space expansion should be shown, only one rule
891 end
Height and depth of the rules are adapted to print a closed grey pattern, so no white interspace is left.

The glue order and sign can be obtained directly and are translated into a grey scale.
892 rule_bad.height = tex.baselineskip.width*chickenize_rule_bad_height -- this should give a better output
893 rule_bad.depth = tex.baselineskip.width*chickenize_rule_bad_depth
894
895 local glue_ratio = 0
896 if line.glue_order == 0 then
897 if line.glue_sign == 1 then
898 glue_ratio = colorstretch_colorrange * math.min(line.glue_set,1)
899 else
900 glue_ratio = -colorstretch_colorrange * math.min(line.glue_set,1)
901 end
902 end
903 color_push.data = colorstretch_coloroffset + glue_ratio .. " g"
904

Now, we throw everything together in a way that works. Somehow …
905 -- set up output
906 local p = line.head
907
908 -- a rule to immitate kerning all the way back
909 local kern_back = nodenew(RULE)
910 kern_back.width = -line.width
911
912 -- if the text should still be displayed, the color and box nodes are inserted additionally
913 -- and the head is set to the color node
914 if keeptext then
915 line.head = nodeinsertbefore(line.head,line.head,nodecopy(color_push))
916 else
917 node.flush_list(p)

chicken 37

918 line.head = nodecopy(color_push)
919 end
920 nodeinsertafter(line.head,line.head,rule_bad) -- then the rule
921 nodeinsertafter(line.head,line.head.next,nodecopy(color_pop)) -- and then pop!
922 tmpnode = nodeinsertafter(line.head,line.head.next.next,kern_back)
923
924 -- then a rule with the expansion color
925 if colorexpansion then -- if also the stretch/shrink of letters should be shown
926 color_push.data = exp_color
927 nodeinsertafter(line.head,tmpnode,nodecopy(color_push))
928 nodeinsertafter(line.head,tmpnode.next,nodecopy(rule_bad))
929 nodeinsertafter(line.head,tmpnode.next.next,nodecopy(color_pop))
930 end
Now we are ready with the boxes and stuff and everything. However, a very useful information might be
the amount of stretching, not encoded as color, but the real value. In concreto, I mean: narrow boxes get
one color, loose boxes get another one, but only if the badness is above a certain amount. This information
is printed into the right-hand margin. The threshold is user-adjustable.
931 if colorstretchnumbers then
932 j = 1
933 glue_ratio_output = {}
934 for s in string.utfvalues(math.abs(glue_ratio)) do -- using math.abs here gets us rid of the minus sign
935 local char = unicode.utf8.char(s)
936 glue_ratio_output[j] = nodenew(37,1)
937 glue_ratio_output[j].font = font.current()
938 glue_ratio_output[j].char = s
939 j = j+1
940 end
941 if math.abs(glue_ratio) > drawstretchthreshold then
942 if glue_ratio < 0 then color_push.data = "0.99 0 0 rg"
943 else color_push.data = "0 0.99 0 rg" end
944 else color_push.data = "0 0 0 rg"
945 end
946
947 nodeinsertafter(line.head,node.tail(line.head),nodecopy(color_push))
948 for i = 1,math.min(j-1,7) do
949 nodeinsertafter(line.head,node.tail(line.head),glue_ratio_output[i])
950 end
951 nodeinsertafter(line.head,node.tail(line.head),nodecopy(color_pop))
952 end -- end of stretch number insertion
953 end
954 return head
955 end

chicken 38

dubstepize
FIXME – Isn't that already implemented above? BROOOAR WOBWOBWOB BROOOOAR WOBWOBWOB
BROOOOAR WOB WOB WOB …
956

scorpionize
This function's intentionally not documented. In memoriam scorpionem. FIXME
957 function scorpionize_color(head)
958 color_push.data = ".35 .55 .75 rg"
959 nodeinsertafter(head,head,nodecopy(color_push))
960 nodeinsertafter(head,node.tail(head),nodecopy(color_pop))
961 return head
962 end

10.23 variantjustification
The list substlist defines which glyphs can be replaced by others. Use the unicode code points for this.
So far, only wider variants are possible! Extend the list at will. If you find useful definitions, send me any
glyph combination!

Some predefined values for hebrew typesetting; the list is not local so the user can change it in a very
transparent way (using \chickenizesetup{}. This costs runtime, however … I guess … (?)
963 substlist = {}
964 substlist[1488] = 64289
965 substlist[1491] = 64290
966 substlist[1492] = 64291
967 substlist[1499] = 64292
968 substlist[1500] = 64293
969 substlist[1501] = 64294
970 substlist[1512] = 64295
971 substlist[1514] = 64296
In the function, we need reproduceable randomization so every compilation of the same document looks
the same. Else this would make contracts invalid.

The last line is excluded from the procedure as it makes no sense to extend it this way. If you really want
to typeset a rectangle, use the appropriate way to disable the space at the end of the paragraph (german
“Ausgang“).
972 function variantjustification(head)
973 math.randomseed(1)
974 for line in nodetraverseid(nodeid"hhead",head) do
975 if (line.glue_sign == 1 and line.glue_order == 0) then -- exclude the last line!
976 substitutions_wide = {} -- we store all “expandable” letters of each line
977 for n in nodetraverseid(nodeid"glyph",line.head) do
978 if (substlist[n.char]) then
979 substitutions_wide[#substitutions_wide+1] = n
980 end

chicken 39

981 end
982 line.glue_set = 0 -- deactivate normal glue expansion
983 local width = node.dimensions(line.head) -- check the new width of the line
984 local goal = line.width
985 while (width < goal and #substitutions_wide > 0) do
986 x = math.random(#substitutions_wide) -- choose randomly a glyph to be substituted
987 oldchar = substitutions_wide[x].char
988 substitutions_wide[x].char = substlist[substitutions_wide[x].char] -- substitute by wide letter
989 width = node.dimensions(line.head) -- check if the line is too wide
990 if width > goal then substitutions_wide[x].char = oldchar break end -- substitute back if the line would be too wide and break out of the loop
991 table.remove(substitutions_wide,x) -- if further substitutions have to be done, remove the just substituted node from the list
992 end
993 end
994 end
995 return head
996 end
That's it. Actually, the function is quite simple and should work out of the box. However, small columns
will most probably not work as there typically is not much expandable stuff in a normal line of text.

10.24 zebranize
This function is inspired by a discussion with the Heidelberg regular's table and will change the color of
each paragraph linewise. Both the textcolor and background color are changed to create a true zebra like
look. If you want to change or add colors, just change the values of zebracolorarray[] for the text colors
and zebracolorarray_bg[] for the background. Do not mix with other color changing functions of this
package, as that will turn out ugly or erroneous.

The code works just the same as every other thing here: insert color nodes, insert rules, and register
the whole thing in post_linebreak_filter.

10.24.1 zebranize – preliminaries

997 zebracolorarray = {}
998 zebracolorarray_bg = {}
999 zebracolorarray[1] = "0.1 g"

1000 zebracolorarray[2] = "0.9 g"
1001 zebracolorarray_bg[1] = "0.9 g"
1002 zebracolorarray_bg[2] = "0.1 g"

10.24.2 zebranize – the function

This code has to be revisited, it is ugly.
1003 function zebranize(head)
1004 zebracolor = 1
1005 for line in nodetraverseid(nodeid"hhead",head) do
1006 if zebracolor == #zebracolorarray then zebracolor = 0 end
1007 zebracolor = zebracolor + 1
1008 color_push.data = zebracolorarray[zebracolor]

chicken 40

1009 line.head = nodeinsertbefore(line.head,line.head,nodecopy(color_push))
1010 for n in nodetraverseid(nodeid"glyph",line.head) do
1011 if n.next then else
1012 nodeinsertafter(line.head,n,nodecopy(color_pull))
1013 end
1014 end
1015
1016 local rule_zebra = nodenew(RULE)
1017 rule_zebra.width = line.width
1018 rule_zebra.height = tex.baselineskip.width*4/5
1019 rule_zebra.depth = tex.baselineskip.width*1/5
1020
1021 local kern_back = nodenew(RULE)
1022 kern_back.width = -line.width
1023
1024 color_push.data = zebracolorarray_bg[zebracolor]
1025 line.head = nodeinsertbefore(line.head,line.head,nodecopy(color_pop))
1026 line.head = nodeinsertbefore(line.head,line.head,nodecopy(color_push))
1027 nodeinsertafter(line.head,line.head,kern_back)
1028 nodeinsertafter(line.head,line.head,rule_zebra)
1029 end
1030 return (head)
1031 end

And that's it! ☺

chicken 41

Well, it's not the whole story so far. I plan to test some drawing using only Lua code, writing directly to
the pdf file. This section will grow and get better in parallel to my understandings of what's going on. I.e. it
will be very slowly … Nothing here is to be taken as good and/or correct LuaTeXing, and most code is plain
ugly. However, it kind of works already ☺

11 Drawing
A very first, experimental implementation of a drawing of a chicken. The parameters should be consistent,
easy to change and that monster should look more like a cute chicken. However, it is chicken, it is Lua, so it
belongs into this package. So far, all numbers and positions are hard coded, this will of course change!

1032 --
1033 function pdf_print (...)
1034 for _, str in ipairs({...}) do
1035 pdf.print(str .. " ")
1036 end
1037 pdf.print("\string\n")
1038 end
1039
1040 function move (p)
1041 pdf_print(p[1],p[2],"m")
1042 end
1043
1044 function line (p)
1045 pdf_print(p[1],p[2],"l")
1046 end
1047
1048 function curve(p1,p2,p3)
1049 pdf_print(p1[1], p1[2],
1050 p2[1], p2[2],
1051 p3[1], p3[2], "c")
1052 end
1053
1054 function close ()
1055 pdf_print("h")
1056 end
1057
1058 function linewidth (w)
1059 pdf_print(w,"w")
1060 end
1061
1062 function stroke ()
1063 pdf_print("S")
1064 end
1065 --
1066

chicken 42

1067 function strictcircle(center,radius)
1068 local left = {center[1] - radius, center[2]}
1069 local lefttop = {left[1], left[2] + 1.45*radius}
1070 local leftbot = {left[1], left[2] - 1.45*radius}
1071 local right = {center[1] + radius, center[2]}
1072 local righttop = {right[1], right[2] + 1.45*radius}
1073 local rightbot = {right[1], right[2] - 1.45*radius}
1074
1075 move (left)
1076 curve (lefttop, righttop, right)
1077 curve (rightbot, leftbot, left)
1078 stroke()
1079 end
1080
1081 function disturb_point(point)
1082 return {point[1] + math.random()*5 - 2.5,
1083 point[2] + math.random()*5 - 2.5}
1084 end
1085
1086 function sloppycircle(center,radius)
1087 local left = disturb_point({center[1] - radius, center[2]})
1088 local lefttop = disturb_point({left[1], left[2] + 1.45*radius})
1089 local leftbot = {lefttop[1], lefttop[2] - 2.9*radius}
1090 local right = disturb_point({center[1] + radius, center[2]})
1091 local righttop = disturb_point({right[1], right[2] + 1.45*radius})
1092 local rightbot = disturb_point({right[1], right[2] - 1.45*radius})
1093
1094 local right_end = disturb_point(right)
1095
1096 move (right)
1097 curve (rightbot, leftbot, left)
1098 curve (lefttop, righttop, right_end)
1099 linewidth(math.random()+0.5)
1100 stroke()
1101 end
1102
1103 function sloppyline(start,stop)
1104 local start_line = disturb_point(start)
1105 local stop_line = disturb_point(stop)
1106 start = disturb_point(start)
1107 stop = disturb_point(stop)
1108 move(start) curve(start_line,stop_line,stop)
1109 linewidth(math.random()+0.5)
1110 stroke()
1111 end

chicken 43

12 Known Bugs
The behaviour of the \chickenize macro is under construction and everything it does so far is considered
a feature.

babel Using chickenize with babel leads to a problem with the " (double quote) character, as it is made
active: When using \chickenizesetup after \begin{document}, you can not use " for strings,
but you have to use ' (single quote) instead. No problem really, but take care of this.

13 To Do's
Some things that should be implemented but aren’t so far or are very poor at the moment:

traversing Every function that is based on node traversing fails when boxes are involved – so far I have
not implemented recursive calling of the functions. I list it here, as it is not really a bug – this package
is meant to be as simple as possible!

countglyphs should be extended to count anything the user wants to count

rainbowcolor should be more flexible – the angle of the rainbow should be easily adjustable.

pancakenize should do something funny.

chickenize should differ between character and punctuation.

swing swing dancing apes – that will be very hard, actually …

chickenmath chickenization of math mode

14 Literature
The following list directs you to helpful literature that will help you to better understand the concepts used
in this package and for in-depth explanation. Also, most of the code here is taken from or based on this
literature, so it is also a list of references somehow:

• LuaTEX documentation – the manual and links to presentations and talks: http://www.luatex.
org/documentation.html

• The Lua manual, for Lua 5.1: http://www.lua.org/manual/5.1/

• Programming in Lua, 1st edition, aiming at Lua 5.0, but still (largely) valid for 5.1: http://www.lua.
org/pil/

15 Thanks
This package would not have been possible without the help of many people who patiently answered my
annoying questions on mailing lists and in personal mails. And of course not without the work of the
LuaTEX team!

Special thanks go to Paul “we could have chickenized the world” Isambert who contributed a lot of
ideas, code and bug fixes and made much of the code executable at all. I also thank Philipp Gesang who
gave me many advices on the Lua code – which I still didn't have time to correct …

chicken 44

http://www.luatex.org/documentation.html
http://www.luatex.org/documentation.html
http://www.lua.org/manual/5.1/
http://www.lua.org/pil/
http://www.lua.org/pil/

	I User Documentation
	How It Works
	Commands â•ﬁ How You Can Use It
	TeX Commands â•ﬁ Document Wide
	How to Deactivate It
	\text-Versions
	Lua functions

	Options â•ﬁ How to Adjust It

	II Tutorial
	Lua code
	callbacks
	How to use a callback

	Nodes
	Other things

	III Implementation
	TeX file
	LaTeX package
	Definition of User-Level Macros

	Lua Module
	chickenize
	boustrophedon
	countglyphs
	guttenbergenize
	guttenbergenize â•ﬁ preliminaries
	guttenbergenize â•ﬁ the function

	hammertime
	itsame
	kernmanipulate
	leetspeak
	letterspaceadjust
	setup of variables
	function implementation
	textletterspaceadjust

	matrixize
	pancakenize
	randomerror
	randomfonts
	randomuclc
	randomchars
	randomcolor and rainbowcolor
	randomcolor â•ﬁ preliminaries
	randomcolor â•ﬁ the function

	randomerror
	rickroll
	substitutewords
	tabularasa
	uppercasecolor
	colorstretch
	colorstretch â•ﬁ preliminaries

	variantjustification
	zebranize
	zebranize â•ﬁ preliminaries
	zebranize â•ﬁ the function

	Drawing
	Known Bugs
	To Do's
	Literature
	Thanks

