
The pyluatex package

Tobias Enderle
https://github.com/tndrle/PyLuaTeX

v0.2.0 (2021/07/26)

Execute Python code on the fly in your LATEX documents

PyLuaTeX allows you to execute Python code and to include the resulting output in your LATEX documents in
a single compilation run. LATEX documents must be compiled with LuaLATEX for this to work.

1 Example

1. LATEX document example.tex

Note: PyLuaTeX starts Python 3 using the command python3 by default. If python3 does not start
Python 3 on your system, find the correct command and replace \usepackage{pyluatex} with
\usepackage[executable={your python command}]{pyluatex} . For example,
\usepackage[executable=python.exe]{pyluatex} .

\documentclass{article}

\usepackage{pyluatex}

\begin{python}

import math

import random

random.seed(0)

greeting = ’Hello PyLuaTeX!’

\end{python}

\newcommand{\randint}[2]{\py{random.randint(#1, #2)}}

\begin{document}

\py{greeting}

$\sqrt{371} = \py{math.sqrt(371)}$

\randint{2}{5}

\end{document}

1

1. Compile using LuaLATEX (shell escape is required)

lualatex -shell-escape example.tex

Note: Running LATEX with the shell escape option enabled allows arbitrary code to be executed. For this
reason, it is recommended to compile trusted documents only.

1.1 Further Examples

The folder example contains additional example documents:

• readme-example.tex

The example above

• sessions.tex

Demonstrates the use of different Python sessions in a document

• data-visualization.tex

Demonstrates the visualization of data using pgfplots and pandas

• matplotlib-external.tex

Demonstrates how matplotlib plots can be generated and included in a document

• matplotlib-pgf.tex

Demonstrates how matplotlib plots can be generated and included in a document using PGF

• typesetting-example.tex

The code typesetting example below

• typesetting-listings.tex

A detailed example for typesetting code and output with the listings package

• typesetting-minted.tex

A detailed example for typesetting code and output with the minted package

For more intricate use cases have a look at our tests in the folder test .

2 Installation

PyLuaTeX is available in TeX Live, MiKTeX, and on CTAN1 as pyluatex .

To install PyLuaTeX in TeX Live run tlmgr install pyluatex .

In MiKTeX, PyLuaTeX can be installed in the MiKTeX Console.

To install PyLuaTeX manually, do the following steps:

1. Locate your local TEXMF folder

The location of this folder may vary. Typical defaults for TeX Live are ˜/texmf for Linux,
˜/Library/texmf for macOS, and C:\Users\<user name>\texmf for Windows. If you are lucky,

1https://ctan.org/pkg/pyluatex

2

the command kpsewhich -var-value=TEXMFHOME tells you the location. For MiKTeX, the folder can
be found and configured in the MiKTeX Console.

2. Download the latest release2 of PyLuaTeX

3. Put the downloaded files in the folder TEXMF/tex/latex/pyluatex (where TEXMF is the folder
located in 1.)

The final folder structure must be

TEXMF/tex/latex/pyluatex/

|-- pyluatex-interpreter.py

|-- pyluatex-json.lua

|-- pyluatex.lua

|-- pyluatex.sty

|-- ...

3 Reference

PyLuaTeX offers a simple set of options, macros and environments.

Most macros and environments are available as quiet versions as well. They have the suffix q in their
name, e.g. \pycq or \pyfileq . The quiet versions suppress any output, even if the Python code
explicitly calls print() . This is helpful if you want to process code or output further and do your own
typesetting. For an example, see the Typesetting Code section.

3.1 Package Options

• verbose

If this option is enabled, Python input and output is written to the log file.

Example: \usepackage[verbose]{pyluatex}

• executable

Specifies the path to the Python executable. (default: python3)

Example: \usepackage[executable=/usr/local/bin/python3]{pyluatex}

3.2 Macros

• \py{code}

Executes (object-like) code and writes its string representation to the document.

Example: \py{3 + 7}

• \pyq{code}

Executes (object-like) code . Any output is suppressed.

Example: \pyq{3 + 7}

2https://github.com/tndrle/PyLuaTeX/releases/latest

3

• \pyc{code}

Executes code . Output (e.g. from a call to print()) is written to the document.

Examples: \pyc{x = 5} , \pyc{print(’hello’)}

• \pycq{code}

Executes code . Any output is suppressed.

Example: \pycq{x = 5}

• \pyfile{path}

Executes the Python file specified by path . Output (e.g. from a call to print()) is written to the
document.

Example: \pyfile{main.py}

• \pyfileq{path}

Executes the Python file specified by path . Any output is suppressed.

Example: \pyfileq{main.py}

• \pysession{session}

Selects session as Python session for subsequent Python code.

The session that is active at the beginning is default .

Example: \pysession{main}

3.3 Environments

• python

Executes the provided block of Python code.

The environment handles characters like _ , # , % , \ , etc.

Code on the same line as \begin{python} is ignored, i.e., code must start on the next line.

If leading spaces are present they are gobbled automatically up to the first level of indentation.

Example:

\begin{python}

x = ’Hello PyLuaTeX’

print(x)

\end{python}

• pythonq

Same as the python environment, but any output is suppressed.

4 Requirements

• LuaLATEX

• Python 3

• Linux, macOS or Windows

4

Our automated tests currently use TeX Live 2021 and Python 3.7+ on Ubuntu 20.04, macOS Catalina
10.15 and Windows Server 2019.

5 Typesetting Code

Sometimes, in addition to having Python code executed and the output written to your document, you also
want to show the code itself in your document. PyLuaTeX does not offer any macros or environments that
directly typeset code. However, PyLuaTeX has a code and output buffer which you can use to create your
own typesetting functionality. This provides a lot of flexibility for your typesetting.

After a PyLuaTeX macro or environment has been executed, the corresponding Python code and output
can be accessed via the Lua functions pyluatex.get_last_code() and
pyluatex.get_last_output() , respectively. Both functions return a Lua table3 where each table item
corresponds to a line of code or output.

A simple example for typesetting code and output using the listings package would be:

\documentclass{article}

\usepackage{pyluatex}

\usepackage{listings}

\usepackage{luacode}

\begin{luacode}

function pytypeset()

tex.print("\\begin{lstlisting}[language=Python]")

tex.print(pyluatex.get_last_code())

tex.print("\\end{lstlisting}")

tex.print("") -- ensure newline

end

\end{luacode}

\newcommand*{\pytypeset}{%

\noindent\textbf{Input:}

\directlua{pytypeset()}

\textbf{Output:}

\begin{center}

\directlua{tex.print(pyluatex.get_last_output())}

\end{center}

}

\begin{document}

\begin{pythonq}

greeting = ’Hello PyLuaTeX!’

print(greeting)

3https://www.lua.org/pil/2.5.html

5

\end{pythonq}

\pytypeset

\end{document}

Notice that we use the pythonq environment, which suppresses any output. After that, the custom macro
\pytypeset is responsible for typesetting the code and its output.

Using a different code listings package like minted, or typesetting inline code is very easy. See the
typesetting-*.tex examples in the example folder.

6 How It Works

PyLuaTeX runs a Python InteractiveInterpreter 4 (actually several if you use different sessions) in the
background for on the fly code execution. Python code from your LATEX file is sent to the background
interpreter through a TCP socket. This approach allows your Python code to be executed and the output to
be integrated in your LATEX file in a single compilation run. No additional processing steps are needed. No
intermediate files have to be written. No placeholders have to be inserted.

7 License

LPPL 1.3c5 for LATEX code and MIT license6 for Python and Lua code.

We use the great json.lua7 library under the terms of the MIT license8.

4https://docs.python.org/3/library/code.html#code.InteractiveInterpreter
5http://www.latex-project.org/lppl.txt
6https://opensource.org/licenses/MIT
7https://github.com/rxi/json.lua
8https://opensource.org/licenses/MIT

6

