
placeAL

T
v0.1d
Arno L. Trautmann

arno.trautmann@gmx.de

Abstract

The package placeat offers the command \placeat(2,5){} which places arbitrary con-
tent freely on any page. It is mainly thought for use with the beamer class but may also be
used with any other LATEX class. This package requires LuaLATEX; don’t try it with any other
TEX flavour, it just won’t work.

ATTENTION This package is in a very preliminary version and released for testing only.
Any feature might be subject to changes without notice.

Introduction

This is the documentation of the package placeat. When you load the package, a grid is drawn
on every page of your document to aid you at placing stuff where you want it to be. This mainly
makes sense in presentations, but might be used in any document. The main macro of this package
\placeat...{} offers several ways to use it:

\placeat<D4>{some content}
\placeat(3,4){some content}
\placeat{3}{4}{some content}

To deactivate the grid, use the setup command \placeatsetup{nogrid}. There are also some
other commands that allow you to draw simple sketches which might be useful in presentations,
too, like arrows, circles etc., but no fancy stuff.

Attention: This package is under development and everything presented here might and will
be subject to incompatible changes.

If you have any suggestions or comments, just drop me a mail, I’ll be happy to get any response!
The latest source code is hosted on github – Feel free to comment or report bugs there, to fork,

This package is copyright © 2017 Arno L. Trautmann. It may be distributed and/or modified under the
conditions of the LaTeX Project Public License, either version 1.3c of this license or (at your option) any
later version. This work has the LPPL maintenance status ‘maintained’. Whoever notes the face in the
title gets a cookie when we meet.

1

mailto:arno.trautmann@gmx.de

pull, etc.: https://github.com/alt/placeat

2

https://github.com/alt/placeat

Contents

I User Documentation 5

1 How do I use it? 5
1.1 Placing – the Main Commands . 5
1.2 Relative Placing . 6
1.3 Placing of figures, floats etc. 6
1.4 User Options . 6
1.5 The Grid . 7
1.6 Offsetting . 7

2 Drawing simple forms 7
2.1 Colored forms . 8

3 Example 9
3.1 Example use with beamer . 9
3.2 Example use inside this document . 9

4 How is it done? 11

5 To Do 11

6 How can I help? 11

7 Thanks 12

II Implementation 14

8 The LATEX package: placeat.sty 14
8.1 Loading Files . 14
8.2 User Commands . 14
8.3 Relative Placement . 15
8.4 Placing of floats etc. 16
8.5 Helper Macros . 16

9 The Grid 17

10 Drawing Stuff 18

11 Key-Value Interface 20

3

12 Lua Module 20

4

Part I

User Documentation
1 How do I use it?

1.1 Placing – the Main Commands

The command \placeat takes several arguments, the last of which is the content you want to
place:

\placeat(4,5){content}

This may range from single letters to graphic objects or (mostly) any valid LATEX code. Take note
that the content will be placed above and right of 1 the specified coordinates.2 Exceptions are
floating environments – you have to pack them into a minipage or similar construct, see below.

If you want to place something left of the specified coordinates, there is an additional optional
argument to \placeat:

\placeat{4}{5}[left]{right}

This allows you to center your content (by hand) around the given place. Do not forget to
enter an empty {} if you use only the optional content.

Verbatim material does definitely not work and makes troubles as always in moving arguments
(like footnotes etc.). So far I have no idea how to handle that correctly. Please tell me any further
problems, I’ll happily tackle them or sadly note them here if I cannot fix it …

Youmay use \placeat in one of the following variants (feel free to mix them in one document):

\placeat<D5>{content-right}
\placeat(4,5){content-right}
\placeat{4}{5}{content}

The result will be the same in all three cases, so it’s just a matter of taste which one you choose.
They all will place the <content> at a position that is specified by the grid which is drawn on
your document. While the grid is drawn using letters and numbers, you might prefer using
two numbers as you then also can use decimals for fine tuning which is not possible with a
letter-number combination:

\placeat{4.3}{5.2}{content}
\placeat(4.3,5.2){content}

1See below for placing to the left via an optional argument.
2To be more precise, the ground line of the first line of the content is placed at the specified vertical coordinate. This

may result in strange placement of anything that is not pure text.

5

Finally, there is one more argument you can give as second-to-last argument:
\placeat{4.3}{5.2}[content-left]{content}
\placeat(4.3,5.2)[content-left]{content}

This content will be placed to the left of the specified coordinates as opposed to the normal content
expanding to the right.

1.2 Relative Placing

It is also possible to place a second element relative to another one. For this, you have to give the
first one a name and refer to this name in the second one. Then you can repeat and refer a third
one to the second one (or the first one, however you like to).
\placeat(4,5){content}[first]
\placerelto[first](2,2){content2}[second]
\placerelto[second]{2}{2}{content3}[third]

Although it does not make any sense, you still can use the chess-pattern notation for \placerelto.
But that’s just for raising the obscurity level of this package.

1.3 Placing of figures, floats etc.

Placing figures might be a bit tricky because the placing actually places the groundline of any
object. You may make your life easier when inserting figures if you use the [t] argument:
\placeat{4}{5}{\includegraphics[t]{bose-gas}}

This way it is easier to fit graphics at the same height. However, you might have to test where it
lands in the end.

For floating environments, even if they don’t float (that would be stupid, wouldn’t it?), you
need to packg them into e. g. a minipage. You can do this by hand or just use the command
\placeminipageat. This command only has one kind of interface, the one with two braces:
\placeminipageat{4}{5}[4cm]{content}

Here, the third, argument is optional and specifies the width of the minipage. If not given, it will
default to 10cm, which should be wide enough to contain anything you ever want to set using
placeat.

1.4 User Options

Some of this package’s features can be adjusted at any time in the document with the command
\placeatsetup{}

Some of the options only make sense when used in the preamble, others only have a result when
used in the text. However, none should result in an error, so feel free to do whatever nonesens
you want to.

6

1.5 The Grid

If the number of grid lines does not suit you (there are ten horizontally and vertically), you can
increase or decrease the number by

\placeatsetup{gridnumber = 12}

You may change the gridnumber during your document, but don’t expect everything to work fine.
The horizontal and vertical gridnumbers can be adjusted independently:

\placeatsetup{
gridnumberx = 12,
gridnumbery = 8,

}

The grid can be deactivated by the document options final or nogrid and re-activated by
the option drawgrid in the setup macro:

\placeatsetup{nogrid}
\placeatsetup{drawgrid}

1.6 Offsetting

You can choose the zero point of the grid by setting the options

\placeatsetup{
offsetx = 2
offsety = -1

}

The grid and placement are adapted correspondingly. If you are a C-head thinking that everything
should start with 0 instead of 1, you can call

\placeatsetup{
startzero

}

which corresponds to offsetx = 1,offsety = 1 so that the upper right corner has coordinates
(0,0) instead of (1,1).

2 Drawing simple forms

This package also allows to draw simple forms like arrows and circles, to support the user e. g.
when creating presentations. A single line is drawn by calling

\placelineat(2.5,1.5)(1.5,2.5)

7

where the first coordinate pair specifies the start of the line and the second one the end. As you
typically need fine tuning to place the line exactly where you want it, it is not possible to use
another interface, i. e. the <D4> style.

By now, the following commands and respective forms are possible:

\placelineat(x1,y1)(x2,y2) Draws a single line pointing from (x1,y1)
to (x2,y2)

\placearrowat(x1,y1)(x2,y2) As the line, but with an arrowhead at the
end.

\placecircleat(x,y){r} Draws a circle at position (x,y) with diam-
eter r. If omitted, r will default to 3. The
diameter is not scaled to the same scale as
the coordinates, and most likely you have to
test what size fits. Start with 5, it’s a nice
number. Right now, the circle is not really a
circle, but slightly deformed as we only have
cubic splines. May change to something bet-
ter.

\placesquareat(x,y){r} Draws a square with center at (x,y) and
side lingth r. If omitted, r will default to 3.

\placerectangleat(x1,y1)(x2,y2) draws a rectangle from the (upper left) cor-
ner (x1,y1) to the (lower right) corner
(x2,y2).

\placefilledrectangleat(x1,y1)(x2,y2) draws a filled rectangle.

You can change the linewidth and therefore the thickness of lines with the simple call

\placeatsetup{linewidth=5}

Default is 1, I have no idea in which unit, but it is a very nice thickness, I think. You can change
the thickness any time and as often as you want.

Missing are eliptical shapes, maybe rounded corners for the rectangles and maybe some funny
stuff.3 The arrowheads need a lot of work, too, of course.

2.1 Colored forms

You need to load the xcolor package to use colors.4 Every command of the ones listed above
takes an optional argument that allows the specification of a color. This is based on the xcolor, so

3Yes, I will add a penis-shape macro, but that will not be documented explicitely.
4Why is it not required in the placeat package? Because you might want to specify package options and that may

collide with the loading here. However, every sane document working with color requires the package by default.

8

all colors known by that package are possible:

\placecircleat[blue](5,5)
\placearrowat[green!50!yellow](6,5)(8,5)
\placerectangleat[red!25!black](8,4)(9,6)
\placefilledrectangleat[blue!25!red](8.5,4.5)(8.75,5.6)

By now, it is not possible to specify an rgb code or similar. If you want a very special color
that is not defined in the xcolor package, just define it by yourself. However, as shown above, it
is possible to mix colors using the red!50!green syntax, which is very flexible and should cover
normal every day use.

3 Example

Now, here are two examples on how to use the package. The first one is a code example only,
while the second one shows the effect directly on the page.

3.1 Example use with beamer

As this package makes most sense in combination with beamer, here is a small example about how
to use it.

\documentclass[ngerman]{beamer}
\usepackage{babel,blindtext}
\usepackage{fontspec}
\usepackage{placeat}
\begin{document}
\begin{frame}{Test frame}
Test
\placeat<D5>{Test}
\placeminipageat{4}{5}[3cm]{\includegraphics{fermi_gas_1}}
\end{frame}
\end{document}

3.2 Example use inside this document

The following page is typeset using the features of this package and shows the corresponding
code.

9

However, this very page is using the drawgrid option, with an increased grid number of 15.
There are several elements placed with the given code, respectively.5

5Don’t let me fool you, the code is not printed using \verb, but only with a \texttt, as verbatim is not possible
with \placeat.

10

11 2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

\placeat<F5>

\placeat(4.5,7.2)

\placeat{2.3}{4.1}

\placecircleat[blue](6,9)

\placearrowat[green](6,9)(8.5,5)

\placerectangleat[red](8,4)(9,6)

4 How is it done?

The short answer is: Look at the source code. While the coding is quite simple in principle, it
might be very confusing when reading it, and I am still surprised it works at all …

Mainly, everything is based on the LATEX command \put(){}. You could of course just use this,
but then it’s hard to get an absolute positioning as \put only allows relative positions. You could
then put your code into, say, a header line, and that is nearly the idea of this package. However,
this would require a header and would not let the user freely decide what to put there. Also, users
might do strange stuff to that and that could destroy the placing.

Instead, we use the ability of Heiko Oberdiek’s atbegshi package which adds content to the
to-be-shipped-out-page. I still do not understand how it works, but it is absolutely robust and does
just what we need here: It allows to put stuff on the page relative to, say, the upper right corner.
Also, it can be put in front of every other thing, so we are sure nothing gets lost.

The next step is collecting and saving the material you specify to be placed somewhere.
Collection is done using the xparse package which allows for a very flexible macro definition
which makes it possible to enter the different positioning options. Finally, everything is glued
together with some Lua magic …

We save the content to be placed in TEXmacros that are numbered using a Lua counter; the final
coordinates are also calculated by Lua. The TEX-Lua interface is heavily used here which is possible
due to the luacode package. The macros are then executed in the call of \AtBeginShipout,
again inside a Lua loop, where also the grid is drawn.

5 To Do

A list of things I would like to have solved by some time:

• allow the wave color model as it is very very cool

• placing stuff at every page or reuse stuff at all

• allow course placing (put at upper left corner, put at left side etc.) for presentations

• verbatim in placeat

• drawing maybe based on metapost instead of pdf drawing

6 How can I help?

There are several ways how you can help. First, and most important:
Testing. Try to use this code and tell me what you think about it.
Bug reporting. Tell me especially what is buggy. I’d like to keep the package rather small and

simple, so some bugs might be called features, but we’ll see.

11

Suggestions. I’m open to extend the functionality. Just tell me what you want and I’ll try to
implement it as soon as possible. Which might be never. But also maybe the next day. Well, try
it!☺

7 Thanks

Of course I have to thank Paul Isambert again for the code for drawing to the pdf file. Also I want
to thank Rembrandt Wolpert who was the first one to report bugs and feature requests.

12

That’s it for the documentation, have fun, and

13

Ha
pp
y T

EX
ing

!

Part II

Implementation
8 The LATEX package: placeat.sty

Everything to get stuff working from the TEX side. Here, only a .sty file is provided and
plain/ConTEXt users have to find their way. I’ll happily support them, though!

8.1 Loading Files

The Lua file is not found by using a simple dofile("placeat.lua") call, but we have to use
kpse’s find_file.
1 \ProvidesPackage{placeat}%
2 [2017/08/19 v0.1d absolute content positioning]
3 \RequirePackage{luatexbase}
4 \RequirePackage{luacode}
5 \RequirePackage{atbegshi}
6 \RequirePackage{xparse}
7 \directlua{dofile(kpse.find_file("placeat.lua",'lua'))}

8.2 User Commands

The main command \placeat. There are several ways to use it, so we define a wrapper macro
that is only for the user interface. Nice separation of interface and code. But actually, both are
quite hard interwoven and it’s not really clear at any time what happens. However, it works most
of the time.

The macro arguments of placeat at the moment are: g{}g{}: two braced arguments for
coordinates
d(): one argument for picture-like coordinate pairs
d<>: one argument for alpha-numeric coordinates
O{}: content to be typeset on the left of the point
m: main content to be typeset on the right. o: optional label for relative placement. This might
now be the point to change the internal structure and go to a node mode.
8 \NewDocumentCommand\placeat{ggd()d<>O{}mo}{
9 \IfValueT{#1}{ %% two coordinates in { }{ } pair.

10 \IfValueT{#2}{ %% if second argument is not given, everything breaks. not nice.
11 \def\cox{#1}
12 \def\coy{#2}
13 }
14 }
15 \IfValueT{#3}{ %% one argument as (,) coordinate pair.
16 \def\cox{\firstof#3X}

14

17 \def\coy{\secondof#3X}
18 }
19 \IfValueT{#4}{
20 \luadirect{
21 y = string.byte('#4',1)-64
22 x = string.byte('#4',2)-48
23 x2 = string.byte('#4',3)
24 if x2 then x = x*10 + x2-48 end -- FIXME: what exactly happens here? …
25 }
26 \def\cox{\luadirect{tex.print(x)}}
27 \def\coy{\luadirect{tex.print(y)}}
28 }
29 \placeatthreenumbers{\cox}{\coy}{\llap{#5}#6}
30
31 \IfValueT{#7}{
32 \expandafter\gdef\csname #7x\endcsname{\firstof#3X}
33 \expandafter\gdef\csname #7y\endcsname{\secondof#3X}
34 }
35 }

8.3 Relative Placement

The first stage of this works just the same as normal \placeat. However, there is an additional
first optional argument that actually is not optional! This is the node that is taken as base. So the
\placeatthreenumbers is just called with the given coordinates added to the base coordinates.
36 \NewDocumentCommand\placerelto{oggd()d<>O{}mo}{
37 \IfValueT{#2}{ %% two coordinates in { }{ } pair.
38 \IfValueT{#3}{ %% if second argument is not given, everything breaks. not nice.
39 \def\cox{#2}
40 \def\coy{#3}
41 }
42 }
43 \IfValueT{#4}{ %% one argument as (,) coordinate pair.
44 \def\cox{\firstof#4X}
45 \def\coy{\secondof#4X}
46 }
47 \IfValueT{#5}{
48 \luaexec{
49 y = string.byte('#5',1)-64
50 x = string.byte('#5',2)-48
51 x2 = string.byte('#5',3)
52 if x2 then x = x*10 + x2-48 end -- FIXME: what exactly happens here? …
53 tex.print("\\def\\cox{"..(x).."}\\def\\coy{"..(y).."}")
54 }
55 }

15

56 \placeatthreenumbers
57 {\cox + \csname #1x\endcsname}
58 {\coy + \csname #1y\endcsname}
59 {\llap{#6}#7}
60 \IfValueT{#8}{
61 \expandafter\xdef\csname #8x\endcsname{\cox + \csname #1x\endcsname}
62 \expandafter\xdef\csname #8y\endcsname{\coy + \csname #1y\endcsname}
63 }
64 }

8.4 Placing of floats etc.

For floats and similar stuff, it might be necessary or useful to pack everything into a minipage. You
can do this by yourself, but I thought it might be nice to specify a corresponding user interface.
Using \placeminipageat is the same as using \placeat{}{}{content} where content is
packed into a minipage. The first two argument of \placeminipageat must be given in braces
{4}{5} and determine the position of the content. The third argument is optional and specifies
the width of the minipage; if not give, it is assumed to be 10cm, wide enough for mostly anything
you ever will place at.
65 \NewDocumentCommand\placeminipageat{r()O{10cm}m}{
66 \gdef\widthofplaceat{#2}
67 \placeat(#1)
68 {\begin{minipage}{\widthofplaceat}{#3}\end{minipage}}
69 }

8.5 Helper Macros

The real stuff is done in the macro \placeatthreenumbers which takes exactly three arguments
defining the position of the content. The content is stored in a macro that is defined using Lua code,
and the position is also calculated by Lua code. Everything is put together into a Lua-TEX-bastard
and surprisingly works stable as far as I can tell.

This place is also where the offset and scaling happens.
70 \def\placeatthreenumbers#1#2#3{
71 \luaexec{
72 nr = nr+1
73 dacoordtmp = ((#1-1+offsetx)*tex.pagewidth/65536/gridnrx*1.005)..","..(-(#2-1+offsety)*tex.pageheight/65536/gridnry)
74 dacoord[nr] = "\\put("..dacoordtmp..")"
75 tex.print("\\expandafter\\gdef\\csname command"..(nr).."\\endcsname")}% begin of command definition
76 {#3} %% this is what \command[nr] will contain
77 }

Two tiny helpers that might be substituted by some standard commands:
78 \def\firstof #1,#2X{#1}
79 \def\secondof #1,#2X{#2}

16

Setup of variables and macros we need later.
80 \let\ifdrawgrid\iftrue
81 \luaexec{
82 arrowheadlength = 5
83 drawgrid = false
84 nr = 0
85 dacoord = {}
86 gridnr = 10
87 gridnrx = 10
88 gridnry = 10
89 gridlinewidth = 0.01
90 offsetx = 0
91 offsety = 0
92 }

Now the code that does the actual work here. We use Heiko Oberdiek’s package atbegshi with the
very useful macros \AtBeginShipout and \AtBeginShipoutUpperLeftForeground. Using
these, we are free from any context of where the code is written, it is always executed at the
shipout and therefore absolute positioning is possible.

I have to use a quite weird way of checking wether to draw the grid or not, using a number
instead of defining a \ifdrawgrid. That one was working at some time, but now it is not anymore.
No idea why, some handling of the input parsing in the arguments must have changed. Anyways,
this is working and not too ugly, so we’ll stick with that one for now.
93 \AtBeginDocument{
94 \AtBeginShipout{%
95 \AtBeginShipoutUpperLeftForeground{%
96 \ifnum\drawgridnum = 1 \drawgrid\fi
97 \luaexec{%
98 for i = 1,nr do
99 tex.print(dacoord[i].."{\\csname command"..(i).."\\endcsname}")

100 end
101 nr=0
102 }
103 }
104 }
105 }

9 The Grid

The grid is made by drawing directly into the pdf as suggested by Paul Isambert in his TUGboat
article “Drawing tables: Graphic fun with LuaTEX ”. Labeling is done by simple \put commands,
controlled via Lua code.
106 \def\drawgrid{
107 \luatexlatelua{

17

108 pdf_print("q")
109 linewidth(gridlinewidth)
110 local factorh = tex.pageheight/gridnry/65536
111 local factorw = tex.pagewidth/gridnrx/65536
112 for i = 1,math.max(gridnrx,gridnry) do
113 h = i*factorh
114 w = i*factorw
115 move(0,-h) line(tex.pagewidth,-h) stroke()
116 move(w,0) line(w,-tex.pageheight) stroke()
117 end
118 pdf_print("Q")
119 }
120 { %% extra grouping to keep font size change local. Going to normalfont seems to make sense. An explicit font for the grid might also be nice. Implementation only upon request.
121 %% would also be nice to maybe adapt the fontsize to the grid size
122 \normalfont\fontsize{8}{10}\selectfont
123 \luaexec{
124 for i=1,math.max(gridnrx+offsetx,gridnry+offsety) do
125 hfac = tex.pageheight/gridnry/65536
126 wfac = tex.pagewidth/gridnrx/65536*1.005 %% another empirical factor
127 h = (i-1)*hfac
128 w = (i-1)*wfac
129 tex.print("\\put("..(w)..",-7){\\rlap{"..(i-offsetx).."}}")
130 if alphanumgrid then
131 tex.print("\\put(0,"..(-h-0.05*hfac).."){\\char00"..(64+i-offsety).."}") %%-- for alphanumeric grid.
132 else
133 tex.print("\\put(0,"..(-h-0.05*hfac).."){"..(i-offsety).."}")
134 end
135 end
136 }
137 }
138 }

10 Drawing Stuff

Drawing is done in the same way as the grid. While the grid has no interface, the rest of the
drawing stuff needs a TEX interface, which is defined here. Every command calls a Lua function
that does the actual work, as always.

I try to provide a basic set of stuff that might be useful. The TEX interface implementation
might change, but for now it is done with xparse instead of a much more saner simple \def. We
will see where this will head to. First, there is an arrow, whose head looks very bad. I don’t know
how to fix this yet. Then there are circle, square and rectangle.
139 \NewDocumentCommand\placelineat{or()r()}{
140 \placeat(#2){\ignorespaces\IfValueT{#1}{\color{#1}} % only to fix the color!
141 \luatexlatelua{placelineat(#2,#3)}

18

142 }
143 }
144 \NewDocumentCommand\placearrowat{or()r()}{
145 \placeat(#2){\ignorespaces\IfValueT{#1}{\color{#1}}%
146 \luatexlatelua{placearrowat(#2,#3)}
147 }
148 }
149 \NewDocumentCommand\placecircleat{or()D(){.3}}{
150 \placeat(#2){\ignorespaces\IfValueT{#1}{\color{#1}}%
151 \luatexlatelua{placecircleat(#3,1)}
152 }
153 }
154 \NewDocumentCommand\placefilledcircleat{or()D(){.3}}{
155 \placeat(#2){\ignorespaces\IfValueT{#1}{\color{#1}}%
156 \luatexlatelua{placecircleat(#3,1,true)}
157 }
158 }
159 \NewDocumentCommand\placesquareat{or()G{3}}{
160 \placeat(#2){\ignorespaces\IfValueT{#1}{\color{#1}}%
161 \luatexlatelua{placesquareat(#3)}
162 }
163 }
164 \NewDocumentCommand\placecurveat{or()r()r()r()}{
165 \placeat(#2){\ignorespaces\IfValueT{#1}{\color{#1}}%
166 \luatexlatelua{placecurveat(#2,#3,#4,#5)}
167 }
168 }
169 \NewDocumentCommand\placerectangleat{O{black}r()d()}{
170 \placeat(#2){\ignorespaces\color{#1}%
171 \luatexlatelua{placerectangleat(#2,#3)}
172 }
173 }
174 \NewDocumentCommand\placefilledrectangleat{O{black}r()r()}{
175 \placeat(#2){\ignorespaces\color{#1}%
176 \luatexlatelua{placerectangleat(#2,#3,true)}
177 }
178 }
179 \NewDocumentCommand\placeroundedat{sO{black}r()D(){0.1}D<>{1.5}}{
180 \placeat(#3){\ignorespaces\color{#2}%
181 \IfBooleanTF{#1}{\luatexlatelua{placecircleat(#4,#5,true)}}%
182 {\luatexlatelua{placecircleat(#4,#5)}}
183 }
184 }

19

11 Key-Value Interface

It’s a modern package, so we make use of LATEX3 once more. Let’s see how stable this is. So far,
no options can be used as package option, but only inside the \placeatsetup{} macro. I’m not
much into LATEX3 syntax and stuff anymore, so feel free to correct any non-nice coding here!

Especially one thing will be annoying, the space-gobbling. Nice feature on one hand, but
annoying inside the \directlua on the other hand. Therefore, we need the ~ to separate gridnr
and gridnry below.
185 \ExplSyntaxOn
186 \keys_define:nn{placeat}{
187 alphanumgrid.code:n = \directlua{alphanumgrid = true},
188 arrowheadlength.code:n = \directlua{arrowheadlength=#1},
189 final.code:n = \luaexec{placeat_final = true} \gdef\drawgridnum{0},
190 drawgrid.code:n = \gdef\drawgridnum{1},
191 gridnumber.code:n = \directlua{gridnr = #1 gridnrx = gridnr~gridnry = gridnr},
192 gridnumberx.code:n = \directlua{gridnrx = #1},
193 gridnumbery.code:n = \directlua{gridnry = #1},
194 gridlinewidth.code:n = \directlua{gridlinewidth = #1},
195 linewidth.code:n = {\placeat(1,1){\luatexlatelua{linewidth(#1)}}}, %% FIXME: this is a very nasty hack to implement user's choice of linewidth!
196 nogrid.code:n = \gdef\drawgridnum{0},
197 numnumgrid.code:n = \directlua{alphanumgrid = false},
198 offsetx.code:n = \directlua{offsetx = #1},
199 offsety.code:n = \directlua{offsety = #1},
200 startzero.code:n = \directlua{offsetx = 1 offsety = 1}
201 }
202 \DeclareDocumentCommand\placeatsetup{m}{
203 \keys_set:nn{placeat}{#1}
204 }
205 \ExplSyntaxOff

12 Lua Module

So far, the only usage of the Lua module is for graphics, based on the article by Paul Isambert about
drawing directly to the pdf using Lua. We exploit this here and make use of the basic drawing
functions he provided. Maybe this will be outsorced once there is a Lua-to-pdf-based graphics
bundle.
206 function pdf_print (...)
207 for _, str in ipairs({...}) do
208 pdf.print(str .. " ")
209 end
210 pdf.print("\n")
211 end
212
213 function move (p1,p2)

20

214 if (p2) then
215 pdf_print(p1,p2,"m")
216 else
217 pdf_print(p1[1],p1[2],"m")
218 end
219 end
220
221 function line(p1,p2)
222 pdf_print(p1,p2,"l")
223 end
224
225 function curve(p11,p12,p21,p22,p31,p32)
226 if (p22) then
227 p1,p2,p3 = {p11,p12},{p21,p22},{p31,p32}
228 else
229 p1,p2,p3 = p11,p12,p21
230 end
231 pdf_print(p1[1], p1[2],
232 p2[1], p2[2],
233 p3[1], p3[2], "c")
234 end
235
236 function linewidth(w)
237 pdf_print(w,"w")
238 end
239
240 function fill()
241 pdf_print("f")
242 end
243
244 function stroke()
245 pdf_print("S")
246 end
247
248 -- welp, let's have some fun!
249 -- with the function radd, a random coordinate change is added if used
250 -- randfact will adjust the amount of randomization
251 -- everything is relative in the grid size
252 -- BUT: In fact, do we really want to have wiggly lines? …
253 local randfact = 100
254 local radd = function()
255 return (math.random()-0.5)*randfact
256 end
257
258 function placelineat(x1,y1,x2,y2)
259 xfac = tex.pagewidth/gridnrx/65536 -- factors to convert given number to absolute coordinates

21

260 yfac = tex.pageheight/gridnry/65536 -- should both be global!
261 xar = (x2-x1)*xfac -- end point of the arrow
262 yar = (y1-y2)*yfac --
263 move(0,0) -- start
264 line(xar,yar) -- draw main line
265 stroke()
266 end
267
268 function placearrowat(x1,y1,x2,y2)
269 xfac = tex.pagewidth/gridnrx/65536 -- factors to convert given number to absolute coordinates
270 yfac = tex.pageheight/gridnry/65536 -- should both be global!
271 xar = (x2-x1)*xfac -- end point of the arrow
272 yar = (y1-y2)*yfac --
273 parx = xar/math.sqrt(xar^2+yar^2) -- direction of the arrow
274 pary = yar/math.sqrt(xar^2+yar^2) --
275 perpx = -pary -- perp of the arrow direction
276 perpy = parx --
277 move(0,0) -- start
278 line(xar,yar) -- draw main line
279 move(xar,yar)
280 line(xar-arrowheadlength*parx+arrowheadlength*perpx,yar-arrowheadlength*pary+arrowheadlength*perpy) -- draw arrowhead
281 move(xar,yar)
282 line(xar-arrowheadlength*parx-arrowheadlength*perpx,yar-arrowheadlength*pary-arrowheadlength*perpy)
283 stroke()
284 end
285
286 -- better circle-approximation by using quarter circles, according to wikipedia article about Bézier curves
287 -- k = 1 gives a circle, everything else something else …
288 function placecircleat(r,k,filled)
289 local P0,P1,P2,P3
290 r = r * 59.5 -- next arbitrary scale factor; the circle has radius "1" in x-units
291 local rk = 0.55228*r*k
292
293 P0 = {r,0}
294 move (P0[1],P0[2])
295
296 P1 = {r,rk} P2 = {rk,r} P3 = {0,r}
297 curve (P1,P2,P3)
298
299 P1 = {-rk,r} P2 = {-r,rk} P3 = {-r,0}
300 curve (P1,P2,P3)
301
302 P1 = {-r,-rk} P2 = {-rk,-r} P3 = {0,-r}
303 curve (P1,P2,P3)
304
305 P1 = {rk,-r} P2 = {r,-rk} P3 = {r,0}

22

306 curve (P1,P2,P3)
307
308 if filled then
309 fill()
310 end
311 stroke()
312 end
313
314 function placesquareat(length)
315 move (-length,-length)
316 line (length,-length)
317 line (length, length)
318 line (-length, length)
319 line (-length,-length)
320 stroke()
321 end
322
323 function placecurveat(x1,y1,x2,y2,x3,y3,x4,y4) -- start point and three numbers. Start is only offset.
324 xfac = tex.pagewidth/gridnrx/65536 -- factors to convert given number to absolute coordinates
325 yfac = tex.pageheight/gridnry/65536 -- should both be global!
326 x2 = (x2-x1)*xfac
327 y2 = (y2-y1)*yfac
328 x3 = (x3-x1)*xfac
329 y3 = (y3-y1)*yfac
330 x4 = (x4-x1)*xfac
331 y4 = (y4-y1)*yfac
332 move(0,0) -- start
333 curve(x2,-y2,x3,-y3,x4,-y4) -- coordinates for Bezier curve
334 stroke()
335 end
336
337 function placerectangleat(x1,y1,x2,y2,filled)
338 xfac = tex.pagewidth/gridnrx/65536
339 yfac = tex.pageheight/gridnry/65536
340 x2 = (x2-x1)*xfac
341 y2 = (y1-y2)*yfac
342 move(0,0)
343 line(x2,0)
344 line(x2,y2)
345 line(0,y2)
346 line(0,0)
347 if filled then
348 fill()
349 end
350 stroke()
351 end

23

	I User Documentation
	How do I use it?
	Placing â•ﬁ the Main Commands
	Relative Placing
	Placing of figures, floats etc.
	User Options
	The Grid
	Offsetting

	Drawing simple forms
	Colored forms

	Example
	Example use with beamer
	Example use inside this document

	How is it done?
	To Do
	How can I help?
	Thanks

	II Implementation
	The LaTeX package: placeat.sty
	Loading Files
	User Commands
	Relative Placement
	Placing of floats etc.
	Helper Macros

	The Grid
	Drawing Stuff
	Key-Value Interface
	Lua Module

