
The LuaHTTP package

Johannes Casaburi
johannes.casaburi@protonmail.com

June 12, 2023
Version 1.0.1

Contents

1 Introduction 2

2 Manual Installation 2

3 Usage 3

3.1 fetchJson . 3

3.2 fetchJsonUsingFile . 4

3.3 fetchJsonUsingQuery . 4

3.4 fetchRss . 5

3.5 fetchImage . 5

4 Examples 6

4.1 fetchJson . 6

4.2 fetchJsonUsingFile . 6

4.3 fetchJsonUsingQuery . 7

4.4 fetchRss . 7

4.5 fetchImage . 7

1

1 Introduction

This is a small package that is the result of a case study on Internet-
Interactive LATEX PDF-documents. It provides five commands to make
API calls, fetch data from the internet and insert that data into the PDF-
document. This package depends on LuaTex, Lua and additional dependen-
cies that need to be installed.

2 Manual Installation

First the required dependencies need to be installed:

MacOS using Homebrew

1 brew install lua@5 .3 luarocks expat openssl

Arch

1 pacman -S lua53 luarocks expat openssl

Debian

1 apt install liblua5.3-dev libssl -dev lua5.3

libexpat1 -dev luarocks

Copy the .sty and .lua files in the directory where the .tex file is located.

In order to get the package working, a few dependencies first need to be
installed. An easy way to do so, is by using luarocks which is the package
manager for Lua modules which are called rocks.

To install the Lua rocks locally in the directory where the .tex file(s) is
located, execute the following commands. This will initialize a new Lua
project and install the required dependencies (See below for MacOS):

1 luarocks --lua -version =5.3 init

2 luarocks --lua -version =5.3 install dkjson

3 luarocks --lua -version =5.3 install luasec

4 luarocks --lua -version =5.3 install ltn12

5 luarocks --lua -version =5.3 install luaexpat

6 luarocks --lua -version =5.3 install feedparser

2

The Lua version may be changed if the Lua rocks support the version.

For MacOS you may need to add the Lua5.3 executable to your $PATH.

1 echo ’export␣PATH ="/ usr/local/opt/lua@5 .3/ bin:$PATH"
’ >> ~/. zshrc

And it may also be necessary to install luaexpat and luasec using the
commands below:

1 luarocks install luaexpat EXPAT_DIR =/usr/local/

Cellar/expat/${YOUR_VERSION_HERE}
2 luarocks install luasec OPENSSL_DIR =/usr/local/

Cellar/openssl@3/${YOUR_VERSION_HERE}

3 Usage

The LaTeX package can be used by adding the following line to the .tex

file.

1 \usepackage{luahttp}

To compile the PDF-document use:

1 lualatex --shell -escape

3.1 fetchJson

1 \fetchJson{URL}[optional: "key1,key2 ,.."]

This command takes an URL as the first argument and a list of comma
separated keys as a second optional argument. Upon execution a GET
request will be sent to the specified address. The accept header is set to
application/json. The keys which are to be specified like key1,key2,..

are used to filter out the desired values from the response. They have to
exactly math the keys in the response otherwise the value will not be written
to the PDF-Document. The same key can occur multiple times, this will
output all values found to the PDF-Document.

3

Values with special characters are escaped. Values are searched for URLs. If
an URL pointing to a image is detected the user will be prompted to either
display the image or the actual URL.

3.2 fetchJsonUsingFile

1 \fetchJsonUsingFile{Path to JSON file}[optional: "

key1,key 2,.."]

This is very similar to the fetchJson command but takes a path to a JSON
file instead of an URL. This allows the user to specify the request method,
headers and body. The file should look something like this:

1 {

2 "method ": "POST",

3 "url": "https :// httpbin.org/post",

4 "redirect ": false ,

5 "headers ": {

6 "Accept ": "application/json",

7 "Content -Type": "application/json"

8 },

9 "body": {

10 "name": "john",

11 "id" : 1234

12 }

13 }

Like the command before this command also takes and optional argument
where the keys can be specified. If a value contains an URL leading to an
image the user will be asked to either display the image or the URL.

3.3 fetchJsonUsingQuery

1 \fetchJsonUsingQuery{URL}{"key1,key2 ,.."} [optional:

"? queryparameter 1= value 1"] .. [optional: "&

queryparameter 5= value 5"]

This command can be used to send up to five query parameters using a
POST request. The required arguments are the URL and a list of keys. The
optional query parameters need to be written in key-value pairs:

4

1 \fetchJsonUsingQuery{URL}{key1,key 2}[?q=The first

value][& second=The second value and so on"]

The values after the = sign are URL-encoded and sent using the application
/json Accept header and application/x-www-form-urlencoded Content-
Type header. Like in the fetchJson command the user will be prompted if
an URL leading to an image is detected.

3.4 fetchRss

1 \fetchRss{URL}{limit }[optional: "feedinfokey1,

feedinfokey 2 ,.."][optional: "entrykey1,entrykey

2,.."]

This command takes an URL and a limit. The limit describes how many
entries of the feed are written to the PDF-Document. There are two op-
tional arguments. The first argument is a list of keys used to filter out feed
information. At this time possible values are title, subtitle, rights,

generator, author, author detail, link, links, updated parsed, updated,

id, contributors. Every entry can be filtered using the second argu-
ment. Possible values for the entry keys are id, link, links, updated,

updated parsed, title, summary, contributors. These values may change
if the Lua rock called feedparser that is used to parse the feed changes.
More information about feedparser can be found here: https://github.
com/LuaDist-testing/feedparser

The summary from the entries may contain HTML which will just be written
to the PDF-Document. As described in the fetchJson command you may
be promoted when a link to an image is detected.

3.5 fetchImage

1 \fetchImage{URL}[optional: width in cm][optional:

height in cm]

Images can be inserted into the PDF-Document using the URL. To resize
the image, one or two optional arguments can be given to specify the width
or width and height in centimeters:

5

1 \fetchImage{URL}[7cm][5cm]

4 Examples

4.1 fetchJson

To display the title and summary of the first article returned by the space-
news API we have to specify the URL and the keys that hold the desired
values:

1 \fetchJson{https ://api.spaceflightnewsapi.net/v3/

articles ?_limit =1}[title ,summary]

4.2 fetchJsonUsingFile

Like the example above the same can be done using fetchJsonUsingFile.
For that we need a JSON file with the following content:

1 {

2 "method ": "GET",

3 "url": "https ://api.spaceflightnewsapi.net/v3/

articles?_limit =1",

4 "redirect ": false ,

5 "headers ": {

6 "Accept ": "application/json"

7 }

8 }

If the JSON file is located in the same directory as the .lua files the command
looks like this:

1 \fetchJsonUsingFile{myjsonfile.json}[title ,summary]

If the package was not manually installed the absolute path must be used.

6

4.3 fetchJsonUsingQuery

Here is an example of an API call using query parameters:

1 \fetchJsonUsingQuery{http ://127.0.0.1:5000/ translate

}{ translatedText }[?q=I want to translate this

text][& source=en][& target=de][& format=text]

First we need to specify the first part of the URL, followed by the key(s)
that hold the desired return values. The values of the query parameters get
URL-encoded and put back together in a single URL. We may need to add
an & before the query parameter or an ? depending on the location.

4.4 fetchRss

In this example the first the subtitle from the feed information is printed as
a subsection. The second command prints the title, link and updated

information of the first three entries received.

1 \subsection{

2 \fetchRss{https ://www.eff.org/rss/updates.xml

}{1}[subtitle][none]

3 }

4
5 \fetchRss{https ://www.eff.org/rss/updates.xml }{3}[

none][title ,link ,updated]

Note that none is not a special keyword, if there was a key called none then
its value would be printed to the PDF-Document.

4.5 fetchImage

Here is an example how to embed an image and scaling it to have a width
of 5cm:

1 \fetchImage{https ://i0.wp.com/spacenews.com/wp-

content/uploads /2023/03/ vorb -march 2023. jpg }[5cm]

7

