
Gitinfo Lua package∗

Erik Nijenhuis 〈erik@xerdi.com〉

11th April 2024

This file is maintained by Xerdi.
Bug reports can be opened at
https://github.com/Xerdi/gitinfo-lua.

Abstract

This project aims to display git project information in PDF documents. It’s
mostly written in Lua for executing the git commands, therefore making this pack-
age only applicable for lualatex. If lualatex isn’t working for you, you could try
gitinfo2 instead. For LATEX it provides a set of standard macros for displaying ba-
sic information or setting the project directory, and a set of advanced macros for
formatting commits and tags.

Contents

1 Usage 2

1.1 Git 2

1.2 LuaLATEX 2

2 LaTeX Interface 3

2.1 Package Options 3

2.2 Basic macros 3

2.3 Multiple Authors 4

2.4 Commits 4

2.5 Tags 5

2.6 Changelog 6

3 Project Example 7

Index
D

\dogitauthors 4

F
\forgitauthors 4
\forgitcommit 5
\forgittag 5
\forgittagseq 6

G
\gitauthor 4
\gitcommit 5
\gitdate . 4
\gitdirectory 3
\gitemail 4
\gittag . 6
\gitunsetdirectory 4
\gitversion 4

∗This document corresponds to package gitinfo-lua version 1.1.0 written on 2024-04-11.

1

mailto:erik@xerdi.com
https://github.com/Xerdi/gitinfo-lua
https://ctan.org/pkg/gitinfo2

1 Usage
For the package to work one should work, and only work, with LuaTEX. Another pre-
requisite is that there is an available git repository either in the working directory, or
somewhere else on your machine (see section 2.2).

1.1 Git
For this package to work at a minimum, there has to be an initialized Git repository,
and preferably, at least with one commit. For example, the following minimal example
should do the trick already:

Listing 1: Minimal Git setup
mkdir my_project

cd my_project

echo "# My Project" > README.md

git init && git commit -am "Init"

Then in order for the changelog to work, the project needs to contain either
‘lightweight-’ or ‘annotated’ tags. The main difference is that a lightweight tag takes
no extra options, for example: git tag 0.1. See listing 12 for more examples on author-
ing and versioning with git.

1.2 LuaLATEX
For generating the document with LATEX one must make use of lualatex. For example,
when having the main file ‘main.tex’:

Listing 2: Generating the document with LATEX
Generate once

lualatex -shell-escape main

Generate and keep watching with LaTeXMK

latexmk -pvc -lualatex -shell-escape main

Note that in both cases option --shell-escape is required. This is required for issuing
git via the commandline. If using --shell-restrictedmode, which is the default, make
sure to add git to the CSV variable shell_escape_commands in either your texmf.cnf or
using a Lua initialization script, like:

Listing 3: Lua initialization script
-- Global texconfig should already be available when executed with lualatex

local texconfig = texconfig or require('texconfig')

-- Use restricted shell_escape with git as only command.

-- Add others where needed, separated with a comma (no spaces in between)

texconfig.shell_escape = 'p'

texconfig.shell_escape_commands = 'git'

2

The Lua initialization script can be used as follows:

Listing 4: With Lua initialization script
lualatex --lua=gitinfo-lua-init.lua main

For using the script with latexmk, this can be achieved with the -lualatex="COMMAND"

option or specifying the $lualatex command using a latexmkrc configuration file:

Listing 5: Overriding LuaLATEX on commandline
latexmk --lualatex --lualatex="lualatex --lua=gitinfo-lua-init.lua %O %S" main

Listing 6: Overriding LuaLATEX in latexmkrc

$lualatex = "lualatex --lua=gitinfo-lua-init.lua %O %S";

Keep in mind that both the Lua initialization script and latexmkrc need to be placed
within the same directory as the main file.

When utilizing the continuous compilation option -pvc with latexmk, it’s important
to note that only committed changes will be detected, while tag changes, unfortunately,
won’t be recognized.

2 LaTeX Interface

2.1 Package Options
\usepackage[〈opts…〉]{gitinfo-lua}This package provides some options for default for-
matting purposes. The author sorting is one of them. If the options contain contrib the
authors will be sorted based on their contributions; otherwise, the authors will be sorted
alphabetically, which is the default option alpha. Another option is the titlepage op-
tion, which sets the \author and \date macros accordingly. By default, it sets the local
git author, equivalent to option author. Pass the option authors to set all git authors of
the project based on commit history instead.

Another option, more concerning directory management, rootdir, sets the current
working directory to the root directory of the current project for all git commands that
are executed, similar to what \gitdirectory does. If you’re using recording of files, this
option comes in handy when the main file is in a subdirectory of the project. Other-
wise, if the root directory isn’t set appropriately, you’ll receive the warning ‘Warning:
couldn't read HEAD from git project directory’.

2.2 Basic macros
By default, the main file’s directory is used as git project directory. This directory can be
manipulated with \gitdirectory{〈path〉}. The foremost difference between using the\gitdirectory

rootdir option and the gitdirectorymacro, is that the macro can specify a git directory
which is part of another project. The main reason for this macro to exist is its usage in

3

the project example in section 3. To undo an operation done with \gitdirectory and\gitunsetdirectory

switch back to the main file’s directory, use \gitunsetdirectory.

The current version can be display by using \gitversion and is equivalent to git\gitversion

describe --tags --always, working for both lightweight and annotated tags. For this
project \gitversion results in 1.1.0. When the version is dirty it will be post fixed with
-<commit count>-<short ref>. For example, when this paragraph was written, the ver-
sion was displaying 0.0.1-14-gcc2bc30.

The \gitdate macro gets the most recent date from the git log. Meaning, the last\gitdate

‘short date’ variant is picked from the last commit. This short date is formatted ISO
based and is already suitable for use in packages like isodate for more advanced date
formatting.

The author’s name and email can be accessed using \gitauthor and \gitemail. These\gitauthor

\gitemail values are based on git config user.name and git config user.email.

2.3 Multiple Authors
When projects havingmultiple authors, this package can helpwith the \dogitauthors[〈conj〉]\dogitauthors

and \forgitauthors[〈conj〉]{〈csname〉} macro. Where \dogitauthors executes a de-\forgitauthors

fault formatting implementation of \git@format@author and \forgitauthors executes
the given 〈csname〉 for every author available. The optional 〈conj〉 conjunction makes
it possible to even integrate it further. For example, when setting the authors in pdfx,
the conjunction would be [\\sep], so that the authors are properly separated in the
document properties1.

Listing 7: Formatting authors
1 \newcommand{\myauthorformat}[2]{#1 ←↩

\href{mailto:#2}{#2}}

2 \forgitauthors[\\]{myauthorformat}

3 % Or using standard format

4 \dogitauthors[\\]

Results in

Alice 〈alice@example.com〉
Bob 〈bob@example.com〉

This example is generated with the history of the git-test-project (see section 3)
and is alphabetically sorted with package option alpha.

2.4 Commits
For this section the git project of this document is used due to the fact that there are
references to revisions. The test project’s revisions change for every user, since they get
recreated every time test-scenario.sh is executed (see section 3).

1See package documentation of pdfx: https://ctan.org/pkg/pdfx

4

mailto:alice@example.com
mailto:bob@example.com
https://ctan.org/pkg/pdfx

[〈format〉]{〈csname〉}{〈revision〉}\gitcommit

For displaying commit data \gitcommit can be used. The optional format takes variables
separated by a comma. The default format is h,an,ae,as,s,b. The csname is a user defined
command accepting every variable as argument.

Listing 8: Formatting a commit
1 \newcommand{\formatcommit}[3]{#1, by #2 on \printdate{#3}}

2

3 \gitcommit[s,an,as]{formatcommit}{75dc036}

Results in

Add value escaping,
by Erik Nijenhuis on
23rd October 20232

Consult man git-log for possible format variables and omit the % for every variable.

[〈format〉]{〈csname〉}{〈rev_spec, files={…}, flags={…}, cwd=…〉}\forgitcommit

For displaying multiple commits the \forgitcommit is used, which has the same argu-
ments as \gitcommit, but only this time the csname is executed for every commit. The
last argument, which originally only took a rev_spec, now also supports some additional
‘named’ arguments. The argument 〈files〉 takes a list of file names relative from the root
of the git project. When 〈files〉 is given, all commits will be filtered out accordingly. Cur-
rently, for 〈flags〉, only merges and no-merges are supported, which includes or excludes
merge commits. The 〈cwd〉 option is like \gitdirectory, but only for this call.

Listing 9: Formatting commits
1 \newcommand{\formatcommits}[2]{\item #1\\\quad —#2}

2

3 \begin{itemize}

4 \forgitcommit[s,an]{formatcommits}{75dc036...e51c481}

5 \end{itemize}

Results in

• Add value escaping
—Erik Nijenhuis

• Reimplement for_com-
mit
—Erik Nijenhuis

2.5 Tags
In this section the git-test-project is used.

The tags are mostly useful for generating changelogs. For formatting tags, there’s a
\forgittag[〈format〉]{〈csname〉}. Again, like \forgitcommit it takes a format, however,\forgittag

this time more complex, since the formatting options differ between git log and git

for-each-ref. For more info regarding these formatting options consult the man page
of git-for-each-ref.

2
\printdate from isodate: https://www.ctan.org/pkg/isodate

5

https://www.ctan.org/pkg/isodate

Listing 10: Formatting tags
1 \newcommand{\formattags}[2]{\item Version #1\\type: #2}

2

3 \begin{itemize}

4 \forgittag[refname:short,objecttype]{formattags}

5 \end{itemize}

Results in

• Version 0.0.1
type: commit

• Version 0.1.0
type: tag

This example shows that the versions used are mixed. This is, of course, a horrible way
to manage a project’s version, though, we’ll continue on with this hard objective. For
example, if we wish to display the author of the lightweight and annotated tag, we can
do so by specifying a format using the if-then-else feature of the format specification.
The format would be: (taggername)(taggername)(authorname). Here the taggernamewill
show up, or if not present, the authorname will be shown instead.

The default format specification is like the \forgitcommit format, but then again,
some bit more complex:

refname:short,(taggername)(taggername,taggeremail,taggerdate:short)

(authorname,authoremail,authordate:short),subject,body

This is a robust example of getting all information, being it either a lightweight- or an-
notated tag.

For displaying commits in between tags, there’s a \forgittagseq{〈csname〉}. The\forgittagseq

〈csname〉 takes exactly three arguments, namely, the 〈current〉, 〈next tag〉 and 〈rev spec〉.
The last iteration gives an empty value for 〈next tag〉 and the 〈rev spec〉 is identical to
〈current〉.

Afterward tag info can be fetched using the \gittag[〈format〉]{〈csname〉}{〈tag〉}.\gittag

This macro takes the same formatting specification as \fotgittag. Beware of using
\gittag for the 〈next tag〉 parameter in \forgittagseq.

All these macros put together are demonstrated in listing 11 (see next page).

2.6 Changelog
This example demonstrates the generation of a changelog. For simplicity’s sake, every
tag is displayed in a description environment’s item and within an enumerate environ-
ment displaying commits in between.

Listing 11: Formatting a changelog
1 \section*{Change History}

2 \newcommand{\commitline}[1]{\item #1}

3 \newcommand{\formatversion}[3]{%

4 \item[#1]

5 \gittag[(taggerdate)(taggerdate:short)(authordate:short)]{printdate}{#1}

6 \begin{itemize}

6

7 \forgitcommit[s]{commitline}{#3}

8 \end{itemize}

9 }%

10 \begin{description}

11 \forgittagseq{formatversion}

12 \end{description}

Results in

Change History
0.1.0 6th August 2017

• Add gitignore
Get the TeX.gitignore from the gitignore repository and use it for
this project.
From github

0.0.1 5th August 2017

• Add intro (README.md)
• Add readme

For displaying the tagline (see line 5) we use the existing \printdate macro of package
isodate, which also takes exactly one argument For every version sequence the commits
in between are displayed (see line 7), where the last sequence having the initial commit
as second argument plays well with the \forgitcommit macro and makes it possible to
show the whole sequence of history.

3 Project Example
This documentation uses an example projectwhich gets created by the git-scenario.sh
script (see listing 12). It creates some commits having dates in the past and different
authors set. Lastly it creates a ‘lightweight-’ and ‘annotated’ tag.

To set up this scenario either do make scenario or execute bash git-scenario.sh in
an initialized git repository. Keep in mind that when executing with Bash directly, you
may need to specify the path to the Bash file.

Listing 12: git-scenario.sh
1 #!/bin/bash

2

3 set -e

4

5 set_author() {

7

6 git config user.name $1

7 git config user.email $2

8 git config committer.name $1

9 git config committer.email $2

10 git config author.name $1

11 git config author.email $2

12 }

13

14 alice() {

15 set_author 'Alice' 'alice@example.com'

16 }

17 bob() {

18 set_author 'Bob' 'bob@example.com'

19 }

20 charlie() {

21 set_author 'Charlie' 'charlie@example.com'

22 }

23

24 alice

25

26 echo "# My project" > README.md

27 git add README.md

28 git commit -m "Add readme" --date="2017-08-04 10:32"

29

30 bob

31

32 echo "

33 Another project by Alice and Bob." >> README.md

34 git add README.md

35 git commit -m "Add intro (README.md)" --date="2017-08-05 06:12"

36

37 alice

38

39 GIT_COMMITTER_DATE="2017-08-05 07:11" git tag 0.0.1

40

41 bob

42

43 curl https://raw.githubusercontent.com/github/gitignore/main/TeX.gitignore > .gitignore

44 git add .gitignore

45 git commit -m "Add gitignore

46

47 Get the TeX.gitignore from the gitignore repository and

48 use it for this project.

49

50 From github" --date="2017-08-06 12:03"

51

52 charlie

53

54 export GIT_COMMITTER_DATE="2017-08-06 08:41"

55 git tag -a 0.1.0 -m "Version 0.1.0"

8

9

	Usage
	Git
	LuaLaTeX

	LaTeX Interface
	Package Options
	Basic macros
	Multiple Authors
	Commits
	Tags
	Changelog

	Project Example

