The ytableau package*

Ryan Reich
ryan.reich@gmail.com

February 1, 2011

Contents
1 Y tableau?

2 User commands

2.1 The ytableau environment
2.2 The ytableaushort command
2.3 The ydiagram command L.
24 Chaining

3 Package options

4 Samples
4.1 Standard Young tableaux
4.2 Skew tableaux oL oL
4.3 Color and chaining Lo L o
5 The Code
5.1 Global defintions
5.1.1 Boxregisters L oL
5.1.2 Token registers L oL
5.1.3 Dimension registers L.
5.1.4 Count registers
5.1.50 Macros e
5.2 Options
5.3 ytableauenvironment L.
5.4 ytableaushort command
5.5 ydiagram commmand
6 Change History

7

Index

*This document describes ytableau v1.1, dated 2011/01/31.

For Greta

1 Y tableau?

At present there exist two packages with which one can draw Young tableaux:
young and youngtab. As the latter is explicitly an alternative to the former, they
do not overlap very much except in what they eventually produce. Between them,
they define the following three basic constructions of Young tableaux:

e An environment with array-style syntax;
e A short-form macro;

e An even shorter-form macro for drawing Young diagrams (having nothing
inside the boxes).

In this package we also implement these methods. However, we aim to take
them as far as possible so that the conceivable needs of a mathematician making
serious use of Young tableaux can be met with as little effort as possible on their
part (and, thus, great effort on the part of this author). In writing this package we
pursued the following major goals:

e The syntax should be as convenient as possible. The young package makes
unfortunate use of the \cr delimiter for lines in an array, which is nowhere to
be seen in modern I TEX and is likely unfamiliar to casual, young writers. The
youngtab package requires the author to define individual, separate macros
to draw items requiring more than one token to represent in TEX. That is, if
a cell of a tableau is to contain the expression n + 1, then one must place
it into an auxiliary macro. Also, the same command, \young, delimits its
contents with parentheses (...) rather than braces {...}.

e The package should make no assumptions about the intentions of the user.
In particular, esoteric constructions such as skew tableaux and disconnected
tableaux are not in principle any more difficult to draw, and should be no
more difficult to write.

e Tableaux should support totally arbitrary decoration. We took this to mean
that they should be easily colored; this possibility allows the depiction of
tableaux within tableaux, an application which was specifically requested of
the author (and was the original reason for writing this package).

e Configuration should be easy and plentiful. The young package has none,
while youngtab package uses a strange syntax. Now that keyval is available
there is no excuse for not providing a keyword-driven user interface to options
controlling all aspects of the appearance of tableaux.

ytableau

\none

e Interoperability with all the common environments. In particular, since this
is a mathematics package, it should work properly in the AMS environments,
and since it is an array-based package it should work properly in array
environments.

We believe the package achieves all these things. There should be nothing that
one would want to do with Young tableaux that cannot be accomplished in the
obvious way using the commands given below.

2 User commands

We provide three commands for drawing Young tableaux and diagrams. Each one
is convenient for slightly different purposes and each supports various operations
more or less easily than the others.

2.1 The ytableau environment

The ytableau environment is the core drawing engine for this package. It may be
called as follows (similarly to young):

\begin{ytableau} [{general formatting)]
(entry) & *({color name)) (entry) & ... \\

\end{ytableau}

The result is an array of boxes separated by lines of width 0.4pt (not tunable,
and not affected by outside influences), each containing the entries specified in the
environment.

Each (entry) is typeset in math mode (by default, but text mode is possible)
and the entries are horizontally and (mostly) vertically centered in their box. In
fact, the entries are treated as though they consist of a single line of text, and the
baselines of all the entries in a row are aligned with each other for a consistent
appearance. The environment may appear in or out of math mode without any ill
effect (and without any effect on the contents).

An entry may be omitted by writing \none, which prevents the drawing of a
frame but places an invisible box of the correct dimension inside the entry. Thus,
one may create a tableau “starting” at an offset or even a “tableau” consisting
of several disconnected regions. One can actually get things into these “empty”
boxes by passing an optional argument to \none.

The (color name) can be any color name familiar to the package xcolor, or (of
course) user-defined. The background of this box will be drawn in that color; by
default, if no color is given the background is transparent, which probably means
white, unless the tableau is somehow overlaid on something else (see 2.4).

The (general formatting) is simply TEX material which is placed in front of
each (entry). It can also contain a (color name), which is overridden by those
specified individually.

\ytableaushort

\ydiagram

2.2 The ytableaushort command

This command (however ironically named) allows inline specification of a tableau:
\ytableaushort [{general formatting)] {(line),(line),...}

where (general formatting) is as before, and each (line) is a sequence of tokens
representing entries in the tableau, similarly to youngtab. However, it is possible to
include complex entries by surrounding them in {...}. This command internally
reduces its functioning to ytableau, so the entries may contain colors and in
general behave exactly as described above.

2.3 The ydiagram command

This command draws Young diagrams somewhat in the manner of youngtab:
\ydiagram [(general formatting)] {[{offset) +]{number),...}

producing an array of identical boxes (empty by default), each row having (number)
in it with (offset) blank boxes preceding ({offset) is optional but, when provided,
is not written with [...]. Thus, a typical invocation might be

\ydiagram{2 + 1, 3, 1}.

Both (offset) and (number) may be any TEX expressions evaluating to the
textual representation of a number (e.g. 6 or \thecountername, but not just
\countername). The boxes can be colored or filled with a single expression by
means of (general formatting).

2.4 Chaining

The coloring facility for \ydiagram is not very interesting as-is. Thus, the package
allows for the augmentation of several diagrams in the following manner:

\ydiagram (arguments) * {arguments) * ...

produces a single Young diagram obtained by layering the ones specified by the
various (arguments) from left (on top) to right (at the bottom). In fact, one can
even write

\ytableaushort (tableau arguments) * (diagram arguments) * ...

where first a Young tableau is constructed according to the initial set of arguments,
then all subsequent arguments are passed to \ydiagram, with the result layered
from left to right. This allows the construction of arbitrary color patterns with
arbitrary contents.

This operation is not possible with \begin{ytableau}...\end{ytableau}
since the \end command obscures the following text from the internally-called

boxsize

smalltableaux
nosmalltableaux

aligntableaux
centertableaux
nocentertableaux

textmode
mathmode

\ytableausetup

\endytableau command. If you want to chain a ytableau, instead write it in the
TEX style \ytableau. ..\endytableau. Unfortunately it is not possible to work
around this.

3 Package options

The package accepts the following options:

e boxsize=(dimension). This manually sets the height (and width, which is
the same) of boxes in all tableaux to (dimension). If you change the size and
want to get back to the default (1.5em), just say boxsize = normal.

e smalltableaux/nosmalltableaux. The first option makes the box size quite
small; indeed, small enough to fit a $£$ precisely, as computed by careful
eyeballing tests. It also passes \scriptstyle to each box, which as usual
can be overridden if you wish (but you don’t). The second option returns
things to how they were.

e aligntableaux=/(alignment)/centertableaux/nocentertableaux. The
first argument allows any of top, center, or bottom. With top, the tableaux
are all aligned on the baseline of their top row, with bottom they are
aligned on the baseline of their bottom row, and center centers them
(they correspond to \vtop, \vbox, and \vcenter). The other two argu-
ments are semantically pleasing shorthand for aligntableaux = center
and aligntableaux = top.

e textmode/mathmode. The former sets all the boxes in text mode, and the
latter returns to math mode (the default).

It may not be useful to set these options globally, so we provide a macro for
changing each of these parameters “on the fly”:
Takes all of the above options and acts on them, setting parameters for all
subsequent tableaux. The assignments are global with respect to TEX nestings.
One can also pass options to xcolor when calling ytableau, but these options are
not further configurable through \ytableausetup.

4 Samples

Note that the option settings are persistent.

4.1 Standard Young tableaux

\ytableausetup{centertableaux}

d \begin{ytableau}
a&d&f\\

S| e
®
s}

b&e&g\\

c
— \end{ytableau}

o

ald]|f
blel|g
c
1 2 3 . [2n—1| 2n
2131 4 2n
on—1| 2n
2n

4.2 Skew tableaux

12\
2
1]2
2
1(2
1]2
1(2

4.3 Color and chaining

\ytableausetup{textmode}

\begin{ytableau}
a&d&f\\
b&e&g\\
c

\end{ytableau}

\ytableausetup
{mathmode, boxsize=2em}
\begin{ytableau}
1 & 2 & 3 & \none[\dots]
& \scriptstyle 2n - 1 & 2n \\
2 & 3 & 4 & \none[\dots]
& 2n \\
\none[\vdots] & \none[\vdots]
& \none[\vdots] \\
\scriptstyle 2n - 1 & 2n \\
2n
\end{ytableau}

\ytableausetup{boxsize=normal}
\begin{ytableau}
\none & \none & 1 & 2 \\
\none & 1 & 2 \\

1 & 2\\
2
\end{ytableau}

\ytableausetup{smalltableaux}
\ytableaushortq{

\none\none 12,

\none 12, 12, 2}

\ydiagram{2+2,1+2,2,1}

\ytableausetup{nosmalltableaux}

\begin{ytableau}

*x(red) 1& *(red) 3 &+*(red) 5 \\
*(blue) 2 & *(blue) 4 \\
*(blue) 6

\end{ytableau}

\ytableaushort [*(green) x_]
{135, {*(white)2}4,6}

\begin{multline}
\ytableausetup
{boxsize=1.25em}
\ytableausetup
{aligntableaux=top}
\ytableaushort [x_]1{135,24,6}
+ \ydiagram[*(red) 1{3} \\

+ = (1) + \ydiagram[*(blue)]{3,2,1}
= \ytableaushort[x_]1{135,24,6}
*[*x(red)]{3} *[*(blue)]{3,2,1}

\end{multline}
\ytableausetup{centertableaux}
\ytableaushort
b {\none, \none ab, \none c}
c * {4,3,2,1}

* [*(yellow)1{4,1,1,1}

\ydiagram[*(white) \bullet]
{3+2,3+1,2,2}
[(green)]1{5,4,3,2,1}

5 The Code
5.1 Global defintions

Here are all the registers set and “variables” used.

5.1.1 Box registers
\tableaux@YT When chaining, collects the successive tableaux.

\thistableau@YT When chaining, stores the current tableaux in the chain.
Used in \endytableau.

1 \newbox\tableaux@YT
2 \newbox\thistableau@YT

\thisbox@YT Stores the box currently being constructed. We define it as an alias because it is
local to the construction of \thistableau®@YT and, afterwards, irrelevant. Used in
\startbox@@YT and \endbox@YT.

3 \let\thisbox@YT=\thistableau@YT

\refhtdp@YT

\toks@YT

\opttoksa@YT
\opttoksb@YT

\boxdim@normal@YT
\boxdim@save@YT

\boxdim@YT

\tableauwd@YT

\boxframe@YT

\count@YT

Boxes to hold our reference-height and reference-depth letters. Is b the tallest
and g the deepest? Used in \endbox@YT.

4 \newbox\refhtdpQYT
5 \setbox\refhtdp@YT=\hbox{bg}

5.1.2 Token registers

Accumulates what will be put in the ytableau environment. Used in \ydiagram,
\getnumbers@YT, \getentries@@YT, \1oop@YT, and \ytableaushort.

6 \newtoks\toks@YT

Store the optional arguments (minus color specifications) when processing each entry
of the tableau. Also used as temporary token registers. Used in \startbox@YT,
\getline@YT.

7 \newtoks\opttoksaQYT
8 \newtoks\opttoksb@YT

5.1.3 Dimension registers

Respectively, these record the normal size of a box in a tableau for use in option
boxsize, and the previously used size when using the option pair smalltableaux,
nosmalltableaux. Used in options boxsize, smalltableaux, nosmalltableaux.

9 \newdimen\boxdim@normal@YT
10 \boxdim@normal@YT=1.5em
11 \newdimen\boxdim@save@YT
12 \boxdim@save@YT=\boxdim@normal@YT
The size of the boxes in a tableau. Used in \none, \start@@YT, \end@YT.
13 \newdimen\boxdim@YT
14 \boxdim@YT=\boxdim@normal@YT

Save the total width of a tableau for supporting the “chaining” operation. Used in
\endytableau.

15 \newdimen\tableauwd@YT

The width of the frame in a tableau. Used in \ytableau and \endytableau.
16 \newdimen\boxframe@YT \boxframe@YT=0.4pt

5.1.4 Count registers
Just a counter for looping. Used in \1oop@YT, \fullexpand@YT.

17 \newcount\count@YT

\ifstar@YT

\skipin@YT
\skipout@YT

\thisboxcolor@YT

\centering@YT

\defarg@YT

\compare@YT

\compare@@YT

\ifeq@YT

5.1.5 Macros

Fix a bug with amsmath where \@ifnextchar (used in \@ifstar) doesn’t ignore
spaces.
18 \def\ifstar@YT#1{\kernel@ifnextchar *{\@firstoftwo{#1}}}

Stores the delimiter for text mode or math mode which absorbs spaces around the
contents of a box.

19 \def\skipin@YT{$}
20 \def\skipout@YT{$2}

Stores the color of the current box in a tableau. The color clear is not recognized
by xcolor but denotes for us a transparent box. Used in \getcolor@@YT and
\endbox@YT.

21 \def\thisboxcolor@YT{clear}

What kind of vertical alignment our tableaux will have. Used in \ytableau and
options aligntableaux, centertableaux, nocentertableaux.
22 \def\centering@YT{top}

The “default optional argument” which is applied to every tableau before all the oth-
ers passed by the user. At the moment all it does is support option smalltableaux,
but perhaps it can be put to greater use? Used in option smalltableaux.

23 \def\defarg@YT{}

Compares two strings. Neither of them should be hidden in macros; i.e. it compares
exactly what is given. Used in options boxsize and aligntableaux as well as in
\getline@QYT, \getentries@QYT, \1oop@YT, and \getnumbersQYT.

Compares two strings, where the first is hidden in one layer of macros. Used in
\endytableau, \fcolorbox@YT.

Tests the result of \compare@YT (@).

24 \def\compare@YT#1#2{J,
25 \def\tmpa@YT{#1}\def\tmpb@YT{#2}Y,
26 \ifx\tmpa@YT\tmpb@YT
27 \global\eq@YTtrue’,
28 \else’

29 \global\eq@YTfalse},
30 \fi%

31}

32 \def\compare@aYT#1#2{/,
33 \def\tmpbQYT{#2}/

34 \ifx#1\tmpbQYTY

35 \globalleq@YTtrue,
36 \else%

37 \global\eq@YTfalse,
38 \fi%

39 }

40 \newif\ifeq@YT

\ytableausetup

boxsize

aligntableaux

centertableaux

nocentertableaux

smalltableaux
nosmalltableaux

5.2 Options

We include xkeyval to support various options.

41 \RequirePackage{xkeyval}

The user interface to options once the document is in progress.

42 \newcommand{\ytableausetup} [1]{\setkeys[ytableau] {setup}{#1}}

Box size. Takes a dimension or normal.
43 \define@key[ytableau] {setup}{boxsize}{}

Make tableaux un-small before changing the box size, even if the user wants to go
smaller, because there is also the issue of \defarg@YT being set, and it is only ever
changed in that option.

44 \setkeys[ytableau] {setup}{nosmalltableauxl}’,

45 \compare@YT{#1}{normall}y,

46 \ifeq@YT%

47 \global\boxdim@YT=\boxdim@normal@YTY

48 \else,

49 \global\boxdim@YT=#17,

50 \fi}

51}

Most general alignment option, can be any of top, center, or bottom.

centertableaux is aligntableaux = center,

nocentertableaux is aligntableaux = top.

52 \define@choicekey* [ytableaul {setup}{aligntableaux}

53 {top,center,bottom} [truel {/

54 \gdef\centering@YT{#1}

55 }

56 \define@choicekey [ytableau] {setup}{centertableaux}{true} [truel{/,
57 \gdef\centering@YT{center}’%

58 }

59 \define@choicekey [ytableau] {setup}{nocentertableaux}{true} [true] {/
60 \gdef\centering@YT{topl}/

612}

Small tableaux: reduce the box size and the text size. nosmalltableaux resets
everything to the way it was before smalltableaux was passed.

62 \define@boolkey[ytableau] {setup}{smalltableaux} [truel{%

63 \ifytableau@setup@smalltableauxy
We use the sign of \boxdim@save®YT to indicate whether we are “in” small tableaux;
this prevents double-calling the option. Even if the user is not so malicious, this
can (does) happen in the amsmath display environments.

64 \ifnum\boxdim@save@YT>0Y

65 \gdef\defarg@YT{\scriptstyle}’,
66 \global\boxdim@save@YT=-\boxdim@YT/

10

Arrived at by eyeballing. Exactly fits an $£$.

67 \global\boxdim@YT=.81lem}

68 \fij

69 \elsel,

70 \ifnum\boxdim@save@YT<0Y

71 \gdef\defarg@YT{}/,

72 \global\boxdim@YT=-\boxdim@save@YT/,

73 \global\boxdim@save@YT=\boxdim@normal@YTY,

74 \fi%
75 \fi%
76 }

77 \define@boolkey [ytableau] {setup}{nosmalltableaux} [truel{/
78 \ifytableau@setup@nosmalltableaux’

79 \setkeys[ytableau] {setup}{smalltableaux=falsel,

80 \else%

81 \setkeys[ytableau] {setup}{smalltableaux=truely,

82 \fik

83 }

textmode Requests that the boxes in tableaux be typeset in text mode rather than the default
mathmode math mode. In text mode, the skipout macro has to \unskip prior spaces, while
the skipin macro has to ignore following ones.

84 \define@boolkey [ytableau] {setup}{textmode} [truel{/
85 \ifytableau@setup@textmodey,

86 \globalldef\skipin@YT{\ignorespacesl}’

87 \global\def\skipout@YT{\unskipl}¥%

88 \elsel,

89 \global\def\skipin@YT{$}%

90 \global\def\skipout@YT{$}%

91 \fi%

92 }

93 \define@boolkey [ytableau] {setup}{mathmode} [truel{/
94 \ifytableau@setup@mathmodey,

95 \setkeys[ytableaul {setup}{textmode=falsel},

96 \else%

97 \setkeys[ytableau] {setup}{textmode=truel}y

98 \fi%

99 }

Now the default option, where one can ask xcolor for things.
100 \DeclareOptionX*{\PassOptionsToPackage{\CurrentOption}{xcolor}}

Process the options now. We don’t really need to be so specific but it doesn’t
hurt. Then we load xcolor with the options we may have collected.

101 \ProcessOptionsX[ytableau] <setup>[]
102 \RequirePackage{xcolor}

11

ytableau

5.3 ytableau environment

The core tableau-drawing environment. The first argument, which is optional, is
just “formatting” pasted on to each entry. The contents are an \halign-style array;
if an entry begins with *({color)), then the background of that box is colored.
103 \newenvironment{ytableau} [1] []

104 {%

Despite the alignment requirements, we set the tableau top-aligned so that it can
be easily chained. This will get fixed before we print it, though.

The point of the mysterious \iffalse is to produce a syntactically balanced
pair of braces {} which semantically is equivalent to just an open brace {. This is
required to support tableaux nested inside other alignments because \halign does
not recognize \bgroup...\egroup as designating a nesting! (We will use this fact
later, actually.) But we can’t just write { and (in \endytableau) } either.

105 \global\setbox\thistableau@YT=\vtop{\iffalse}\fiY

106 \setlength{\fboxrule}{\boxframe@YT}}

107 \setlength{\fboxsep}{Optl}/

I hate \cr, let’s use the I¥TEX convention.

108 \let\\=\creYT}

Lines and columns should abut, accounting for the fact that each entry is framed.

109 \offinterlineskip
110 \openup-\fboxrule,
111 \tabskip=-\fboxrule,

We have to make sure \everycr is empty or else strange things could happen (like
in the amsmath environment gather). Thanks to Harald Hanche-Olsen for telling
me about this.

112 \everycr={}%

Now we begin the \halign. Each entry is passed as an argument to our box-
building function, but we can’t just write something like \box@YT{##} because of
the following complication:

When TeX sees \box@YT{, it absorbs tokens up until the next unmatched }
without interpreting them and then feeds that to the macro as #1. Unfortunately,
we would like it to be possible to omit \\ on the last line (as people are used to this,
and Knuth provided for it with \crcr). But since ytableau is an environment,
the ending of \halign is hidden in the macro \endytableau (or \end{ytableau})
which is not expanded by \halign while reading for ## in the proposed code.

The workaround is to pretend that ## is not an argument to a macro until
we get deep inside \startbox@YT, where (after some processing) it is fed to an
\hbox inside math mode. \hbox is not really a macro (it’s a builtin) and it does
interpret its contents as it reads them, and since we have finally set up the desired
typesetting environment we can let it read ## properly. Since we are still inside an
\halign, eventually it will expand \endytableau and ## will terminate properly.
Whew.

113 \halign\bgroup&\startbox@YT{\defarg@YT}{#1}##7,

12

\cr@YT

114 \endbox@YT\cr’

115 }

116 {%

The \crcr supports the omission of \\ in the last row. That’s a pretty modest
goal for all the work that went into thinking up this crazy scheme.

117 \crcr\egroup,
118 \iffalse{\fil}%

Support for chaining. We allow \endytableau to be followed by *[...]1{...},
which is fed to \ydiagram as-is. This only works in the short forms \ytableaushort
and \ydiagram, since in \end{ytableau} there is extra code intervening before
the following characters and no way to insert things in it.

119 \ifnum\wd\thistableau@YT>\wd\tableaux@YTY
120 \tableauwd@YT=\wd\thistableau@YTY

121 \advance\tableauwd@YT by -\wd\tableaux@YTY
122 \else%

123 \tableauwd@YT = Opt%

124 \fi%

We have saved the larger width, but now \thistableau@YT must have width zero
so that it can be overlaid with the existing tableaux.

125 \wd\thistableau@YT=0pt

126 \setbox\tableaux@YTY,

127 =\hbox{\box\thistableau@YT\unhbox\tableaux@YT}
128 \kern\tableauwd@YT}%

129 \ifstar@YT),

130 {\ydiagram}y,

131 {%

We adjust the vertical alignment finally and print the boxes. \leavevmode ensures
that the tableau is treated in horizontal mode. You are on your own if you put
this inside of another box.

132 \leavevmode/,

133 \compare@@YT{\centering@YT}{centerl}y,

134 \ifeq@YTY,

135 \hbox{$\vcenter{\box\tableaux@YT}$}%

136 \else\compare@@YT{\centering@YT}{bottom}
137 \ifeq@YT,

138 \hbox{\raise\dp\tableaux@YT\box\tableaux@YT}/,
139 \fil

140 \box\tableaux@YT/

141 \fil

142 }%

143 }

Annoying to have to do this, but nested halign chokes when \cr appears inside
the definition.

144 \def\cr@YT{\cr}

13

\none

\none@YT

\startbox@YT

\save@YT

\getcolor@YT

\getcolor@@YT

\startbox@@YT

This one is for omitting entries but leaving their space. We also allow something
to be placed in the empty space (e.g. \dots), but don’t allow color (that would
defeat the purpose of omitting the box). To support the optional argument without
screwing up the \omit, we have to go in two steps.

145 \def\none{\omit\none@YT}

This finds the optional argument to \none and makes the box itself. We draw an
invisible frame by replacing the actual frame with the frame separation. We also
use \ignorespaces to eat up any spaces that occur after \none; in a normal box,
they would be chopped in math mode.

146 \newcommand{\none@YT} [1] []1{%

147 \def\thisboxcolor@YT{clearl},

148 \setlength{\fboxsep}{\boxframe@YT}%

149 \setlength{\fboxrule}{Optl}/

150 \startbox@@YT#1\endbox@YTY,

151 \ignorespaces’

152 }

#1 = general formatting, #2 = specific formatting. We want to extract the colors
from each and then pass the whole thing on to \startbox@@YT.

153 \def\startbox@YT#1#2{%

We get the colors and then put the rest into temporary token registers.
154 \getcolor@YT{\save@YT{\opttoksa@YT}}#1\@nil},

155 \getcolor@YT{\save@YT{\opttoksb@YT}}#2\@nil%

Now we get the color from the entry and proceed.

156 \getcolor@YTY,
157 {\startbox@@YT\the\opttoksa@YT\the\opttoksb@YT}%
158 }

Stick the following text into the token register in #1. Note that we use \@nil as
an end-marker; it is not actually defined, so hopefully we never expand it!

159 \def\save@YT#1#2\0nil{#1={#2}}

#1 is pasted in front of what remains after removing the color. Basically, it’s a “do
next”.

160 \def\getcolor@YT#1{\ifstar@YT{\getcolor@@YT{#1}}{#1}}

Save the (optional) color argument and pass the rest to \startbox@@YT.

161 \def\getcolor@QYT#1 (#2) {%
162 \def\thisboxcolor@YT{#2}
163 #1%

164

Start collecting the current entry into a horizontally-centered hbox, but save the
result.

165 \def\startbox@@YT{%

14

\endbox@YT

\fcolorbox@YT

\ytableaushort

Use a \bgroup...\egroup so as not to introduce nesting that would block & or \cr.
166 \setbox\thisbox@YT=\hbox to \boxdim@YT\bgroup

167 \hss%
168 \skipin@YT%
169

Since we are now in the intended typesetting context (i.e. an hbox with math
mode on) we can let \halign expand tokens in the rest of the entry until it finds

a&or \cr (=\\)

Now we can finish the box and set it.

170 \def\endbox@YT{Y

171 \skipout@YTY,

172 \hss%

173 \egroup’

We want all the boxes to have a consistent baseline, so we normalize them to the
same size. Multiple text lines will be aligned with the baseline of the last line at
the center, so this really only works well for single lines of text.

174 \ht\thisbox@YT=\ht\refhtdp@YT/,

175 \dp\thisbox@YT=\dp\refhtdpQYT/,

176 \fcolorbox@YT{\thisboxcolor@YT}{}

177 \vbox to \boxdim@YT{\vss\box\thisbox@YT\vss}/,

178 %

179 F

We need a wrapper around \fcolorbox since it produces an opaque box, and
sometimes, we want clear.
#1 = color, #2 = contents
180 \def\fcolorbox@YT#1#2{Y
181 \compare@Q@YT{#1}{clearl,
182 \ifeq@YTY,
Clear background; don’t draw anything.
183 \fbox{#2}
184 \else,
Colored background; pass it to \fcolorbox.
185 \fcolorbox{.}{#1}{#2}V
186 \fi%
187 }

5.4 ytableaushort command

The short form of ytableau. It takes a comma-separated list of lines, each one a
string of entries given as individual tokens. {...} is allowed (and encouraged) for
complex entries, and color is possible. All sorts of redundancies in the syntax are
allowed.

188 \newcommand{\ytableaushort}[2] [1{%

15

\getentries@YT

\getline@YT

\getline@QYT

\endytableau has to be right at the end, so we can’t use scope to reset \toks@YT.
189 \toks@YT={}},

190 \getentries@YT{\getentries@OYT}{}#2,\@nil%

191 \ytableau[#1]\the\toks@YT\endytableau’,

192 }

Split the CSV into rows. This is really a job for etoolbox:\docsvlist but
whatever. We put a . in front of the string so that a line may be enclosed entirely
in {...} Otherwise, \def\cs#1,{etc} would make #1 = ... and not #1 = {...}
as we want.

193 \def\getentries@YT#1#2{\getline@YT{#1}{#2}.}

Grab the first (line), in the string and remove the initial .

194 \def\getline@YT#1#2#3,{/
195 \opttoksa@YT=\expandafter{\@gobble#3}}
196 \opttoksb@YT={\getline@QYT{#1}{#2}}%

We pass #3 back as an argument to \get1line@@YT, thus avoiding the braces issue.

197 \edef\next@YT{\the\opttoksb@YT{\the\opttoksa@YT}1}/,
198 \next@YT%
199 }

#1 = the macro to process each row, #2 = the junk to put after each row (followed
by \@nil), #3 = everything before the first comma, #4 = the token after the first
comma (possibly another comma).

200 \def\getline@QYT#1#2#3#4{J,

Handle double commas or trailing commas.

201 \compare@YT{#4}{,}/

202 \ifeq@YT%

Try again.

203 \def\next@YT{\getline@@YT{#1}{#2}{#3}}%

204 \else}

If this is not the last row, we have to recurse down the list. Otherwise, just process
the current row.

205 \compare@YT{#4}{\@nil}

206 \ifeq@YT%

207 \def\nextQ@YT{#1#3#2\Cnill}}

208 \else,

#4 is a single token, so it should be replaced as one. Note that this adds braces; we
will have to correct for this all the way down in \fullexpand@YT when we don’t
want them.

209 \def\nextQ@YT{#1#3#2\Cnil\getentries@YT{#1}{#2}{#4}}/

210 \fi%

211 \fi},

212 \next@YTY,

213 }

16

\getentries@@YT

\ydiagram

\getnumbers@YT

Separates the entries in a line of \ytableaushort and reformats them for
\ytableau. Takes two tokens and checks if the second is \@nil, which means
the first is the last entry.

214 \def\getentriesQQ@YT#1#2{J

If this is not the last entry, we have to recurse down the line. Otherwise, we just
print \\.

215 \compare@YT{#2}{\@nill}Y,

216 \ifeq@YT%

217 \toks@YT=\expandafter{\the\toks@YT#1\\}%
218 \def\next@YT{}}

219 \elseY

220 \toks@YT=\expandafter{\the\toks@YT#1&}/,
221 \def\next@YT{\getentries@QYT{#2}}/

222 \fi},

223 \next@YT},

224 }

5.5 ydiagram commmand

Takes the same optional argument as the other macros. Its main argument #2 is
of the form

[(offset) + [(number), ...
where both (offset) and (number) may be any expression evaluating to a textual
number (e.g. \the\count(n) rather than \count(n}).
225 \newcommand\ydiagram[2] []J{%

We need \endytableau to be right at the end, so we can’t use scope to reset
\toks@YT.

226 \toks@YT={1}%

227 \getentries@YT{\getnumbers@YT}{+}#2,\@nil},

228 \ytableau[#1]\the\toks@YT\endytableau/,

229 }

Separates the entries in a line of \ydiagram and reformats them for \ytableau.
230 \def\getnumbers@YT#1+#2\@nil{%
If #2 = {3}, then there is no offset and #1 is the row shape.

231 \compare@YT{#2}{}/
232 \ifeq@YT}

233 \def\next@YT{%

234 \loop@YT{#1}{}%
235 Y%

Else #1 is the offset and #2 is the shape.

236 \else%
237 \def\next@YT{}
238 \loop@YT{#1}{\nonel}’

17

\loop@YT

\fullexpand@YT

Now #2 looks like (number)+, so we feed it back in.

239 \getnumbers@YT#2\@nily,
240 Y

241 \fi%

242 \next@YTY,

243 }

Loops on the first argument, building a \ytableau line whose entries are the
second argument. The results go in \toks@YT.

244 \def\loop@YT#1#2{J,

Fills \count@YT.

245 \fullexpand@YT{#1}/,

246 \loop\ifnum\count@YT>1%,

247 \toks@YT=\expandafter{\the\toks@YT#2&3}/,

248 \advance\count@YT by -1%

249 \repeat’

The last entry in the list may not be the last entry in the line. If it’s empty, it is
(according to our usage), otherwise not.

250 \ifnum\count@YT=1Y%

251 \compare@YT{#2}{1}/,

252 \ifeq@YT},

253 \toks@YT=\expandafter{\the\toksQYT#2\\}/

254 \else

255 \toks@YT=\expandafter{\the\toksQYT#2&}%
256 \fi%

257 \fi},

258 }

Fully expand its argument. Hopefully you passed an argument for which that
makes sense. This also strips braces.

259 \def\fullexpand@YT#1{Y

TeX’s brace parser will strip the braces for us.

260 \def\tmpa@YT##1{##11}/,

Turns e.g. both #1 = {23} and #1 = 23 into 23. As a side effect, e.g. if #1 = {2}3,
the result is 23. However, #1 = 2{3} stays that way, so is probably an error.

261 \edef\tmpb@YT{\tmpa@YT#1}%
262 \edef\tmpc@YT{\tmpb@YT}/
263 \count@YT=\tmpc@YT,

264 }

18

6 Change History

v1.0
General: Initial version
vl.l
General: Changed the namespace convention from
ytableau@... to ...QYT to make the index use-
ful and the macros shorter.
Removed null initializations of temp macros
\tmp(a,b,c)@YT.
nosmalltableaux: Correctly reassign a positive
value to \boxdim@save@YT when exiting small
tableaux. o
\refhtdp@YT: Put the reference letters into a single
box and renamed it more semantically.

9

10

8

\skipout@YT: Split up the “skip in” and “skip out”
TNACTOS. « v vt e e e et e e
ytableau: Added the everycr fix.
Moved the leavevmode down to the output rou-
tine and simplified the alignment computations
now that the everycr fix isin.
Removed an unnecessary layer of boxes and
moved the fake braces into the outer layer.
Replaced explicit setting of the chained box width
byakern.
Save the box width difference rather than the
larger width.
\thisbox@YT: Made \thisbox@YT an alias for
\thistableau®YT.

19

13

12

13

13

7 Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined
refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

Symbols
...... 154, 155, 159, 190,
205, 207, 209, 215, 227, 230, 239
108, 217, 253

aligntableaux (option) 5, 52

B
\boxdim@normal®@YT ... 9, 14, 47, 73
\boxdim@save®YT 9, 64, 66, 70, 72, 73
\boxdim@YT 13

47, 49, 66, 67, 72, 166, 177
\boxframe@YT 16, 106, 148
boxsize (option) 5,43

\centering@YT 22, 54, 57, 60, 133, 136

centertableaux (option) &, 52
\compare@@YT . 24, 133, 136, 181
\compare@YT 24

45, 201, 205, 215, 231, 251

\count@YT ... 17, 246, 248, 250, 263
\CT o 114, 144
\cr@YT 108, 144
D
\defarg@YT 23, 65, 71, 113
E
\endbox@YT 114, 150, 170
\endytableau 191, 228
environments:
ytableau 3,103
\everycr 112
F
\fbox 183
\fboxrule 106, 110, 111, 149
\fboxsep 107, 148
\fcolorbox 185
\fcolorbox@YT 176, 180
\fullexpand@YT 245, 259
G
\getcolor@eYT 160, 161

\getcolor@YT . 154, 155, 156, 160
\getentries@QYT 190, 214
\getentries@YT . 190, 193, 209, 227
\getline@QYT 196, 200
\getline®@YT 193, 194
\getnumbers@YT 227, 230
H
\halign 113
I
\ifeq@YT 24, 46, 134,
137, 182, 202, 206, 216, 232, 252
\iffalse 105, 118
\ifstar@YT 18, 129, 160
\ignorespaces 86, 151
K
\kern 128
\kernel@ifnextchar 18
L
\loop@YT 234, 238, 244
M
mathmode (option) 5, 84
N

\next@YT 197, 198, 203, 207, 209,
212, 218, 221, 223, 233, 237, 242

nocentertableaux (option) 5, 52
\none 3, 145, 238
\none@YT 145, 146
nosmalltableaux (option) ... &, 62
(0]
\offinterlineskip 109
\omit, 145
\openup 110
options:
aligntableaux 5, 52
boxsize 5, 43
centertableaux 5, 52
mathmode 5, 84
nocentertableaux 5, 52

nosmalltableaux 5, 62
smalltableaux 5, 62
textmode 5, 84
\opttoksa@YT . 7, 154, 157, 195, 197
\opttoksb@YT . 7, 155, 157, 196, 197
R
\raise 138
\refhtdp@YT 4,174, 175
\RequirePackage 41, 102
S
\save@YT 154, 155, 159
\skipin@YT 19, 86, 89, 168
\skipout@YT 19, 87, 90, 171
smalltableaux (option) 5, 62
\startbox@QYT 150, 157, 165
\startbox@YT 113, 153
T
\tableauwd@YT 15, 120, 121, 123, 128
\tableaux@YT 1,
119, 121, 126, 127, 135, 138, 140
\tabskip 111
textmode (option) 5,84
\thisbox@YT .. 3, 166, 174, 175, 177
\thisboxcolor@YT 21, 147, 162, 176

\thistableau®@YT
1, 3, 105, 119, 120, 125, 127

\tmpa@YT 25, 26, 260, 261
\tmpb@YT 25, 26, 33, 34, 261, 262
\tmpc@YT 262, 263
\toks@YT 6, 189, 191,
217, 220, 226, 228, 247, 253, 255
U
\unskip 87
Y
\ydiagram 4, 130, 225
\ytableau 191, 228
ytableau (environment) 3, 103
\ytableausetup 5, 42
\ytableaushort 4, 188

	Contents
	1 Y tableau?
	2 User commands
	2.1 The ytableau environment
	2.2 The ytableaushort command
	2.3 The ydiagram command
	2.4 Chaining

	3 Package options
	4 Samples
	4.1 Standard Young tableaux
	4.2 Skew tableaux
	4.3 Color and chaining

	5 The Code
	5.1 Global defintions
	5.1.1 Box registers
	5.1.2 Token registers
	5.1.3 Dimension registers
	5.1.4 Count registers
	5.1.5 Macros

	5.2 Options
	5.3 ytableau environment
	5.4 ytableaushort command
	5.5 ydiagram commmand

	6 Change History
	7 Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	R
	S
	T
	U
	Y

