
yquant.sty package documentation
Typesetting quantum circuits in a human-readable language

Benjamin Desef

April 11, 2020

This manual introduces yquant, a LATEX-only package that outputs
quantum circuits. They are entered using a human-readable language
that, even from the source code, allows for a fluent understanding of
the logic that underlies the circuit. yquant internally builds on TikZ
and can be easily combined with arbitrary LATEX code. More than forty
pages of examples complement the formal manual.

1

Contents

1 Introduction 4
1.1 How to read the manual . 4
1.2 Installation . 4
1.3 Purpose of yquant, alternatives 4
1.4 License . 6

2 Basic elements of yquant 7
2.1 General usage . 7
2.2 Starred vs. unstarred environment 8
2.3 Formal syntax . 8
2.4 Registers . 9
2.5 Arguments . 12
2.6 Controls . 13

3 Configuration 14
3.1 Circuit layout . 14
3.2 Register creation . 15
3.3 Register outputs . 16
3.4 General styling . 17
3.5 Styles for operators . 19

4 Doing the impossible 22

5 Reference: Gates and operations 24
5.1 addstyle . 24
5.2 align . 24
5.3 barrier . 24
5.4 box . 25
5.5 cbit . 25
5.6 correlate . 25
5.7 cnot . 25
5.8 discard . 25
5.9 dmeter . 26
5.10 h . 26
5.11 hspace . 26
5.12 init . 26
5.13 measure . 27
5.14 nobit . 27

2

5.15 not . 28
5.16 output . 28
5.17 phase . 28
5.18 qubit . 29
5.19 qubits . 29
5.20 setstyle . 29
5.21 settype . 30
5.22 setwire . 30
5.23 slash . 30
5.24 swap . 30
5.25 x . 31
5.26 xx . 31
5.27 y . 31
5.28 z . 31
5.29 zz . 31

6 Examples 32
6.1 qasm documentation . 32
6.2 qcircuit documentation . 42
6.3 quantikz documentation . 56

7 Wishlist 79

8 Changelog 80
8.1 2020-03-15: Version 0.1 . 80
8.2 2020-03-22: Version 0.1.1 . 80
8.3 2020-04-11: Version 0.1.2 . 80

3

1 Introduction

This document outlines the scope and usage of the yquant package. It contains
both a reference and a huge number of examples. yquant is a package that makes
typesetting quantum circuits easy; the package is not yet available on CTAN. This
alpha version 0.1.2 should be stable and interfaces are not very likely to change
in an incompatible way in the future. Please do report all issues and desirable
additions.

1.1 How to read themanual

The probably fastest way to start using yquant is by just scanning through the
examples in section 6. A more formal description of the yquant grammar and its
fundamental concepts can be found in section 2. If your desire is to change the
appearance of yquant elements, use the configuration reference in section 3. The
full list of all available gates is provided in section 5. Finally, you may find that
yquant almost does what you want, but there is some final tweak that you cannot
achieve…. Then, have a look at section 4 (or section 1.3).

1.2 Installation

At the moment, clone this repository or download a copy and extract the files to
a path visible to your TEX compiler. For example, you may put them in the same
directory as your document (if you just want to give a try), or you may extract
them to tex/latex/yquant in your local texmf (followed by an update of the file
name database).

1.3 Purpose of yquant, alternatives

yquant is the acronym for “yet another quantum circuit package.” This highlights
the fact that nothing that this package provides cannot be achieved by other
means. In particular, there are at least the following methods to typeset quantum
circuits in TEX.

• Use some external program to draw them and include the output via
\includegraphics.

• Use either TEX’s own drawing capabilities (the picture environment) or
other drawing packages such as TikZ or pstricks.

• Use a package specifically designed to draw quantum circuits (if you feel
some other package should be mentioned here, please file an issue):

4

– qasm is probably the first of them (in terms of age). It was developed
to typeset the circuits found in Nielsen and Chuang’s famous Quan-
tum Computation and Quantum Information book. qasm consists of
a Python 2 script (qasm2circ) that reads a quantum circuit written
in a very intuitive language: declare names for your qubits, perform
gates on them in each line. qasm2circ converts those circuits into TEX
files that internally make use of the xy package to display the output.
Consequently, the user is restricted to the set of features that qasm
directly offers (which is small). Changes to the output, while possible,
will be overwritten if qasm2circ is run again. qasm output often looks
sub-optimal do to the fact that, e.g., rectangles are made up of four
lines that do not properly connect and give a crumbly general feeling.

Maintenance status: last update of qasm in 2005. Also, xy was last
updated in 2013, and the script is not compatible out-of-the-box with
Python 3, though an automatic conversion should work.

– qcircuit is probably the most-widely used package. It provides com-
mands that make it much easier to create quantum circuits using the xy
package. Its syntax therefore is grid-oriented; inferring what a circuit
does or locating a gate in the code can be tough. This is particularly
true for multi-qubit gates. Additionally, the \xymatrix syntax is also
somewhat cryptic. qcircuit provides some flexibility within the limits
of xy as to configuring the output.

Maintenance status: last update in 2018; and remember this is xy
based, with last update in 2013.

– quantikz is a relatively recent package that, following the same grid-
based approach as qcircuit, instead builds on TikZ as a backend. As
a consequence, it provides the full flexibility of customization that TikZ
offers, where hardly anything cannot be done. It also reduces burdens
of the xy syntax. However, the disadvantages of the grid-based syntax
still remain.

Maintenance status: last update in 2019; the underlying TikZ is actively
maintained again by now.

– qpic follows the approach of qasm: It makes use of an external Python
program that reads the quantum circuits in an own language and
converts them into TikZ commands. The language qpic follows is much
more powerful than qasm’s. The disadvantage that modifications in the
output code will not remain after running the Python script again is
mitigated by the possibility to define own TEXmacros. Being an external

5

program, qpic’s intrinsic set of features (including, e.g., vertically
set circuits) are huge. However, the language qpic uses cannot be
understood without a detailed study of the manual, it appears to have
been designed with the aim to minimize the length of command names.
A disadvantage of external programs is that the amount of space gates
need is not accessible by the script; hence, manual intervention may
be required.

Maintenance status: last update in 2016; the underlying TikZ is actively
maintained, and the script is compatible with Python 3.

1.4 License

This work may be distributed and/or modified under the conditions of the LATEX
Project Public License, either version 1.3c of this license or (at your option) any
later version. The latest version of this license is in

http://www.latex-project.org/lppl.txt

and version 1.3c or later is part of all distributions of LaTeX version 2005/12/01
or later.

6

http://www.latex-project.org/lppl.txt

2 Basic elements of yquant

yquant, as some of the aforementioned packages, builds on TikZ. Its basic syntax
is similar to pgfplots: Start a tikzpicture environment (perhaps passing some
options); inside, start a yquant environment.

Inside the yquant environment, TEXwill now understand the yquant language—
so yquant falls into the same category as qasm and qpic, providing a human-
readable language for the specification of the circuit that is not fixed to the actual
layout.

However, yquant is a TEX-only package (actually, LATEX2𝜀, but not LATEX3) that
requires no external script to run—so it also falls into the same category as
qcircuit and quantikz.

Since it runs entirely within TEX, you can at any time interject yquant code
with arbitrary TEX or TikZ code (though if it is “too arbitrary,” you may need to
restart the yquant interpreter).

2.1 General usage

% preamble: \usepackage{yquant}
\begin{tikzpicture}% tikz options possible

% tikz commands go here
\begin{yquant}% yquant options possible. Watch the newlines!

% yquant and tikz commands go here
\end{yquant}
% tikz commands go here

\end{tikzpicture}

Note that yquant depends on etoolbox, TikZ, and trimspaces. Addition-
ally, it requires a moderately recent version of LATEX2𝜀, using either LuaLATEX,
or (untested), pdfLATEX or X ELATEX.

Optional arguments

The optional arguments for the yquant environment have to appear on the
same line as the environment itself. If you want to put the arguments into a
new line, it is crucial to mask the line break by putting a comment symbol
after the environment: \begin{yquant}% . Without this comment, yquant will
detect your line break (this is one of the few places in TEX where line breaks
and spaces are different) and assume that the expression in square brackets
instead provides arguments for the following operation!
Finally note that in (non-fragile) beamer frames, this discrimination between

7

spaces and new lines does not work; the optional arguments will always be
counted for the environment, not for the gate. In this case, you can either
declare the frame as fragile or (recommended) introduce a blank line between
the environment and the options for the first gate.

2.2 Starred vs. unstarred environment

You may choose to use either the yquant or the yquant* environment. The former
one requires you to define all your registers before you use them (though you may
decide to define a register after some operations on different registers, but before
its first usage).

The starred form additionally supports the use of undeclared registers: it basi-
cally declares a registers upon its first usage. This will always be a qubit register;
but if you use the corresponding option and the first usage is an init command,
you may overwrite this.

Additionally, if you refer to the index 𝑖 of a vector register of length 𝐿 < 𝑖, this
register will automatically be enlarged to 𝑖 ≔ 𝐿. It is also possible to convert a
scalar register into a vector register in this manner. To enlarge a register in the
unstarred environment, you must precede the number of registers to be added
in the second declaration by a plus sign. Note that in this manner, you may even
create discontiguous vectors.

This might be a good point to proceed to the examples section 6.

2.3 Formal syntax

Every yquant command has the same structure (described here in EBNF syntax):

Command = { Arguments }, ?command?, [Value], [RegisterList], Controls,
";";↪

Arguments = "[", ?pgfkeys?, "]";
Value = "{", ?TeX code?, "}";
Controls = ["|", [RegisterSingleList]], ["~", [RegisterSingleList]];

RegisterList = (RegisterSingle | RegisterMulti), [",", RegisterList];
RegisterSingleList = RegisterSingle, [",", RegisterSingleList];

RegisterSingle = RegisterSingleNoRange | RegisterRange;
RegisterSingleNoRange = ?name?, ["[", IndexMultiList, "]"];
RegisterMulti = "(", (RegisterMultiNoRange | ["*"], RegisterRange), ")";
RegisterMultiNoRange = ["*"], ?name?, ["[", IndexSingleMainList, "]"];
RegisterRange = [RegisterUnique], "-", [RegisterUnique];
RegisterUnique = ?name?, ["[", ?number?, "]"];

8

IndexMultiList = IndexMulti, [",", IndexMultiList];
IndexSingleList = IndexSingle, [",", IndexSingleList];
IndexSingleMainList = ["*"], IndexSingle, [",", IndexSingleMainList];
IndexMulti = IndexSingle | ("(", IndexSingle, ")");
IndexSingle = ?number? | ([?number?], "-", [?number?]);

Note that yquant is quite tolerant with respect to whitespaces. Virtually every
comma in the EBNF notation may consist of an arbitrary (including zero) number
of whitespaces. Not all combinations that can be constructed by this grammar
are actually allowed semantically; but it would make the grammar too verbose to
spell this out in detail. Deviations are noted in this manual.

Valid values for ?command? (case-insensitive) are documented in a section 5.
We use ?pgfkeys? to describe any valid content passed to the \pgfkeys macro
(rather, \yquantset is invoked with some subtleties); and by ?name? we denote
any valid register name. Register names must not contain any of the control literals
used before (semicolon, comma, parentheses, square brackets, dash, pipe, tilde,
beginning star); and you should avoid using special TEX characters. Note that for
performance reasons, yquant does not check whether a register name is valid or
not, but expect to either see unintended output or not-so-helpful error messages
if you choose an invalid name. ?number? is a decimal integer larger or equal to
zero (in the context of register creation, strictly larger; in this context, it may also
contain a leading "+").

2.4 Registers

Every quantum circuit is structured by means of registers. A register has a type
that specifies how its wire is drawn, and that may even change during its lifetime.
At the moment, yquant supports four types:

1. qubit is the most common type, used for a quantum register. It corresponds
to a single line.

2. cbit is a classical register, which can be either declared from the beginning
or arises by using measurements. It corresponds to a double line.

3. qubits is a “quantum bundle,” i.e., a bunch of quantum registers that are
always addressed in a group as a single register. Operations between bundles
of the same length should be interpreted as transversal. It corresponds to a
triple line. An alternative (and more common) representation is to use the
qubit type and a slash gate at its very beginning.

9

4. nobit is the most obscure type, corresponding to a non-existing wire. Mostly,
this register type arises by using the discard command. However, it can
also be directly declared, which on rare occasions might be necessary (its
type can then be changed by means of an init or setwire pseudo-gate). If
you want to declare a register only at a certain horizontal position in the
circuit, consider using the after argument instead.

Registers must be declared before they can be used (though in the yquant*
environment, this declaration may be implicit, creating a qubit register).

Registers can have a vector character, i.e., not only a name, but also an index
(or, in the declaration, a length). The index (zero-based) or length is specified
in square brackets following the name, which closely mimics the OpenQASM
language.

Since version 0.1.1, vector registers may be non-contiguous: Whenever you
create a bunch of registers, it is put at the bottom of the circuit. If you later
on again create registers of the same name—either implicitly in the yquant*
environment, or explicitly by preceding the length of the vectors entries to be
added by a plus, as in qubit a[+3];—they will be put to what is now the bottom
of the circuit, even if some other registers are interspersed.

Registers are referenced—i.e., used in operations—by their name and index.
If the latter is omitted, all indices of the register are targeted. Multiple registers
can be referenced by joining their names in a comma-separated list, or by means
of a range specifier: give the name of the first (topmost), a dash, and the last
(bottom-most) register. Both are inclusive. In a range specifier, omitting the start
name means that the range begins at the first known register; omitting the end
name means that the range ends at the last known (at the moment of its use)
register. Omitting both indicates a range over all known registers.

Since version 0.1.1, it is also possible to use comma-separated lists and ranges
within the indices themselves, so that, e.g., a[0, 2, 5-], b[-2] will target the
zeroth and second index of a; the remaining indices of a starting from five; and the
first three indices of b. However, if you use an outer range (i.e., a range between
indices of registers with different names), the initial and final register of the range
must be unique, i.e., either you omit the index (targeting the first or last register
with the given name) or specify a single one.

Ranges and discontiguous registers

Assume a configuration in which the vector register a begins with one qubit,
then the single register b follows, and after that a is continued with another
qubit.
The range a-b will target a[0] and b[0], but not a[1]. As a is used as the

10

initial register in the range without an explicit index specification, yquant
automatically translates this into a[0], while b, being used as the final register,
is automatically translated into the last register of name b (which here happens
to be b[0]). Ranges between different register names (outer ranges) are visual
ranges, i.e., they refer to the top-to-bottom order that is visible. Consequently,
the register a[1] is left out since it is visually below the others.
Likewise, the range b-a will target b[0] and a[1].
Ranges within indices are logical ranges. Hence, a, a[-], a[0-], a[-1], and
a[0-1] are all equivalent: they all refer to the registers a[0] and a[1], but
never to b, regardless of any visual position.

All that was said so far refers to the operation being carried out on each of
the registers individually, i.e., producing several copies of the operation. This is
different from using the operation multiple times on the individual single registers
only with regard to the vertical positioning: if specified as a register list with one
operation, all copies of the operation will be aligned at the same vertical position
(as if an align command had been carried out before).

It is forbidden (in the sense of “not useful,” but yquant does not check for
this) to list the same register multiple times (explicitly or via ranges) in one
operation.

Instead of copies of single-register operations, one might want to carry out a
multi-register operation. In this case, the desired list of registers (comma separated,
range, or both) must be surrounded by parentheses. It is possible to mix single-
and multi-register operations arbitrarily. In an index list, you may also choose to
surround only certain indices with parenthesis, provided the whole register is not
already a multi-register.

Note that some gates, such as the swap gate, always require (semantically, not
grammatically) multi-register operations. Since version 0.1.2, the number of
constituents is no longer fixed; while a swap gate with more than two targets
is no longer well-defined, other registers such as zz may still be useful. yquant
will prevent you from using a gate in a multi-qubit setting when it may only be
used for single registers.

Typically, multi-register operations should only be carried out on adjacent
registers—but sometimes, one might want to carry out a multi-qubit operation
on a visually discontiguous set of registers (which, due to a particular quantum
computer topology, might even be physically feasible). Since version 0.1.2, yquant
supports these discontiguous operations explicitly (before, a single gate was drawn

11

with all intermediate non-affected register lines laying on top). It will draw a main
part of the gate at the first contiguous slice of registers in the target list—you
may select another register for this part by preceding the name or index with a
star (which, contrary to the simplified grammar, may only occur once in a target
specification). All other contiguous slices of target registers will be drawn in a
subordinate style for this gate. Finally, all slices will be connected by a single
vertical line with the style /yquant/every multi line.

Discontiguous targets and control lines

A control line extends from the very first to the very last affected register in
an operation. A sub-gate line that is used for discontiguous registers will only
span the range of a multi-register. This distinction becomes crucial if you want
to carry out a controlled operation on more than one multi-register, where at
least one is discontiguous. Without the controls, the separate multi-registers
could be identified, since no connecting vertical line extends between them
(unless, which you should strictly avoid, they are intertwined). However, with
the controls, the control line will make it hard (for some gates, impossible) to
visually distinguish the connected parts. yquant will kindly provide a warning
in this case. You may choose to suppress this warning using the boolean key
/yquant/operator/multi warning.

There is no established style for discontiguous gates. Note that at the moment,
main and subordinate style coincide for all gates except for the measure
gate with a value. In order to still make it possible to visually distinguish
discontiguous multi-register gates operating on slices of a single register from
just a bunch of single-register gates that are executed in a parallel manner, if
controls are present, yquant’s default vertical line style for the former case is a
wavy line instead of a straight one. Still, the meaning of this should probably be
explained. Please feel free to submit issues or pull requests with propositions
of how default styles or alternative subordinate gate shapes may additionally
help to mitigate the problem.

2.5 Arguments

Every command may take one or multiple arguments. Those are specified in square
brackets that precede the command itself. The content of those square brackets is
essentially fed to a \pgfkeys-like macro. The default path is set appropriately such
that the arguments of the command can be accessed without and path specifiers.
If the key is not a valid argument for the command or a global argument and it is

12

not given by an absolute path, it is searched for in the /yquant namespace. If it
cannot be found there, it is passed to /yquant/operator style.

Note that commands may have required arguments. If a required argument is
missing, an error will be issued.

The value attribute can alternatively be given inside curly brackets after the
command name and before the register specification. This has the advantage that
special characters such as a closing square bracket need not be escaped. If both
alternatives are present, the value inside curly brackets takes precedence and a
warning is issued.

2.6 Controls

Lots of gates may have controls, i.e., they are only to be executed if some other
gate is set or unset. The former case is called a positive control, the latter one a
negative control. Those are indicated by filled and empty circles on the control
registers and a vertical line that joins the registers that belong together.

The gate specification is followed by the list of target registers. By then writing a
pipe (“|”), the list of positive controls is introduced; this mimics the mathematical
syntax “conditioned on” for probabilities or “given” for sets. If there are no positive
controls, the list may be empty or, together with the pipe, omitted. Preceded by
a tilde (“~”), the list of negative controls then follows; this mimics the syntax of
many programming languages that denote logical negation by a tilde. If there are
no negative controls, the list may be empty or, together with the pipe, omitted.

13

3 Configuration

yquant uses pgfkeys to control its options, which are located in the path /yquant.
The following list contains all options and styles that are recognized, apart from
gate arguments. Those are listed together with their operations.

3.1 Circuit layout

/yquant/register/minimum height default: 3mm
yquant automatically determines the total height of a register as the height of the
largest operation. This might be too small for two reasons:

• if the register is used only with small gates (e.g., only as a control, or as a
swap), and it does not have a label (or one containing only x-height letters).

• if the register is used only with multi-qubit gates. For those, yquant cannot
decide where to put the height—and it is easy to see that an equal distribution
over all affected registers is not necessarily a good solution. Hence, multi-
qubit gates are ignored in the height calculation. Usually, this is not a problem
since those operations are large enough as they take the height of all involved
registers and separations.

This key provides an easy alleviation of the problem by requiring a minimal height
for every register.

/yquant/register/separation default: 1mm
This key controls the amount of vertical space that is inserted between two succes-
sive registers. Half of this value is also the length that multi-init or multi-output
braces extend beyond the mid position of the register.

/yquant/operator/minimum width default: 3mm
yquant automatically determines the width of an operator according to its content.
However, single-letter boxes are among the most common operators, and giving
them slightly different widths would result in a very uneven spacing, as yquant
does not use a grid layout but stacks the operators horizontally one after each
other. Hence, this key provides a minimum width that will be set for every operator.
This does not imply that the visual appearance (i.e., the x radius key) is enlarged,
but that operators of a smaller actual width will be centered in a virtual box of
the minimum width.

14

/yquant/operator/separation default: 1mm
This key controls the amount of horizontal space that is inserted between two
successive operators.

/yquant/operator/multi warning default: true
If this key is true, a warning is displayed whenever more than a single multi-
register gate, where at least one is discontiguous, are employed together with
controls. Even if a visual distinction between control and multi-qubit line may be
possible (depending on the style in use), they will overlap and produce unaesthetic
output. You may disable this warning globally, on a per-circuit, or even on a per-
gate basis.

3.2 Register creation

/yquant/register/default name default: \regidx
The printed name that is used by default if a new register is created explicitly
(qubit, cbit, qubits; not used for nobit or for implicit declarations) and no
value is specified. The following macros are available:

• \reg contains the internal name that is used to identify this register.

• \idx contains the index (zero-based) of the current register within a vector
register.

• \regidx expands to \reg if the register is of length one, and to \reg[\idx]
else.

• \len contains the length of the current register vector.

/yquant/every label default: shape=yquant-text, anchor=center,
align=right

This style is installed for every single register name label (i.e., upon creation and
when used with the init gate). The default style allows to use line breaks in the
labels.

/yquant/every initial label default: anchor=east
This style is installed for every single register name label at the left border of the
circuit. Hence, it is only used for the init gate if in the yquant* environment, the
gate occurs for a new register (which allows to override the default register type).

15

/yquant/every qubit label default:
This style is installed for every single register name label of a register of type
qubit.

/yquant/every cbit label default:
This style is installed for every single register name label of a register of type
cbit.

/yquant/every qubits label default:
This style is installed for every single register name label of a register of type
qubits.

/yquant/every multi label default: shift={(-.075, 0)}, draw,
decoration={gapped brace, mirror}, decorate, /yquant/gapped

brace/apply shift, every node/.append style={shape=yquant-text,
anchor=east, align=right, shift={(-.05, 0)}, pos=-1}

This style is installed for every register name label that is attached to a multi-
qubit register by means of the init gate. yquant additionally inserts a straight
line that connects the topmost and the bottom-most register at their left ends.
The default style turns this line into a brace and places the description at the
appropriate position. The decoration gapped brace allows to additionally specify
the regions in which a line should be drawn by using the /tikz/decoration/from
to key, which expects a comma-separated list of dimension ranges, and which is
automatically populated by yquant. Since it may happen that the arch of the brace
needs to be shifted from the value specified in /tikz/decoration/aspect (else,
it would be drawn into a gap), the special key /yquant/gapped brace/apply
shift is installed, which transforms the pos=-1 specification into a position that
corresponds to the actual aspect value.

3.3 Register outputs

/yquant/every output default: shape=yquant-text, anchor=west, align=left
This style is installed for every output label at the end of the circuit. The default
style allows to use line breaks in the labels.

/yquant/every qubit output default:
This style is installed for every output label of a register of type qubit.

/yquant/every cbit output default:
This style is installed for every output label of a register of type cbit.

16

/yquant/every qubits output default:
This style is installed for every output label of a register of type qubits.

/yquant/every multi output default: shift={(.075, 0)}, draw,
decoration={gapped brace}, decorate, /yquant/gapped brace/apply
shift, every node/.append style={shape=yquant-text, anchor=west,

align=left, shift={(.05, 0)}, pos=-1}
This style is installed for every output label that is attached to a multi-qubit
register. yquant additionally inserts a straight line that connects the topmost and
the bottom-most register at their right ends. The default style turns this line into a
brace and places the description at the appropriate position. See /yquant/every
multi label for a more detailed explanation.

3.4 General styling

/yquant/every circuit default: every node/.prefix style={transform
shape}, every label/.prefix style={transform shape=false}

Style that is installed for every yquant and yquant* environment, as if it had
been given as an option. Since version 0.1.2, the style’s default path is, as with
all other styles, /tikz. The default style will make all nodes (which in particular
means, all gates) respect outer canvas transformations. Due to TikZ bug #843,
this must be undone for labels.

/yquant/every wire default: draw
This style is installed whenever a wire is drawn.

/yquant/every qubit wire default:
This style is installed whenever a wire for a register of type qubit is drawn.

/yquant/every cbit wire default:
This style is installed whenever a wire for a register of type cbit is drawn.

/yquant/every qubits wire default:
This style is installed whenever a wire for a register of type qubits is drawn.

/yquant/every control line default: draw
This style is used to draw the vertical control line that connects controlled opera-
tions and their controls.

17

https://github.com/pgf-tikz/pgf/issues/843

/yquant/every control default: shape=yquant-circle, anchor=center,
radius=.5mm

This style is used to draw the node for a control, both positive and negative.

/yquant/every positive control default: fill=black
This style is installed for every positive control (i.e., one that conditions on the
register being in state |1⟩ or 1).

/yquant/every negative control default: draw
This style is installed for every negative control (i.e., one that conditions on the
register being in state |0⟩ or 0).

/yquant/every operator default: anchor=center
This style is installed for every gate (and also pseudo-gates such as the slash
operator) that acts on one or multiple registers.

/yquant/every multi line default: draw, decoration={snake,
amplitude=.25mm, segment length=5pt}, decorate

This style is used to draw the vertical line that connects discontiguous slices of
sub-gates.

/yquant/this operator default:
This style is appended to the current style installed for an operator; it should be
used only locally to overwrite any global configuration effect.

/yquant/this control default:
This style is appended to the current style installed for a control; it should be used
only locally to overwrite any global configuration effect.

/yquant/operator style default: /yquant/this operator/.append style={#1}
This is a shorthand that can be used to modify the appearance of the current
operator.

/yquant/control style default: /yquant/every control line/.append
style={#1}, /yquant/this control/.append style={#1}

This is a shorthand that can be used to modify the appearance of the current
control and its associated line.

18

/yquant/style default: /yquant/operator style={#1}, /yquant/control
style={#1}

This is a shorthand that modifies the appearance of both the current operator and
any controls or control lines.

/yquant/operator/multi as single default: /yquant/every multi
line/.style=/yquant/every control line

This option is automatically set for certain gates such as the swap or the zz gate.
For those gates, neighboring registers will be treated as discontiguous; and this
style will enforce their connecting line to have the style used by control lines.
The default /yquant/every multi line is a wavy line; this allows to distinguish
discontiguous multi-qubit gates from multiple single-qubit gates when using con-
trols. Still, some gates have such an established appearance that—despite being
logically misleading—we rather use the same style as for a control line.

3.5 Styles for operators

/yquant/operators/every barrier default: shape=yquant-line, dashed, draw
This style is installed for every barrier pseudo-gate, i.e., the one that is used to
explicitly denote a separation between “before” and “after” within the circuit.

/yquant/operators/every box default: shape=yquant-rectangle, draw,
align=center, inner xsep=1mm, x radius=2mm, y radius=2.47mm

This style is installed for every box operator.

/yquant/operators/every dmeter default: shape=yquant-dmeter, x
radius=2mm, y radius=2mm, fill=white, draw

This style is installed for every dmeter gate. The yquant-dmeter shape consists
of a rectangle whose right side is replaced by a circle, resembling the letter “D.”

/yquant/operators/every h default: /yquant/operators/every box
This style is installed for every h (Hadamard) operator.

/yquant/operators/every measure default: shape=yquant-measure, x
radius=4mm, y radius=2.5mm, draw

This style is installed for every measure gate. The yquant-measure shape is a
rectangle that contains a “meter” symbol. It allows for a text to be put inside (e.g.,
a basis), which then shifts the meter symbol accordingly.

19

/yquant/operators/every measure meter default: draw,
-{Latex[length=2.5pt]}

This style is applied to the path that resembles the “meter” symbol that is drawn by
the yquant-measure shape. Due to the default style, the TikZ library arrows.meta
is automatically loaded with yquant.

/yquant/operators/every not default: shape=yquant-oplus, radius=1.3mm,
draw

This style is installed for every not or cnot gate (which are synonyms, and
actually do the same as the Pauli 𝜎𝑥 gate). The yquant-oplus shape resembles
the addition-modulo-two symbol ⊕.

/yquant/operators/every pauli default: /yquant/operators/every box
This style is installed for every Pauli operator, i.e., x, y, and z.

/yquant/operators/every phase default: shape=yquant-circle, radius=.5mm,
fill

This style is installed for every phase gate |0⟩⟨0| + ei𝜙 |1⟩⟨1|.

/yquant/operators/every slash default: shape=yquant-slash, x radius=.5mm,
y radius=.7mm, draw

This style is installed for every slash pseudo-gate, i.e., the one that is used to
indicate that a single register line actually denotes multiple registers.

/yquant/operators/every swap default: shape=yquant-swap, radius=.75mm,
draw

This style is installed for every swap gate that interchanges two qubits. The
yquant-swap shape consists of a single cross.

/yquant/operators/every wave default: shape=yquant-circle, radius=.5mm,
fill

This style is installed for every correlate gate.

/yquant/operators/every x default: /yquant/operators/every pauli
This style is installed for every Pauli operator 𝜎𝑥, i.e., x.

/yquant/operators/every xx default: shape=yquant-rectangle, radius=.75mm,
draw

This style is installed for every xx gate in symmetrized notation (|++⟩⟨++| +
|+−⟩⟨+−| + |−+⟩⟨−+| − |−−⟩⟨−−|).

20

/yquant/operators/every y default: /yquant/operators/every pauli
This style is installed for every Pauli operator 𝜎𝑦, i.e., y.

/yquant/operators/every z default: /yquant/operators/every pauli
This style is installed for every Pauli operator 𝜎𝑧, i.e., z.

/yquant/operators/every zz default: shape=yquant-circle, radius=.5mm,
fill

This style is installed for every zz gate (aka CPhase) in symmetrized notation
(|00⟩⟨00| + |01⟩⟨01| + |10⟩⟨10| − |11⟩⟨11|).

21

4 Doing the impossible

yquant will almost certainly never be able to do everything an author has in mind.
Sometimes, there is the need to draw something non-standard, and this cannot be
implemented in the yquant language. However, since yquant is a layer on top of
TikZ, it should be very hard to find something (meaningful) that cannot be done
by combining the power of both packages.

Before or after any gate, you may interrupt the yquant instructions to perform
arbitrary TikZ path operations. After every such operation, yquant will automati-
cally restart its parser so that you can fluently jump between yquant and TikZ
code. You can even interject arbitrary TEX code (or, say, low-level pgf commands);
however, then, yquant is not able to restart its parser. For this reason, after the
last command in a block of TEX commands, you must issue \yquant, which then
re-enables the yquant language.

The feature to perform arbitrary TikZ operations is powerful in itself, but would
be of limited use were there no way to access the elements in the quantum circuit.
yquant provides a global attribute name that can be assigned to every gate. All
quantum operations are in fact TikZ nodes, and the name you give to them then
becomes a TikZ name, which you can easily reference to get the coordinates of a
particular operator. Note that the name you specify is only available if a single
register is targeted. The name is suffixed by -\idx, where \idx refers to the (zero-
based) index of the operation ordered from top to bottom (i.e., if an operator acts
on two qubits and should be named op, the topmost operator will be available as
op-0 and the second as op-1). Multiple slices in a discontiguous multi-register are
additionally suffixed by -s<slice index>. All controls are also named, suffixed
by -p\idx or -n\idx for positive and negative controls (i.e., the topmost positive
control of the previous operator will be available as op-p0). Counters for target
registers, positive, and negative controls are all independent.

All yquant shapes have the anchors available you would typically expect from
a TikZ shape of the given outline. Before version 0.1.2, yquant shapes needed
to provide a circuit anchor and projection anchors. These were removed in
version 0.1.2 in favor of the common center anchor and clipping paths. The latter
is a yquant extension to TikZ shapes: it is an additional path that must be declared
for a given shape. This path has to provide the “clipping outline,” i.e., anything that
should not contain register or control lines. There may be a difference between
horizontal and vertical clipping outlines. To understand clipping paths, yquant’s
drawing pipeline needs to be explained.

• In a first run—this is what happens directly at the position where you
type the gate command—yquant will “virtually” draw the gates in order

22

to determine their dimensions and calculate register heights. The actual
drawing commands are written to a macro (this is the cause that some
macros must be preceded by \protect if used in a gate value).

• When \end{yquant} is encountered, the actual drawing commands are
executed.

• Unless the operation changes the wire type or style, do the following (first
two items for every register at which an operator node has to be created).

– Create the operator node at the appropriate position.
– Call \pgfshapeclippath on the newly created node. This will first

determine whether the node was stroked; if not, \pgflinewidth is set
to zero. Then, it will call the horizontal clipping path, which is supposed
to create some soft path commands. Those soft path commands are
collected in a macro on a per-register basis and the soft path is cleared.
The same happens for the vertical clipping path, which is collected in
a macro on a per-operation basis.

– If control lines or multi lines are to be drawn, the vertical clipping path
commands are now executed and installed as an inverted1 clipping
path.

– Control lines and multi lines are drawn (in this order) from one to the
next center anchor. Due to the clipping commands, this will create
a perfect connection with the shape of the gate, but even transparent
gates are possible without the lines being visible.

• If the operation changes the wire type or style, or if there is no operation
left on this register, the following is done.

– Load the clipping paths accumulated for all the gates acting on this
register and install the inverted clipping.

– Draw the wire as one continuous line from where the last wire ended
(or the beginning of the circuit) to the center of the last gate, or to the
common end position for all wires of the circuit.

– Remove the clipping paths stored so far on this register, apart from the
clipping on the last gate (which will be needed again if this was not
the end of the circuit).

1Inverting the clipping has two consequences: First, the region of inversion in vertical direction
is given by the width of the operators. The line cannot be wider than the operator. Second, if
you specify a register multiple times, whether as target, control, or mixed, funny effects can be
expected, as the clipping region is inverted multiple times. Note that using a register more than
once is always an error, but yquant does not check for it due to the high overhead.

23

5 Reference: Gates and operations

This section lists all operations yquant currently understands. It also details all
arguments that can be given to customize the operation, apart from name, which
is always available. Note that the [value=<value>] attribute can (and should)
alternatively be given as a braced expression that follows the name of the register.

5.1 addstyle

Syntax: setstyle <target>;
This is an invisible pseudo-gate that immediately changes the TikZ style with
which the register lines of all target registers are drawn. It adds to the styles that
are already installed. Use setstyle to replace styles. It may not span multiple
registers and does not allow for controls.

Possible attributes:

• [value=<styles>] (required)
Denotes the new styles; this should be a string that could be passed to
\tikzset.

5.2 align

Syntax: align <target>;
This is an invisible pseudo-gate that enforces all affected registers to share a
common horizontal position for their next gate, which is determined by the largest
position of all gates involved. It may not span multiple registers and does not allow
for controls.

Possible attributes: none

5.3 barrier

Syntax: barrier <target>;
This is a pseudo-gate that denotes some physical barrier that ensures execution
with a specific timing; it is basically a visible version of the align gate, denoted
by a vertical line. It may span multiple registers, but does not allow for controls.
The style /yquant/operators/every barrier is installed.

Possible attributes: none

24

5.4 box

Syntax: box <target> | <pcontrol> ~ <ncontrol>;
This is a generic register of a rectangular shape that can be filled with arbi-
trary content. It may span multiple registers and allows for controls. The style
/yquant/operators/every box is installed.

Possible attributes:

• [value=<value>]
Denotes the content of the box.

5.5 cbit

Syntax: cbit <name>[<len>];
Declares a register of type cbit.

see qubit

5.6 correlate

Syntax: correlate <target>;
This is a pseudo-gate that indicates a correlation (usually a Bell-state) present
between the multi-registers involved. This gate should span multiple registers and
does not allow for controls.

Possible attributes: none

5.7 cnot

Syntax: cnot <target> | <pcontrol> ~ <ncontrol>;
This is a synonym for the not gate. Note that despite its name, controls are not
mandatory and also here, the style /yquant/operators/every not is installed.

5.8 discard

Syntax: discard <target>;
This is an invisible pseudo-gate that changes the type of all target registers to
nobit, i.e., no line will be drawn for them. This has effect already for the outgoing
line of the last visible gate on the target registers. The gate may not span multiple
registers and does not allow for controls. To change into a register type on-the-fly
into something different from nobit, use the settype pseudo-gate.

Possible attributes: none

25

5.9 dmeter

Syntax: dmeter <target>;
This is a measurement gate, denoted by a “D” shape. It changes the type of all
targets involved. It may span multiple registers, but does not allow for controls.
The style /yquant/operators/every dmeter is installed.

Possible attributes:

• [value=<value>]
Allows to specify a text that will be included inside the gate, possible en-
larging its width. For outside texts, use TikZ labels instead.

• [type=<qubit|cbit|qubits>]
Allows to specify the type into which the affected targets are converted.
Default is cbit.

5.10 h

Syntax: h <target> | <pcontrol> ~ <ncontrol>;
This is a Hadamard gate, 1√

2(|0⟩⟨0|+|0⟩⟨1|+|1⟩⟨0|−|1⟩⟨1|), denoted by a rectangle
that contains the letter𝐻. It may not spanmultiple registers, but allows for controls.
The style /yquant/operators/every h is installed.

Possible attributes: none

5.11 hspace

Syntax: hspace <target>;
This is an invisible pseudo-gate that inserts a certain amount of white space into all
target registers. It may not span multiple registers and does not allow for controls.

Possible attributes:

• [value=<dim>] (required)
Gives the amount of white space that is to be inserted. Must be a valid TEX
dimension.

5.12 init

Syntax: init <target>;
This is a pseudo-gate that (re)initializes a registers to a given state. It may span
multiple registers, but does not allow for controls. The style /yquant/every
label is installed. Note that this pseudo-gate, unlike all others, behaves differently
if it the first operation acting on a register: in this case, it does not increment

26

the horizontal position, but uses the space available to the left. If it is the first
operation, the style /yquant/every initial label is installed additionally. For
multiple registers, the style /yquant/every multi label is installed at the end,
and a path is constructed that extends from the left end of the first to the left end
of the last register in the multi-register compound.

Possible attributes:

• [type=<qubit|cbit|qubits>]
Allows to specify the type into which the affected target registers are con-
verted. Default is the type of the first target register that is different from
nobit, or qubit if they all are nobit. The style /yquant/every <type>
label is installed additionally.

• [value=<value>] (required)
Denotes the label that is printed to the left of the wire.
Inside the value, \idx expands to the current index within the register list.

5.13 measure

Syntax: measure <target>;
This is a measurement gate, denoted by a rectangle with a meter symbol. It changes
the type of all targets involved. It may span multiple registers, but does not allow
for controls. The style /yquant/operators/every measure is installed.

Possible attributes:

• [type=<qubit|cbit|qubits>]
Allows to specify the type into which the affected targets are converted.
Default is cbit.

• [value=<value>]
Allows to specify a text that will be included at the bottom of the rectangle
(which will shift the meter symbol upwards accordingly). For outside texts,
use TikZ labels instead.

5.14 nobit

Syntax: nobit <name>[<len>];
Declares a register of type nobit. The <name> must be a self-chosen name for
the register which was not previously used as a register name in this yquant
environment. Names are case-insensitive. The register can be made into a vector
register by specifying <len> (default 1).

Possible attributes: none

27

5.15 not

Syntax: not <target> | <pcontrol> ~ <ncontrol>;
This is a not gate, |0⟩⟨1|+|1⟩⟨0|, denoted by the ⊕ symbol. It may not spanmultiple
registers, but allows for controls. Due to its common usage, the synonymous gate
cnot is provided. The style /yquant/operators/every not is installed.

Possible attributes: none

5.16 output

Syntax: output <target>;
This is a pseudo-gate that allows to write some text at the very end of the register
line. It may only be specified once per register. It may span multiple registers, but
does not allow for controls. The style /yquant/every output is installed, and
also the style /yquant/every <type> output, where <type> is the type of the
affected register (at the time of printout). For outputs on multiple registers, the
style /yquant/every multi output is installed instead of the two previously
mentioned ones; and additionally, a path is constructed that extends from the first
to the last register in the multi-register compound.

Possible attributes:

• [value=<value>] (required)
Denotes the text that is to be printed. Inside the value, \idx expands to the
current index within the register list.

5.17 phase

Syntax: phase <name> | <pcontrol> ~ <ncontrol>;
This is a phase gate, |0⟩⟨0| + ei𝜙 |1⟩⟨1|, denoted by a filled circle. It may not span
multiple registers, but allows for controls (and should have them, to make any
sense). The style /yquant/operators/every phase is installed.

Possible attributes:

• [value=<value>] (required)
Denotes the angle 𝜙 that is to be printed together with the gate. Position
and appearance can be influenced by setting the position of TikZ labels, as
this is internally used. Note that at the moment, it is not possible to change
any label options on a gate-type basis, only locally or fully globally (TikZ
feature request #811).

28

https://github.com/pgf-tikz/pgf/issues/811

5.18 qubit

Syntax: qubit <name>[<len>];
Declares a register of type qubit. The <name> must be a self-chosen name for
the register which was not previously used as a register name in this yquant
environment. Names are case-insensitive. The register can be made into a vector
register by specifying <len> (default 1).

Possible attributes:

• [after=<regname>]
If given, the register will start not at the left of the circuit but instead at the
position at which the last gate in the register <regname> ended.

• [value=<value>]
Denotes the label that is printed to the left of the wire. If the value is omitted,
the default is used (/yquant/register/default name, preinitialized to
\regidx).

Inside the value, \reg expands to <name>, \len expands to <len>, \idx
expands to the current index within the vector register (0 ≤ \idx < <len>),
and \regidx expands to \reg if <len> is one, or to \reg[\idx] else.

5.19 qubits

Syntax: qubits <name>[<len>];
Declares a register of type qubits.

see qubit

5.20 setstyle

Syntax: setstyle <target>;
This is an invisible pseudo-gate that immediately changes the TikZ style with
which the register lines of all target registers are drawn. It replaces all previous
styles. Use addstyle to accumulate styles. It may not span multiple registers and
does not allow for controls.

Possible attributes:

• [value=<styles>] (required)
Denotes the new styles; this should be a string that could be passed to
\tikzset.

29

5.21 settype

Syntax: settype <target>;
This is an invisible pseudo-gate that immediately changes the type of the targets
registers, taking effect with the output line extending from the last drawn gate. It
may not span multiple registers and does not allow for controls.

Possible attributes:

• [value=<qubit|cbit|qubits>] (required)
Denotes the new type that is assigned to all registers. To change the type to
nobit, use the discard pseudo-gate instead.

5.22 setwire

Deprecated as of version 0.1.2. Use settype instead.

5.23 slash

Syntax: slash <target>;
This is a pseudo-gate used to denote that a single line actually represents multiple
registers. It is drawn as a short slash through the line of the register. Note that
this gate, in contrast to all others, is positioned on the line extending from the last
gate or the initialization line of the registers and does not advance the register’s
horizontal position. The style /yquant/operators/every slash is installed.

Possible attributes: none

5.24 swap

Syntax: swap <targets> | <pcontrol> ~ <ncontrol>;
This is the two-qubit swap gate |00⟩⟨00| + |01⟩⟨10| + |10⟩⟨01| + |11⟩⟨11| that
exchanges two qubits. It is denoted by crosses at the affected registers which
are connected by a control line. It may span multiple registers (in fact, it should
always span exactly two registers, though yquant does not enforce this), and it
allows for controls. However, refrain from combining multiple two-qubit targets
together with controls. The control line will extend from the first to the last of
all registers involved in the operation, so that it is impossible to discern visu-
ally which registers should actually be swapped. Using multiple swaps without
controls in one operation is fine, as well as a single controlled swap. The style
/yquant/operators/every swap is installed.

Possible attributes: none

30

5.25 x

Syntax: x <target> | <pcontrol> ~ <ncontrol>;
This is a Pauli 𝜎x gate |0⟩⟨1| + |1⟩⟨0|, denoted by a rectangle that contains the
letter 𝑋. It may not span multiple registers, but allows for controls.
The style /yquant/operators/every x is installed.

Possible attributes: none

5.26 xx

Syntax: xx <targets>;
This is a symmetric flip gate, denoted by joined open squares. It should span
multiple registers and it allows for controls. The same warnings as for the swap
gate apply. The style /yquant/operators/every xx is installed.

Possible attributes: none

5.27 y

Syntax: y <target> | <pcontrol> ~ <ncontrol>;
This is a Pauli 𝜎y gate −i |0⟩⟨1| + i |1⟩⟨0|, denoted by a rectangle that contains the
letter 𝑌. It may not span multiple registers, but allows for controls.
The style /yquant/operators/every y is installed.

Possible attributes: none

5.28 z

Syntax: z <target> | <pcontrol> ~ <ncontrol>;
This is a Pauli 𝜎z gate |0⟩⟨0| − |1⟩⟨1|, denoted by a rectangle that contains the
letter 𝑍. It may not span multiple registers, but allows for controls.
The style /yquant/operators/every z is installed.

Possible attributes: none

5.29 zz

Syntax: zz <targets>;
This is a symmetric phase gate, denoted by joined filled circles. It should span
multiple registers, but does not allow for controls. The same warnings as for the
swap gate apply. The style /yquant/operators/every zz is installed.

Possible attributes: none

31

6 Examples

This section will contain lots of examples. On the left-hand side, the output is
given, while the code to construct the example is on the right. All examples
that are provided originate from the examples supplied with qasm, qcircuit,
and quantikz. We will essentially follow their manuals example-by-example,
which gives a nice comparison in how to achieve the given feature using these
packages and yquant instead. All examples of course require inclusion of the
yquant package in the preamble, and some also require braket.

6.1 qasm documentation

The qasm documentation most often names the registers in the way |registerindex⟩.
This can be achieved by writing

qubit {$\ket{<name>_{\idx}}$} <name>[<len>];

but if you want to realize this naming scheme for all circuits in your document, it
is more convenient to say

\yquantset{register/default name=$\ket{\reg_{\idx}}$}

in the preamble, as is done here.

test1 (create an EPR pair)

|𝑞0⟩

|𝑞1⟩

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit q[2];

h q[0];
cnot q[1] | q[0];

\end{yquant}
\end{tikzpicture}

32

test2 (simple teleportation circuit)

|𝑞0⟩

|𝑞1⟩

|𝑞2⟩

𝐻

𝐻

𝑍 𝑋

\begin{tikzpicture}
\begin{yquant}

qubit q[3];

h q[1];
cnot q[2] | q[1];
cnot q[1] | q[0];
h q[0];
measure q[0-1];

z q[2] | q[1];
x q[2] | q[0];

\end{yquant}
\end{tikzpicture}

test3 (swap circuit)

|𝑞0⟩

|𝑞1⟩

\begin{tikzpicture}
\begin{yquant}

qubit q[2];

cnot q[1] | q[0];
cnot q[0] | q[1];
cnot q[1] | q[0];

\end{yquant}
\end{tikzpicture}

33

test4 (quantum fourier transform on three qubits)

|𝑗0⟩

|𝑗1⟩

|𝑗2⟩

𝐻 𝑆 𝑇

𝐻 𝑆

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit j[3];

h j[0];
box {S} j[0] | j[1];
box {T} j[0] | j[2];
h j[1];
box {S} j[1] | j[2];
h j[2];
swap (j[0, 2]);

\end{yquant}
\end{tikzpicture}

test5 (demonstrate arbitrary qubit matrix ops)

|𝑗0⟩

|𝑗1⟩ [𝑒𝑖𝛼 0
0 𝑒−𝑖𝛼]

[cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃]

% \usepackage{amsmath}
\begin{tikzpicture}

\begin{yquant}
qubit j[2];

box {$\begin{bmatrix}
e^{i \alpha} & 0 \\
0 & e^{-i \alpha}

\end{bmatrix}$} j[1] | j[0];
box {$\begin{bmatrix}

\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta

\end{bmatrix}$} j[0];
\end{yquant}

\end{tikzpicture}

34

test6 (demonstrate multiple-qubit controlled single-q-gates)

|𝑗0⟩

|𝑗1⟩

|𝑗2⟩

|𝑗3⟩

𝑋

𝑈

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit j[4];

cnot j[2] | j[0, 1];
x j[0];
box {U} j[1] | j[0, 2-3];
h j[2];
measure j[3];

\end{yquant}
\end{tikzpicture}

test7 (measurement of operator with correction)

|𝑞0⟩

|𝑞1⟩

𝐻

𝑈

𝐻

𝑉

\begin{tikzpicture}
\begin{yquant}

qubit q[2];

h q[0];
box {U} q[1] | q[0];
h q[0];
measure q[0];
box {V} q[1] | q[0];

\end{yquant}
\end{tikzpicture}

35

test8 (stage in simplification of quantum teleportation)

|𝑞0⟩ = |𝜓⟩

|𝑞1⟩ = |0⟩

|𝑞2⟩ = |0⟩

𝐻

𝐻 𝑍

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{q_0} = \ket\psi$}
q[1];↪

qubit {$\ket{q_{\idx}} = \ket0$}
q[+2];↪

h q[1];
cnot q[1] | q[0];
cnot q[2] | q[1];
cnot q[1] | q[0];
h q[0];
cnot q[2] | q[1];
z q[0] | q[2];

\end{yquant}
\end{tikzpicture}

Note that we left out two Hadamards at the end.
Before version 0.1.1, the recommended approach (which of course still works)
to define a vector qubit register with various texts was to use case discrimination
on \idx, for example in the following manner:

qubit {$\ket{q_{\idx}} = \ifcase\idx\relax \ket\psi \else \ket0 \fi$}
q[3];↪

test9 (two-qubit gate circuit implementation of Toffoli)

|𝑞0⟩

|𝑞1⟩

|𝑞2⟩
√

𝑋
√

𝑋† √
𝑋

\begin{tikzpicture}
\begin{yquant}

qubit q[3];

box {$\sqrt X$} q[2] | q[1];
cnot q[1] | q[0];
box {$\sqrt X^\dagger$} q[2] |

q[1];↪

cnot q[1] | q[0];
box {$\sqrt X$} q[2] | q[0];

\end{yquant}
\end{tikzpicture}

36

test10 (multi-qubit gates also demonstrates use of classical bits)

|𝑞0⟩
𝑐1

|𝑞2⟩

𝐻
𝑈

𝑆
𝑈

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{q_0}$} q;
cbit {c_1} c;
qubit {$\ket{q_2}$} q[+1];

h q[0];
box {U} (q[0], c);
box {S} q[1];
box {U} (c, q[1]);

\end{yquant}
\end{tikzpicture}

Instead of a discontigous vector register, we could also have used three scalar
registers. The labels chosen for qasm do not fit well to the indices yquant
assigns. We might also have used a three-register vector and used the settype
pseudo-gate to immediately change the second register into a classical one,
which would give indices matching the labels—but still, the registers would
have a common name, which would make this a very unnatural approach.

test11 (user-definedmulti-qubit ops)

|𝑞0⟩

|𝑞1⟩

|𝑞2⟩

𝐻
𝑈𝑓(𝑥)

𝐻 𝑈𝑓(𝑥,𝑦)

\begin{tikzpicture}
\begin{yquant}

qubit q[3];

h q[0];
box {$U_{f(x)}$} (q[0, 1]);
h q[1];
box {$U_{f(x, y)}$} (q);

\end{yquant}
\end{tikzpicture}

Here we used the fact that a vector register can also be addressed as a whole.
Instead of (q), we could have also written, e.g., (q[0]-q[2]) or (q[0-2]),
or enumerated all sub-registers in a comma-separated list.

37

test12 (multi-qubit controlled multi-qubit operations)

|𝑞0⟩

|𝑞1⟩

|𝑞2⟩

𝐻

𝑈

𝐻
𝑉

\begin{tikzpicture}
\begin{yquant}

qubit q[3];

h q[0];
box {U} (q[1-2]) | q[0];
h q[0];
box {V} (q[0-1]) | q[2];

\end{yquant}
\end{tikzpicture}

test13 (three-qubit phase estimation circuit with QFT and controlled-U)

|𝑗0⟩ = |0⟩

|𝑗1⟩ = |0⟩

|𝑗2⟩ = |0⟩

|𝑠0⟩

|𝑠1⟩

𝐻

𝐻

𝐻

𝑈4 𝑈2 𝑈

𝐻

𝑆 𝐻

𝑇 𝑆 𝐻

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{j_{\idx}} = \ket0$} j[3];
qubit s[2];

h j;
box {U^4} (s) | j[0];
box {U^2} (s) | j[1];
box {U} (s) | j[2];
h j[0];
box {S} j[1] | j[0];
h j[1];
box {T} j[2] | j[0];
box {S} j[2] | j[1];
h j[2];
measure j;

\end{yquant}
\end{tikzpicture}

38

test14 (three-qubit FT QEC circuit with syndromemeasurement)

|𝑞0⟩

|𝑞1⟩

|𝑞2⟩

|𝑠0⟩ = |0⟩

|𝑠1⟩ = |0⟩

𝑐0 = 0

𝑐1 = 0

𝐻 𝐻 |0⟩

|0⟩

𝐻 𝐻

Process
Syndrome

ℛ

\begin{tikzpicture}
\begin{yquant}

qubit q[3];
qubit {$\ket{s_{\idx}} = \ket0$} s[2];
cbit {$c_{\idx} = 0$} c[2];

h s[0];
cnot s[1] | s[0];
cnot s[0] | q[0];
cnot s[1] | q[1];
cnot s[1] | s[0];
h s[0];
measure s;
cnot c[0] | s[0];
cnot c[1] | s[1];
discard s; % to suppress wires extending until re-initialization

init {$\ket0$} s;
h s[0];
cnot s[1] | s[0];
cnot s[0] | q[1];
cnot s[1] | q[2];
cnot s[1] | s[0];
h s[0];
measure s;

box {Process\\Syndrome} (s, c);
box {$\symcal R$} (q) | s, c;

\end{yquant}
\end{tikzpicture}

39

test15 (“D-type”measurement)

|𝑞0⟩ = |𝜓⟩

|𝑞1⟩ = |+⟩

𝐻𝑍𝜃

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{q_0} = \ket\psi$} q;
qubit {$\ket{q_1} = \ket+$} q[+1];

zz (q);
dmeter {$H Z_\theta$} q[0];

\end{yquant}
\end{tikzpicture}

test16 (example from Nielsen paper on cluster states)

|𝑞0⟩ = |𝜓⟩

|𝑞1⟩ = |𝜓⟩

|𝑞2⟩ = |𝜙⟩

|𝑞3⟩ = |0⟩

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{q_{\idx}} = \ket\psi$} q[2];
qubit {$\ket{q_2} = \ket\phi$} q[+1];
qubit {$\ket{q_3} = \ket0$} q[+1];

zz (q[1], q[2]);
align q;
cnot q[3] | q[2];
slash q[0];
dmeter q[3];
discard q[2];

\end{yquant}
\end{tikzpicture}

We needed to include an align pseudo-gate to put the slash at the desired
position. Usually, this would be sufficient to put the cnot and the slash gate
directly under each other, as it is in the qasm example. However, the slash
gate is special in that it does not need horizontal space and is put with only
half of the usual operator separation into the circuit (for this reason, it can
be put at the beginning of a wire without creating weird shifts with respect
to the “unslashed” registers—it is put in the initial line that every wire even
without an operation has). Hence, you should normally only use the slash
gate as the very first gate in a circuit. It is not possible to construct the exact
same appearance as in the qasm example. Note that discard currently just
drops the wire directly after the last operation.

40

test17 (example from Nielsen paper on cluster states)

|𝑞0⟩ = |𝜓⟩

|𝑞1⟩ = |+⟩

|𝑞2⟩ = |+⟩

|𝑞3⟩ = |𝜙⟩

𝐻

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{q_0} = \ket\psi$} q;
qubit {$\ket{q_{\idx}} = \ket+$} q[+2];
qubit {$\ket{q_3} = \ket\phi$} q[+1];

zz q[(0-1), (2-3)];
zz (q[1-2]);
dmeter {H} q[1-2];

\end{yquant}
\end{tikzpicture}

This example shows how the multi-qubit delimiter (the parenthesis) can even
be used within indices.

test18 (multiple-control bullet op)

|𝑞0⟩ = |𝜓⟩

|𝑞1⟩ = |+⟩

|𝑞2⟩ = |+⟩

|𝑞3⟩ = |𝜙⟩

𝐻

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{q_{\idx}} =
\ket{\ifcase\idx\relax \psi \or + \or +
\or \phi \fi}$} q[4];

↪

↪

zz (q);
dmeter {H} q[1, 2];

\end{yquant}
\end{tikzpicture}

This gate is probably a generalization of zz, 𝟙 − 2 |1 ⋯ 1⟩⟨1 ⋯ 1|, and indeed
since version 0.1.2, we can use zz for this purpose. This time, we also used the
common way to initialize a gate with various identifiers as was done before
version 0.1.1, using case distinctions.

41

6.2 qcircuit documentation

For a better orientation, we use the same section headings as the qcircuit man-
ual. The manual uses unnamed registers a lot; often, we will use the yquant*
environment to make things more concise. As qcircuit uses a much large sepa-
ration between the operators than yquant’s default, we globally say
\yquantset{operator/separation=3mm}.

6.2.1 I. Introduction

𝑈
=

𝑉 𝑉 † 𝑉

\begin{tikzpicture}[baseline=(current bounding box.center)]
\begin{yquant*}

box {U} q[2] | q[0, 1];
\end{yquant*}

\end{tikzpicture}
$=$
\begin{tikzpicture}[baseline=(current bounding box.center)]

\begin{yquant*}
box {V} q[2] | q[1];
cnot q[1] | q[0];
box {V^\dagger} q[2] | q[1];
cnot q[1] | q[0];
box {V} q[2] | q[0];

\end{yquant*}
\end{tikzpicture}

Here, we chose to realize the equality using two tikzpictures with appropri-
ately set baselines.
If mangling with the baselines becomes problematic, a different approach
would be to use an outer tikzpicture with three nodes (left circuit, equals,
right circuit); but the circuits themselves are tikzpictures again, and nesting
those is dangerous (but may work). Instead they could have been put into
\saveboxes and just used.
Finally, using nested tikzpictures for the outer nodes is not really necessary.
Not using nodes but putting the two yquant* environments in a TikZ scope
with shift transformation would have also worked.

42

|𝜓⟩

|0⟩

|0⟩ 𝐻

𝐻

𝑋 𝑍 |𝜓⟩

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket\psi$} a;
qubit {$\ket0$} b[2];

h b[1];
cnot b[0] | b[1];
cnot b[1] | a;
h a;
align a, b;
measure a;
measure b[0];

x b[1] | b[0];
z b[1] | a;

discard a;
discard b[0];
output {$\ket\psi$} b[1];

\end{yquant}
\end{tikzpicture}

|0⟩

|0⟩

|0⟩

𝑀𝑎

𝑀𝑏

𝑀𝑐

ℛ

RecoverySyndrome Measurement

43

% \usetikzlibrary{fit, quotes}
\begin{tikzpicture}

\begin{yquant}
qubit {} msg[3];
[name=inits]
qubit {$\ket0$} syndrome[3];

[name=scnot0]
cnot syndrome[0] | msg[0];
cnot syndrome[0] | msg[1];
cnot syndrome[1] | msg[1];
cnot syndrome[1] | msg[2];
cnot syndrome[2] | msg[0];
cnot syndrome[2] | msg[2];
[name=smeas]
dmeter {$M_{\symbol{\numexpr`a+\idx}}$} syndrome;
["Recovery"]
box {$\symcal R$} (msg) | syndrome;
discard syndrome;

\end{yquant}
\node[draw, dashed, fit=(inits-2) (scnot0-p0) (smeas-2), "Syndrome

Measurement"] {};↪

\end{tikzpicture}

In this case, an implicit register declaration would not have worked: we would
have needed to define the first part of the syndrome register before the sec-
ond part of the message register. But this would then have mixed data with
syndrome registers in the vertical ordering.
This also is a first demonstration of how to access yquant objects from within
TikZ. We name several elements that visually form the enclosing rectangle;
then, we use the TikZ library fit to put a node around them all.
Then we see how to apply an operation to multiple registers in parallel while
using the \idx macro to still give them a different text. Since \idx gives a nu-
merical index (zero-based), we exploit the ASCII code (actually, this document
is compiled in Unicode mode...) to turn this into a letter.
The example also demonstrates how to put a description next to a gate. In
general, those descriptions should be realized using the TikZ feature label.
Using the TikZ library quotes, the label is most easily specified. Since the label
is not part of the valid arguments and also cannot be found in the /yquant
path, it is automatically passed to /yquant/operator style.

44

6.2.2 IV. Simple Quantum Circuits

𝑋

\begin{tikzpicture}
\begin{yquant*}

x q;
\end{yquant*}

\end{tikzpicture}

A. Wires and gates

𝐻 𝑍
𝑋

𝐻

\begin{tikzpicture}
\begin{yquant*}

h a;
align a, b;
z a;
x b;
h a;

\end{yquant*}
\end{tikzpicture}

𝑈

𝑈†

\begin{tikzpicture}
\begin{yquant*}

box {U} a;
box {U^\dagger} b;
setstyle {->} -;

\end{yquant*}
\end{tikzpicture}

Since version 0.1.2, yquant allows to change wire styles by means of the
setstyle and addstyle pseudo-gates. Here, we use the gate on all wires in
order to set an arrow style. Note that arrowheads are actually very special in
two respects:

• yquant draws continuous wires for as long as possible. In this example,
the wire path extends from the very left to the end of the circuit; since
version 0.1.2, yquant does not draw awire to the gate and then a separate
one from the gate to the next or the end. The only way to force yquant
to draw multiple wires is to change the wire style or type mid-circuit. For
example, by saying addstyle {} -;, all wire paths will be separated

45

at the current position, which in theory allows to draw arrowsheads on
intermediate wires.

• In practice, this will not work due to the clipping commands that yquant
installs. Every wire extends from the center of the left to the center of
the right gate, and the gate’s shape acts as a clipping path. Consequently,
though the arrowhead is drawn, it is actually drawn at the center of
the gate instead of the west anchor and then clipped away (unless the
gate is small, in which case you might still see some fragments of the
arrowhead).

Thus, it is currently not possible to use arrowheads on intermediate wires. If
you really need to do this (say, for only a single gate), you may experiment
with the TikZ shorten keys, which allow you to manually reduce the length of
the wire, but the amount of reduction must be hand-computed for every gate.
If you need this more often, consider filing a feature request.

B. CNOT and other controlled single qubits gates

\begin{tikzpicture}
\begin{yquant*}

cnot a[1] | a[0];
cnot a[0] | a[1];

\end{yquant*}
\end{tikzpicture}

𝑈

\begin{tikzpicture}
\begin{yquant*}

cnot q[2] | q[0];
cnot q[0] | q[1-3];
box {U} q[0] | q[2];

\end{yquant*}
\end{tikzpicture}

46

C. Vertical wires

𝑈1

𝑈2

\begin{tikzpicture}
\begin{yquant*}

box {$U_{\protect\the\numexpr\idx+1}$} q[0, 2] | q[1];
\end{yquant*}

\end{tikzpicture}

There is no direct support for this construction, but as with the initialization of
a vector registers, yquant allows to access the macro \idx within an operator
value. This macro follows the same rules as the name suffix, i.e., it assigns
indices (zero-based) to the target registers in top-to-bottom order, regardless
of which order was specified in the target list. Since we instead want a one-
based subscript, we need to add one. Note that if you want to output \idx
directly or within an unexpandable expression, you don’t need to take any
action. However, here, \the is expandable; and since yquant needs to process
all its output twice (first in order to determine the vertical spacing, second
to actually typeset), you must manually take care that the command is not
expanded prematurely by inserting \protect. Had you not done this, the
subscript would have been “1” for both operators. Note this is not the case if
this macro is used upon creation of a register (as is evident by the fact that
the previous examples that used \ifcase within the value did not need to say
\protect\ifcase ... \protect\or ... \protect\fi). Probably we can
avoid the need for protection in a future release….

D. Labeling input and output states

|1⟩

|1⟩

|0⟩

|1⟩

\begin{tikzpicture}
\begin{yquant*}

qubit {$\ket1$} q[2];
cnot q[0] | q[1];
output {$\ket\idx$} q;

\end{yquant*}
\end{tikzpicture}

47

|0𝑘⟩

|𝜓⟩

𝐴
𝐵

|𝜓⟩

\begin{tikzpicture}
\begin{yquant*}

{
\yquantset{every multi label/.append

style={decorate=false, draw=none}}↪

init {$\ket{0^k}$} (a[-1]);
}
init {$\ket\psi$} (b[-1]);
qubit {\ifcase\idx\relaxA\orB\fi} c[2];
[every multi label/.append style={decorate=false,

draw=none, every node/.append style={shift={(-.3,
0)}}}]

↪

↪

init {$\ket\psi$} (c);
\end{yquant*}

\end{tikzpicture}

Here, three different styles for the initialization of multi-qubit labels are used.
The second one (using a curly brace) corresponds to the default. It is overwritten
for the first qubit, and to make this modification local, this is done in a group.
The third qubit pair uses an overall label and additionally individual labels
on the lines. This is achieved by some trickery: the individual labels are given
as initialization labels on the register; the global label is given as an init
multi-qubit gate.

48

6.2.3 V. More Complicated Circuits: Multiple Qubit gates and Beyond

A. Multiple qubit gates

𝑈†

\begin{tikzpicture}
\begin{yquant*}

box {U^\dagger} (a[-2]);
\end{yquant*}

\end{tikzpicture}

… 𝑈 …

\begin{tikzpicture}
\begin{yquant}

qubit {} a;
cbit {} b;
nobit ellipsis;
qubit {} c;

[draw=none]
box {\dots} ellipsis;
box {U} (a, b, ellipsis, c);
[draw=none]
box {\dots} ellipsis;

\end{yquant}
\end{tikzpicture}

This demonstrates how a register of type nobit might even be useful if the
register is never used. We use box registers with disabled border to put the
ellipsis dots in place.

49

ℱ
𝒢

𝒢

\begin{tikzpicture}
\begin{yquant*}

box {$\symcal F$} (a[-1]);
box {$\symcal G$} (a[0, 2]);

\end{yquant*}
\end{tikzpicture}

This demonstrates yquant’s capabilities of discontiguous multi-qubit gates that
was added in version 0.1.2. yquant automatically splits multi-qubit gates into
slices of directly adjacent wires (which, for the 𝒢 case, are the single wires
a[0] and as second slice a[2]).

B. Measurements and classical bits

𝜒

|𝜉±⟩

\begin{tikzpicture}
\begin{yquant*}

measure a;
dmeter {χ} b;
measure {$\ket{\xi_\pm}$} c;

\end{yquant*}
\end{tikzpicture}

The “tab” and “measure” type are not supported yet. Extracting a meter symbol
on its own will not be supported. If you are interested in the code, have a look
at yquant-shapes.tex and search for the yquant-measure shape.

Codebit
𝜒

\begin{tikzpicture}
\begin{yquant*}

[rounded corners]
box {Codebit} a;
box {χ} b | a;
discard a;
measure b;

\end{yquant*}
\end{tikzpicture}

Rectangles with rounded corners are not a specific style, but since the yquant-
rectangle shape internally uses \pgfpathrectangle, the ordinary TikZ op-
tion can be used (also, an inset specification can control how much the corner
is rounded).

50

|𝜓⟩ |𝜉±⟩

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket\psi$} q;

measure {$\ket{\xi_\pm}$} q;
\end{yquant}

\end{tikzpicture}

Bell

\begin{tikzpicture}
\begin{yquant*}

dmeter {Bell} (a[0, 1]);
discard a;

\end{yquant*}
\end{tikzpicture}

|𝜉∓⟩

|𝜉∓⟩

\begin{tikzpicture}
\begin{yquant*}

measure {$\ket{\xi_\mp}$} (a[-1, 3]);
\end{yquant*}

\end{tikzpicture}

Multi-qubit gates (including measurements) on non-adjacent registers are
properly supported since version 0.1.2. As explained in section 2.4, there is
one main and multiple subordinate gate in such a discontiguous multi-qubit
operation (though at the moment, the measure gate with text is the only
gate that makes this distinction). In our case, the main part contains the
measurement symbol and the text, while the subordinate gates only contain
the text. By default, yquant uses the first slice as main part, but you may
influence this by preceding what you want to be “main” by a star:

|𝜉∓⟩

|𝜉∓⟩

\begin{tikzpicture}
\begin{yquant*}

measure {$\ket{\xi_\mp}$} (a[-1, *3]);
\end{yquant*}

\end{tikzpicture}

51

C. Non-gate inserts, forcing space, and swap

𝑋
𝐻⊗𝑛

Defective Circuit

\begin{tikzpicture}
\begin{yquant*}

[name=sw]
swap (a[0-1]);
[draw=none]
box {X} a[1];
slash b;
box {$H^{\otimes n}$} b;
\node[anchor=199] at (sw-0.north) {Defective

Circuit};↪

\end{yquant*}
\end{tikzpicture}

Here, the intermediate text was inserted by using a box without drawing.
Another way would be to use an init command, although this is semantically
wrong (probably).

…

\begin{tikzpicture}
\begin{yquant*}

qubit {} a;
[name=ypos]
qubit {} b[3];

cnot a | b[0];
[name=left]
cnot a | b[1];
hspace {7mm} -;
[name=right]
cnot a | b[2];

\end{yquant*}
\path (left |- ypos-0) -- (right |- ypos-1)

node[midway] {\dots};↪

\end{tikzpicture}

Note how the register range - was used to denote all registers. We positioned
the dots by first naming the relevant registers, so that the vertical position is at
the coordinates ypos-0 and ypos-1; and then, we also named the cnot gates,
so that we are able to discern the horizontal position.

52

D. Barriers

𝑋
𝑋

\begin{tikzpicture}
\begin{yquant*}

x a[0, 1];
barrier (a);

\end{yquant*}
\end{tikzpicture}

Now the qcircuitmanual lists three circuits with barriers at different positions.
They cannot be drawn with yquant; however, since neither of them is a valid
circuit, this is of no concern.

E. How to control anything

𝐻

𝑈

\begin{tikzpicture}
\begin{yquant*}

zz (a[0, 2]);
cnot a[1] ~ a[0];
zz (a[2, 3]);
h a[3] | a[0] ~ a[1];
measure a[2, 3];
box {U} (a[0, 1]) | a[3] ~ a[2];
discard a[2, 3];

\end{yquant*}
\end{tikzpicture}

Note that it is not possible to draw a control to measurement (the measurement
operations are explicitly defined not to accept controls): Either the measure-
ment is performed or not (which transforms the register type), but a measure-
ment conditioned on a quantum state is not possible. In principle, one could
think of a measurement conditioned on a classical register (in which case the
register type cannot change, as maybe the state stays quantum; the measure-
ment operation then is similar to a complete dephasing). If there is need for
this, please file a feature request. But note the relatively common (though
unsupported by yquant at the moment) use of control lines that directly go
from the measurement operator to the controlled operation; in this case, the
opposite direction would be meant by using the same notation.

6.2.4 VI. Bells andWhistles: Tweaking Your Diagram to Perfection

For options how to configure the circuits, refer to section 3.

53

A. Spacing

𝑇 †

\begin{tikzpicture}
\begin{yquant*}

swap (a[0, 1]);
box {T^\dagger} a[2] | a[1];
swap (a[0, 1]);

\end{yquant*}
\end{tikzpicture}

B. Labeling

𝑎
𝑏

𝐴
𝐵

\begin{tikzpicture}
\begin{yquant}[every initial

label/.style={anchor=south east}]↪

qubit {\rlap{\hskip2mm a}} a;
qubit {\rlap{\hskip2mm b}} b;
hspace {5mm} -;

measure b;
align -;
measure a;
output {A} a;
output {B} b;

\end{yquant}
\end{tikzpicture}

Measurement with vertical output are not supported (yet). Repositioning the
initial labels needs some care and manual fine-tuning.

54

C. Grouping

𝐻

𝐻

𝑍

𝐻

𝐻

% \usetikzlibrary{fit}
\begin{tikzpicture}

\begin{yquant*}[register/separation=3mm]
cnot a[2] | a[0];
cnot a[2] | a[1];
[name=left]
h a[0, 1];
z a[2];
cnot a[1] | a[0];
[name=righttop]
h a[0];
[name=rightbot]
h a[1] | a[2];

hspace {2mm} -;
\end{yquant*}
\node[draw, dashed, fit=(left-0) (left-1) (righttop) (rightbot-0)] {};

\end{tikzpicture}

Note that \begin{yquant*} must not be followed by a line break (unless
masked by %) if options follow.

55

6.3 quantikz documentation

Again, our section headings will be the same as in the quantikz manual. And
since quantikz also has even more space between the gates, we globally say
\yquantset{operator/separation=4mm}.

6.3.1 II. A single wire

|0⟩ 𝛼 𝐻
𝛽

𝐻
𝛾 Arbitrary

pure state

\begin{tikzpicture}[label position=north east, every label/.style={inner
sep=1pt}]↪

\begin{yquant}
qubit {$\ket0$} a;

phase {α} a;
h a;
phase {β} a;
h a;
phase {γ} a;

[every output/.append style={align=center}]
output {Arbitrary\\pure state} a;

\end{yquant}
\end{tikzpicture}

The captions of phase commands are internally implemented using TikZ
labels. At the moment, it is not possible to change any label options on
a gate-type basis, only locally or fully globally (TikZ feature request #811).

56

https://github.com/pgf-tikz/pgf/issues/811

A. Measurements

0
1

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant*}
["0"]
measure a;
discard a;

init {} a;
dmeter {1} a;
discard a;

\end{yquant*}
\end{tikzpicture}

Other measurement shapes are not supported at the moment.

B. Wires and arrows

|0⟩
initial state 𝑋

0/1
|1⟩

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant}[operator/separation=1cm, every label/.append
style={align=center}]↪

qubit {$\ket0$\\initial state} a;

[draw=none]
box {X} a;

["0/1", type=qubit]
measure a;

addstyle {->} a;
output {$\ket1$} a;
\yquantset{operator/separation=5mm}

\end{yquant}
\end{tikzpicture}

This example demonstrates how to instruct the measure gate to use a different
output type than the standard cbit.
In general, any macros that are used within a TikZ path or a yquant operation
must not be fragile, or must be preceded with \protect. In this example, \\ is a

57

robust command (at least in newer kernels), so protection is not required. Since
it may occur quite frequently that yquant is used within a center environment
or in \centering mode (in which \\ is still fragile), yquant takes care of
this (it actually robustifies \@centercr, which is the meaning of \\ in these
surroundings).
In order to change the style of an individual wire, we use addstyle as of
version 0.1.2. To make the final line smaller, we change the operator separation
by issuing \yquantset at the end.

|0⟩⊗𝑛 3 𝐻

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant*}
qubit {$\ket0^{\otimes n}$} a;
["north east:3" {font=\protect\footnotesize,

inner sep=0pt}]↪

slash a;
hspace {2mm} a;
h a;

\end{yquant*}
\end{tikzpicture}

Again, you see an example of how some commands need to be \protected
when used in yquant options, and that you can indeed exploit all features of
the quotes library.

|0⟩⊗𝑛 𝐻

\begin{tikzpicture}
\begin{yquant}

qubits {$\ket0^{\otimes n}$} a;
h a;

\end{yquant}
\end{tikzpicture}

58

6.3.2 III. Multiple Qubits

|0⟩

|0⟩

𝐻

𝐻

𝑈

𝑈

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket0$} a;
qubit {$\ket0$} b;

h a, b;
cnot b | a;
box {U} a ~ b;
zz (a, b);

[after=a]
qubit {} c;

swap (a, c);
box {U} c | a ~ b;

\end{yquant}
\end{tikzpicture}

This example demonstrates the use of the after argument that instructs the
register creation to begin the register only after the current position of another
register that already exists.

59

𝑈

\begin{tikzpicture}
\begin{yquant*}

[name=c]
cnot a[0, 2] | a[1];
[name=m]
measure a[1];
discard a[2];
\path[/yquant/every wire, /yquant/every qubit wire] (c-1) --

(m.center |- c-1);↪

box {U} a[0] | a[1];
discard a[1];

\end{yquant*}
\end{tikzpicture}

It is not possible for the double control line to directly exit the measurement
gate. Also, if you discard a gate, this will prevent it from exiting from its last
gate. yquant will not allow you (apart from manual drawing) to extend the
wire to some arbitrary position, then drop it. But of course, as done here, you
can always resort to the full power of TikZ. Still, this is inferior to a wire drawn
by yquant, as it does not use clippings: the connection with the cnot gate may
not be accurate; in particular, if the wire is of a different color or if you need
to draw classical or bundle wires, the connection will become unpleasant.

𝑈 𝑉

\begin{tikzpicture}
\begin{yquant*}

cnot a[1, 2] | a[0];
measure a[1], a[2];
box {U} a[0] | a[1];
box {V} a[0] | a[2];
discard a[1]-;

\end{yquant*}
\end{tikzpicture}

60

6.3.3 IV. Operating onmany Qubits

|0⟩⊗3
𝑈 |11⟩

\begin{tikzpicture}
\begin{yquant*}

init {$\ket0^{\otimes3}$} (a[-2]);

box {U} (a[1-2]) | a[0];
measure a[0];
discard a[0];
output {$\ket{11}$} (a[1-2]);

\end{yquant*}
\end{tikzpicture}

Multi-qubits inputs are possible using the init command. The text assigned
to a register declaration is always for an individual register.

𝐻

𝑈

\begin{tikzpicture}
\begin{yquant*}

hspace {7.5mm} a;
h a;
hspace {7.5mm} a;
[x radius=1cm]
box {U} (b, c);
cnot b | a;
measure a;
discard a;

\end{yquant*}
\end{tikzpicture}

yquant does not use a grid layout: operators are stacked next to each other.
Therefore, there is no automatic centering of a column, though it could be emu-
lated using hand-crafted hspace commands, as was done here (the Hadamard
gate uses the /yquant/operator/minimum width, which is 5mm, while the
large box has a width of 2cm, so that we need two 7.5mm spacings at the end,
as the hspace pseudo-gate only inserts exactly the space you give, but not
additional [twice] /yquant/operator/separation, as would be the case for
a hypothetical zero-width gate). In fact, we don’t even need the second hspace,
since the two-qubit cnot will automatically enforce correct alignment.

61

𝑈
𝑥 𝑥

𝑦 𝑦 ⊕ 𝑓(𝑥)

\begin{tikzpicture}[braced/.style={decoration={brace, #1, pre=moveto, pre
length=-1pt, post=moveto, post length=-1mm}, decorate},
inner/.style={font=\footnotesize}]

↪

↪

\begin{yquant}[register/separation=3mm]
[name=a]
qubit {} a[4];
[x radius=1cm, name=u]
box {U} (a[1-3]) | a[0];

\end{yquant}
\draw[braced]

([xshift=2pt] a-1 -| u.west) -- ([xshift=2pt] a-2 -| u.west)
node[inner, anchor=west, xshift=1pt, pos=.55] {x};

\draw[braced=mirror]
([xshift=-2pt] a-1 -| u.east) -- ([xshift=-2pt] a-2 -| u.east)
node[inner, anchor=east, xshift=-1pt, pos=.55] {x};

\node[inner, anchor=west] at (a-3 -| u.west) {\smash{y}};
\node[inner, anchor=east] at (a-3 -| u.east) {\smash{$y \oplus f(x)$}};

\end{tikzpicture}

There is no simple way to draw within a gate, though this is probably some-
thing that will be easier using subcircuits (planned feature). Instead, here the
intricate parts were reproduced using TikZ: first, we make sure we assign a
name to every relevant coordinate. Then we use some TikZ styles to draw the
braces and nodes at the intersection of these coordinates. Here, we also make
use of the moveto decoration transformation that comes with yquant and that
allows to enlarge the braces slightly for a good overall appearance. Finally, as
𝑦 has a much smaller height than 𝑦 ⊕ 𝑓(𝑥), we make sure this does not affect
the vertical positioning; and also, as 𝑥 has no ascender, we need to slightly
position it off-mid for a good look.

62

√
𝑍

𝑋
√
SWAP

\begin{tikzpicture}
\begin{yquant*}

box {$\sqrt Z$} a;
box {X} b;
box {$\sqrt{\mathrm{SWAP}}$} (a, b);
measure a;

\end{yquant*}
\end{tikzpicture}

This time, we did not artificially discard the lines.

𝑐0

𝑐1

𝑐2

𝑐3

M
A
J

M
A
J

\begin{tikzpicture}
\begin{yquant}

qubit {c_{\idx}} c[4];
box {M\\A\\J} (c[-2]);
box {M\\A\\J} (c[1-]);

\end{yquant}
\end{tikzpicture}

A. Different connections

𝑈

\begin{tikzpicture}
\begin{yquant}[register/default name=]

qubit a;
cbit b;
nobit c;
cbit d;
qubit e;
box {U} (-);
settype {qubit} c;

\end{yquant}
\end{tikzpicture}

This example for the first time demonstrates the declaration of a non-existing
register and the settype pseudo-gate that acts as a zero-width, no-content
init gate.

63

6.3.4 V. Slicing

𝐻
step

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit {} a[3];
h a[0];
[red, thick, label=step]
barrier (a);
cnot a[1] | a[0];
measure a[0];
discard a[0];
cnot a[2] | a[1];
h a[1];

\end{yquant}
\end{tikzpicture}

There is nothing like a slice all keyword, as yquant’s underlying layout is
not grid-based. Changing the style of slice captions simply means providing
label options. This time, we used the label key instead of the shorter syntax
provided by the quotes library, which is of course also possible.

𝐻
slic

e 1
slic

e 2
slic

e 3

𝐻

64

% \usetikzlibrary{quotes}
\begin{tikzpicture}[every label/.style={rotate=40, anchor=south west}]

\begin{yquant}[operators/every barrier/.append style={blue, thick}]
qubit {} a[3];
h a[0];
["slice 1"]
barrier (-);
cnot a[1] | a[0];
["slice 2"]
barrier (-);
measure a[0];
discard a[0];
cnot a[2] | a[1];
["slice 3"]
barrier (-);
h a[1];

\end{yquant}
\end{tikzpicture}

|0⟩ 𝐻

1
𝜑

2

𝐻

3

% \usetikzlibrary{quotes}
\begin{tikzpicture}[label distance=4mm]

\begin{yquant}[operators/every barrier/.append style={red, thick,
shorten <= -2.5mm, shorten >= -2.5mm}]↪

qubit {$\ket0$} a;
h a;
["1"]
barrier (a);
phase {[label distance=0pt]φ} a;
["2"]
barrier (a);
h a;
["3"]
barrier (a);
output {$\cos\frac\varphi2 \ket0 - i\sin\frac\varphi2 \ket1$};

\end{yquant}
\end{tikzpicture}

Usually, the shorten keys do not have any effect on yquant operations, since
the latter are all made up of nodes. However, the yquant-line shape explicitly

65

takes care of correctly handling them. It is the only one that does so. Since
barriers usually end quite closely to the wires—and the default dashed style
may make this worse—the shortening may often prove useful. Note that if the
barriers are enlarged by means of negative shortenings, this will not affect the
bounding box or internal register height calculations, and you must take care
of appropriately shifting labels. Also note that we used much larger magnitudes
in order to achieve a similar appearance as in quantikz. To avoid that the
large distance also affects the phase gate badly, we locally reset the distance;
for this, there are two ways. The easiest one is to make use of the fact that the
value of the phase gate is passed directly as label argument, so that we can
locally reset the distance. The other possibility would be to write

{
\yquantset{/tikz/label distance=0pt}
phase {φ} a;

}

since due to the aforementioned lack of support for a style that sets the options
in TikZ, we must manually use a (grouped) \yquantset instruction for this.
Note that whenever you change a TikZ style in a yquant environment, use the
\yquantset macro, not \tikzset or \pgfkeys. Not only will the latter two not
automatically restart the parser (so that you would have to issue \yquant after
their use), but yquant has to process all its content twice in order to properly
determine the register height. Only \yquantset will be properly captured and
re-issued at the correct position when the content is actually typeset. Had
we written \tikzset{label distance=0pt} \yquant, no effect at all would
have been visible, since this command would only have taken effect in the first
(invisible) round when yquant determines heights.

yquant does not provide a mechanism for vertical labels, but you may of course
just insert line breaks at appropriate positions (and set the align property of the
labels).

66

6.3.5 VI. Spacing

A. Local adjustment

𝐻

𝑋

𝑋

𝑋

𝑍

𝑍

𝐻

𝑍

𝑍

\begin{tikzpicture}
\begin{yquant}[register/default

name=]↪

[register/minimum height=2cm]
qubit a;
qubit {\vbox to 1cm{}} b;
qubit c;

h a;
x b-;
hspace {2cm} -;
x a;
z b-;
h a;
z b-;

\end{yquant}
\end{tikzpicture}

At the moment, the distance between registers is calculated by yquant auto-
matically. We show various possibilities to intervene in this example. The first
is to locally, upon creation of the register, reset /yquant/register/minimum
height to a different value. The second is to artificially enlarge the label that
the qubit initializer takes. However, both approaches enlarge the height of the
registers, i.e., add half of the specified amount to the top and the bottom.

𝑋 𝑋 𝑋

\begin{tikzpicture}
\begin{yquant*}

[x radius=1cm]
x a;
box {\hbox to 1cm{\hfilX\hfil}} a;
hspace {1cm} a;
x a;
discard a;

\end{yquant*}
\end{tikzpicture}

Here, we demonstrate two possibilities to enlarge a box: The first is by specify-
ing its size in terms of the x radius or y radius keys beforehand. Those values

67

serve as minimum sizes and would be extended if the text extended beyond the
box. The second option is to just enlarge the text artificially by explicitly putting
it into a fixed-width box. Note that in the first case, the radius is specified,
i.e., the half-width, while in the second case, it is the total width (both times
modulo the inner separation). Also note that the /yquant/operator/minimum
width style is unsuitable for the given task: it would not change the visual
width, only what yquant assumes its width to be.

B. Global Adjustment

𝐻
𝛽

𝐻

\begin{tikzpicture}
\begin{yquant*}[operator/separation=1cm]

h a;
phase {β} a;
h a;

\end{yquant*}
\end{tikzpicture}

𝑋

𝑋

𝑋

𝐻

\begin{tikzpicture}
\begin{yquant*}[register/minimum height=0pt]

x a[0, 2];
zz (a[0, 1]);
x a[0];
h b;

\end{yquant*}
\end{tikzpicture}

By default, yquant will use the height that is required by the individual gates,
but at least /yquant/register/minimum height (which defaults to 3mm).
Only manually reducing the default height will produce the cramped spacing
displayed here.

68

C. Alignment

𝑋
=

𝑋
𝑋

\begin{tikzpicture}
\begin{yquant*}

x a[0];
cnot a[1] | a[0];

\end{yquant*}
\end{tikzpicture}
$=$
\begin{tikzpicture}

\begin{yquant*}
cnot a[1] | a[0];
x a;

\end{yquant*}
\end{tikzpicture}

Not specifying anything for the vertical alignment will lead to the common TikZ
problem: the baseline will be at the bottom, which is particularly bad in this
case due to the missing 𝑋 gate. The /yquant/register/minimum height key
does not help here, since it only affects yquant’s internal handling, but not
the bounding box calculated by TikZ. In the first example of the qcircuit
documentation, we demonstrated how the desired task can easily be achieved
in terms of baselines. We will now do the same with scopes instead.

𝑋 𝑋
𝑋

=

\begin{tikzpicture}[/yquant/register/minimum height=5mm]
\begin{yquant*}

x a[0];
cnot a[1] | a[0];

\end{yquant*}
\path (current bounding box.east |- 0, 0) ++(1, 0) coordinate (shift);
\begin{scope}[shift=(shift)]

\begin{yquant*}
cnot a[1] | a[0];
x a;

\end{yquant*}
\end{scope}
\node at (current bounding box) {$=$};

\end{tikzpicture}

Here, we increased the minimum height so that in the left circuit despite the
absence of the 𝑋 gate, the second register has the same separation. We used

69

the meta-node current bounding box to avoid the need to manually specify
hard-coded positions.

1. Perfecting Vertical Alignment

|0⟩

𝐻 ≡ 𝐻 𝑋

\begin{tikzpicture}[baseline=(W)]
\begin{yquant}

qubit {$\ket0$} anc;
[name=W]
qubit {} x;
h x;
cnot x | anc;

\end{yquant}
\end{tikzpicture} \equiv \begin{tikzpicture}[baseline=(W)]

\begin{yquant}
[name=W]
qubit {} x;
h x;
x x;

\end{yquant}
\end{tikzpicture}

While here, we opted for the most logical choice to name the declaration of
the register, a name put to any operation on the desired register would also
serve the purpose.

70

|0⟩

𝐻
≡

𝐻 𝑋

\begin{tikzpicture}[baseline={([yshift=.2cm]W)}]
\begin{yquant}

qubit {$\ket0$} anc;
[name=W]
qubit {} x;
h x;
cnot x | anc;

\end{yquant}
\end{tikzpicture} \equiv
\begin{tikzpicture}[baseline={([yshift=.2cm]new)}]

\begin{yquant}
[name=new]
qubit {} x;
h x;
x x;

\end{yquant}
\end{tikzpicture}

Of course, you may also use the features of the TikZ library calc to achieve
the same shift.

D. Scaling

𝐻
𝛽

𝐻

\begin{tikzpicture}[scale=1.5, every label/.append style={scale=1.5}]
\begin{yquant*}

h a;
phase {β} a;
h a;

\end{yquant*}
\end{tikzpicture}

Here, we first scaled the circuit itself. The default style for /yquant/every
circuit sets the transform shape key for every node (which means any
gate), so that those are also scaled. This is explicitly undone for labels due to
TikZ bug #843, so the scaling must be specified explicitly for the labels.

71

https://github.com/pgf-tikz/pgf/issues/843

6.3.6 VII. Typesetting

A. Global Styling

𝐻
𝛽

𝐻
|±⟩

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant*}[operators/every h/.append style={fill=red!20}]
h a;
phase {β} a;
h a;
["$\ket\pm$" above right]
measure a;

\end{yquant*}
\end{tikzpicture}

Instead of setting /yquant/operators/every h, we could also have changed
/yquant/operators/every box. Had we used /yquant/every operator,
then the measurement would also have changed. Again, due to a TikZ limitation,
it is not possible to change the position of labels on a per-style basis, only by
using label options or a global setting.

𝑅𝑧(−𝜃 ⁄ 2) 𝑅𝑧(𝜃 ⁄ 2)

\begin{tikzpicture}[thick]
\begin{yquant*}[every operator/.prefix style={fill=white}]

cnot a[1] | a[0];
box {$R_z(-\theta\fracslash2)$} a[1];
cnot a[1] | a[0];
box {$R_z(\theta\fracslash2)$} a[1];
measure a[1];

\end{yquant*}
\end{tikzpicture}

As the “thin” style is the default, we present the opposite. By default, all
operators are transparent; we changed this by giving all of them a white
background color (but as a style prefix, so that, e.g., black fillings overwrite
this). Contrary to quantikz, this also fills the cnots. If you only want to fill
certain operators, you have to selectively target them using their styles.

72

𝐽12
𝐽13

𝐽13
𝐽23

\begin{tikzpicture}
\begin{yquant}[operators/every box/.append style={fill=white}]

qubit {} j[3];
box {J_{12}} (-j[1]);
box {J_{13}} (j[0, 2]);
box {J_{23}} (j[1]-);

\end{yquant}
\end{tikzpicture}

yquant properly splits discontiguous multi-qubit operations as of version 0.1.2.

B. Per-Gate Styling

𝐻
𝛽 |±⟩

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant*}
[fill=red!20, font=\color{cyan}]
h a;
[green]
phase {[green]β} a;
["$\ket\pm$"]
measure a;
discard a;

\end{yquant*}
\end{tikzpicture}

73

|0⟩

|0⟩

𝐻

|0⟩

|0⟩

noise

% \usetikzlibrary{shapes.symbols, fit}
\begin{tikzpicture}

\begin{yquant}
qubit {} data;
qubit {$\ket0$} anc1[2];

h data;
cnot anc1 | data;
[after=data]
qubit {$\ket0$} anc2[2];
[name=box, draw=none]
box {} (data, anc1);
cnot anc2[0] | data;
cnot anc2 | anc1[0];
cnot anc2[1] | anc1[1];
measure anc2;

\end{yquant}
\node[starburst, cyan, fill=yellow, draw=red,

line width=2pt, inner xsep=-4pt, inner ysep=-5pt, fit=(box)]
{noise};↪

\end{tikzpicture}

TikZ shapes cannot simply be used with yquant. Any yquant shape must be
aware of the keys x radius and y radius that control its width and height.
Additionally, yquant shapes must implement clipping paths. Those objects,
which are a yquant addition to TikZ allow yquant to properly clip wires and
vertical lines to the shape of the gate. yquant draws its elements sequentially;
hence, a wire that comes into an operator will be hidden by anything the
operator draws on top of it; but outgoing wires will in turn draw on the
operator (modulo clipping). To avoid the issues, we construct an invisible box
operator and name it; outside of the yquant environment, we fit the special
TikZ shape on top of it.

74

C. Boxing/Highlighting Parts of a Circuit

𝐻 𝐻
𝐻

𝐻
𝐻 𝐻

reversed c-not

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant*}
h a;
cnot b | a;
[name=left]
h -;
cnot b | a;
[name=right]
h -;
cnot b|a;
h b;

\end{yquant*}
\node[fit=(left-0) (left-1) (right-0) (right-1),

draw, inner sep=6pt, "reversed c-\textsc{not}"] {};
\end{tikzpicture}

75

swap

𝐻
𝐻

% \usetikzlibrary{quotes, backgrounds}
\begin{tikzpicture}

\begin{yquant*}
h a;
[name=left]
cnot b | a;
cnot a | b;
[name=right]
cnot b | a;
h b;

\end{yquant*}
\scoped[on background layer]

\node[fit=(left-0) (left-p0) (right-0) (right-p0),
draw, dashed, rounded corners, fill=blue!20,
inner xsep=6pt, inner ysep=10pt,
"\textsc{swap}" below] {};

\end{tikzpicture}

In this example, we need to refer to names, but want to fill the background
before those nodes are actually available. Hence, we use the layering mech-
anism of TikZ and put the node on the background layer. Alternatively, we
could have drawn on top and used opacity to still make visible what is behind;
but in general, whenever you can avoid to use opacities, do avoid it; it adds
overhead at the renderer and may give sub-optimal result when printing since
the viewer has to reduce all elements to non-overlapping parts.

yquant does not support the fancy nearest-neighbor swap gate that quantikz
has. It would however not be very difficult to implement this particular shape and
make it available. Maybe even a multi-swap gate using the knots library would
be possible.

76

6.3.7 VIII. Otherwise undocumented features

𝐻

𝐻
𝑈

…

…
… 𝑈𝑘

𝐻

𝐻

% \usetikzlibrary{quantikz}
\begin{tikzpicture}

\begin{yquant}[register/default name=]
qubit a;
[name=wave, register/minimum height=1cm]
nobit wave;
qubit b;
qubit c;

h a, b;
box {U} c | a;
[draw=none]
box {\dots} a, b-;
box {U^k} c | b;
h a, b;

\end{yquant}
\node[wave, fit=(wave) (current bounding box.east |- wave), inner

ysep=.5pt, inner xsep=0pt] {};↪

\end{tikzpicture}

Here, we included quantikz, which provides the wave shape, then introduced
a register that will contain this wave (and enlarged it sufficiently). After the
circuit is drawn, we fit the wave along. Since the name assigned to a register
without any text actually is of a coordinate shape, we need to enlarge the
height of the wave by providing a slightly increased inner ysep. Additionally,
quantikz sets a negative inner xsep, which is probably required for its grid
layout; but yquant positions exactly, so we also need to reset this.

77

6.3.8 X. Troubleshooting

|0⟩

|0⟩

(𝛼 𝛽
𝛽 −𝛼) 𝑈1

𝑈2

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket0$} a[2];
box {$\begin{pmatrix}

\alpha & \beta \\
\beta & -\alpha

\end{pmatrix}$} a[0];
cnot a[1] | a[0];
box {$U_{\protect\the\numexpr\idx+1}$} a;

\end{yquant}
\end{tikzpicture}

78

7 Wishlist

This section contains some thoughts on future improvements and features.

• Subcircuit support.
A subcircuit is a quantum circuit on its own that is put into a box within
other circuits. It has input, output, and also internal wires. Subcircuits may
be declared on-the-fly if they are used only once, but there should also be
the option to globally declare subcircuits and use them at any time. As with
ordinary quantum circuits, everything in a subcircuit should be allowed
to have a name. If the subcircuit itself is then also named, those inner
names should be made available (prefixed with the subcircuit’s name), to
the outer circuit. Subcircuits may also contain subcircuits. While the number
of input registers should match, a subcircuit may have more, less or different
output registers. The language needs to be extended to somehow allow
for this. Subcircuits will typically be multi-qubit elements that, at least if
internal wires are used, may significantly increase the required height for an
individual register. Hence, the internal height calculations must be adapted.
This will be particularly problematic if the subcircuit targets non-adjacent
wires.

• Support for other languages.
It would be particularly nice to introduce a language mode. While the
yquant language will always provide the set of everything yquant can do at
the moment, it would be nice if yquant can automatically detect OpenQASM
and parse its content correctly. OpenQASM is much more limited than yquant
and, being a language designed for actual execution of the circuits, does not
providemeans to change visual appearance. Probably some yquant additions
to OpenQASM would be ok, as long as they only complement the original
language? Also, OpenQASM support would probably require subcircuits.
Another nice feature would be to support qasm. Also here, the feature set is
much more limited and it would probably be hard to implement an automatic
detection, the user would have to specify the language by hand.

• Vertical layout.
Sometimes, long quantum circuits on a portrait page can be better rep-
resented in a vertical layout. Also if lots of explanations are to be added,
this becomes problematic in the horizontal version. In principle, yquant’s
approach could allow for a simple key switch that changes horizontal to ver-
tical. Currently, this is largely unsupported by all quantum circuit packages
except for qpic.

79

8 Changelog

8.1 2020-03-15: Version 0.1

Initial release

8.2 2020-03-22: Version 0.1.1

Complete rewrite of the register name parser. yquant now understands comma-
separated lists and ranges in indices, and also is far more tolerant with respect to
whitespaces.
yquant now also supports non-contiguous vector registers and allows to add new
registers into an already existing vector that is not the last register, and also in
the unstarred mode.

8.3 2020-04-11: Version 0.1.2

Introduce setstyle and addstyle pseudo-gates that allow to style individual
wires; rename setwire to settype (the old name is still available and shows a
deprecation warning).
Complete rewrite of the way yquant draws wires; projection anchors are removed
in favor of clipping paths. This allows perfect connections between gates and wires,
even if the (rather rectangular) wire lines meets with nonplanar shapes, while
still preserving the possibility of transparent wires.
yquant now also properly draws non-contiguous multi-qubit operations.
New gate: correlate. Various bug fixes.

80

	Introduction
	How to read the manual
	Installation
	Purpose of yquant, alternatives
	License

	Basic elements of yquant
	General usage
	Starred vs. unstarred environment
	Formal syntax
	Registers
	Arguments
	Controls

	Configuration
	Circuit layout
	Register creation
	Register outputs
	General styling
	Styles for operators

	Doing the impossible
	Reference: Gates and operations
	addstyle
	align
	barrier
	box
	cbit
	correlate
	cnot
	discard
	dmeter
	h
	hspace
	init
	measure
	nobit
	not
	output
	phase
	qubit
	qubits
	setstyle
	settype
	setwire
	slash
	swap
	x
	xx
	y
	z
	zz

	Examples
	qasm documentation
	qcircuit documentation
	I. Introduction
	IV. Simple Quantum Circuits
	A. Wires and gates
	B. CNOT and other controlled single qubits gates
	C. Vertical wires
	D. Labeling input and output states

	V. More Complicated Circuits: Multiple Qubit gates and Beyond
	A. Multiple qubit gates
	B. Measurements and classical bits
	C. Non-gate inserts, forcing space, and swap
	D. Barriers
	E. How to control anything

	VI. Bells and Whistles: Tweaking Your Diagram to Perfection
	A. Spacing
	B. Labeling
	C. Grouping

	quantikz documentation
	II. A single wire
	A. Measurements
	B. Wires and arrows

	III. Multiple Qubits
	IV. Operating on many Qubits
	A. Different connections

	V. Slicing
	VI. Spacing
	A. Local adjustment
	B. Global Adjustment
	C. Alignment
	D. Scaling

	VII. Typesetting
	A. Global Styling
	B. Per-Gate Styling
	C. Boxing/Highlighting Parts of a Circuit

	VIII. Otherwise undocumented features
	X. Troubleshooting

	Wishlist
	Changelog
	2020-03-15: Version 0.1
	2020-03-22: Version 0.1.1
	2020-04-11: Version 0.1.2

